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ABSTRACT
We propose a secure multi-party computation (MPC) protocol that

constructs a secret-shared decision tree for a given secret-shared

dataset. The previous MPC-based decision tree training protocol

(Abspoel et al. 2021) requiresO(2hmn logn) comparisons, being ex-

ponential in the tree height h and with n andm being the number of

rows and that of attributes in the dataset, respectively. The cause of

the exponential number of comparisons inh is that the decision tree

training algorithm is based on the divide-and-conquer paradigm,

where rows are padded after each split in order to hide the number

of rows in the dataset. We resolve this issue via secure data structure

that enables us to compute an aggregate value for every groupwhile

hiding the grouping information. By using this data structure, we

can train a decision tree without padding to rows while hiding the

size of the intermediate data. We specifically describes a decision

tree training protocol that requires only O(hmn logn) comparisons

when the input attributes are continuous and the output attribute

is binary. Note that the order is now linear in the tree height h. To
demonstrate the practicality of our protocol, we implement it in an

MPC framework based on a three-party secret sharing scheme. Our

implementation results show that our protocol trains a decision

tree with a height of 4 in 404 seconds for a dataset of 2
20

rows and

11 attributes.
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1 INTRODUCTION
Secure multi-party computation (MPC) [34] allows parties to jointly

compute any function while keeping inputs private. Its large com-

putational overhead has long been a barrier to practical use. In

recent years, even efficient MPC protocols for machine learning

methods such as neural network training [25, 29, 32] have been

proposed.
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Decision tree is one of the classical machine learning methods. It

is still widely used due to its computational simplicity and ease of

interpretation. It is also an important component of other machine

learning methods, such as gradient boosting decision tree [11] and

random forest [5], which have been successful in recent years.

Since the work of Lindell and Pinkas [23] in the early days of

privacy-preserving data mining, there has been a lot of research on

MPC protocols for decision tree training. In order to be used as a

component of MPC protocols for other machine learning methods,

it is desirable to keep all the information, from the input to the

trained decision tree, private. However, only a few protocols [1, 2, 8]

with such a property have been proposed. This is mainly due to

two kinds of computational difficulties in MPC.

The first difficulty is the computation on real numbers. Deci-

sion tree training requires computation of evaluation functions.

Although there are many types of evaluation functions, all com-

monly used ones involve division or logarithm. Therefore, naive

MPC protocols for decision tree training involve computation on

real numbers, which increases the computational cost. On the con-

trary, de Hoogh et al. [8] cleverly avoided computation on real

numbers by replacing fractional number comparisons with inte-

ger comparisons, and proposed an efficient protocol for the case

where inputs are categorical values. Abspoel et al. [1] presented an

efficient protocol that can be applied to the case where the input

contains numerical values. The number of candidates to which the

evaluation functions are applied is Θ(c) when the input consists

only of categorical values, whereas it increases to Θ(n2) when the

input contains numerical values, where c is the number of possible

values of the categorical value and n is the number of samples in the

input. They used a sorting protocol to reduce the number of candi-

dates toO(n), and also extended the technique of de Hoogh et al. to

the numerical case to avoid computation on real numbers. Adams

et al. [2] dealt with the case where the input contains numeric

values by a different approach: discretizing the numeric attributes

of the input. Although the trained tree is slightly different from the

one without discretization, this approach avoids the use of sorting,

which is relatively computationally expensive, and allows us to use

the efficient protocol of de Hoogh et al. [8].

The second difficulty is the protection of the intermediate data

size. In decision tree training, the data is split recursively from

the root node to the leaf nodes in a top-down fashion. As the tree

height increases, the number of nodes increases exponentially. On

343

https://orcid.org/0000-0002-8863-6809
https://orcid.org/0000-0002-6089-5315
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0021


Proceedings on Privacy Enhancing Technologies 2023(1) Koki Hamada, Dai Ikarashi, Ryo Kikuchi, and Koji Chida

Table 1: Comparison of computational cost of MPC pro-
tocols for decision tree training with numerical input at-
tributes.

Method Number of operations Rounds

Trivial [1] O(2hmn2) O(h(logn + logm))

Abspoel et al. [1] O((2h + logn)mn logn) O(h(logn + logm))

Abspoel et al. [1] O(2hmn logn) O(h(logn + logm))
with sort in [13]

Ours O(hmn logn) O(h(logn + logm))

the other hand, the size of the intermediate data processed by each

node also decreases exponentially on average, hence the overall

computational cost is linear in the tree height. When this is imple-

mented in MPC, the intermediate data size after splitting has to

be hidden, so the existing protocols [1, 2, 8] used a data, which is

padded, of the same size as the original one at each node. Therefore,

we could not benefit from the size reduction by data splitting, and

as a result, the overall computational cost was exponential in the

tree height. The required tree height depends on the situation, but

can be large. For example, Probst et al. [26] concluded that it is

optimal to set the default maximum tree height to 21 when training

decision trees using rpart. Thus, it is desirable to reduce the high

dependence of the computational cost on h.

1.1 Our contribution
We propose an MPC protocol for decision tree training with linear

computational cost on tree height, which is the first protocol to

solve the second problem above. It trains a binary decision tree

under the assumption that all input attributes are numeric and the

output attribute is binary. As in the protocol by Abspoel et al. [1],

it does not reveal any information other than the size of the input

and the upper bound h on the tree height.

The computational cost of our protocol is O(hmn logn), assum-

ing that the comparison and multiplication protocols are unit op-

erations, wherem is the number of input attributes in the dataset,

and n is the number of samples in the dataset. This is an exponen-

tial improvement with respect to h over the computational cost

O(2hmn logn) of the protocol by Abspoel et al. (Actually, Abspoel et

al. [1] claimed only a computational costO((2h+logn)mn logn), but

their protocol can easily be implemented to run in O(2hmn logn)
by replacing the sorting protocol to efficient one such as [13].) A

comparison of the computational costs is shown in Table 1.

Our approach of exponential improvement in computational cost

with respect to the tree height is general. For completeness, our

protocol is instantiated with all input attributes being numeric, the

output attribute being binary, and the evaluation function being the

Gini index; however, it is easy to extend. In fact, the main protocol

(Algorithm 10), which plays a central role in the exponential im-

provement of the computational cost, describes a process common

to the major decision tree training algorithms CART [6], ID3 [27],

and C4.5 [28]. Extensions to other input/other types are discussed

in Section 4.8.

Our protocol is built on top of a set of basic protocols, such

as multiplication and comparison, provided by many recent MPC

frameworks, so it can be used on top of various implementations.

More specifically, we build our protocol on top of an MPC model

called arithmetic black box (ABB), which consists of a set of basic

operations described in Section 2.2.1.

As a byproduct of our decision tree training protocol, we also

propose a secure data structure that can compute aggregate values

for each group while keeping the grouping information private.

This data structure can be used to compute aggregate values such as

sums andmaximumswithin each group while keeping the grouping

information private, even in cases other than decision tree training.

To see the practicality of our decision tree training protocol, we

implemented it on an MPC framework based on a 2-out-of-3 secret

sharing scheme. Our protocol trained a decision tree with a height

of 4 for 2
20

inputs of 11 input variables in 404 seconds.

1.2 Overview of our techniques
In general, MPC protocols are incompatiblewith divide-and-conquer

algorithms. In divide-and-conquer algorithms, the problem is di-

vided into smaller subproblems and solved recursively, but MPC

protocols need to hide the size of the divided problem as well. A

common way to hide the size of the problem is to pad. We hide the

actual size of the data by padding (or leaving samples that should

be removed) to the split data to make it appear to be the same size

as the original. A disadvantage of this method is that it is com-

putationally expensive; since it loses the property that the data

size becomes smaller after splitting. For this reason, the previous

study [1] required an exponential cost for the height of the tree.

We use the property that the total number of samples is invariant

at each height in training decision trees. We keep the data of nodes

of the same height together, and train them all at once without

padding. This allows our protocol to process only Θ(hmn) samples

in total, while the previous study [1] processes Θ(2hmn) samples

including dummies.

To implement this idea, we first define a data structure that

looks like a private vector of length n, but is internally grouped.

Specifically, we place the n grouped elements on a private vector

of length n so that elements of the same group appear next to

each other, and then create a private vector of length n with a flag

corresponding to the first element of each group. This allows us to

detect the boundaries of groups by referring to the flags internally,

although we cannot distinguish the groupings outwardly.

In decision tree training, each group needs to be split when

moving to the next height. We accomplish this within our data

structure by stably sorting the elements using the binary branching

result, which is computed for each element, as a key. Stability of

the sort ensures that elements that are in the same group and have

the same branching result will be placed sequentially after the sort.

Since this split requires only one-bit-key sorting, it can be very

efficient depending on the underlying MPC implementation.

We build the group-wise sum, maximum, and prefix sum compu-

tations on our data structure. We then use them to build a decision

tree training algorithm similar to [1] on our data structure.

1.3 Related work
There have been many studies on designing efficient algorithms for

MPC, and various techniques have been developed. Our research

can also be placed in this context.

344



Efficient decision tree training with new data structure for secure multi-party computation Proceedings on Privacy Enhancing Technologies 2023(1)

One technique that has contributed to the design of efficient

algorithms is the Oblivious RAM (ORAM) proposed by Goldreich

and Ostrovsky [12]. In the context of MPC, ORAM can be used to

implement efficient array access. Recently, MPC-friendly ORAMs

[31, 35] have also been proposed. These have also been used to

construct efficient algorithms for such as stable marriage problem

[9] and minimum spanning tree problem [16]. We can construct a

decision tree training protocol by running a decision tree training

algorithm on a random access machine using ORAM. However,

since simple application would result in the number of rounds

being equal to the running time of the algorithm in the clear, it is

non-trivial to construct a protocol in which both the number of

operations and the number of rounds are small.

Another clever technique is the oblivious parallel array access

algorithm proposed by Laud [19]. This also aims to access arrays

efficiently. It is particularly efficient when reading or writing a large

amount of data at once. Efficient algorithms for such as shortest

path problems [3] and minimum spanning tree problem [4, 19] have

been designed using this algorithm. The data structure proposed in

this paper uses the ideas of [19] and [3].

Besides those directly related to our protocol, various tricks for

MPC have been studied. The oblivious shuffling algorithm proposed

by Laur et al. [22] for reordering array elements into a random order

is used as a component of various efficient MPC protocols such

as sorting [13] and join [21]. Doerner et al. [9] proposed a secure

data structure that can efficiently traverse a linked list when the

elements of the list are accessed only once and in order.

2 PRELIMINARIES
In this section, we introduce a typical decision tree training algo-

rithm in the clear and secure multi-party computation.

Before that, we introduce some notation. Throughout this paper,

the index of a vector starts at 1. We refer to the i-th element of

a vector ®v by ®v[i]. That is, if ®v is a vector of length n, then ®v =
(®v[1], ®v[2], . . . , ®v[n]). Let Sn denote a symmetric group on [1,n].
That is, Sn is the set of all bijective functions from [1,n] to [1,n]. A
permutation is an element of Sn . Applying a permutation π ∈ Sn to

a vector ®x of length n is the operation of rearranging ®x into a vector

®z satisfying ®z[π (i)]= ®x[i] for i ∈ [1,n]. We denote this operation as

π (®x). In logical operations, 0 represents false and 1 represents true.

