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ABSTRACT

Applying machine learning (ML) to sensitive domains requires pri-
vacy protection of the underlying training data through formal
privacy frameworks, such as differential privacy (DP). Yet, usually,
the privacy of the training data comes at the cost of the resulting
ML models’ utility. One reason for this is that DP uses one uniform
privacy budget ε for all training data points, which has to align
with the strictest privacy requirement encountered among all data
holders. In practice, different data holders have different privacy
requirements and data points of data holders with lower require-
ments can contribute more information to the training process of
the ML models. To account for this need, we propose two novel
methods based on the Private Aggregation of Teacher Ensembles
(PATE) framework to support the training of ML models with indi-
vidualized privacy guarantees. We formally describe the methods,
provide a theoretical analysis of their privacy bounds, and experi-
mentally evaluate their effect on the final model’s utility using the
MNIST, SVHN, and Adult income datasets. Our empirical results
show that the individualized privacy methods yield ML models of
higher accuracy than the non-individualized baseline. Thereby, we
improve the privacy-utility trade-off in scenarios in which different
data holders consent to contribute their sensitive data at different
individual privacy levels.
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1 INTRODUCTION

Machine learning (ML) is increasingly applied in settings where
training data is sensitive. At the same time, training data leakage is
ubiquitous [17, 18, 35], motivating approaches that integrate differ-
ential privacy (DP) [12]. When properly applied, DP guarantees that
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Table 1: Number of generated labels by Standard vs our Indi-

vidualized PATE on the MNIST and SVHN datasets. D: distri-
bution of privacy groups (percentage wise), ε: privacy bud-

get for a given group, N: number of generated labels, and

A: accuracy of all votes generated by the respective method.

The percentages of the three privacy groups are chosen ac-

cording to [3] (first setup/row) and [31] (second setup/row).

We use the standard train-test split for MNIST and train the

teachermodels using the first 50K train samples while keep-

ing the remaining 10K as the public dataset, and evaluating

on the 10K standard test samples. Similarly for SVHN, we

split the train set into a public set of 10K samples and use

the remaining 63257 train samples as the standard train set.

Then, the test set is used for evaluation. We run the experi-

ments three times and report the standard deviation.

Setup PATE Upsample Weight

MNIST D 34%-43%-23% N 365±2 1333±1 1312±8
ε 1.0-2.0-3.0 A 97.40 97.20 97.24

MNIST D 54%-37%-9% N 361±3 949±18 1894±10
ε 1.0-2.0-3.0 A 97.32 97.18 97.33

SVHN D 34%-43%-23% N 90±1 394±5 409±3
ε 1.0-2.0-3.0 A 64.55 64.33 66.40

SVHN D 54%-37%-9% N 96±2 284±1 558 ±1
ε 1.0-2.0-3.0 A 62.90 62.85 65.65

the amount of sensitive information that the trained ML models can
potentially leak at inference time is bounded by the privacy budget
ε . However, there exist trade-offs between the degree of privacy
introduced by DP and the model’s utility (measured as, for example,
its accuracy). Furthermore, we observe an important characteristic
of current ML applications with DP: ε is a single parameter that
controls the protection level for the entire dataset, even if some
data points in it are not sensitive at all. This coarse level of privacy
parameterization seems extremely wasteful: intuitively, if large
portions of the data need little protection whereas other parts are
highly sensitive, then choosing an ε tuned to sufficiently protect the
sensitive data, and using it to protect all data, might unnecessarily
penalize the model’s utility.

In addition to different data being inherently more or less sen-
sitive, it is also known that in society, individuals have different
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attitudes towards privacy protection, and therefore, require their
data to be protected at different levels [5, 20]. Since current ML ap-
plications under DP only allow for setting a uniform privacy budget
ε , even when the data holders have different privacy requirements,
the privacy budget would always have to be chosen according to
the individuals with the highest requirements. However, given the
privacy-utility trade-off mentioned above, it would be desirable
not to always implement the highest privacy protections for all
data points. Instead, allowing several individual privacy budgets
according to the data holders’ respective preferences can help to
better leverage the training data, and increase the utility of the
resulting ML model.

While approaches for supporting the specification of individual
privacy preferences exist for statistical data analyses with DP [3, 22],
to the best of our knowledge, no such frameworks exist in the con-
text of ML. Yet, there is a multitude of applications that already bene-
fit from individualized DP for data analysis, such as smart home [47],
smart grid [8], and object localization [11, 44]—underlining the
relevance of the topic and the need to extend individualized DP
methods to ML. To this end, in this work, we introduce two novel
methods (upsampling and weighting) that extend the Private Ag-
gregation of Teacher Ensembles (PATE) [33] algorithm—one of the
standard frameworks to implement DP in ML applications—and
support individualized assignment of privacy budgets among the
sensitive training data. We first theoretically introduce both our
methods and provide a detailed privacy analysis. Then, we experi-
mentally evaluate our methods’ implications on the resulting model
utility on the example of the MNIST [25], SVHN [30], and Adult
income [23] datasets. In particular, we study how different distri-
butions of individual privacy preferences and respective privacy
budgets influence the gained utility. Our experiments highlight that
in comparison to the standard PATE approach where the uniform
privacy budget is determined by the data point with the highest
privacy requirements, our individualized PATE variants generate
significantly more labels, and thereby increase utility of the student
model. The significant increase of generated labels by our upsam-
pling and weighting method in comparison to standard PATE is
visualized in Table 1. The fraction of data points assigned to each
of the three privacy groups is specified according to individuals’
preferences observed within society by [5, 20].

In summary, we make the following contributions:

• Introduction of two novel individualized PATE variants;
• Theoretical analysis of the respective privacy bounds;
• Experimental evaluation of utility improvements for the
MNIST, SVHN, and Adult income dataset;
• Quantification of the effects of different privacy budget dis-
tributions on the gained utility;

Ethical Implications. In general, deciding on an adequate DP bud-
get ε in ML applications dealing with sensitive data is a challenging
task. This results from real-world implications of concrete values
for ε being poorly understood. Additionally, even the calculated
privacy budgets ε for the same application and data might decrease
over time, when tighter bounds for their calculation are pushed
forward [1]. These inherent difficulties of choosing an adequate ε
are also faced when assigning individual privacy budgets to data
points. In particular, one needs to make sure that no entity training

an ML model with individual DP guarantees abuses their power
and assigns poor levels of privacy to data that actually requires
privacy protection. We, therefore, suggest the use of our new in-
dividualized PATE variants in settings that contain a process for
obtaining informed consent of the data holders to process their data
at a given privacy level, such as [37]. This process should consist of
(1) the identification of the individual privacy preferences [24, 39],
(2) the communication of the associated privacy risks and limi-
tations (e.g. [42]), and (3) enabling meaningful decision-making
processes by providing information about DP concerning sensitive
data disclosure (e.g. [45]). In particular (2) must be implemented in
a way that the risks are communicated clearly, such that nudging
individuals into giving up their privacy will be prevented. More-
over, we argue that, due to its difficult interpretability, individual
data holders should not be in charge of choosing their numeric
privacy budget ε , but, based on the information on potential risks
and benefits decide on an abstract privacy level, such as "high",
"average", or "low" [5, 19, 20]. Concrete numeric values ε can then
be fixed by the regulator or ethics committee in charge depending
on the sensitive data itself and the application [7]. We argue that
these values should be chosen such that even the lowest privacy
budget still offers protection in practice [29]. This approach can be
considered as a form of soft-paternalism [2] to protect privacy of
the sensitive data held by individuals who are not concerned about
the topic.

2 NOTATION & BACKGROUND

We callD and R the sets of all possible data points, and all possible
processing results that can be produced on them, respectively. Fur-
thermore, two concrete datasets D,D ′ ⊆ D are called neighboring
(written D ∼ D ′) if D and D ′ differentiate exactly in one data point.
More specifically, they are called neighboring on d (writtenD d

∼ D ′)
if they differ by any but exactly one data point d ∈ D.

To refer to ε , wewill use the term privacy budget when expressing
the privacy preference specified for a (group of) data point(s), and
the term privacy costs when referring to the proportion of budget
being already consumed in a DP-based mechanism.

All loд values in this work are based on the natural logarithm.
Furthermore, P[·] denotes the probability of an event according to
an adequate probability measure, and E[·] outputs the expected
value of a given random variable.

2.1 Differential Privacy

DP formalizes the idea of limiting the influence of individual data
points on the results of analyses conducted on a whole dataset. One
relaxation of the standard definition of DP is called (ε, δ )-DP.

Definition 1 (cf . [13], Def. 2.4). LetD,D ′ ⊆ D be two neighboring
datasets. LetM : D∗ → R be amechanism that processes arbitrarily
many data points.M satisfies (ε, δ )-DP with ε ∈ R+ and δ ∈ [0, 1]
if for all datasets D ∼ D ′, and for all result events R ⊆ R

P [M(D) ∈ R] ≤ eε · P
[
M(D ′) ∈ R

]
+ δ . (1)

Thereby, it expresses the guarantee that a single data point can-
not alter the probability of any processing result by a factor larger
than exp(ε). The second parameter δ specifies a small density of
probability on which the upper bound does not have to hold.
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In ML, data is usually processed multiple times to train a model,
e.g. by conducting several training epochs. This process can be
considered as a composition of mechanisms that each have privacy
costs. The following composition theorem states how DP behaves
under composition as follows.

Proposition 1 (cf . [14], Thm. 3.16). Let R1,R2 be two arbitrary

result spaces. Let further M1 : D∗ → R1, M2 : D∗ → R2 be mech-

anisms that satisfy (ε1, δ1)- and (ε2, δ2)-DP, respectively. Then, the
compositionM3(D) 7→ (M1(D),M2(D)) satisfies (ε1 + ε2, δ1 +δ2)-DP.

The proof can be found in Appendix B of [14].