2.1 Decision tree training
Decision tree training is a method in machine learning. The goal is

to obtain a model called a decision tree that predicts a value of an
output attribute, given values of input attributes. There are several
famous algorithms for decision tree training, such as CART [6],

ID3 [27], and C4.5 [28]. The general framework of these algorithms

is the same, and in fact they are all greedy algorithms based on

the divide-and-conquer paradigm. In this section, we present a

typical algorithm, for which we plan to construct a secure version,

for training a two-class classification binary tree, where all input

attributes are numerical.

2.1.1 Typical decision tree training algorithm. Let us start with
defining notation. Consider a dataset D with m input attributes

X1, . . . ,Xm and an output attribute Y . Suppose there are n samples,
each sample being a pair of an input tuple x and a class label y.

Here, x is an m-tuple, and y is a value of the output attribute Y .
The j-th element of x represents a value of the input attribute

X j . A decision tree consists of a binary tree and some additional

information. Each internal node (non-leaf node) has a condition

called a test of the form X j < t . It asks if the j-th element in a given

input tuple is less than a threshold t or not. Each edge is assigned

a possible outcome of its source node’s test, that is, true or false.

An edge whose assigned outcome is true (false) is called a true edge
(false edge, respectively). A child node whose incoming edge is a

true edge (false edge) is called a true-child node (false-child node,
respectively). Each leaf node is assigned a class label called leaf label.
This information is used to predict a class label for a given input

tuple as follows. Starting from the root node, we repeat evaluating

the test of the internal node we reach and tracing an outgoing edge

that is assigned the same value as the test outcome. When we reach

a leaf node, we output its leaf label as the predicted class label.

Algorithm 1: A typical decision tree training algorithm in the

clear.

Notation: T := Train(D)
Input: A training dataset D.

Output: A decision tree T .

1 if the stopping criterion is met then
2 Let r be a leaf node whose leaf label is the most common

class label in D. Outputs a tree whose root node is r .
3 else
4 Find the best test X j < t according to the variable

selection measure.

5 Recursively computes two subtrees

TX j<t := Train(DX j<t ) and TX j ≥t := Train(DX j ≥t ).

6 Let v be an internal node v whose test is X j < t . Output a
tree such that its root node is v , v’s true-child node is

TX j<t ’s root node, and v’s false-child node is TX j ≥t ’s root

node.

A typical decision tree training algorithm is shown in Algo-

rithm 1. It trains a tree recursively from the root node to a leaf

node in a top-down fashion. At each node, it checks if the stop-

ping criterion is satisfied using the given training dataset D to

determine the node type. If the stopping criterion is satisfied, the

current node is set to be a leaf node. Then, it sets the most fre-

quent class label in the dataset to the leaf label of the current

node, and outputs a tree whose root is this node. If the stopping

criterion is not satisfied, the current node is set as an internal

node. In this case, we select a test of the form X j < t that gives
the best data splitting with respect to a predetermined criterion,

and split the training dataset D into DX j<t and DX j ≥t accord-

ing to this test, where DX j<t := {(x,y) ∈ D | x(X j ) < t} and
DX j ≥t := {(x,y) ∈ D | x(X j ) ≥ t}. Here, we refer to the j-th ele-

ment of an input tuple x by x(X j ). It then recursively trains decision

trees TX j<t and TX j ≥t withDX j<t andDX j ≥t as the training data,

respectively, and sets the roots of these trees as the child nodes of

the current node, and outputs a tree whose root is the current node.

We use the commonly used stopping criterion: (1) the height of

the node is h, or (2) the dataset cannot be split further (i.e., (i) all
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class labels are the same, or (ii) all input tuples are the same), where

h is an upper bound of the tree height, which is typically given as a

hyperparameter.

We also assume that the threshold is chosen to be the average

of some two different attribute values. This allows the number of

candidate threshold values for a particular attribute to be O(n).

2.1.2 Test selection measure. The size and shape of the decision

tree depends on which tests are selected at the internal nodes. In

general, it is desirable to make the tree as small as possible, but the

problem of constructing a decision tree that minimizes the sum of

the lengths of the paths from the root to each leaf is known to be

NP-hard [15]. Therefore, we usually define a measure for goodness

of local splitting and select a test that maximizes this measure.

Commonly used measures for goodness of split include the in-

formation gain used in ID3 [27] and the Gini index used in CART

[6]. We use the Gini index, which is also used in previous studies

such as [1, 8] due to its ease of computation in MPC.

Two types of Gini indices are defined: one for a dataset and one

for a dataset and a test. The Gini index for a dataset D, which we

denote by Gini(D), is defined as follows: Gini(D) := 1 −
∑
c ∈{0,1}

(|DY=c |
2/|D|2), where DY=c := {(x,y) ∈ D | y = c} is a subset

of D whose class label is c . Intuitively, the smaller Gini(D) is, the
purer D becomes in terms of class labels.

The Gini index for a dataset D and a test X j < t , which we

denote by GXj<t (D), is defined using Gini as follows:

GXj<t (D) :=
|DX j<t |

|D|
Gini(DX j<t ) +

|DX j ≥t |

|D|
Gini(DX j ≥t ).

Intuitively, the smaller GXj<t (D) is, the purer each split dataset

becomes (and hence the better the test is). Therefore, to find the best

test for splitting a dataset D, we compute a test T that minimizes

GT (D) [14].

Abspoel et al. [1] showed thatminimization ofGXj<t (D) is equiv-

alent to maximization of G’Xj<t (D) defined as

G’Xj<t (D) := (|DX j ≥t |(|DX j<t∧Y=0 |
2 + |DX j<t∧Y=1 |

2)

+|DX j<t |(|DX j ≥t∧Y=0 |
2+|DX j ≥t∧Y=1 |

2))/(|DX j<t | |DX j ≥t |),

(1)

where DX j<t∧Y=c := {(x,y) ∈ D | x(X j ) < t ∧ y = c} and
DX j ≥t∧Y=c := {(x,y) ∈ D | x(X j ) ≥ t ∧ y = c}. We refer to it as

modified Gini index and use it as a measure in our protocol.

2.2 Secure multi-party computation
We model secure multi-party computation (MPC) with an ideal

functionality called arithmetic black box (ABB). This ideal func-

tionality allows a set of parties P1, . . . , PC to store values, operate

on the stored values, and retrieve the stored values. We build our

protocol on top of an ABB. This allows our protocol to run on

any MPC implementation that realizes ABB, since concrete ABB

implementation is separated from their construction.

2.2.1 Arithmetic black box. We assume a simple ABB named FABB
over a ring ZM for some integerM as shown in Fig. 1. We denote a

value referred to by a name x stored in FABB as [[x]]. In a typical

case, where FABB is realized by a secret sharing based MPC, [[x]]

• A command [[z]] ← Enc(x, Pi ): Receive x from a party

Pi and store it as [[x]].
• A command z ← Dec([[x]]): Send x to every party, who

store it in the local variable z.
• A command [[z]] ← Add([[x]], [[y]]): Compute z := x +y
and store it as [[z]].
• A command [[z]] ← Mul([[x]], [[y]]): Compute z := xy
and store it as [[z]].
• A command [[z]] ← EQ([[x]], [[y]]): If x = y then set

z := 1, otherwise set z := 0. Store it as [[z]].
• A command [[z]] ← LT([[x]], [[y]]): If x < y then set

z := 1, otherwise set z := 0. Store it as [[z]].
• A command [[π ]] ← SortPerm([[®x1]], [[®x2]], . . . , [[®xk ]]):
Assume that ®x1, ®x2, . . . , ®xk are vectors of length n.
Compute a permutation π ∈ Sn , such that it lex-

icographically and stably sorts ((®x1[1], . . . , ®xk [1]),
. . . , (®x1[n], . . . , ®xk [n])). Store π as [[π ]].
• A command [[®z]] ← Apply([[π ]], [[®x]]): Assume that

π ∈ Sn is a permutation and ®x is a vector of length

n. Compute ®z := π (®x) and store it as [[®z]].
• A command [[®z]] ← Unapply([[π ]], [[®x]]): Assume that

π ∈ Sn is a permutation and ®x is a vector of length n.
Compute ®z := π−1(®x) and store it as [[®z]].

We assume that the commands Add,Mul, EQ , and LT are also

defined in the same way when one of the inputs is a public

value.

Figure 1: The arithmetic black box functionality FABB.

means that x is secret shared. We say a value is private if it is stored
in FABB.

We identify residue classes in ZM with their representatives in

[0,M). We assumeM is sufficiently large such that vector indices

can be stored in FABB. We also assume that the number of parties

C is constant.

For notational simplicity, [[z]] ← Add([[x]], [[y]]), [[z]] ← Mul([[x]],
[[y]]), [[z]] ← EQ([[x]], [[y]]), and [[z]] ← LT([[x]], [[y]]) are also writ-

ten as [[z]] ← [[x]] + [[y]], [[z]] ← [[x]] × [[y]], [[z]] ← ([[x]]
?

= [[y]]),

and [[z]] ← ([[x]]
?

< [[y]]), respectively. Furthermore, we denote

[[x1]] + [[x2]] + · · · + [[xn ]] by
∑n
i=1[[xi ]].

2.2.2 Cost of MPC protocols. We define the cost of an MPC pro-

tocol as the number of invocations of relatively basic ABB oper-

ations Enc, Dec,Mul, EQ , or LT other than linear combination of

private values. That is, we assume that the parties can compute

Add([[x]], [[y]]), Add(c, [[y]]), Add([[x]], c),Mul(c, [[y]]), andMul([[x]],
c) for free, where [[x]] and [[y]] are private values and c is a public
value. This cost models the communication complexity on a typical

MPC based on a linear secret sharing scheme, in which the parties

can locally compute linear combination of secret shared values. We

refer to the above ABB operations, except for linear combinations

of private values, as non-free operations.
In this paper, we measure the cost of protocols by the number of

invocations and depth of invocations of non-free operations. These

correspond to the communication cost and communication rounds
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(or multiplicative depth) of a typical MPC implementation by a

constant factor, respectively.

The relatively complex ABB operations of SortPerm, Apply, and
Unapply are typically constructed by combining other basic ABB

operations. Therefore, we assume the costs of these operations to be

as follows in accordance with typical constructions. We assume that

SortPerm costs O(n logn) non-free operations in O(logn) rounds.
This can be realized by the construction by Laud and Willemson

[20]. We also assume that both Apply and Unapply cost O(n logn)
non-free operations in O(logn) rounds. These can be realized by

the construction by Falk and Ostrovsky [10].

2.2.3 Known protocols. We show known protocols that we will use

as building blocks for our protocols. The protocols shown here are

limited to those that can be built on FABB for completeness. Some

MPC implementations may provide the same functionality more

efficiently, in which case we can use them instead of the protocols

listed here to run our protocol more efficiently.

We start by defining some simple protocols.

• [[z]] ← [[x]] OR [[y]] computes logical disjunction of bits x
andy as [[x]]+[[y]]−[[x]]×[[y]], usingO(1) non-free operations
in O(1) rounds.
• [[z]] ← ¬[[x]] computes negation of a bit x as 1 − [[x]], using
no non-free operations.