2.2 Rényi Differential Privacy

Proposition 1 shows that under composition, (ε, δ )-DP quickly leads
to a combinatorial explosion of parameters. A smoother composi-
tion of privacy bounds can be achieved by using Rényi Differential
Privacy (RDP) [27] which is based on the Rényi divergence (see
Definition 9 in Appendix A).

Definition 2 (cf . [27], Def. 4). AmechanismM : D∗ → R satisfies
(α, ε)-RDP with α ∈ R+ \ {1} and ε ∈ R+ if for all datasets D ∼ D ′

and for all result events R ⊆ R

Dα
[
fM (D) ∥ fM (D′)

]
≤ ε . (2)

Here, fM (D) and fM (D′) are the probability distributions of the
results ofM on D and D ′, respectively.

In Lemma 3, and Lemma 4 in Appendix A, we show the composi-
tion and transformation from RDP to DP guarantees, respectively.

2.3 Individualized Differential Privacy

Individualized DP, similar to [3, 15, 22, 43], allows accounting for
privacy for data points individually.

Definition 3 (cf . [22], Def. 6). For any data pointd ∈ D,M satisfies
(εd , δd )-DP with εd ∈ R+ and δd ∈ [0, 1] if for all datasets D

d
∼ D ′,

and for all result events R ⊆ R

P [M(D) ∈ R] ≤ eεd · P
[
M(D ′) ∈ R

]
+ δd . (3)

Accounting privacy per data point can also be applied to dif-
ferent DP variants, such as RDP. Properties like composition and
transformation apply to RDP analogously to the original concepts.

2.4 PATE

The PATE framework [33] can be used to perform supervised ML
with DP guarantees. Therefore, the set of private labeled training
data is split among a pre-defined number of so-called teacher models
and each teacher is trained on their partition of the data. Afterward,
the knowledge gained by the teachers from the private training
data is transferred to a public so-called student model. To do so, the
teachers label a public and unlabeled dataset as training data for
the student. Privacy protection for the teachers’ sensitive training
data is obtained by adding DP noise during the labeling process,
and by the fact that the student does not get to interact with the
sensitive data, but instead uses the public dataset for training. See
Figure 4a in the Appendix for an overview of the approach.

The DP noise addition in the labeling process determines the
privacy level of PATE. To obtain a label for a public data point, each

teacher issues a vote for a specific class. These votes are aggregated
with the Gaussian NoisyMax Aggregator as follows:

Definition 4 (cf . [33], Sec. 2.1). Let X,Y be the feature space, and
the set of classes corresponding to data distribution, respectively.
Further, let ti : X → Y be the i-th teacher of a teacher ensemble of
size k ∈ N. The vote count n : Y × X → N of any class j ∈ Y for
any data point x ∈ X is:

nj (x) B
k∑
i=1

1 (ti (x) = j) . (4)

The characteristic function 1 : {⊥,⊤} → {0, 1} maps ’true’ to 1 and
’false’ to 0. Note that the vote count depends on the teachers and,
therefore, also on their training data.

Definition 5 (cf . [34], Sec. 4.1). Let nj be the vote count as defined
in Definition 4 for each class j ∈ Y. Then, the Gaussian NoisyMax
(GNMax) aggregation method with parameter σ ∈ R+ on any data
point x ∈ X is given by:

GNMaxσ (x) B arg max
j ∈Y

{
nj (x) +N

(
0,σ 2

)}
. (5)

TheGaussian noise is sampled from a normal distributionN(µ,σ 2)
with mean µ = 0 and variance σ 2.

As an extension of the original GNMax Aggregator, Papernot et
al. [34] proposed the Confident-GNMax Aggregator :

max
j ∈Y
{nj (x)} +N(0,σ 2

T ) > T (6)

that only labels data points for which the consensus of the teachers
exceeds a pre-defined threshold T . See [34] for a formalization of
this idea.

3 RELATEDWORK

We present related work on individualized privacy, DP, and privacy-
preserving ML techniques.

3.1 Individualizing Privacy

According to [5, 20], there exist at least three different groups of
individuals, demanding high, average, and low privacy protection
for their data, respectively. These groups are sometimes referred to
as privacy fundamentalists, privacy pragmatists and privacy uncon-

cerned [38]. In general and ML-based applications with DP that deal
with data of individuals from all three groups, the privacy budget
would always have to be chosen according to the privacy fundamen-
talists’ requirements. This can lead to unfavorable privacy-utility
trade-offs in the respective application. Hence, it would be desirable
to use individualized privacy budgets to improvemodel utility while
complying with each individual’s personal privacy requirements.

3.2 Techniques for Individualized DP

Several techniques for implementing individualized privacy guar-
antees with DP for data analysis outside of the scope of ML have
been proposed.

One of the first techniques for individualized DP was proposed
by Alaggan et al. [3]. Their stretching mechanism scales data points
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individually before perturbing them with statistical noise. As a con-
sequence, the DP noise affects each point with individual intensity.
Jorgensen et al. proposed two additional methods [22]. Their first
sample mechanism excludes particular data points from being in-
cluded in the respective data analysis with a probability according
to their privacy preferences. Their second personalized exponential

mechanism assigns probabilities to processing results according to
individual data points’ privacy requirements. These probabilities
are then used to randomly select the final processing result for
a dataset. Two partitioning algorithms were introduced by Li et
al. [26]. These separate process groups of sensitive data, each with
an individual privacy preference. In a similar vein, Niu et al. [32]
described a utility-aware sub-sampling mechanism to implement
individualized DP guarantees. Ebadi et al. [15] put forward a person-
alized DP mechanism that relies on excluding data points from the
analysis once their respective privacy budgets are exceeded. Their
algorithm is designed for live databases in mind where individual
data points might not only require individual privacy protection
but can also be added to the data analysis at different points in time.
As a consequence, each data point also needs individual privacy
budget accounting.

Since all the proposed individualized DP mechanisms are de-
signed for privacy-preserving data analysis on datasets and databases,
rather than on ML models, they are not directly applicable to our
setting. Note, however, that our weighting mechanism is inspired
by the stretching mechanism.

3.3 DP Mechanisms for ML

PATE is not the only approach that can be used to apply DP
in ML workflows. Another commonly used approach is the Dif-
ferentially Private Stochastic Gradient Descent (DP-SGD) [36]. In
DP-SGD, privacy is achieved by first limiting the changes to an ML
model that each individual data point can cause. This is done by
clipping model gradients on a per-example basis during training.
Then, to achieve DP guarantees, noise is added to the gradients
before the model parameters are updated with them. Privacy costs
of DP-SGD are accounted for through the moments accountant [1].
In this approach, multiple moments of the privacy loss random
variable are calculated to obtain a DP bound by using the standard
Markov inequality.

In the scope of DP-SGD, Feldman and Zrnic [16] proposed an
individual per-data point privacy accounting using RDP filters. Sim-
ilarly, Jordon et al. [21] personalized the moments’ accountant by
dividing it into an upwards and a downwards moments accountant

which are composed to a personalized moments accountant to pro-
vide data-dependent DP bounds individually per data point. In a
similar vein, Yu et al. [46] proposed individualized privacy account-
ing for DP-SGD based on the gradient norms of the individual data
points. While both our and these three works aim at improving
the privacy-utility trade-offs in ML with DP, their work differs
from ours in the problem setting. Our work sets out to address the
problem of supporting data holders in specifying and implementing

their individual privacy preferences, whereas their work aims at
accounting for per-data point loss incurred during training of the
ML model. Therefore, they assign a uniform privacy budget over

the whole training dataset and then provide a tighter per-data point
analysis of privacy loss. Based on this tighter analysis, data points
can be excluded from training once their individual privacy budget
is exhausted, while other data points can still be used for further
training. So, rather than asking the question that our work is con-
cerned with, namely What impact does assign individual privacy

budgets to the training data have on the resulting ML model util-

ity?, they address the question What privacy loss is incurred to each

individual data point by the given algorithm on the given dataset?

As a consequence, while utility gain in their method is solely due
to leveraging each data point based on its individual privacy loss,
our method can offer an additional utility gain due to supporting
individual privacy budgets per data point.

Note that, due to the different structures of the approaches, the
individualized privacy accounting of DP-SGD from [16] or [21]
cannot be directly applied to PATE. Therefore, our methods extend
PATE’s inherent privacy accounting to individualized accounting.

4 INDIVIDUALIZED EXTENSIONS FOR PATE

To implement individual privacy requirements of sensitive train-
ing data points, we propose two novel individualized variants of
PATE, namely upsampling and weighting. Each variant modifies the
original PATE algorithm in some aspects to provide individualized
privacy.

Each of our individualized variants overcomes the limitation
of non-individualized PATE where the uniform privacy budget ε
has to be chosen according to the highest privacy requirement
encountered in the sensitive training data. Thereby, our variants
allow us to generate more labels than PATE, and to train a student
model with higher utility. In the case when all sensitive data points
require the same privacy, our individualized PATE variants are
equivalent to non-individualized standard PATE.

In this section, we first introduce the ideas behind our variants
and then perform an evaluation of their privacy levels. Therefore,
we rely on the privacy analysis of the original PATE algorithm [33],
and extend it to our individual variants by analyzing the sensitivity
of the vote counts. For both our variants, we also propose concrete
algorithms illustrating how they can be implemented. Note, how-
ever, that these algorithms only represent possible instantiations of
the implementations. In general, what the algorithms should ensure
is that our variants yield setups in which data points with different
privacy budgets exceed their respective budget at approximately the
same number of generated labels. This is because label generation
in individualized PATE stops once any data point exceeds their pri-
vacy budget. In practice, when training with individualized PATE,
model owners can simply observe the privacy budget consumption
in the labeling process. By identifying the best parameters for each
variant, such that the points’ budget is exceeded at approximately
the same number of generated labels, the model owner can then
make sure that all privacy budgets are fully leveraged, and the high-
est number of labels is generated. This in turn, leads to the best
student model utility.