• [[z]] ← IfElse([[c]], [[t]], [[f ]]) receives a bit c and two values t
and f , and computes t if c = 1, f otherwise, as [[f ]] + [[c]] ×
([[t]] − [[f ]]), using O(1) non-free operations in O(1) rounds.
• [[z]] ← Max([[x]], [[y]]) computes the maximum value of x

and y as IfElse(([[x]]
?

< [[y]]), [[y]], [[x]]), using O(1) non-free
operations in O(1) rounds.

We require an extendedMax protocol, which we call VectMax.
We let [[z]] ← VectMax([[®x]], [[®y]]) denote the operation that com-

putes a private value [[z]] such that [[®x]] and [[®y]] are private vectors
of the same length n, i = arg max

j ∈[1,n]
®x[j], and z = ®y[j]. We use the con-

struction by Abspoel et al. [1], which usesO(n) non-free operations
in O(logn) rounds.

To simplify the description, we introduce a small subprotocol

Sort for sorting private vectors. We let

[[®z1]], . . . , [[®zm ]] ← Sort([[®x1]], . . . , [[®xk ]]; [[®y1]], . . . , [[®ym ]])

denote the following procedure:

(1) [[π ]] ← SortPerm([[®x1]], . . . , [[®xk ]]);
(2) [[®zj ]] ← Apply([[π ]], [[®yj ]]) for j ∈ [1,m].

We sometimes use similar notation when the same operation is

applied to multiple inputs. For example,

[[z1]], . . . , [[zm ]] ← IfElse([[c]]; [[t1]], . . . , [[tm ]]; [[f1]], . . . , [[fm ]])

means parallel execution of [[zj ]] ← IfElse([[c]], [[tj ]], [[fj ]]) for j ∈
[1,m].

If vectors are given for a protocol defined for scalar values, it

means that the protocol is applied on an element-by-element basis.

That is, [[®z]] ← [[®x]] × [[®y]] means parallel execution of [[®z[i]]] ←

[[®x[i]]]×[[®y[i]]] for i ∈ [1,n], and [[®z]] ← IfElse([[®c]], [[®t]], [[ ®f ]])means

parallel execution of [[®z[i]]] ← IfElse([[®c[i]]], [[®t[i]]], [[ ®f [i]]]) for i ∈
[1,n].

If some of the inputs are scalar, the same scalar values are used for

all executions. For example, [[®z]] ← 2×[[®y]]means parallel execution

of [[®z[i]]] ← 2 × [[®y[i]]] for i ∈ [1,n], and [[®z]] ← IfElse([[c]], [[®t]], 1)
means parallel execution of [[®z[i]]] ← IfElse([[c]], [[®t[i]]], 1) for i ∈
[1,n].

2.2.4 Security. Our protocols inherit the security guarantees of an

MPC implementing ABB. That is, if the underlying MPC is secure

against passive (or active) adversaries our protocols will be too. We

will prove the security of our protocols in a hybrid model, where

parties run a real protocol and have access to a trusted party that

computes a subfunctionality. If the subfunctionality is f , we say
that the protocol is executed in the f -hybrid model.

3 OUR SECURE GROUP-WISE AGGREGATION
PROTOCOLS

In this section, we propose group-wise aggregation protocols that

compute aggregate values (sum, prefix sum, and maximum) for

each group without revealing the grouping information of the input

grouped values. These are executed on grouped values stored in

our data structure. These protocols and the data structure play a

central role in the construction of our decision tree training protocol

proposed in Section 4.

3.1 Our data structure for privately grouped
values

We propose a data structure that stores grouped values without

revealing any information about the grouping. We store n values,

divided into several groups, in a private vector [[®x]] of length n,
called the internally grouped vector. Here, elements in the same

group are stored as consecutive elements in the vector. That is, for

any i , j , and k such that 1 ≤ i < j < k ≤ n, if ®x[i] and ®x[k] are in the

same group, then ®x[i] and ®x[k] are also in the same group. Along

with such a vector, we maintain a private bit vector [[®д]] of length n,
called the group flag vector, which indicates the boundaries between
groups. Namely, we set ®д[i] = 1 if the i-th element in ®x is the first

element in a group, otherwise ®д[i] = 0. By definition, ®д[1] = 1 is

always true.

We show an example. Suppose that six values are stored in an

internally grouped vector ®x as ®x = (3, 1, 2, 2, 3, 2) and the corre-

sponding group flag vector is ®д = (1, 0, 1, 1, 0, 0). Then, this means

that the six values are divided into three groups, (3, 1), (2), and

(2, 3, 2).

For the sake of simplicity, we introduce some notations. Let

Head(®д, i) (Tail(®д, i)) be the index of the first (last, respectively)

element of the group that contains the i-th element within the

grouping represented by a group flag vector ®д. Formally, they are

defined as Head(®д, i) := max{j ∈ [1, i] | ®д[j] = 1} and Tail(®д, i) :=
min{j ∈ (i,n] | ®д[j] = 1} ∪ {n + 1} − 1, respectively, where n is the

length of ®д. For example, if a group flag vector is defined as ®д =
(1, 0, 1, 1, 0, 0), then Head(®д, 2) = 1, Head(®д, 4) = 4, Tail(®д, 4) = 6,

and Tail(®д, 3) = 3.
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Table 2: Example of input/output for our group-wise aggre-
gation protocols, where ®д is a group flag vector and ®x is an
internally grouped vector.

Input Output

®д ®x Sum Prefix sum Max

1 3 4 3 3

0 1 4 4 3

1 2 2 2 2

1 2 7 2 3

0 3 7 5 3

0 2 7 7 3

3.2 Group-wise prefix-“operation” protocols
We construct protocols to compute group-wise prefix-sums over

associative binary operators. For a binary operator ⊕ , the group-
wise prefix-⊕ protocol privately computes prefix sums according

to ⊕ of each group in our data structure. It receives a private group

flag vector [[®д]] of length n and a private internally grouped vector

[[®x]] of values to be summed, and outputs a private vector [[®y]]
of prefix sums for each group such that ®y[i] = ®x[Head(®д, i)] ⊕
®x[Head(®д, i) + 1] ⊕ · · · ⊕ ®x[i]. An example of input/output when

the binary operator is “add” is shown in Table 2. Columns 1 and 2

are the inputs, and column 4 is the output.

Anagreh et al. [3] proposed protocols for efficiently computing

prefixmin of values with the same key, using a generic algorithm for

efficiently computing prefix sum. In this section, we first propose a

generic group-wise prefix-⊕ protocol for an arbitrary associative

binary operator ⊕ using a similar approach to Anagreh et al. We

then instantiate it with respect to addition and present a group-wise

prefix-sum protocol.

3.2.1 Binary operation to compute group-wise prefix sum. For any
given associative binary operation ⊕ , we propose a method to cre-

ate another associative binary operation ⊕′ such that the prefix

sum over ⊕′ computes a group-wise prefix sum over ⊕. We will

use ⊕′ and an efficient prefix sum algorithm A to efficiently com-

pute group-wise prefix sum for ⊕ .

A binary operation ⊕ is said to be associative if it satisfies (a ⊕
b) ⊕ c = a ⊕ (b ⊕ c) for any a, b, and c . For example, addition, mul-

tiplication, and max of real numbers are associative, but subtraction

and division are not.

Our method of creating a new binary operation is as follows.

Definition 3.1. Let ⊕ be a binary operation on a set S . The binary
operation ⊕′ on S × {0, 1} defined by

(x, fx ) ⊕
′ (y, fy ) = (if fy then y else x ⊕ y, fx ∨ fy )

is called the extended binary operation of ⊕ . We refer to x and fx
by body and bit of (x, fx ).

Intuition. Intuitively, the bits in the extended value can be inter-

preted as flags to reset. When the sum is computed from the left by

an expanded binary operation ⊕′ , the body of the result is equal to

the sum by the original binary operation ⊕ . However, once a value

x with bit 1 is added from the right, the body of the result is reset

to the body of x . Therefore, by setting the group flag to the bit and

Table 3: Truth table for extended binary operation.

fa fb fc d fd e fe
0 0 0 (a ⊕ b) ⊕ c 0 a ⊕ (b ⊕ c) 0

0 0 1 c 1 c 1

0 1 0 b ⊕ c 1 b ⊕ c 1

0 1 1 c 1 c 1

1 0 0 (a ⊕ b) ⊕ c 0 a ⊕ (b ⊕ c) 0

1 0 1 c 1 c 1

1 1 0 b ⊕ c 1 b ⊕ c 1

1 1 1 c 1 c 1

computing prefix sum, the prefix sum for each group is computed

on the body.

Correctness. We show that the group-wise prefix sum of the

original binary operation can be computed by the prefix sum of the

extended binary operation. First, from Definition 3.1, the following

propositions are immediate.

Proposition 3.2. If ⊕′ is an extended binary operation of ⊕ , then
(x, fx ) ⊕

′ (y, 1) = (y, 1).

Proposition 3.3. If ⊕′ is an extended binary operation of ⊕ , then
(x, fx ) ⊕

′ (y, 0) = (x ⊕ y, fx ).

These are used to show that the extended operation is associative.

Theorem 3.4. If a binary operation ⊕ is associative, then the ex-
tended binary operation ⊕′ of ⊕ is also associative.

Proof. Let S ′ := S × {0, 1}, (a, fa ), (b, fb ), (c, fc ) ∈ S
′
, (d, fd ) :=

((a, fa ) ⊕
′ (b, fb )) ⊕

′ (c, fc ), and (e, fe ) := (a, fa ) ⊕
′ ((b, fb ) ⊕

′ (c,
fc )). We will show that (d, fd ) = (e, fe ) always holds.

Using Propositions 3.2 and 3.3, we can list all cases as in Table 3.

In all cases (d, fd ) = (e, fe ), so ⊕
′
is associative. □

Next, we show that the prefix sum of ⊕′ computes the group-

wise prefix sum of ⊕ .

Theorem 3.5. Let ⊕′ be an extended binomial operation of an
associative binary operation ⊕ , i be an integer greater than or equal
to 1, (Xi ,Gi ) = (x1,д1) ⊕

′ (x2,д2) ⊕
′ · · · ⊕′ (xi ,дi ), and д1 = 1. If

j ∈ [1, i] is an integer such that дj = 1 and дk = 0 for all k ∈ [j + 1, i],
then Xi = x j ⊕ x j+1 ⊕ · · · ⊕ xi .

Proof. Using дj = 1, associativity of ⊕′ , and Proposition 3.2 in

order, we can see that

(x1,д1) ⊕
′ (x2,д2) ⊕

′ · · · ⊕′ (x j ,дj )

= (x1,д1) ⊕
′ (x2,д2) ⊕

′ · · · ⊕′ (x j , 1)

= ((x1,д1) ⊕
′ (x2,д2) ⊕

′ · · · ⊕′ (x j−1,дj−1)) ⊕
′ (x j , 1)

= (x j , 1).
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Then, using associativity of ⊕′ , the assumption, and Proposition 3.3,

we have that

(Xi ,Gi ) = ((x1,д1) ⊕
′ (x2,д2) ⊕

′ · · · ⊕′ (x j ,дj ))

⊕′ (x j+1,дj+1) ⊕
′ · · · ⊕′ (xi ,дi )

= (x j , 1) ⊕
′ (x j+1, 0) ⊕

′ · · · ⊕′ (xi , 0)

= (x j ⊕ x j+1, 1) ⊕
′ (x j+2, 0) ⊕

′ · · · ⊕′ (xi , 0)

= · · ·

= (x j ⊕ x j+1 ⊕ · · · ⊕ xi , 1).