4.1 Upsampling Mechanism

Our upsampling mechanism relies on duplicating sensitive data
such that overlapping data-subsets can be allocated to different
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teachers. Thereby, data with higher privacy budgets is learned by a
higher number of teachers. The upsampling mechanism stands in
contrast to the original PATE algorithm where disjoint data parti-
tions are passed to the teachers. Since data duplicates extend the
amount of training data, they allow for two possible modifications
of PATE: (1) keeping the number of teachers constant and allocating
more training data to each teacher, or (2) keeping the number of
training data points per teacher constant and increasing the number
of teachers. Our experimental evaluation indicates that (2) yields
a higher utility gain of upsampling PATE. Intuitively, the teachers
perform already reasonably well with the initial amount of training
data, and allocating more data to them yields only marginal per-
formance gains. In contrast, having more teachers participate in
the voting results in more accurate vote counts with less variance
due to statistical randomness. As a consequence, we implement
upsampling according to (2) with a constant number of training
data points per teacher as specified in Algorithm 1. The algorithm
ensures that points are duplicated by an integer according to the
privacy budget ratios, since only entire data points (and not frac-
tions of a point) can be assigned to a teacher model. See Figure 4b
in the Appendix for a visualization of the approach.

Algorithm 1: Prepare training data for teacher models in
the upsampling method.
Input: Privacy budgets {εd } for each data point d , precision

p ∈ N.
Result: Upsampling factor ud for each data point d .

1 {ε1, . . . , εj } ← unique({εd }); /*Get unique budgets*/

2 for Each εj do
3 ε̄j ← εj · 10p ; /*Upscale budgets*/

4 end

5 D ←Greatest Common Divisor(ε̄1, . . . , ε̄G );
6 for Each ε̄j do

7 ud ←
ε̄j
D ;

8 end

We call the PATE aggregator for our upsampling approach up-

sampling GNMax (uGNMax). It applies the upsampling vote count

which is defined as follows:

Definition 6 (Upsampling Vote Count). Let ti : X → Y be the i-th
out of k ∈ N teachers. Let further N ∈ N be the number of sensitive
data points andmi ∈ {0, 1}N amapping that describes which points
are learned by ti . The upsampling vote count Ün : Y × X → N of
any class j ∈ Y for any data point x ∈ X is

Ünj (x) B
k∑
i=1

1 (ti (x) = j) . (7)

Although the definition for the upsampling vote count looks the
same as the non-individualized vote count (Definition 4), their sen-
sitivities differ due to data points to be learned by several teachers
(see Proposition 2 in Section 4.3.2).

4.2 Weighting Mechanism

Our weighting mechanism modifies the aggregation of teacher
votes. It does so by weighting individual teachers’ votes higher
or lower depending on their training data points’ privacy require-
ments. Therefore, sensitive data points that have the same privacy
budget εj , which we call a privacy group дj , have to be allocated
to the same teacher(s). In Algorithm 2, we present how weightswi
can be assigned to the teachers. A visualization of the weighting
mechanism is provided in Figure 4d in the Appendix.

Algorithm 2: Assign weights to teacher models in the
weighting method.
Input: Privacy budget εj and number of teachers nj for

each privacy group дj , j ∈ 1, ...,G, and total number
of teachers k .

Result:Weightwi for each teacher ti .
1 E ←

∑G
j=1 εj ;

2 for Each privacy group дj do

3 ε̄j ←
εj
E
; /*Relative privacy budget*/

4 n̄j ←
nj
k ; /*Relative group size*/

5 w̄ j ← ε̄j · n̄j ;

6 W ←
∑G
j=1 w̄ j ;

7 for Each privacy group дj do

8 w j ←
w̄ j
W
· k ; /*Make sum of weights match k*/

9 for Each teacher ti with data from дj do
10 wi ← w j ;

We call the aggregation method of this PATE variant weighting
GNMax (wGNMax). Its vote count mechanism is defined as follows:

Definition 7 (Weighting Vote Count). Let ti : X → Y be the i-
th out of k ∈ N teachers. Let further N ∈ N be the number of
sensitive data points andmi ∈ {0, 1}N a mapping that describes
which points are learned by ti . Moreover, letwi ∈ R+ be the weight
of ti for all i ∈ {1, . . . ,k}. The weighting vote count ñ : Y×X → N
of any class j ∈ Y for any unlabeled public data point x ∈ X is

ñj (x) B
k∑
i=1

wi · 1 (ti (x) = j) . (8)

As a particular variant of the weighting-mechanism, we also
evaluate cases where some teachers have a zero-weight during
some votings. We call this variant the Vanishing Mechanism.
Intuitively, individualized privacy guarantees in the vanishing- re-
sult from teachers contributing their information to more or less
voting processes, depending on their data points’ lower or higher
privacy requirements, respectively. See Appendix B for details on
the vanishing mechanism and its privacy assessment. However,
our experimental evaluation highlights that this approach, in gen-
eral, yields low utility. We suspect that this is due to the resulting
reduced size of the teacher ensemble.

4.3 Privacy Evaluation

The privacy calculation of individualized PATE differs from the
standard (non-individualized) PATE in that it is done for particular
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Variant Manipulation Distributed Privacy-budget Sensitivity

Parameter

changes

RDP privacy

bound

Upsampling dataset no per data-point d ud (how often d
is upsampled)

k , σ , σT ,T scaled
according to ud

(α, (ud )
2 · α/σ 2)

Weighting teacher
aggregation yes per teacher i wi (weight of

teacher i) N/A (α, (wi )
2 · α/σ 2)

Table 2: Summary of our individualized PATE variants. The table shows the properties of and privacy guarantees achieved

by our mechanisms. Manipulation: what part of standard PATE is adapted; Distributed: mechanism suitable when data is

distributed over different parties; Privacy-budget: how fine-grained can individual privacy budget be assigned; Sensitivity:

sensitivity for teacher voting; Parameter changes: what parameters of standard PATE need to be adapted; RDP privacy bound:

loose bound for privacy calculation. Calculation of both variants’ tight bound is shown in Corollary 1.

data points or groups of data points separately, rather than for
the whole dataset. We first introduce the general elements of the
privacy analysis for the standard PATE which is shared by our two
novel variants. Then, we evaluate the individualized privacy guar-
antees of each variant depending on its vote count and aggregation
mechanism. Table 2 summarizes our two methods, their differences,
and their respective privacy guarantees.

4.3.1 Privacy Evaluation of Standard PATE. A key element of pri-
vacy calculation in PATE is the aggregation mechanism. PATE’s
GNMax Aggregator is a function of a Gaussian mechanism.

Definition 8 (cf . [14], Sec. 3.5.3). Let f : D∗ → Rz with z ∈ N be
any real-valued function and let σ ∈ R+ be any positive real. Then,
the Gaussian mechanism of f with standard deviation σ is

Mf ,σ (x) B f (x) +N(0,σ 2) . (9)

Note: the same random noise is added to f (x) in each dimension.

Gaussian mechanisms have RDP costs depending on σ .

Lemma 1 (cf . [27], Prop. 7). Let σ ∈ R+ and let f : D∗ → R be a

real-valued function with sensitivity ∆f B max
D∼D′

∥ f (D) − f (D ′)∥2.

Then, the Gaussian mechanism Mf ,σ satisfies (α,∆2
f ·

α/2σ 2)-RDP

for all α ∈ R+ \ {1}.

Lemma 1 is proven in [27]. The resulting RDP costs can be trans-
formed into (ε, δ )-DP costs using Lemma 4.

The data-independent loose bound privacy costs that arise in
PATE are given by:

Lemma2 (cf . [34], Prop. 8). The GNMax aggregator satisfies (α, α/σ 2)-

RDP for all α ∈ R+ \ {1}.

The intuition behind it is that in PATE, each data point of the
training dataset is learned by exactly one teacher and is poten-
tially able to change this teacher’s vote. Since DP guarantees are
expressed for neighboring datasets that differ in exactly one data
point d , in the worst case, d changes the vote count for two classes
(reduce one class count by one, and increase another class count
by one). Thus, a teacher voting can be considered as the compo-
sition of two Gaussian mechanisms each with sensitivity ∆f = 1
and parameter σ equal to the standard deviation of the Gaussian
noise. Putting the standard deviation of one into Lemma 1, and
applying composition of two Gaussian mechanisms, this yields the
term specified in the loose bound.

In addition, it is also possible to obtain a tighter data-dependent
bound for privacy estimation in PATE as defined in [34]. See Lemma 5
in Appendix A for a definition of this tight bound.

4.3.2 Privacy Evaluation of Individualized PATE. All our new aggre-
gation mechanisms apply individualized vote counts n̄ : Y×X → N
whose sensitivities are no longer∆f = 1, but are determined individ-
ually for particular data points (or groups of data points). Therefore,
in the privacy analysis, we need to calculate their privacy bounds
based on the mechanisms’ individual sensitivities and the general
privacy bounds of PATE.

The individual sensitivity of any function f : D∗ → Rz with
z ∈ N regarding any data point d ∈ D can be defined as ∆f ,d B
max
Dd
∼D′
∥ f (D) − f (D ′)∥2. The following propositions formalize the

individual sensitivity of the vote counts in our individualized PATE
mechanisms.

Proposition 2 (Upsampling Sensitivity). Letd ∈ D be any sensitive

data point. Let ud ∈ N be the number of duplicates of d (incl. the

originald). Then, the individual sensitivity of the vote count, regarding
d , in upsampling PATE is

∆upsampling,d = ud . (10)

Proof. In upsampling PATE, every teacher that is trained on
data point d ∈ D can have a different vote for neighboring datasets
that differ in d . For each duplicate of d , this results in an increase
of one vote count and a decrease of another one. Let t(d ) be the
set of teachers trained on d . Assume that all ud votes of t(d ) would
have changed if d were different. From the perspective of d , the
voting can then be considered as a composition of 2 · |Y| Gaussian
mechanisms (some might have a sensitivity of zero s.t. they have
no privacy costs). For each class j ∈ Y there are two Gaussian
mechanisms, one with sensitivity equal to the number of votes
of t(d ) for j if d were changed, the other if d were not changed.
Applying Lemma 2 and Lemma 3 yields a sum of RDP values, each
dependent on its specific sensitivity. Since the sensitivity has a
quadratic impact on the RDP costs of a Gaussian mechanism, votes
for the same class are more expensive than votes for different classes
(see Lemma 1). Therefore, the RDP costs are the highest if all ud
teachers trained on d would consent on a class j when trained on d
and would consent on class j ′ , j if d would be different. □

To perform the privacy analysis in the framework of PATE, let
N and N ′ be the numbers of sensitive data points and the number
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of the upsampled data points, respectively. Then we can define the
relative upsampling of training data asu B N ′/N . Since we keep the
number of data points per teacher constant, the number of teachers
k has to be scaled by u. The remaining PATE hyperparameters: σ
(for GNMax from Equation (5)), σT , and T (for Confident GNMax
from Equation (6)) are scaled by u as well to achieve a comparable
voting accuracy and privacy efficiency as for the standard (non-
individualized) PATE.

Proposition 3 (Weighting Sensitivity). Let d(i) ∈ D be a sensitive

data point learned by teacher ti ∈ {t1, . . . , tk }. Letwi be the weight to

determine the influence of ti to votings. Then, the individual sensitivity

of the weighting vote count, regarding d(i), is:

∆
(i)
weighting,d = wi . (11)

Proof. In weighting PATE, every data point only influences one
teacher. Therefore, on neighboring datasets, every vote count might
change by the corresponding teacher’s weightwi . □

Note that the weighting approach does not change PATE hyper-
parameters (σ , σT , and T ). Nonetheless, sensitive data has to be
grouped budget-wise before being provided to the teachers. The
teachers are then given weights according to the budgets s.t. all
weights sum up to the number of teachers k .

4.3.3 Privacy Bounds. Based on the mechanisms’ sensitivity, we
can formulate the loose bound of our individualized aggregation
mechanisms as follows:

Theorem 1 (Individual Loose Bound). LetM be an individualized

GNMax aggregator with noise scale σ ∈ R+. Let further d ∈ D
be any data point, and ∆M ,d be the individual sensitivity of M’s

individualized vote count regarding d . Then,M satisfies an individual

(α, (∆M ,d )
2 · α/σ 2)-RDP regarding d for all α ∈ R+ \ {1}.

Proof. Individualized GNMax aggregators can be considered as
the composition of all classes’ vote counts regarding each data point.
Only two of them can be changed at the same time on neighboring
datasets. Thus, the two Gaussian mechanisms with an individual
sensitivity per data point are composed. Therefore, the claimed
RDP guarantee is achieved by using Lemma 1 on privacy guaran-
tees of Gaussian mechanisms, and Lemma 3 from Appendix A on
composition. Note that in the upsampling variant, more than two
vote counts can be changed. The worst case occurs if all teachers
affected by data point d change the same vote counts. This is be-
cause votes for that same class are more expensive than votes for
different classes (see the proof of Proposition 2). □

We can also compute the data-dependent tight bound (Lemma 5
in Appendix A) for our individualized PATE variants. PATE’s calcu-
lation of the tight bound builds on the loose bound, and is calibrated
for a sensitivity of 1 for the specified noise scale σ . However, the
sensitivity and the noise scale applied by PATE are related. There-
fore, when providing a different sensitivity than 1 to the tight bound
calculation, it suffices to re-scale σ according to that sensitivity.
Our sensitivity values directly correspond to the parameters of our
variants of PATE (upsampling duplication factors, participation
frequencies in vanishing, and teachers’ weights in the weighting
method).

Corollary 1 (Scaling Invariance of the Individual Loose Bound).
Let c ∈ R+ be any positive scalar. LetM be an individualized GNMax

aggregator with noise scale σ ∈ R+ and an individual sensitivity

∆M ,d ∈ R+ for some data point d ∈ D. Furthermore, let M̃ be

another individualized GNMax aggregator with noise scale σ̃ = c · σ
and individual sensitivity ∆M̃ ,d = c · ∆M ,d regarding d . Then, M

and M ′ have the same individual loose bound regarding d for any

α ∈ R+ \ {1}.

Proof. Fix α ∈ R+ \ {1}. M, M̃ satisfy individual (α, ε)- and
(α, ε̃)-RDP, respectively, regarding d . The equality of ε and ε̃ is
verified by direct computation as follows:

ε̃ B
(
∆M̃ ,d

)2
· α/σ̃ 2

=
(
c · ∆M ,d

)2
· α/(c ·σ )2

= c2 ·
(
∆M ,d

)2
· α/c2 ·σ 2

=
(
∆M ,d

)2
· α/σ 2

C ε

(12)

□

Note that all data points from the same privacy group share the
same sensitivity, and, thereby, also have the same tight bound.

5 EXPERIMENTAL SETUP

In this section, we describe the setup for the empirical evaluation of
our individualized PATE variants. Over all experiments, we use the
Confident-GNMax algorithm from [34], where the privacy protec-
tion is ensured by Gaussian noise within PATE, and labels are only
produced if a consensus among the teachers is reached. To isolate
the performance-gain of our individualized PATE variants, we do
not perform additional methods to improve utility of the student
model from previous PATE papers, such as virtual adversarial train-
ing [28] or MixMatch [6]. Foregoing these methods allows us for a
direct and more precise comparison between standard PATE and
our new variants of the framework. However, as a consequence, our
reported student accuracies cannot be compared to the accuracies
reported in [34]. Therefore, as a baseline to compare our individual-
ized variants, we implement standard PATE within our framework
following [34]. Our framework includes Gaussian PATE (GNMax,
Confident-GNMax, Interactive-GNMax), our proposed individual-
ized variants, and the support for experimentation is implemented
using Python (version 3.8) [41]. Our code can be accessed online.1

5.1 Datasets and Models

We conduct the experiments presented in this section on the MNIST
[25] and the Adult income dataset [23]. MNIST consists of 70, 000
(28 × 28)-pixel gray-scale images depicting handwritten digits for
classification. We scale the pixel values of all images to range [0, 1].
The Adult income dataset contains 48, 842 tabular data points from
the US census of the year 1994. The corresponding classification
task is to predict if the yearly income of a person represented in
the data is greater than $50k . As a pre-processing of the data, we

1 https://github.com/fraboeni/individualized-pate
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remove 3, 620 damaged data points from the dataset and trans-
formed categorical features into numerical values. Furthermore, we
normalize these numerical values to the range of zero to one.

To train the teacher and student models on MNIST, we use a
simple convolutional neural network (CNN) architecture taken
from [9] (see Table 3). All weights in the output layer are initialized
by values randomly sampled from the Glorot uniform distribution,
whereas all other weights are sampled from the He uniform dis-
tribution. Optimization is performed using the Adam optimizer
and categorical cross-entropy loss. All other parameters are set
according to the default values from TensorFlow (version 2.4.1).

For the Adult income dataset, the teacher and student models are
implemented as random forest models from the scikit-learn library.
Each random forest consists of 100 decision trees. Otherwise, the
default parameters of the library are applied.

layer type of layer parameters activation
1 convolutional 32 (3, 3)-kernels ReLU
2 batch normalization - -
3 max pooling size (2, 2) -
4 flatten - -
5 fully connected 100 nodes ReLU
6 batch normalization - -
7 fully connected 10 nodes softmax

Table 3: CNN-architecture for MNIST.

Since, as done in standard PATE [33], every teacher is provided
with only 240 data points for training on MNIST, we apply a custom
data augmentation within each individual teacher and the student
to improve model performances. Therefore, each data point within
one model’s training data is randomly rotated by up to ±7.5° and
randomly shifted by up to 7% both, in horizontal and vertical di-
rections to make a larger training dataset for that model. This data
augmentation does not influence the privacy costs since we aug-
ment the data points only within their respective model’s training
dataset and not over different datasets. As a consequence, aug-
mented data points are solely used to train the same model as their
original data point. Since PATE is already based on the assumption
that each single data point can completely determine the behavior
of a corresponding teacher model (cf . Lemma 2 and Lemma 5), no
additional DP costs are incurred by augmenting datapoints. For the
experiments based on the Adult income data, no data augmentation
is applied since it does not yield any performance benefits.

5.2 Evaluation Metrics

To measure the utility of the different PATE variants and privacy
budget distributions, we mainly track three metrics. First, we count
the number of produced labels until any of the specified privacy bud-
gets is exhausted. Second, we measure the accuracy of the student
model trained on that resulting labeled data. Additionally, we also
analyze the accuracy of the generated labels ("voting accuracy"). As
baselines to compare our individualized methods to, we conduct
experiments with standard non-individualized PATE and Confident-
GNMax using as the dataset-wide ε the minimum privacy budget
encountered in the sensitive data. This has to be done in order not
to violate any training data point’s privacy requirements.

5.3 PATE Experiments

To experimentally evaluate our two novel individualized PATE
variants, we carry out the empirical analysis in four steps. (1) At
first, the complete dataset is randomly divided into private, public,
and test partitions. Note that for increased randomization over
the experiments, we do not rely on the standard train-test split
in MNIST, but instead combine all 70, 000 data points and then
partition the dataset. The sizes of these partitions as well as general
parameters for Confident-GNMax and its individualized variants
on both datasets are described in Table 4, where we follow the
setup from PATE [34] in terms of the number of data points per
set. The parameters are adopted in the upsampling mechanism so
that teacher accuracies and voting accuracies align with those of
weighting and non-individualized experiments. (2) Privacy budgets
are randomly assigned to the private data according to a given
privacy budget distribution. Afterward, the data is allocated to the
corresponding teacher models for training. (3) The trained teachers
are used to produce labels in the voting process. Aggregation of
the teacher votes is conducted according to the PATE variant under
evaluation. As a baseline to evaluate our two variants, we use the
standard non-individualized Confident-GNMax. After every voting,
the current accumulated RDP costs of data points are computed and
stored group-wise. For upsampling, all data points that share the
same number of duplicates have the same privacy costs whereas
in weighting, all data points that are learned by teachers of the
same weight exhibit the same privacy costs. We consider all-natural
RDP α values from 2 to 50. These RDP costs are transformed into
standard DP costs by taking the best α at that point of the voting.
After 2, 000 produced labels, the voting process is terminated since
we observe that all experiments could exhaust their privacy budget
within that number. Tracking privacy costs above the actual budget
exhaustion up to the fixed number of 2, 000 generated labels is done
to compare the privacy costs are spent over many votings. (4) The
student model is trained on the labeled data that the respective
teacher ensemble produced until any private data point’s privacy
budget is exceeded. To get more reliable results, we average our
measurements in all following experiments over multiple runs for
the same parameters with the different random initialization, and
for data shuffling and noise invoked.