□

Algorithm 2: Generic group-wise prefix-⊕ protocol for an

associative binary operator ⊕ .

Input: A group flag vector [[®д]] of length n and a internally

grouped vector [[®x]] of length n to be aggregated.

Output: An aggregation result vector [[®y]] of length n.
1 Define a binary operator ⊕′ by ([[a]], [[fa ]]) ⊕

′ ([[b]], [[fb ]]) :=

(IfElse([[fb ]], [[b]], [[a]] ⊕ [[b]]), [[fa ]] OR [[fb ]]).
2 Let [[®v]] := (([[®x[1]]], [[®д[1]]]), . . . , ([[®x[n]]], [[®д[n]]])).

3 Apply the Ladner-Fisher prefix sum algorithm [18] to [[®v]] on
⊕′ operator and obtain a vector

(([[®y[1]]], [[®д′[1]]]), . . . , ([[®y[n]]], [[®д′[n]]])).

3.2.2 Generic protocol. In this section, we construct a generic

group-wise prefix-⊕ protocol for an associative binary operator

⊕ using the method proposed in Section 3.2.1.

Intuition. First, we extend the binary operation ⊕ to construct

the extended binary operation ⊕′ that computes group-wise pre-

fix sum over ⊕ . Then, the group-wise prefix sum over ⊕′ is com-

puted using a generic prefix sum algorithm by Ladner and Fischer

[18], which calls O(n) binary operations in O(logn) rounds.

Protocol and its correctness. The protocol is shown in Algorithm 2.

The binary operation ⊕′ defined in Line 1 is an extended binary

operation defined in Definition 3.1. Therefore, by Theorem 3.5, we

obtain the group-wise prefix sum over ⊕ as ®y in Line 3.

3.2.3 Instantiation. Let GroupPrefixSum be the protocol that runs

Algorithm 2 when the binary operator is Add. It usesO(n) non-free
operations in O(logn) rounds since each invocation of extended

binary operation uses O(1) non-free operations in O(1) rounds.

3.3 Group-wise “operation” protocols
We construct protocols to compute group-wise sums over as-

sociative binary operators using the generic group-wise prefix-

“operation” protocols proposed in Section 3.2. For a binary operator

⊕ , the group-wise ⊕ protocol privately computes sums according

to ⊕ of each group in our data structure. It receives a private group

flag vector [[®д]] of length n and a private internally grouped vector

[[®x]] of length n, and then outputs a private vector [[®y]] of sums

for each group such that y[i] = x[Head(®д, i)] ⊕ x[Head(®д, i) +
1] ⊕ · · · ⊕ x[Tail(®д, i)]. An example for the case when the binary

operator is “add” (“max”, respectively) is shown in Table 2, where

columns 1 and 2 are the inputs, and column 3 (column 5, respec-

tively) is the output.

Algorithm 3: Generic group-wise ⊕ protocol for an associa-

tive binary operator ⊕ .

Input: A group flag vector [[®д]] of length n and a internally

grouped vector [[®x]] of length n to be aggregated.

Output: An aggregation result vector [[®z]] of length n.
1 Let [[®y′]] be the aggregation result vector obtained by applying

Algorithm 2 to [[®д]] and [[®x]] with respect to ⊕ .

2 [[®t[i]]] ← [[®д[i + 1]]] for i ∈ [1,n) and [[®t[n]]] ← 1.

3 [[®z]] ← [[®y′]] × [[®t]].

4 [[®y]] ←

Reverse(GroupPrefixSum(Reverse([[®t]]),Reverse([[®z]]))).

3.3.1 Generic protocol. We construct a generic group-wise ⊕ pro-

tocol for an associative binary operator ⊕ using the generic group-

wise prefix-⊕ protocol proposed in Section 3.2.

Intuition. We first compute group-wise prefix-sums over ⊕ by

applying Algorithm 3. Then, it is easy to convert them to the group-

wise sums over ⊕ . Since the last element for each group is equal to

the sum over ⊕ in the group, we can compute group-wise sum by

clearing all but the last elements and copying the last elements by

applying GroupPrefixSum in the reversed order.

Protocol and its correctness. The protocol is shown in Algorithm 3.

In Line 1, the prefix-sums ®y′ for each group are computed by ap-

plying Algorithm 3. Since the successor of the last element in a

group is the first element in the succeeding group, ®t is a flag vector

indicating whether it is the last element in a group (Line 2). In

Line 3, all but the last elements for each group are cleared to 0 by

®y′ × ®t . Since the last elements are equal to the sums in each group,

application of GroupPrefixSum in the reversed order copies these

values and the group-wise sums are computed (Line 4).

3.3.2 Instantiation. Let GroupSum and GroupMax be the proto-
cols that run Algorithm 2 when the binary operators are Add and

Max, respectively. Both protocols use O(n) non-free operations in
O(logn) rounds since each invocation of extended binary opera-

tions uses O(1) non-free operations in O(1) rounds.

4 OUR EFFICIENT DECISION TREE
TRAINING PROTOCOL

In this section, we present our decision tree training protocol. Given

a private training data set, it outputs the trained decision tree in a

private form. Our decision tree training protocol is efficient. While

existing studies required exponential non-free operations on h to

train a decision tree, our protocol requires only linear number of

operations in h.
We first explain our intuition in Section 4.1. Then we introduce

our tree standardization in order to simplify the protocol in Sec-

tion 4.2. In Section 4.3, we explain how to efficiently store data.

Then, we describe the proposed protocol, starting from its compo-

nents.
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For the reader’s convenience, tables summarizing the variables

and protocols are presented in Tables 10 and 11, respectively.

4.1 Intuition
Our training follows the same flow as the typical training algorithm

seen in Section 2.1.1, where the node-by-node partitioning is done

recursively from root to leaf. The recursive computation is per-

formed on the partitioned data, but the size of the partitioned data

must be hidden. Therefore, existing studies needed to make it look

as if n samples were processed after the partitioning by padding,

which required exponential non-free operations on h.
Our main idea is to store all data in a data structure of size n,

focusing on the fact that the total number of samples is invariant

when the data is split. Then, by placing elements of the same group

consecutively and keeping the locations of their boundaries in

memory, we internally partition the data and perform training

at each node in a batch for each layer. This eliminates the need

for padding, and the entire learning process can be completed by

training each layer h times.

The main problem in implementing our idea is how to create

the k + 1-layer data from the k-layer data, split by the test results.

We solve this using a stable sorting. After computing the test result

for each sample in the k-layer data, we perform a stable sort using

the test result as a key. The stability of the sort guarantees that

elements that were originally in the same group and had the same

test result will remain in the same order after sorting, and we can

create grouped data in the (k + 1)st layer.
Another difficulty is how to compute the best per-node test on

our data structure. To address this, we take advantage of the fact

that the efficient test selection algorithm by Abspoel et al.[1] can be

written as an element-by-element computation and an aggregate

computation (sum, max, prefix sum, and sort) of the entire data.

The element-by-element computation can be done for each element

in our data structure. The overall aggregate computation, which in

our case must be done for each group, can be computed using the

operations described in Section 3.

4.2 Decision tree normalization for efficiency
Our training protocol outputs an equivalent normalized decision

tree instead of the one that should have been obtainedwhen training

in the clear. Equivalent in this case means that the output for any

given input is the same. Roughly speaking, our normalization aligns

the heights of all leaf nodes to the upper bound on the tree height

by inserting internal nodes that forward any sample to the false

child node. Although this increases the number of nodes in the tree,

in MPC, it reduces the data size and computational cost (though by

just a constant factor), and simplifies the protocol.

Before describing the details of our normalization, let us recall

the decision tree we originally wanted to compute, which is the

output of Algorithm 1. It is a binary tree with height less than or

equal to h, and all tests for its internal nodes are of the form X j < t ,
where j is an attribute number and t is a threshold.

Our normalization consists of two modifications. The first modi-

fication is to change each test X j < t to an equivalent test 2X j < t ′

such that t ′ = 2t . In Algorithm 1, we compute t = (®x j [i]+®x j [i+1])/2
when computing a threshold, but this involves division, which

is a costly operation in MPC. We avoid division by computing

t ′ = 2t = ®x j [i] + ®x j [i + 1] instead of t .
Our second modification is to align the height of all leaf nodes

without changing the tree’s output. The modification is simple. We

insert an internal node u, which does not actually split, into the

position of a leaf node v with height less than h. The test for u is

2X1 < MIN_VALUE, which always returns false, and u has a false

branch to v , whereMIN_VALUE is a sufficiently small public value.

Any input tuple that reaches u passes through the false branch to

reach v , so the predicted label does not change. In the normalized

tree, all nodes with height less than h are internal nodes, and all

nodes with height h are leaf nodes. This makes our protocol simple

and efficient.

4.3 Encoding of inputs and outputs
Appropriate data storage methods are essential to the design of

efficient algorithms. Our decision tree training protocol receives a

private training dataset and a public upper bound h on the height

of the tree, and outputs a private decision tree of height h. This
section explains how we store these values.

First, we introduce the representation of the input training data.

The training dataset consists of n samples, each of which consists

of input tuple and a binary value called a class label. Each input

tuple consists ofm numerical input attribute values. Our protocol

receives it as m private vectors [[®x j ]] (j ∈ [1,m]) of length n and

a private vector [[®y]] of length n. That is, the i-th input tuple of

the training dataset and its associated class label correspond to

(®x1[i], ®x2[i], . . . , ®xm [i]) and ®y[i], respectively.
Next, we describe how to represent the output decision tree. The

output tree is a normalized binary tree as described in Section 4.2. It

is stored in 3h+2 private vectors. Since all nodes of height k ∈ [0,h)
are internal nodes, the node number, attribute number, and thresh-

old of each node are stored in three vectors NID(k ), AID(k ), and
Threshold(k ), respectively. For nodes of height h, since all nodes are
leaf nodes, the node number and leaf label of each node are stored

in two vectorsNID(k ) and Label(k ), respectively. The length of each
vector of height k ∈ [0,h] is min{n, 2k }. If the actual number of

nodes is smaller than the length of the vector, it is filled with a

dummy value NULL. The vectors of each layer are collectively de-

noted as [[Layer(k )]] := ([[NID(k )]], [[AID(k )]], [[Threshold(k )]]) (k ∈
[0,h)) and [[Layer(h)]] := ([[NID(h)]], [[Label(h)]]), which we call

layer information.
Edge information is also needed to represent a tree. However,

we avoid having it explicitly by using a commonly used technique

to devise a numbering of the nodes. In order to represent the edges

between nodes, each node is assigned an integer node number. The

only node with height 0 is the root, and its node number is 1. For

each child node (of height k + 1) of a node of height k with node

number d , assign node number d to the false child (if any) and

node number d + 2k to the true child (if any). With this numbering

scheme, in the k-th layer, all node numbers are assigned different

values from [1, 2k ].