5.3.1 Uniform Assignment of Privacy Budgets. We conduct our first
set of experiments on both datasets with various privacy budget dis-
tributions. We use two privacy groups in the experiments reported
in this section as a micro-analysis to clearly show the differences
between our variants, and to avoid a combinatorial explosion of
privacy budgets and distributions being depicted. We assign one
of two different budgets (a higher and a lower budget) to every
data point in the private dataset at random. We vary the ratio of
data points having the higher budget among 25%, 50%, and 75%.
The lower budget is set to log 2 ≈ 0.69 over all experiments while
we assign the higher budget from log 4, log 8, and log 16. Using
logarithmic values provides a more intuitive comparison among
the privacy budgets since the formulation of DP (Definition 1) uses
exp(ε). Hence, an ε = log s for any real s ≥ 1 is half of a privacy
budget ε ′ = log 2s . For example with our chosen budgets, a budget
of ε = log 8 is four times as high as a budget of ε ′ = log 2. The data
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dataset # teachers # data private public test σT σ T δ

MNIST 250 60,000 9,000 1,000 150 40 200 10−5

Adult 250 37,222 7,000 1,000 200 40 300 10−5

Table 4: PATE Parameters. Parameters used in the experiments for the Confident-GNMax on the MNIST and Adult income

datasets. σ is the standard deviation of the noise-induced to the label aggregation. σT specifies the standard deviation of noise

used to check if the teachers have a consensus given the threshold T .

and resulting labels that are produced until any data point’s privacy
budget is exhausted are used to train the student models.

5.3.2 Non-Uniform Assignment of Privacy Budgets. In the previous
experiment, we assign data points randomly to the given privacy
groups and their respective privacy budgets. However, this might
not necessarily reflect real-world use-cases where individuals’ pri-
vacy requirements can correlate with their characteristics, for ex-
ample which class they belong to. In individualized PATE, a data
point’s privacy budget determines how much information that data
point can contribute to the voting. As a consequence, when indi-
viduals with specific characteristics, or individuals from a specific
class have much higher or much lower privacy requirements than
other individuals, this can introduce biases to the generated labels,
and thereby, also to the student model.

In this experiment, we, therefore, evaluate how the performance
of our individualized PATE variants is influenced when the privacy
budget distributions vary significantly between different classes.
To do so, we use the Adults income dataset, which has an unbal-
anced class distribution (incomes lower than $50k make 75.2% of
the dataset). We assign the higher privacy budget solely to the un-
derrepresented high-income class to determine to what extent this
shifts the trained student model’s predictions. The higher privacy
budgets are again set to log 4, log 8, and log 16 , the lower budget
to log 2. We vary the ratio of data in the underrepresented class
that receives the higher privacy budget among 25%, 50%, 75%, and
100%. To produce more reliable results for each budget and ratio
combination, we train ten teacher ensembles, use each of them for
five voting processes, and report the average. The data and corre-
sponding labels that are produced until any data point’s privacy
budget is exceeded represent the student model’s training data.

We restrict ourselves to the upsampling mechanism for our eval-
uation, as in weighting PATE, teachers are trained on data points
with the same privacy budget. Since, in this experiment, we assign
privacy budgets according to the classes, most teachers would be
trained on data from solely one class. This would result in poor
teacher performance.

6 EMPIRICAL RESULTS

We present the quantitative effects of individualization in PATE
based on the number of produced labels and the accuracy of the
generated student models (as our evaluation metrics described
in Section 5.2).

6.1 Advantage of Individualization

To better understand how much privacy the generation of labels
consumes on both data groups (lower and higher privacy), we track
the privacy costs over the course of generating 2, 000 labels on

both datasets for our novel PATE mechanisms. Figure 1 showcases
the continuous privacy costs of generating labels for the MNIST
dataset using the upsampling mechanism over the respective data
groups. Therefore, 50% of the data points (randomly chosen) are
assigned the lower privacy budget of log 2. The remaining 50%
are assigned log 8. As a baseline, we plot the continuous privacy
costs for standard PATE. To evaluate the number of labels that
can actually be generated for the given privacy budget distribution,
we have to count how many labels are returned before any data
point’s privacy budget is exceeded. In Figure 1, this corresponds to
the moment when either the lower costs reach the lower budget or
the higher costs reach the higher budget, whatever happens first.
In the setup depicted in Figure 1, our individualized PATE is able
to generate more than three times the number of labels generated
by standard PATE (890 vs 257).

For more extensive results on the privacy budget consumption
for label generation on MNIST and Adult, see Figure 5 and Figure 6
in Appendix E, respectively. The resulting numbers of produced
labels over the experiments are shown in Table 5 for the MNIST
dataset and in Table 7 in the Appendix for Adult income.

In the results, we observe several different trends. First, when
analyzing the lines corresponding to the privacy costs in Figure 5
and Figure 6, we find that both lines differ more, the more the indi-
vidual budgets differ. This effect also increases when the proportion
of sensitive data with a higher budget decreases. Second, with an in-
creasing ratio of the higher budget, both costs grow slower, resulting
in more generated labels, see Table 5. Thereby, the utility advantage
of our individualized PATE over the non-individualized standard
variant becomes visible. For half of the sensitive MNIST data having
a budget of log 4, log 8, or log 16 and the other half having log 2, 492,
890, and 1239 labels can be produced by our weighting mechanism,
respectively, instead of 257 in the case of non-individualized PATE.
This leads to a student accuracies of 93.08%, 94.68%, and 96.32%
while non-individualized PATE only achieves 88.7%. Analogously,
on Adult income, in the same privacy budget configuration, 203,
349, and 530 labels can be produced, leading to student accuracies
of 81.76%, 82.60%, and 82.84%, respectively for weighting. Standard
non-individualized PATE, instead, produces 88 labels so that the stu-
dent only achieves an accuracy of 79.85%. For a detailed overview
on the final students’ accuracies for MNIST and Adult with the
different individualized variants and privacy budget distributions,
see Table 8 and Table 9 in Appendix E.

Our results are not directly comparable to those [34] since, in
contrast to their work, we do not apply virtual adversarial training
but only use the public data. Their final models’ accuracy is 98.5%
on MNIST with ε = 1.97 while our student model never surpassed
97% even for a privacy budget of ε = log 16 ≈ 2.77 on 75% of the
data. We decided not to integrate the adversarial training method in
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Figure 1: Individualized upsampling outperforms standard PATE. We compare the number of generated labels for given pri-

vacy budgets: log 2 and log 8. The lines for upsampling (high) and (low) and PATE (denoted as pate) represent the privacy costs

during the generation of the first 2, 000 labels for the MNIST dataset. Standard PATE generates only 257 labels before the low

privacy budget of log 2 is reached (pate stopping point). The upsampling method exhausts its privacy budgets much later than

PATE since it takes advantage of different privacy budgets. The upsampling (high) exhausts its budget (of log 8) at 890 labels

(upsampling stopping point). The upsampling (low) exhausts its budget (of log 2) at 957 labels. Overall, the upsamplingmethod

exhausts its budget (upsampling stopping point) at the minimum of the two privacy groups (log 2 and log 8), therefore return-
ing 890 generated labels, which is more than 3 times of the number of labels returned by standard PATE. For the upsampling

method, we have to adjust its parameters (the number of times the data points from different privacy groups are upsampled)

so that the different privacy budgets are exhausted at approximately the same number of generated labels.

order to study the pure effect of our individualization and exclude
any other effects on the resulting model utility.

However, our individualization still outperforms [34] when it
comes to the voting accuracy, i.e. the proportion of correctly gen-
erated labels: Our generated labels are more accurate (≈ 97.7%)
than theirs (93.18%) when evaluating them against ground truth,
which is partly due to the better accuracy of our teachers. Our
teachers achieve an average test accuracy of 90.2% (81.7% on Adult)
on average while theirs are at 83.86% (83.18% on Adult).

Note that the budget combinations log 4 with 75% and log 8
with 25% yield the same average privacy budget over the entire
dataset. Nevertheless, the experiment on distribution log 4 with
75% yields more labels and higher accuracy than that on log 8 with
25%, see Table 5. This might indicate that having a smaller gap
between the lower and the higher privacy budget leads to increased
performance and that it might be better to have more data points
with slightly higher privacy budgets than a few data points with
very high privacy budgets.

6.2 Generated Labels as a Function of Privacy

and Relative Group Size

We observe that there are two main factors that allow the individ-
ualized PATE algorithm to increase the number of labels that are
generated: the number of individuals that have a larger privacy
budget, and the actual size of the non-minimum privacy budget.
Either increasing the number of individuals that have a larger pri-
vacy budget or increasing the larger privacy budgets, allows our

individualized PATE to incur a smaller privacy cost on the most
privacy-conscious group.

We run an experiment measuring the number of generated la-
bels for a series of budget combinations ((1., 2.), (1., 3.)...), and for
the group distributions ((25%, 75%), (50%, 50%), (75%, 25%)). We find
that the relationship between the contributions of these two is in
fact linear. Scaling up the number of individuals that have a large
privacy budget, while equivalently scaling down the privacy bud-
get of that group, keeps the number of generated labels roughly
equivalent; and vice-versa. We find this effect to be significant for
both our upsampling and weighting mechanism. A more detailed
analysis of how to select a scaling, given a privacy-ratio, when
group size is fixed is given in Figure 3.

Note that we implement our individualization through the algo-
rithms from Section 4. Using a different approach to implement our
variants would change the curve. Hence, Figure 2 allows us to assess

higher 25% ratio 50% ratio 75% ratio
budget in ε U W U W U W

log 4 158 433 237 492 326 564

log 8 231 474 414 890 636 1163

log 16 308 648 623 1239 1038 1787

baseline 257

Table 5: Number of labels returned by individualized PATE

(Upsampling and Weighting). Non-individualized GNMax

using the minimum budget of log 2 serves as baseline. The

voting accuracies for all methods are ≈ 97.7%.
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Figure 2: Weighted ratio of generated labels. The y-axis is

the weighted privacy ratio, where the contribution of the

privacy groups is scaled by the group size, for two different

privacy groups this is (ε1 ·d1)/(ε0 ·d0). There is a nearly-linear
relationship between the number of generated labels, and

the weighted privacy ratio.

the selection of hyperparameters (upsampling factors and teachers’
weights) for our variants of PATE. The lower the curve-of-best-fit
for an algorithm is, the better it is at utilizing differences in privacy
budgets, to generate more labels.

6.3 Non-Uniform Privacy Budgets

The experiment in this section serves to evaluate the influence of
assigning a higher privacy budget only to (parts of) the underrep-
resented class in the Adult income dataset. We analyse the effects
on both the teachers and the student model and on the generated
labels. Table 6 highlights how assigning higher privacy budgets to
different proportions of the underrepresented class causes changes
in the resulting student models’ predictions. We observe that with
larger proportions of data from the underrepresented class that
receive a high privacy budget, the resulting student model’s accu-
racy on this underrepresented class increases. At the same time,
the student model’s accuracy on the majority class decreases sig-
nificantly. The same holds when increasing the privacy budget on
the underrepresented class. Table 10a and Table 10b in Appendix E
show similar trends for the average teacher and voting accuracies,
respectively. These observations indicate that the higher the privacy
budget of the underrepresented class (i.e., the lower their privacy
requirement), or the more data from the underrepresented class re-
quires lower privacy protection, the more frequently that class gets
predicted. This highlights that an individualized privacy budget
assignment is able influence the model predictions, and thereby, to
enforce and to mitigate biases in the resulting ML models. When it
comes to label generation for the non-uniform privacy-budget as-
signment (see Table 11 in the Appendix E), we observe an increase
in the number of generated labels depending on the fraction of
underrepresented data that is assigned a higher privacy budget and
the respective budgets. We also compare the the number of labels
generated in this setup with the number of labels generated in the

random privacy budget assignment (see Table 7 in Appendix E). The
rightmost column of Table 11 (100% of the underrepresented class
obtain the higher privacy budget) can be directly compared with
the leftmost column in Table 7 where 25% of the overall data obtain
a higher budget. This is because the underrepresented class repre-
sents roughly 25% of the data. We observe that the non-uniform
assignment of privacy budgets yields fewer labels. Hence, we can
conclude that even when the performance of PATE on the class that
receives a higher privacy budget increases, the overall performance
decreases.

7 DISCUSSION AND FUTUREWORK

This section discusses results and implications of this work, and
provides an outlook on possible future research directions.

7.1 Improving Utility with Individualization

Particularly in sensitive domains such as health care, applying
high utility ML models is crucial. This is because incorrect model
decisions can have catastrophic consequences. Since introducing
DP into training often yields decreased ML model utility, many
parties still entirely forego its adaptation within their sensitive ML
applications, or they assign a very high privacy budget for all data
points, which results in low privacy protection.

The introduction of our individualized PATE yields multiple ben-
efits in these scenarios. First of all, our methods allow integration
of PATE in a system where individual data holders can choose
what privacy level they want their data to be treated with. That
option alone might make individuals more willing to share their
data, which would result in the availability of more training data
for the ML models. This, in turn, is known to have positive ef-
fects on the model utility when training with DP [40]. Additionally,
our experiments highlight that our individualized PATE variants
yield more generated labels and higher student model utility than
standard PATE which has to comply with the most strict privacy
requirements encountered in the training dataset.

7.2 Comparison of Our Variants

In the practical comparison of our two PATE variants, we see that
the upsampling and weighting variants constantly outperform stan-
dard PATE. Additionally, both variants have different benefits and
use-cases: The upsampling approach offers high flexibility in terms
of individual privacy budget preferences. In theory, each data point
could require a different privacy budget and would just have to
be upscaled accordingly. In practice, upsampling can increase the
computational costs of PATE significantly since more training data
is available and more teacher models need to be trained. Moreover,
the upsampling method cannot be used for distributed scenarios
where the sensitive training data belong to different parties, such as
hospitals that jointly want to train a student model based on their
respective patients’ data. This is because, for upsampling, the sensi-
tive data would have to be shared among the different parties which
is usually restricted by privacy regulations. Weighting is well suited
for such distributed scenarios because each party can train their
own teacher model and assign the weight according to the privacy
requirements of their sensitive data. However, to fully leverage the
benefits of weighting, teachers must be trained on data points with
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higher 25% ratio 50% ratio 75% ratio 100% ratio
budget in ε low high low high low high low high

log 4 95.93 36.77 93.11 45.93 90.13 54.74 86.24 63.39
log 8 93.25 45.91 86.82 62.25 80.57 72.61 77.91 77.36
log 16 90.42 54.00 80.74 72.68 76.68 79.42 73.82 83.59
baseline (98.01, 24.78)

Table 6: Per-group student accuracy (in%) for unbalanced individualization (Adult). Results reported for low-income (majority)

and high-income (underrepresented) class as an average over 50 different students trained through five voting processes by

ten teacher ensembles using upsampling. The ratios specify what proportion of the underrepresented class was assigned the

higher privacy budget. The remaining data obtained a privacy budget of log 2. Non-individualized experiments with all data

points having a privacy budget of log 2 serve as the baseline. As the proportion of data points from the underrepresented class

that obtain a higher privacy budget (or their respective budget) increases, we observe an increase in student accuracy on this

class. At the same time, the student accuracy on the majority class decreases.

the same privacy budgets, which reduces flexibility. It is possible
to group together data points with different privacy budgets to
one teacher within the weighting approach, but then this teacher’s
weight and corresponding privacy level must be set to comply with
the strictest requirement among all its training data points. Such
an assignment results in a waste of privacy budgets among all data
points with higher privacy budgets within this teacher.

One great advantage of our individualized PATE variants is
that their implementation can be configured such that all data
points are able to exhaust their privacy budgets at roughly the
same time. This allows to fully make use of each individual data
point’s privacy budget, and thereby to fully leverage the sensitive
training data in order to produce higher-utility ML models.

7.3 Individualized Privacy and Biases

Our experiments on assigning higher privacy budgets to data points
from one particular class highlight that individualized DP guaran-
tees can enforce or mitigate biases in the resulting ML models.
More concretely, data with higher privacy budgets has a direct
influence on what classes the student model predicts. The higher a
data point’s privacy budget, the higher its influence on the model’s
prediction. Therefore, whenever assigning individualized privacy
budgets, a thorough evaluation of the resulting ML models concern-
ing biases and model fairness needs to be conducted. Once such
negative effects are detected, the privacy budgets of the respective
(groups of) data points can be scaled down to reduce their influence.

7.4 Outlook and Future Directions

Independent of individualized privacy guarantees, further theoreti-
cal research on improving the tight bound analysis in PATE would
be helpful to obtain more realistic estimates of the privacy costs
during the voting process. The current analysis assumes that each
data point can fully change its teacher model’s prediction. In most
scenarios, this assumption is, however, too strong. With a tighter
estimate of a data point’s influence, each vote consumes less privacy
budget, and as a consequence, more labels can be produced.

Moreover, it would be of interest to study how applications of
distributed PATE and similar frameworks, e.g. CaPC [10], can bene-
fit from our individualized aggregation mechanisms. Our mecha-
nisms can be applied there to implement both individual data point

privacy requirements, but also different "per-party" requirements.
What is more is that in particular for the weighting mechanism,
these per-party privacy requirements could be extended to different
weighting schemes taking into account, for example, the amount
of training data a party holds, how diverse this data is, and how
accurate their trained model predicts—assuming these properties
can be determined without undermining the privacy guarantees
of the system. Such extensions can then support more meaningful
cooperative ML model training and yield models of higher utility.

Finally, in this work, we focus on individualized extensions of
PATE. Due to its structure, PATE is naturally suited to support
different privacy budgets among its training data. Also, data that
does not require any privacy protection can directly be leveraged
by the framework as public training data for the student model.
However, in the future, it would also be of interest to develop
extensions of DP-SGD to support individualized privacy guarantees
within this framework. Such extensions could, for example, be
implemented by sub-sampling the model’s training data points
with non-uniform probabilities according to their privacy budgets,
or adding DP noise with different magnitudes to different data
points’ gradients.

8 CONCLUSION

Preserving privacy for the training data in ML is a crucial topic.
Often, this privacy is achieved at the cost of the final model’s utility.
To improve the privacy-utility trade-off and to cater to the require-
ment encountered among all data holders, we propose two novel
variants for the PATE algorithm that allow for the use of individual-
ized privacy budgets among the data points. We formally define our
variants, conduct theoretical analyses of their privacy bounds, and
experimentally evaluate their effect on PATE’s utility for different
datasets and different privacy budget distributions within them.
Our results show that through individualized PATE, we are able
to generate significantly more labels in comparison to standard
PATE which has to comply with the highest privacy requirements
encountered in its training dataset. The increased amount of labels
also translates into significant improvements in the student model’s
accuracy. Our individualized PATE variants are, therefore, able to
reduce the loss of utility that is usually introduced by DP.
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A ADDITIONAL BACKGROUND ON RDP AND

PATE

This section supplements Section 2 by providing formalizations of
Rényi divergence, RDP composition, and the tight bound.