4.4 Our batch test selection protocol
In this section, we show how to compute the best tests for each

group from the current entire data at a given layer.
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The main difficulty is how to construct the test selection algo-

rithm by [1] on top of our data structure. Our idea is to rewrite

the algorithm by [1] to element-by-element computation and ag-

gregation operations over the entire data (max, sum, prefix sum,

etc.). Then, the former can be computed as is and the latter can be

realized in group-wise manner using the group-wise operations.

To simplify the explanation, we divide the computation into

three protocols (modified Gini index, attribute-wise test selection,

and global test selection), moving from computations in smaller

ranges to computations in larger ranges, in order.

Each protocol is used as a component of a protocol with larger

ranges.

Algorithm 4:Modified Gini index.

Notation: [[®S]] ← ModifiedGini([[®д]], [[®y]]).
Input: A group flag vector [[®д]] of length n and an output

attribute vector [[®y]] of length n.

Output: A score vector [[®S]] of length n such that ®S[i] is the
modified Gini index when the dataset is split

between the i-th and (i + 1)st elements.

Cost: O(n logn) non-free operations in O(logn) rounds.
1 [[®y0]] ← ¬[[®y]] and [[®y1]] ← [[®y]].

2 [[®ub ]] ← GroupPrefixSum([[®д]], [[®yb ]]) for b ∈ {0, 1}.
3 [[®vb ]] ← GroupSum([[®д]], [[®yb ]]) for b ∈ {0, 1}.
4 [[ ®wb ]] ← [[®vb ]] − [[®ub ]] for b ∈ {0, 1}.

5 [[®u]] ← [[®u0]] + [[®u1]] and [[ ®w]] ← [[ ®w0]] + [[ ®w1]].

6 [[®p]] ← [[ ®w]] × ([[®u0]]
2 + [[®u1]]

2) + [[®u]] × ([[ ®w0]]
2 + [[ ®w1]]

2).

7 [[®q]] ← [[®u]] × [[ ®w]].

8 [[®S]] ← [[®p]]/[[®q]]. Here, for simplicity, we set ®S to be the result

of element-wise division of ®p and ®q; however, in practice, we

set ®S to be the pair of ®p and ®q, and a comparison of the

elements in ®S is replaced by the division-free comparison as

[1].

4.4.1 Modified Gini index. We present a protocol to compute all

modified Gini indices for privately grouped dataset when splitting

is performed between adjacent elements. Thanks to the group-wise

operations proposed in Section 3, the formula by Abspoel et al. [1]

described in Equation (1) can be used almost directly.

The protocol is shown in Algorithm 4. The input is a group flag

vector [[®д]] and an output attribute vector [[®y]] which is assumed

to be sorted by an input attribute in each group. It uses the group-

wise operations to compute the values required by Equation (1)

in a privately grouped manner (Lines 2 to 5). Equation (1) is then

evaluated for each element to obtain the output score vector [[®S]]
in Lines 6 to 8, where each ®S[i] represents the modified Gini index

for a split between the i-th and (i + 1)st elements. A small example

appears in Fig. 5.

Correctness. Since each ®yb computed in Line 1 is a bit vector with

®yb [i] = 1 iff ®y[i] = b, let the i-th element be e , then ®ub [i] represents
the number of b’s up to e in the group, and ®wb [i] represents the
number of b’s after e in the group. That is, each value corresponds

to an element in the following 2 × 2 contingency table.

# elements # elements Total

up to i-th after i-th

# 0’s ®u0[i] ®w0[i] ®v0[i]

# 1’s ®u1[i] ®w1[i] ®v1[i]

Total ®u[i] ®w[i]

From Equation (1), p[i]/q[i] is the modified Gini index for splitting

between the i-th and (i + 1)st elements.

Complexity. The protocol uses O(n logn) non-free operations in
O(logn) rounds.

Algorithm 5: Batch attribute-wise test selection.

Notation: [[®T]], [[®S]] ←
AttributewiseTestSelection([[®д]], [[®x]], [[®y]])

Input: A group flag vector [[®д]] of length n, an input attribute

vector [[®x]] of length n, and an output attribute vector

[[®y]] of length n.

Output: a threshold vector [[®T]] of length n and a score vector

[[®S]] of length n.
Cost: O(n logn) non-free operations in O(logn) rounds.

1 [[®S]] ← ModifiedGini([[®д]], [[®y]]).
2 [[®T[i]]] ← [[®x[i]]] + [[®x[i + 1]]] for all i ∈ [1,n) and
[[®T[n]]] ← MIN_VALUE.

3 [[®p[i]]] ← [[®д[i + 1]]] OR ([[®x[i]]]
?

= [[®x[i + 1]]]) for i ∈ [1,n) and

[[®p[n]]] ← 1.

4 [[®S]],[[®T]]←IfElse([[®p]];MIN_VALUE,MIN_VALUE;[[®S]],[[®T]]).
5 (([[®S[1]]], [[®T[1]]]), . . . , ([[®S[n]]], [[®T[n]]])) ←
GroupMax*([[®д]], (([[®S[1]]],[[®T[1]]]), . . . , ([[®S[n]]],[[®T[n]]]))).

4.4.2 Attribute-wise test selection. UsingModifiedGini as a build-
ing block, we construct a protocol for computing the best tests in

each group for a given numerical input attribute. The protocol im-

plements Abspoel et al.’s technique [1] of reducing candidate split

points from between all pairs (Θ(n2) pairs) to between adjacent

elements (n − 1 pairs) by sorting input data by the input attribute,

on our data structure using the group-wise operations proposed in

Section 3.

The protocol is shown in Algorithm 5. It receives a group flag

vector [[®д]], an input attribute vector [[®x]], and an output attribute

vector [[®y]] such that ®x and ®y are privately grouped by ®д and sorted

by ®x within each group. First, ModifiedGini is applied to compute

the score for each element when the data is split immediately af-

ter the element. Then, the scores of points that cannot be split

are overwritten with −∞, and finally, GroupMax*, which is an

extension of GroupMax, is used to select the test that has the max-

imum score within each group. GroupMax* is almost identical to

GroupMax, except that the second input and output are not vec-

tors of values, but vectors of pairs of values. Comparison of the

pairs is assumed to be done by comparing the first element of

each. Thus, the maximum of two pairs is computed as follows:

Max((s1, t1), (s2, t2)) := (if s1 ≥ s2 then (s1, t1) else (s2, t2)). That is,
the maximum value of the pair vector ((s1, t1), . . . , (sn, tn )) is (si , ti )
for i = arg max

j ∈[1,n]
sj . A small example appears in Fig. 6.
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Correctness. In Lines 1 and 2, the threshold ®T[i] and the score ®S[i]
for split between the i-th and (i + 1)st elements are computed. If the

i-th element is the last element in a group (i.e., i = n or ®д[i + 1] = 1)

or if it has the same attribute value as the next element (i.e., ®x[i] =
®x[i + 1]), we cannot split between the i-th and (i + 1)st elements.

In this case, we set ®T[i] := MIN_VALUE and ®S[i] := MIN_VALUE
(Lines 3 and 4). In Line 5, the score and threshold of an element

whose score is the maximum in a group are copied to other elements

in the group.

Complexity. The protocol uses O(n logn) non-free operations in
O(logn) rounds.

Algorithm 6: Batch global test selection.

Notation: [[®A]], [[®T]] ←
GlobalTestSelection(([[®x j ]])j ∈[1,m], [[®y]], [[®д]])

Input: m input attribute vectors ([[®x j ]])j ∈[1,m] of length n, an
output attribute vector [[®y]] of length n, and a group

flag vector [[®д]] of length n.

Output: An attribute number vector [[®A]] of length n and a

threshold vector [[®T]] of length n.
Cost: O(mn logn) non-free operations in O(logn + logm)

rounds.

1 for each j ∈ [1,m] do in parallel
2 [[®uj ]], [[®vj ]] ← Sort(PrefixSum([[®д]]), [[®x j ]]; [[®x j ]], [[®y]]).
3 [[®Tj ]], [[®Sj ]] ← AttributewiseTestSelection([[®д]], [[®uj ]], [[®vj ]]).

4 for each i ∈ [1,n] do in parallel
5 [[®A[i]]] ← VectMax(([[®S1[i]]], . . . , [[®Sm [i]]]), (1, . . . ,m)).
6 [[®T[i]]] ←

VectMax(([[®S1[i]]], . . . , [[®Sm [i]]]), ([[®T1[i]]], . . . , [[®Tm [i]]])).

4.4.3 Global test selection. Using AttributewiseTestSelection as a

building block, we construct a protocol for computing the best test

through all attributes for each node in a batch. The algorithm is

straightforward: it calls the attribute-wise test selection protocol to

compute the best test for each attribute and then selects the best

test among them.

The protocol is shown in Algorithm 6. It receives the training

data (input tuples and class labels) privately grouped by nodes, and

outputs the information (attribute number and threshold) of the

best test for each group. For each input attribute, it sorts the input

attribute values and class labels within the group and selects the

best test for each group when splitting on that attribute (Lines 1

to 3). Then we select the best test among all attributes in Lines 5

and 6. A small example appears in Fig. 7.

Correctness. The protocol is almost identical to the algorithm in

the clear and the protocol in [1]. The difference is that we need to

sort within each group in Line 2. Recalling that ®д is a bit vector

where only the first element of each group is 1, we can see that

PrefixSum(®д) computes different and ascending values for each

group. Thus, we can sort within each group by using PrefixSum(®д)
and ®x j as keys in lexicographic order as in Line 2.

Complexity. The protocol uses O(mn logn) non-free operations
in O(logm + logn) rounds.

4.5 Batch training for internal nodes

Algorithm 7: Summarizing a privately grouped vector.

Notation: [[®z]] ← FormatLayer([[®д]], [[®u]],w).
Input: A group flag vector [[®д]] of length n, a vector [[®u]] to be

summarized, and an integerw .

Output: A summarized vector [[®z]] of lengthw .

Cost: O(cn logn) non-free operations in O(logn) rounds.
1 [[®r ]] ← IfElse([[®д]], [[®u]],NULL).
2 [[®v]] ← Sort(¬[[®д]]; [[®r ]]).
3 Let [[®z]] be the firstw elements of [[®v]].

Algorithm 8: Training internal nodes.

Notation: [[Layer(k )]], [[®b]] ←
TrainInternalNodes(k, ([[®x j ]])j ∈[1,m], [[®y]], [[®д]], [[ ®N]]).

Input: A layer height k ,m input attribute vectors

([[®x j ]])j ∈[1,m] of length n, an output attribute vector

[[®y]] of length n, a group flag vector [[®д]] of length n,

and a node number vector [[ ®N]] of length n.
Output: A layer information

[[Layer(k)]] = ([[NID(k )]], [[AID(k )]], [[Threshold(k )]])
and a test result vector [[®b]] of length n.

Cost: O(mn logn) non-free operations in O(logn + logm)
rounds.