Rényi Differential Privacy

Definition 9 (cf . [27], Def. 3). Let P and Q be two probability
distributions over D. Rényi divergence of order α ∈ R+ \ {1} for P
and Q can be defined as:

Dα [P ∥ Q] B
1

α − 1
· log E

x∼Q

[(
P (x)

Q (x)

)α ]
, (13)

where x ∼ Q expresses that samples x ∈ D follow the probability
distribution Q .

Composition under RDP can be expressed as:

Lemma 3 (cf . [27], Prop. 1). Let R1,R2 be arbitrary result spaces.

Let further M1 : D∗ → R1, M2 : D∗ → R2 be mechanisms that

satisfy (α, ε1) and (α, ε2)-RDP, respectively. Then, the composition

M3(D) 7→ (M1(D),M2(D)) satisfies (α, ε1 + ε2)-RDP.

Note that Lemma 3 also holds for adaptive sequential composi-
tion as shown in [27].

RDP guarantees can be transformed into DP guarantees as fol-
lows:

Lemma 4 (cf . [27], Prop. 3). Let M : D∗ → R be an (α, ε)-RDP
mechanism. Then,M also satisfies (ε ′, δ )-DP with

ε ′ = ε +
ln 1/δ

α − 1
(14)

for all δ ∈ (0, 1].

Lemma 4 is proved in [27].

Tight Bound Privacy Analysis of PATE

The tight bound for PATE can be defined as follows.

Lemma 5 (cf . [34], Thm. 6). LetM simultaneously satisfy (α1, ε1)-
RDP and (α2, ε2)-RDP. Both RDP bounds can be computed by applying

the loose bound for two different alpha values. Suppose that 1 ≥
q ≥ P[M(D) , j∗] holds for a likely teacher voting j∗. Additionally

suppose that α ≤ α1 and q ≤ exp((α2 − 1) · ε2)/
(

α1
α1−1 ·

α2
α2−1

)α2
.

Then,M satisfies (α, ε)-RDP for any neighboring dataset D ′ of D with

ε =
1

α − 1
· log ((1 − q) · A + q · B) , (15)

where A and B are defined as follows:

A B
©« 1 − q

1 − (q · eε2 )
α2−1
α2

ª®¬
α−1

, (16)

B B
©« eε1

q
1

α1−1

ª®¬
α−1

. (17)

This holds since according to [34], Prop. 7, for a GNMax aggre-
gatorM with parameter σ and for any class j∗ ∈ Y the following

statement applies:

P
[
M(D) , j∗

]
≤

1
2

∑
j,j∗

erfc
(nj∗ − nj

2σ

)
(18)

where erfc(·) denotes the complementary error function defined
by:

erfc(a) B
2
√
π

∫ ∞
a

e−t
2
dt . (19)

See [34] for the proofs.

B THE VANISHING-MECHANISM

Our vanishing mechanism keeps the independent partitioning of
the original PATE approach and implements individualized privacy
by having teachers participate inmore or fewer votings according to
their training data points’ privacy budget. Therefore, in vanishing,
data points with the same privacy budget have to be allocated to the
same teacher (s). We call data points with the same privacy budget
a privacy group дj . Teachers trained on privacy groups with higher
privacy requirements (lower budgets) contribute to fewer votings,
whereas teachers in lower-requirement groups contribute to more
votings. We implement vanishing by randomly sampling teachers
for participating in given voting according to their data points’
privacy requirements. To be able to apply the same magnitude of
privacy noise for each voting, we make sure that the number of
teachers sampled per voting stays constant, see Algorithm 3. The
vanishing mechanism is also visualized in Figure 4c.

Algorithm 3: Select teacher models for voting in the van-
ishing method.
Input: Privacy budget εj for each privacy group дj ,

j ∈ 1, ...,G, each teacher model ti .
Result: Participation si for each teacher ti .

1 for Each teacher ti do
2 si ← 0; /*Initialize participation*/

3 εmax ← maxGj=1 εj ;
4 for Each privacy group дj do

5 S ← randomly select εj
εmax

teachers from group дj ;
6 for Each teacher ti in S do

7 si ← 1; /*Update participation*/

8 end

9 end

We call the resulting aggregation method vanishing GNMax

(vGNMax). Its vote count mechanism can be defined as follows:

Definition 10 (Vanishing Vote Count). Let ti : X → Y be the i-th
out of k ∈ N teachers. Let further N ∈ N be the number of sensitive
data points and mi ∈ {0, 1}N a mapping that describes which
points are learned by ti . Moreover, let si ∈ {0, 1} be the current
participation of ti . The vanishing vote count n̊ : Y ×X → N of any
class j ∈ Y for any unlabeled public data point x ∈ X is defined as

n̊j (x) B
k∑
i=1

si · 1 (ti (x) = j) . (20)
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For example, if there are 2 groups of teachers where the higher
privacy budget is twice the lower privacy budget, then the teachers
with the higher privacy budget always vote while the teachers from
the lower privacy budget participate only in half of the votings, and
the number of teachers for given voting is 3/4 of the total number
of teachers.

Privacy Analysis for Vanishing

Proposition 4 (Vanishing Sensitivity). Let d(i) ∈ D be a sensitive

data point learned by teacher ti ∈ {t1, . . . , tk }. Let s B (s1, . . . , sk ) ∈
{0, 1}k be the selection of teachers that participate in the current

voting. Then, the individual sensitivity of the vanishing vote count,

regarding d(i), is:

∆
(i)
vanishing,d = si . (21)

Proof. In vanishing PATE, every data point only influences the
vote of one teacher, which, in the worst-case results in two vote
counts being changed. However, in contrast to non-individualized
PATE, privacy is only spent if the teacher corresponding to d(i)

participates in the current voting. □

Note that the vanishing mechanism could potentially benefit
from the privacy amplification by subsampling [4]. However, how
to combine the data-dependent RDP, as used in PATE, with the
subsampling mechanism remains an open problem [48] which is
outside of the scope of this work.

The vanishing approach does not change PATE hyperparameters
(σ , σT , andT ), in contrast to the upsampling method. The sensitive
data has to be grouped budget-wise before being provided to the
teachers. The votes are scaled so that the total sum of the votes is
equal to the total number of teachers.

C IMPLEMENTATION DETAILS OF THE

INDIVIDUALIZED VARIANTS OF PATE

This section contains details on the implementation of the individ-
ualized GNMax variants which are left out in Sections 4 and 5 for
the sake of brevity.

Hyperparameter Search

The goal of the practical implementation of our variants of PATE
is to ensure that their parameters align. Thus, the optimization of
PATE hyperparameters, i.e. number of teachers k , noise standard
deviation for consensus σT , threshold for consensus T , and the
noise standard deviation for label creation σ , have to be adjusted
so that the different variants of PATE are comparable.

We show how the parameters used in variants of individual-
ized PATE: numbers of duplications for upsampling, participation
frequencies for vanishing, and teacher weights for weighting, influ-
ence the individual loose bound through individual sensitivities. For
example, the teachers’ weights for the weighting scheme translate
directly to the teacher’s sensitivities, which are set for the privacy
analysis. The same holds for the duplication factor in upsampling
and the participation frequencies for vanishing.

The privacy costs depend not only on the loose bound but also
on the data-dependent tight bound and on the currently optimal
RDP order(s). Therefore, it does not suffice to set the individual

parameters or sensitivities proportional to the individual budgets.
To find adequate parameters, we conduct experiments to analyze the
relation between individual sensitivities and resulting privacy costs
in Figure 3. The figure reports results for sensitivities, which are set
according to the duplication, participation, and weighting factors
of PATE. The goal is to relate individual sensitivities by adjusting
parameters so that all privacy budgets exhaust approximately at the
same time. To enable comparisons among the different variants, we
describe the parameters by corresponding individual sensitivities.
We randomly divide the sensitive data into two equally sized groups,
one with higher and one with lower individual sensitivity. The
parameters are adjusted so that a ratio of c to 1 is achieved for
individual sensitivities with each c ∈ {2, . . . , 9}. We conduct this
experiment on the MNIST dataset and train ten different ensembles.
Each ensemble is then used for five different voting processes. We
perform 4, 000 votings in each process to compare the different cost
growths over time.

Details of Upsampling

Upsampling PATE extends the training data for teachers by dupli-
cates. Figure 3 shows that the ratio of privacy costs approaches the
ratio of their corresponding budgets after some votings. Therefore,
numbers of duplicates should align to the relation of privacy bud-
gets. This can be achieved by initializing the numbers of duplicates
as the different budgets and then scaling them up equally until each
of them reaches an integer with some desired precision. Note that
a higher precision might lead to very high numbers of duplicates if
not all budgets are multiples of each other as in our experiments.

Details of Vanishing

Vanishing PATE differentiates privacy on teacher-level by avoid-
ing participation in some votings. Therefore, sensitive data has
to be grouped budget-wise and then be given to teachers s.t. all
data points in a teacher have (almost) the same privacy budget.
Afterward, the participation frequencies have to be set according
to the lowest budget of each teacher. Figure 3 suggests that the
frequencies corresponding to two different budgets should have a
relation that is at least quadratic to the relation of their correspond-
ing budgets. In our experiments we used a relation that equals the
relation of budgets to the power of four since the costs of data with
different budgets are closer after a few votings before they approach
constant ratios as for upsampling and weighting. So we initialized
frequencies to the corresponding budgets, squared them, and finally
divided them by the highest frequency so that frequencies were
probabilities and the highest one was 100%.