1 [[®A]], [[®T]] ← GlobalTestSelection(([[®x j ]])j , [[®y]], [[®д]]).
2 [[®c]] ← GroupSum([[®д]], ®1), where ®1 is a vector (1, . . . , 1) of
length n.

3 [[®c0]] ← GroupSum([[®д]],¬[[®y]]) and
[[®c1]] ← GroupSum([[®д]], [[®y]]).

4 [[ ®f ]] ← ([[®c]]
?

= [[®c0]]) OR ([[®c]]
?

= [[®c1]]).

5 [[®A]], [[®T]] ← IfElse([[ ®f ]]; 1,MIN_VALUE; [[®A]], [[®T]]).
6 Compute [[NID(k )]], [[AID(k )]], and [[Threshold(k )]] by
applying FormatLayer([[®д]], ·,min{2k ,n}) to [[ ®N]], [[®A]], and
[[®T]], respectively.

7 [[®ej ]] ← ([[®A]]
?

= j) for j ∈ [1,m].

8 [[®x∗[i]]] ←
∑
j ∈[1,m][[®x j [i]]] × [[®ej [i]]] for i ∈ [1,n].

9 [[®b]] ← (2 × [[®x∗]]
?

< [[®T]]).

In this section, we introduce a batch internal node training proto-

col that will be used to train k-th layer nodes (k ∈ [0,h)). It receives
privately grouped dataset of k-th layer, computes the best tests

in a batch considering the stopping criteria (2)(i) and (2)(ii), and

converts the tests to the form of the output layer information. It

also computes the test results.

Before presenting the internal node training protocol, we intro-

duce a subprotocol of summarizing that removes redundancy from

an internally grouped nodal information kept in sample-by-sample
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form by a group flag vector. The protocol is shown in Algorithm 7.

Assuming that a group flag vector ®д divides the samples into at

most w groups, it converts an internally grouped vector ®v into a

vector ®z of lengthw with no redundancy. The idea is to leave only

the top element of each group and fill the rest with dummies. Since

®д[i] = 1 if and only if it is the first element of a group, redundancy

can be eliminated by overwriting the rest with NULL as in Line 1,

sorting in descending order by ®д as in Line 2, and finally outputting

the firstw elements as in Line 3. A small example appears in Fig. 8.

Now we describe the internal node training protocol. The proto-

col is shown in Algorithm 8. In computing the best tests, we apply

the GlobalTestSelection protocol to obtain tests that consider only

the stopping criterion (2)(i) in Line 1 and correct it for (2)(ii) in

Lines 2 to 5. The resulting test [[ ®N]], [[®A]], and [[®T]] are redundant
because they are stored element-by-element, so the FormatLayer
protocol is used to convert them to the node-by-node stored format

[[NID(k )]], [[AID(k )]], and [[Threshold(k)]] in Line 6. Finally, the test

results
®b are computed efficiently on an element-by-element basis

using redundant but element-by-element form of tests [[®A]] and [[®T]]
(Lines 7 to 9). A small example is shown in Fig. 9.

Correctness. In Lines 2 to 4, ®c , ®c0, and ®c1 represent the number

of elements, the number of 0’s, and the number of 1’s in the group,

respectively. Thus
®f [i] = 1 if and only if all the elements of ®y are the

same in the group containing the i-th element. In Line 5, for each

i such that
®f [i] = 1, [[®A[i]]] and [[®T[i]]] are overwritten with 1 and

MIN_VALUE, respectively. This guarantees the stopping criterion
(2)(ii). At the k-th layer, the number of nodes is at most 2

k
, so

FormatLayer correctly summarizes [[ ®N]], [[®A]], and [[®T]] in Line 6.

In Lines 7 to 9, we compute the results [[®b]] of applying the

tests denoted by ®A and ®T to the input tuples (®x j )j ∈[1,m]. For each

i ∈ [1,n], it computes a flag [[®ej [i]]] indicating whether ®A[i] = j by

an equality test (Line 7), and uses it to select the ®A[i]-th attribute

value ®x ®A[i][i] (Line 8). Then, it computes the test result of each

element in Line 9.

Complexity. The TrainInternalNodes protocol uses O(mn logn)
non-free operations in O(logn + logm) rounds.

4.6 Batch training for leaf nodes
In this section, we introduce a batch leaf node training protocol

that will be used to train h-th layer nodes. Thanks to our group-

wise operations, it straightforwardly computes the most frequent

values of the output attribute for each group and outputs them as

leaf labels. The protocol is shown in Algorithm 9. A small example

appears in Fig. 10.

Correctness. In Lines 1 and 2, we compute the most frequent

value of output attribute by comparing the number of 0’s ®c0 and
the number of 1’s ®c1. The number of nodes in the input dataset is

bounded by min{2h,n} since the height of the layer is h. Thus, in

Line 3, the FormatLayer protocol correctly formats [[ ®N]] and [[®L]].

Complexity. The protocol uses O(n logn) non-free operations in
O(logn) rounds.

Algorithm 9: Training leaf nodes.

Notation: [[Layer(h)]] ← TrainLeafNodes(h, [[®д]], [[®y]], [[ ®N]]).
Input: A tree height h, a group flag vector [[®д]] of length n, an

output attribute vector [[®y]] of length n, and a node

number vector [[ ®N]] of length n.
Output: [[Layer(h)]] = ([[NID(h)]], [[Label(h)]]), where

[[NID(h)]] and [[Label(h)]] are vectors of length
min{n, 2h }.

Cost: O(n logn) non-free operations in O(logn) rounds.
1 [[®c0]] ← GroupSum([[®д]],¬[[®y]]) and
[[®c1]] ← GroupSum([[®д]], [[®y]]).

2 [[®L]] ← ([[®c0]]
?

< [[®c1]]).

3 Compute [[NID(h)]] and [[Label(h)]] by applying

FormatLayer([[®д]],·,min{2h,n}) to [[ ®N]] and [[®L]], respectively.

Algorithm 10: Decision tree training.

Notation: ([[Layer(k )]])k ∈[0,h] ←

DecisionTreeTraining(([[®x (0)j ]])j ∈[1,m], [[®y
(0)]],h)

Input: m input attribute vectors ([[®x
(0)

j ]])j ∈[1,m] of length n,

output attribute vector [[®y(0)]] of length n, and
maximum tree height h.

Output: A decision tree ([[Layer(k )]])k ∈[0,h] of height h.
Cost: O(hmn logn) non-free operations in O(h(logn + logm))

rounds.

1 [[®д(0)[1]]] ← 1 and [[®д(0)[i]]] ← 0 for i ∈ [2,n].

2 [[ ®N(0)[i]]] ← 1 for i ∈ [1,n].

3 for k := 0 to h − 1 do
4 [[Layer(k )]], [[®b(k )]] ← TrainInternalNodes(

k, ([[®x
(k)
j ]])j , [[®y

(k )]], [[®д(k )]], [[ ®N(k )]]).

5 [[ ®N+]] ← 2
k × [[®b(k )]] + [[ ®N(k )]].

6 [[®д+]] ← GroupFirstOne([[®д(k )]],¬[[®b(k )]]) +

GroupFirstOne([[®д(k )]], [[®b(k )]]), where
GroupFirstOne([[®д]], [[®b]]) is defined by

GroupPrefixSum([[®д]], [[®b]]) × [[®b]]
?

= 1.

7 [[®x
(k+1)
1
]], . . . , [[®x

(k+1)
m ]], [[®y(k+1)]], [[®д(k+1)]], [[ ®N(k+1)]] ←

Sort([[®b(k )]]; [[®x (k )
1
]], . . . , [[®x

(k )
m ]], [[®y

(k )]], [[®д+]], [[ ®N+]]).

8 [[Layer(h)]] ← TrainLeafNodes(h, [[д(h)]], [[®y(h)]], [[ ®N(h)]]).

4.7 Our layer-by-layer training protocol
Finally, we describe our decision tree training algorithm, using the

protocols presented so far as building blocks. We construct a deci-

sion tree by training nodes of the same height in a batch, layer by

layer, while keeping the input and output secret. Training samples

assigned to different nodes in the same layer are processed as in-

ternally separate groups using the protocols proposed in Section 3.

This improves the 2
h
factor of the communication complexity in

[1] to h.
The main protocol of our decision tree training is shown in

Algorithm 10. Samples and associated values are stored in our
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Table 4: Running time for training a decision tree.

Time [s]

n m h T1 T2 T3

2
13

11 4 10.333 4.798 541.054

2
18

11 4 349.515 82.399 969.883

2
19

11 4 701.331 178.831 1366.467

2
20

11 4 1466.253 403.804 2117.820

2
13

20 4 17.380 6.425 614.989

2
13

50 4 41.565 11.981 823.540

2
13

100 4 81.582 21.976 1166.079

2
13

11 10 23.981 11.130 1254.291

2
13

11 20 46.760 22.432 2443.332

2
13

11 50 116.641 55.234 6011.040

private grouping data structure as internally grouped vectors. At

the loop in Line 3, it trains the decision tree layer by layer in order

from the 0-th layer (the root node) to the h-th layer (the leaf nodes).

In each iteration, the k-th layer is trained with

TrainInternalNodes in Line 4 and obtain the test results. Then the

current data is stably sorted according to the test results.. Thanks to

the stability of the sort, elements that were in the same group and

had the same test result before sorting are guaranteed to appear

consecutively after sorting, i.e., they are in the same group within

our data structure. A small example is shown in Fig. 11.

Correctness. Throughout the training, a group flag vector ®д(k )

represents the grouping to each node of the k-th layer. N(k ),®x (k )j ,

and ®y(k ) are internally grouped vectors grouped by ®д(k ) that store
the node numbers, input attribute values, and output attribute

values, respectively. In the 0-th layer, all samples are initialized

to be assigned to the root node whose node number is 1 (Lines 1

and 2). Then, each layer is trained iteratively (Line 3).

At each iteration, we first train the nodes at the k-th layer and

compute test result
®b(k) for each sample (Line 4). This is executed

in the TrainInternalNodes protocol. Each ®b(k )[i] represents the test
result of the i-th sample. 0 and 1 denote false and true, respectively.

The node numbers ®N+ and group flags ®д+ at the next layer are

computed in Lines 5 and 6, respectively. Then, ®д(k+1), ®N(k+1), ®x (k+1)j ,

and ®y(k+1) of the (k + 1)-th layer are computed by stably sorting ®д+,
®N+, ®x

(k )
j , and ®y(k ) by ®b(k) (Line 7). Thanks to the stability of sorting,

both the correspondence between the values of each sample and

the contiguity of elements in the same group are maintained.

In Line 8, we train the leaf nodes in a batch by invoking the

TrainLeafNodes protocol and obtain the output vectors Layer(h)

for height h.

Let us verify the correctness of node numbers ®N and group flags

®д for the next layer. Let V be a node at the k-th layer with node

number d . The node number of a child node of V is d for a false

child and d + 2k for a true child. Thus, [[ ®N+]], which is computed in

Line 5, is the node number in the next layer of each sample. As for

the group flags, since the splitting of the groups is stable, the first 0

and 1 in each group are the first elements of the group after the split.

Since ¬[[®b(k−1)]] and [[®b(k−1)]] indicate the positions of 0’s and 1’s,

respectively, the first elements of the new groups can be detected

using GroupFirstOne, which detects first 1’s for all groups.