To be comparable to the other individualized variants, the voting
accuracy of vanishing PATE should be retained by decreasing the
noise intensity according to the smaller number of voting teach-
ers. A weaker noise entails higher privacy costs for participating
teachers’ data. Experiments showed that the privacy costs of all
data is lower if the number of participating is stable over the whole
voting process. Therefore, our implementation maintains a stable
number of participating teachers by selecting random alternations
that are changed periodically. More precisely, randomly selected
sets of teachers participate periodically in votings where the period
aligns to their frequency and equal periods are shifted to achieve a
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Figure 3: Tuning parameters for individualized variants of PATE. Privacy cost relation between two equal-sized groups of

sensitive data (high and low sensitivity) shown over 4, 000 votings on the MNIST dataset for both individualized Confident-

GNMax variants. All costs are given in (ε, δ )-DP for δ = 10−5
. Each of ten teacher ensembles is used to vote five times for all

labels in the public dataset that is shuffled differently for each combination. After some votings, the ratio of different costs

almost remains constant at the ratio of corresponding sensitivities. Note that the sensitivities shown are only proportions

of sensitivities. This means that for upsampling and weighting, the plain sensitivities (that correspond to the number of

duplications and the teachers’ weights) are scaled while for vanishing, average sensitivities (i.e. participation frequencies),

are scaled and depicted. We use the figure to find what sensitivity values should be set for our two balanced (with the same

number of data points) privacy groups. For a given ratio of ε-s and the desired number of votings (generated labels), we find

the optimal ratios of sensitivities that directly correspond to the hyperparameters of our variants of PATE. For example, if

the ratio of the privacy budgets

εhiдh
εlow

is 3, then the corresponding ratio of sensitivities for the upsampling method should be

3 (the points from the lower privacy group are not duplicated - sampled once, while the points from the higher privacy group

should be duplicated twice - with the total number of 3 points).

stable number of participating teachers per voting. After some vot-
ings, new sets of teachers with identical frequencies are randomly
sampled to reduce the risk of biases that could be introduced into
labels by cliques of teachers with similar knowledge.

Details of Weighting

Following Figure 3, weights can be set to their corresponding bud-
gets divided by the average budget. Thus, all hyperparameters can
remain unchanged while their optimization regarding the accuracy
of teachers and voting still holds.

Setting Parameters for Individualized Variants

We show how to set the parameters of the individualized variants
of PATE so that different privacy budgets are exhausted at approx-
imately the same time. Figure 3 visualizes the relation between
the parameters of our individualized Confident-GNMax variants
and the resulting individualized privacy costs according to tight
bounds over time. We observe that uGNMax and wGNMax behave
very similarly and their cost ratios stay almost constant after a few
votings. Contrary, vGNMax needs more votings to lower the gain of
its cost ratio. For uGNMax and wGNMax, the cost ratio according
to the tight bound seems to be approximately equal to the ratio of
sensitivities, whereas the cost ratio approaches the square root of
the ratio of sensitivities for vGNMax. Therefore, in our experiments,

we adjust the individualization parameters (duplications, partici-
pation frequencies, and weights) so that the resulting sensitivities
relate to the actual budgets.

E.g. let ε1, ε2 ∈ R+ be two DP budgets with ε2 = c · ε1 for any
c > 1. Then, for the uGNMax, the duplications u2 of points having
the higher budget ε2 are set to u2 B c · u1 where u1 is the number
of duplications for points having the lower budget. For vGNMax,
the participation frequency s1 of teachers trained on points having
the lower budget ε1 is set to s1 B 1/c2 while the frequency s2 of
teachers trained on points having the higher budget is always one2.
Finally, for the wGNMax, the weights of teachers are set to the
corresponding budgets and then normalized so that the sum of
all weights equals the number of teachers. Thus, w1 B ε1/w and
w2 B ε2/w wherew is the average weight of all teachers.

D VISUALIZATION OF METHODS

We visualize the methods in Figure 4.

E ADDITIONAL RESULTS

Results of experiments on the Adult income dataset as well as more
comprehensive results of MNIST experiments are presented on the
following pages.

2We set s1 B 1/c4 for vGNMax in our experiments so that different privacy budgets
exhausted approximately at the same time.
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Figure 1: PATE Schemes. Teachers t0, t1, . . . , tk are trained on partitions of sensitive labeled data. Afterward, public
unlabeled data is given to the teacher ensemble whose votes are aggregated s.t. labels are produced. Finally, the student
is trained on the public data with produced labels. The personalized variants modify this procedure to individually
adjust the influence of sensitive data on produced labels. Sensitive data may be used to train multiple teachers (b).
Instead, teachers may avoid participating in some votings (c), or be weighted differently (d).

Although the definition for the upsampling vote count looks the same as the non-personalized vote count (Definition 4),
their sensitivities differ due to data points to be learned by several teachers (see Proposition 2 in Section 3.4.2).

3.2 Vanishing-Mechanism

Our second mechanism that we call vanishing (see Figure 1c) keeps the independent partitioning of the original PATE
approach and asserts personalized privacy budgets by having teachers participate in more or fewer votings. Therefore,
data points with the same privacy budgets need to be allocated to the same teacher(s), such that teachers that contain
data points with higher privacy requirements (lower budgets) can contribute to fewer votings. We call the resulting
aggregation method vanishing GNMax (vGNMax). Its vote count mechanism can be defined as follows.

Definition 7 (Vanishing Vote Count). Let ti : X → Y be the i-th out of k ∈ N teachers. Let further N ∈ N be the
number of sensitive data points and mi ∈ {0, 1}N a mapping that describes which points are learned by ti. Moreover,
let si ∈ {0, 1} be the current participation of ti. The vanishing vote count n̊ : Y × X → N of any class j ∈ Y for any

6

Figure 4: PATE variants. Teachers t0, t1, . . . , tk are trained on partitions of sensitive labeled data. Afterward, public unlabeled

data is given to the teacher ensemble whose votes are aggregated s.t. labels are produced. Finally, the student is trained on

the public data with produced labels. The individualized variants modify this procedure to individually adjust the influence

of sensitive data on produced labels. Sensitive data may be used to train multiple teachers (b). Instead, teachers may avoid

participating in some votings (c), or be weighted differently (d).

higher 25% ratio 50% ratio 75% ratio
budget in ε U W U W U W

log 4 140 139 202 203 272 273
log 8 198 198 346 349 541 543
log 16 264 259 530 530 868 872
baseline 88

Table 7: Number of labels generated per individualization (Adult). Results computed over five voting processes for different

budget distributions for Upsampling and Weighting. Non-individualized experiments with the lower group’s privacy budget

log 2 serve as baselines.
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Figure 5: Privacy cost history (MNIST). Costs for generating the first 2, 000 labels. Results are averaged over five voting processes
by ten teacher ensembles, each for different budget distributions andGNMax variants upsampling andweighting. Privacy costs

and budgets are given in (ε, δ )-DP for δ = 10−5
. Ratios indicate the proportion of data with the higher budget. Costs are listed

per group of data points sharing the same budget.

Figure 6: Privacy cost history (Adult). Costs for generating the first 2, 000 labels. Results are averaged over five voting processes

by ten teacher ensembles, each for different budget distributions and GNMax variants upsampling and weighting. Privacy

costs and budgets are given in (ε, δ )-DP for δ = 10−5
. Ratios indicate proportion of data with the data have the higher budget.

Costs are given per group of points that share the same budget.
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higher 25% ratio 50% ratio 75% ratio
budget in ε U W U W U W

log 4 92.32 93.26 92.52 93.08 94.38 93.70
log 8 93.12 88.94 94.48 94.68 96.20 95.74
log 16 93.96 90.24 96.38 96.32 96.90 96.60
baseline 88.70

Table 8: Student accuracy per individualization (MNIST). Results for Upsampling andWeighting based on the generated labels

(see Table 5). Non-individualized experiments with the lower group’s privacy budget log 2 serve as a baseline.

higher 25% ratio 50% ratio 75% ratio
budget in ε U W U W U W

log 4 81.02 80.87 81.76 81.76 82.16 82.26
log 8 81.79 81.67 82.52 82.60 82.87 82.89
log 16 82.30 82.25 82.82 82.84 83.07 83.04
baseline 79.85

Table 9: Student accuracy per individualization (Adult). Results depict the average accuracies, computed over five voting

processes for different budget distributions for Upsampling and Weighting. Non-individualized experiments with the lower

group’s privacy budget log 2 serve as a baseline.

higher 25% ratio 50% ratio 75% ratio 100% ratio
budget in ε low high low high low high low high

log 4 90.08 56.05 87.75 61.70 85.58 66.24 83.62 69.68
log 8 87.74 61.73 83.57 69.84 79.99 75.46 76.86 79.44
log 16 85.58 66.12 79.93 75.48 75.48 81.01 71.57 84.79
baseline (92.55, 48.82)

(a) Teacher Accuracy.

higher 25% ratio 50% ratio 75% ratio 100% ratio
budget in ε low high low high low high low high

log 4 95.21 55.99 93.02 64.11 91.24 68.93 88.59 74.11
log 8 93.19 64.11 88.71 73.91 84.42 81.14 81.41 85.23
log 16 91.02 68.55 84.47 81.36 79.99 86.49 75.32 90.22
baseline (97.13, 46.29)

(b) Voting Accuracy.

Table 10: Per-group teacher and voting accuracy (in %) for unbalanced individualization (Adult). Results reported for low-

income (majority) and high-income (underrepresented) class as an average over 50 different students trained through five

voting processes by ten teacher ensembles using upsampling. The ratios specify what proportion of the underrepresented

class was assigned the higher privacy budget. The remaining data obtained a privacy budget of log 2. Non-individualized ex-

periments with all data points having a privacy budget of log 2 serve as the baseline. As the proportion of data points from the

underrepresented class that obtain a higher privacy budget (or their respective budget) increases, we observe an increase in

accuracy on this class. At the same time, the accuracy on the majority class decreases.

higher # produced labels
budget in ε 25% ratio 50% ratio 75% ratio 100% ratio

log 4 90 95 101 109
log 8 93 108 132 162
log 16 96 129 172 225
baseline 88

Table 11: Labels generated per unbalanced individualization (Adult). Results depict the average over five voting processes

by ten teacher ensembles using upsampling. Ratios indicate the proportion of the underrepresented class with the indicated

higher budgets. The remaining data receives a privacy budget of log 2. Non-individualized experiments with a uniform privacy

budget of log 2 serve as a baseline.
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