Complexity. The decision tree training protocol usesO(hmn logn)
non-free operations in O(h(logm + logn)) rounds.

Security. Algorithm 10 and its subprotocols consist of local com-

putations except for FABB. Furthermore, during the execution of

Algorithm 10, no value ever leaves the ABB: the Dec command

(Fig. 1) is never invoked by any of the subprotocols. Therefore, the

following theorem is immediate.

Theorem 4.1. Algorithm 10 is secure in the FABB-hybrid model.

4.8 Extension to other input/output types
Our decision tree training protocol is written only for the case

where the input attributes are all numeric and the output attribute

is binary. We discuss here how to extend it to categorical input

attributes and output attribute attributes beyond binary.

To extend our protocol to the case where the output attribute is

a c-valued categorical value, it is enough to extend Algorithm 4 so

that [[®y0]], [[®y1]], . . . , [[®yc−1]] are used instead of [[®y0]] and [[®y1]].
To extend our protocol to the case where the output attribute is

numeric, it is sufficient to replace Algorithm 4 with a protocol that

computes another measure and modify Algorithm 9 to compute

desired labels. For example, mean squared error, which is a often

used measure in regression trees, can be constructed in the almost

same way as Algorithm 4, since it can be written by group-wise

prefix sum and group-wise sum in addition to element-by-element

operations.

If the input attributes are changed to binary attributes, the only

split for an input attribute is consistent with the numerical case, so

it works just by giving the input as is. However, there is room for

improving the efficiency of Algorithms 4 to 6, as they are designed

to process sorted values.

If the input attributes are to be extended to c-valued, almost all

protocols must be reworked. However, we can keep our idea of

Algorithm 10 by setting the test result to c-valued, changing the

2 in Line 5 to c , and executing GroupFirstOne c times instead of 2

times.

5 DEMONSTRATION OF PRACTICALITY
In order to show the practicality of our decision tree training pro-

tocol, we implemented it and measured the running time.

5.1 Implementation methods
We implemented our protocols on a Shamir’s secret-sharing [30]

based three-party computation over a field Zp by Chida et al. [7],

where p = 2
61 − 1. This 3PC scheme is secure against passive

adversaries with a single static corruption. For the ABB implemen-

tation, we used the comparison protocols for EQ and LT by Kikuchi

et al. [17] and protocols for other commands Enc, Dec, Add, Mul,
SortPerm, Apply, and Unapply in FABB by Chida et al. [7]. Since

[17] requires aMersenne prime for the field size, we chosep = 2
61−1

similar to 64-bit integer space.

In order to obtain the best performance, our implementation

includes several optimizations. Instead of the original protocols
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Table 5: Specifications of the machine used for our benchmark. T3 is the same as T1 except that a communication delay of 50
milliseconds per one-way trip is added by software.

Testbed T1 and T3 Testbed T2

OS CentOS Linux release 7.1.1503 CentOS Linux release 7.3.1611

CPU Intel Core i7-6700 (3.40GHz 4 cores/16 threads) Intel Xeon Gold 6144k (3.50GHz 8 cores/16 threads)×2

RAM / LAN / RTT 32 GB / 1 Gbps / 0.362 ms 768 GB / 10 Gbps / 0.136 ms

Table 6: Comparison of recall and precision with an implementation in the clear

trial #1 #2 #3 #4 #5

method python ours python ours python ours python ours python ours

Recall 0.911 0.933 0.860 0.883 0.913 0.913 0.784 0.784 0.840 0.840

Precision 1.000 1.000 0.880 0.883 0.857 0.913 0.975 0.975 0.954 0.976

GroupPrefixSum,GroupSum, andGroupMax, we implemented pro-

tocolsGroupPrefixSum2,GroupSum2, andGroupMax2, respective-
ly, which are alternative protocols optimized to be efficient in our

ABB implementation with the same inputs and outputs. These al-

ternative protocols are shown in appendix A.

The protocols were implemented with the C++ language. We

measured on three testbeds named T1, T2, and T3. T1 is for com-

parison with existing studies, and T2 is to see the current best

performance of training with MPC. T3 is the same as T1 except that

a communication delay of 50 milliseconds, which is slightly larger

than the delay between the eastern and western United States [24],

per one-way trip is added by software. This is intended to simulate

measurements in a WAN environment. Each testbed consists of

three servers with the same configuration shown in Table 5.

5.2 Comparison with training in the clear
To see the accuracy of our protocol, we compared the performance

of models trained with our protocol and an implementation in the

clear. The comparison was performed using DecisionTreeClassifier

in python version 3.6.9 and scikit learn version 0.23.1, with the

options criterion='gini' and max_depth = 4. We call it python.

We also used the same tree height of h = 4.

We used the Breast Cancer Wisconsin (Diagnostic) Data Set [33].

It consists of 30 numerical input attributes and a binary output

attribute. The number of samples is 569. We randomly split the data

and used 80% Our protocol and python were trained and validated

with the same split data each time. Experiments were conducted

five times using different random seeds for data split.

The results are shown in Table 6. It can be seen that all five trials

yielded close predictions. This result supports that our protocol

accurately trains decision trees. Possible reasons for the results not

being exactly the same include errors in handling real values and

differences in tie-breaking policies when the scores are the same.

5.3 Benchmarking results
To show the scalability of our protocol, we measured the running

time for different parameters ofn,m, andh. Based on the case where
n = 2

13 = 8192,m = 11, and h = 4, we measured the execution time

of training by varying each of n,m, and h. Part of results are shown
in Table 4. Each runtime is the average value of three measurements.

The results show that the running time is approximately linear with

respect to each of n,m, and h. More results are shown in Tables 7

to 9.

We give a brief comparison with the result by Abspoel et al. [1].

They estimated the running time of decision tree training to be

496.6 seconds for n = 2
13
,m = 11, and h = 4 with passive security.

In the same condition, our results in T1 and T2 were 10.333 seconds

and 4.798 seconds, respectively. Even the running time at T1, which

is almost equal to or less than the measurement environment in

[1], was 48 times faster than that of Abspoel et al. [1].

Comparing the results on the two testbeds T1 and T2, for suf-

ficiently large parameters, T2 was about 2 to 4 times faster. As

expected from the round complexity of the protocol, the results

in T1 and T3 show that the protocol running time increases in

environments with high latency. In T3, as far as we have measured,

all of the trainings have been completed within two hours. Thus,

under the parameters we used in our benchmarks, our protocol is

practical even for WAN.

6 CONCLUSION
In this paper, we proposed a decision tree training protocol for

MPC. Thanks to our new data structure that enables computing

group-wise aggregate values while hiding grouping information,

our protocol requires only linear number of non-free operation

calls in the tree height. In order to show the practicality of our

protocol, we implemented it and measured the running time. Our

protocol trained a decision tree with a height of 4 in 404 seconds

for a dataset of 2
20

rows and 11 attributes.
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A ALTERNATIVE GROUP-WISE
AGGREGATION PROTOCOLS

We show alternative group-wise protocols that are used in our

implementation in Section 5. These are asymptotically inefficient

compared to the protocols proposed in Section 3 in the cost model

of Section 2.2.2, but can be more efficient than the protocols of

Section 3 in practical use when Apply, Unapply, and SortPerm
with a single key bit are efficient, as in [7].

A.1 Alternative protocol for group-wise sum
Necessary operations. Before presenting our protocol, let us de-

fine some operations related to the computation of prefix sum.

Given a vector ®x of length n, ®z ← PrefixSum(®x) computes a vector

®z of length n such that ®z[i] =
∑i
j=1 ®x[j] for i ∈ [1,n]. We also define

an inverse operation PrefixSum−1. Let ®z ← PrefixSum−1(®x) denote
an operation that computes ®z such that ®x = PrefixSum(®z). This can
be easily computed as ®z[1] := ®x[1] and ®z[i] := ®x[i] − ®x[i − 1] for
all i ∈ [2,n]. We further define reverse-ordered versions of these

operations. Given a vector ®x of length n, ®z ← PrefixSumR(®x) com-

putes a vector ®z of length n such that ®z[i] =
∑n
j=i ®x[j] for i ∈ [1,n].

Given a vector ®x of length n, ®z ← PrefixSumR−1(®x) computes a

vector ®z of length n such that ®x = PrefixSumR(®z). This is computed

as ®z[n] := ®x[n] and ®z[i] := ®x[i] − ®x[i + 1] for all i ∈ [1,n).
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Algorithm 11: Alternative group-wise sum.

Notation: [[®y]] ← GroupSum2([[®д]], [[®x]]).
Input: A group flag vector [[®д]] of length n and a internally

grouped vector [[®x]] of length n to be aggregated.

Output: An aggregation result vector [[®y]] of length n.
Cost: O(n logn) non-free operations in O(logn) rounds.

1 [[®p]] ← PrefixSumR([[®x]]) × [[®д]].
2 [[π ]] ← SortPerm(¬[[®д]]).
3 [[®p1]] ← Apply([[π ]], [[®p]]).
4 [[®s1]] ← PrefixSumR−1([[®p1]]).

5 [[ ®d1]] ← PrefixSum−1([[®s1]]).

6 [[ ®d]] ← Unapply([[π ]], [[ ®d1]]) × [[®д]].

7 [[®y]] ← PrefixSum([[ ®d]]).

Intuition. First, let us illustrate our intuition using the case when

®д := (1, 0, 1, 1, 0, 0) and ®x := (3, 1, 2, 2, 3, 2). The vector we wish to

compute is ®y := (4, 4, 2, 7, 7, 7). The protocol consists of two parts:

(1) An intermediate vector ®q := (4, 0, 2, 7, 0, 0) such that the first

element of each group is the sum of the elements of ®x in that group

and all other elements are 0 is computed from ®x . (2) ®y is computed

by copying the value of the first element in each group of ®q to the

other elements.

In (1), applying PrefixSumR to ®x followed by element-by-element

multiplication with ®д seems to give a vector close to ®q. In fact, it

gives ®p := PrefixSumR(®x) × ®д = (13, 0, 9, 7, 0, 0). Although this is

not equal to ®q, we can see that if we subtract the first element of the

subsequent group from the first element of each group in ®p, we ob-
tain a vector that is equal to ®q. That is, ®q = ((13−9), 0, (9−7), 7, 0, 0).
This computation can be performed by applying π , subtracting the

succeeding element from each element, and applying π−1, in that

order to ®p, where π is a permutation representing a stable sort by

¬®д, which moves the first element of each group forward. Thus, ®q
is computed by π−1(PrefixSumR−1(π (PrefixSumR(®x) × ®д))).

In (2), applying PrefixSum to ®q seems to give a value close to ®y,
but in fact PrefixSum(®q) = (4, 4, 6, 13, 13, 13). To compute ®y, we need

to apply PrefixSum to
®d := (4, 0,−2, 5, 0, 0) instead of ®q. Comparing

®q and ®d , we see that ®d is equal to a vector obtained by subtracting the

first element of the preceding group from the first element of each

group in ®q. That is, ®d = (4, 0, (2 − 4), (7 − 2), 0, 0). This computation

can be performed by applying π , subtracting the preceding element

from each element, applying π−1, and multiplying ®д, in that order to
®q. Thus, ®y is computed by PrefixSum(π−1(PrefixSum−1(π (®q)))× ®д).

Protocol. The protocol for group-wise sum is shown in Algo-

rithm 11. It can be seen that the protocol is a straightforward con-

catenation of (1) and (2) above, except that π (π−1(·)) is removed. A

small example appears in Fig. 2.

Correctness. Let r be the number of groups in the input. In Lines 1

to 3, we compute [[®s1]] so that for each j ∈ [1, r ], ®s1[j] is the sum in

the j-th group in ®x . This follows from the fact that the collection of

the first elements of each group in ®p is equal to the reverse-ordered

prefix sum of the sums in each group in ®x . Next, in Lines 4 to 7, we

copy each ®s1[j], which is the sum in the j-th group of ®x , to each

element of the j-th group. To do this, we apply the technique used

Let the input values be as follows.

®д 1 0 1 1 0 0

®x 3 1 2 2 3 2

In Line 1, we compute ®p.

®p 13 0 9 7 0 0

It is then stably sorted by ¬®д and we obtain ®p1 in Line 3. In

Lines 4 and 5, ®s1 and ®d1 are computed, respectively.

®p1 13 9 7 0 0 0

®s1 4 2 7 0 0 0

®d1 4 -2 5 -7 0 0

Then, the order is reversed and we obtain
®d by multiplying ®д.

Finally, we apply PrefixSum and obtain ®y in Line 7.

®d 4 0 -2 5 0 0

®y 4 4 2 7 7 7

Figure 2: Example of group-wise sum according to Algo-
rithm 11

by Laud in his parallel reading protocol [19] as follows. We use

the fact that when the prefix sum is computed, an element with a

value of zero will be copied with the result of the preceding element.

Specifically, in Line 5, the values are restored to their original order

so that the first element of each group becomes the sum of each

group and the other elements become zero, and in Line 7, the prefix

sum of the entire vector is computed. However, this will copy the

prefix sum of the sums instead of the sums. Therefore, the inverse

operation for the prefix sum is preliminarily performed in Line 4.

Complexity. The protocol uses O(n logn) non-free operations in
O(logn) rounds.

A.2 Alternative protocol for group-wise prefix
sum

Algorithm 12: Alternative group-wise prefix sum.

Notation: [[®y]] ← GroupPrefixSum2([[®д]], [[®x]]).
Input: A group flag vector [[®д]] of length n and a internally

grouped vector [[®x]] of length n to be aggregated.

Output: An aggregation result vector [[®y]] of length n.
Cost: O(n logn) non-free operations in O(logn) rounds.

1 [[®s]] ← PrefixSum([[®x]]).
2 [[®q[1]]] ← 0 and [[®q[i]]] ← [[®s[i − 1]]] × [[®д[i]]] for i ∈ [2,n].

3 [[®y]] ← [[®s]] − GroupSum2([[®д]], [[®q]]).

Intuition. The important observation is that the prefix sum of

®x is very close to the ®y that we want to compute. In fact, every

element is greater than ®y by exactly the sum up to the preceding

group in ®x . Since this difference can be easily computed from ®s and
®д, we can subtract it to obtain ®y.

Protocol and its correctness. The protocol is shown inAlgorithm 12.

We first compute [[®s]], which is the prefix sum of [[®x]] (Line 1). This
looks almost done, but each value ®s[i] exceeds the desired value by
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Let the input values be as follows.

®д 1 0 1 1 0 0

®x 3 1 2 2 3 2

In Line 1, the prefix sum ®s is computed.

®s 3 4 6 8 11 13

In Line 2, we compute ®q. Then, ®a, which is the result of

GroupSum2 in Line 3, is obtained by duplicating the value of

the first element in each group of q.

®q 0 0 4 6 0 0

®a 0 0 4 6 6 6

We subtract ®a from ®s to obtain the output ®y.

®y 3 4 2 2 5 7

Figure 3: Example of group-wise prefix sum according to Al-
gorithm 12

a partial sum from the first element of ®x to the last element of the

preceding group in ®x . Therefore, we try to subtract these partial

sums from [[®s]] and obtain the desired output. The predecessor of

the first element in the j-th group in ®s is equal to the partial sum

from the first element in ®x to the last element in the (j − 1)st group
of ®x . Using this property, we construct a vector [[®q]] that contains
such values as the first values of the groups (Line 2). We then copy

the first elements of each group in [[®q]] to other elements by apply-

ing GroupSum2 protocol to [[®q]]. Finally, we subtract this from [[®s]]
to obtain the prefix sum for each group (Line 3). A small example

appears in Fig. 3.

Complexity. The protocol uses O(n logn) non-free operations in
O(logn) rounds.

A.3 Alternative protocol for group-wise max

Algorithm 13: Alternative group-wise max.

Notation: [[®y]] ← GroupMax2([[®д]], [[®x]]).
Input: A group flag vector [[®д]] of length n and a internally

grouped vector [[®x]] of length n to be aggregated.

Output: An aggregation result vector [[®y]] of length n.
Cost: O(n logn) non-free operations in O(logn) rounds.

1 Let [[®x ′]] be the aggregation result vector obtained by applying

Algorithm 2 to [[®д]] and [[®x]] with respect toMax.
2 [[®t[i]]] ← [[®д[i + 1]]] for i ∈ [1,n) and [[®t[n]]] ← 1.

3 [[®y]] ← GroupSum2([[®д]], [[®t]] × [[®x ′]]).

Intuition. First, we compute the group-wise prefix max by ap-

plying Algorithm 2 with respect toMax. Then, we convert it to the

group-wise max in a manner similar to Algorithm 3, but without us-

ing GroupPrefixSum. Since the last element for each group is equal

to the max value in the group, we can compute group-wise max by

clearing all but the last elements and copying the last elements by

GroupSum2.

Let the input values be as follows.

®д 1 0 1 1 0 0

®x 3 1 2 2 3 2

The group-wise prefix max ®x ′ is computed as follows.

®x ′ 3 3 2 2 3 3

In Line 2, ®t is computed from ®д.

®t 0 1 1 0 0 1

Finally, ®y is computed by copying the last elements for each

group in ®x ′.

®y′ 3 3 2 3 3 3

Figure 4: Example of group-wise max according to Algo-
rithm 13

Protocol and its correctness. The protocol is shown inAlgorithm 13.

The group-wise prefix max is computed in Line 1. Since the suc-

cessor of the last element in a group is the first element in the

succeeding group, ®t is a flags vector indicating whether it is the

last element in a group. In Line 3, all but the last elements for each

group are cleared to 0 by ®t × ®x ′. Since the last elements are equal

to the max values in each group, GroupSum2 copies these values
and the group-wise max is computed. A small example appears in

Fig. 4.

Complexity. Algorithm 2 usesO(n) operations inO(logn) rounds.
Since GroupSum2 uses O(n logn) non-free operations in O(logn)
rounds, the group-wise max protocol also uses O(n logn) non-free
operations in O(logn) rounds.

B ADDITIONAL BENCHMARK RESULTS
Additional benchmark results for Algorithm 10 are shown in Ta-

bles 7 to 9.

C SUMMARY OF VARIABLES AND
PROTOCOLS

For the reader’s convenience, we summarized main variables and

protocols in Tables 10 and 11, respectively.

D EXAMPLES OF OUR PROTOCOLS
We provide some examples to help understand the proposed proto-

cols. Examples are shown in Figs. 5 to 11.
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Table 7: Running time for training a decision tree of heighth = 4 on different numbers of samplesnwithm = 11 input variables.

Time [s]

n T1 T2 T3

2
8 = 256 1.733 2.762 406.369

2
9 = 512 2.014 3.019 432.122

2
10 = 1024 2.594 3.252 458.022

2
11 = 2048 3.438 3.614 484.189

2
12 = 4096 5.762 4.171 512.702

2
13 = 8192 10.333 4.798 541.054

2
14 = 16384 18.902 6.463 572.145

2
15 = 32768 36.385 9.679 610.332

2
16 = 65536 71.467 16.954 663.163

2
17 = 131072 174.855 37.952 780.339

2
18 = 262144 349.515 82.399 969.883

2
19 = 524288 701.331 178.831 1366.467

2
20 = 1048576 1466.253 403.804 2117.820

Table 8: Running time for training a decision tree of height h = 4 on n = 2
13 samples with different numbers of input variables

m.

Time [s]

m T1 T2 T3

1 2.014 3.077 420.211

2 2.741 3.286 441.340

3 3.519 3.437 462.295

4 4.542 3.548 471.273

5 5.392 3.761 480.083

10 9.497 4.639 532.876

11 10.333 4.798 541.054

20 17.380 6.425 614.989

50 41.565 11.981 823.540

100 81.582 21.976 1166.079

Table 9: Running time for training a decision tree of different heights h on n = 2
13 samples withm = 11 input variables.

Time [s]

h T1 T2 T3

1 3.412 1.479 184.366

2 5.716 2.546 303.245

3 8.006 3.650 422.134

4 10.333 4.798 541.054

5 12.651 5.911 659.810

6 14.942 7.148 778.787

7 17.267 8.203 897.683

8 19.403 9.141 1016.427

9 21.675 10.302 1135.328

10 23.981 11.130 1254.291

11 26.091 12.534 1373.173

20 46.760 22.432 2443.332

30 70.004 33.211 3632.579

40 93.310 43.612 4821.568

50 116.641 55.234 6011.040
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Let the input values be as follows. Double lines are drawn to make it easier to identify group

boundaries.

®д 1 0 1 1 0 0

®y 0 0 1 1 1 0

In Line 1, Algorithm 4 prepares the vectors ®y0 and ®y1.

®y0 1 1 0 0 0 1

®y1 0 0 1 1 1 0

In Lines 2 to 5, group-wise operations are used to compute the values required by Equation (1).

Specifically, we count the number of 0’s and 1’s up to and after the i-th row of each group, respectively.

They are the following.

®u0 1 2 0 0 0 1

®u1 0 0 1 1 2 2

®v0 2 2 0 1 1 1

®v1 0 0 1 2 2 2

®w0 1 0 0 1 1 0

®w1 0 0 0 1 0 0

®u 1 2 1 1 2 3

®w 1 0 0 2 1 0

In Lines 6 to 8, the modified Gini indices ®S are computed element by element according to Equation (1),

where ⊥ represents an indefinite value by division by zero. They appear only in the last element of a

group and are later overwritten by other values.

®p 2 0 0 4 6 0

®q 1 0 0 2 2 0

®S 2 ⊥ ⊥ 2 3 ⊥

Figure 5: Example of modified Gini index computation according to Algorithm 4

Let the input values be as follows.

®д 1 0 1 1 0 0

®x 1 3 5 4 4 5

®y 0 0 1 1 1 0

In Line 1, Algorithm 5 computes the scores ®S, where ⊥ represents an indefinite value by division by

zero. In Line 2, it prepares the thresholds ®T. They are shown below. Note that some of the last values

in each group are incorrect, but this is not a problem since they will be overwritten later.

®S 2 ⊥ ⊥ 2 3 ⊥

®T 4 8 9 8 9 −∞

In Line 3, points that cannot be split immediately after themselves are detected as ®p. Then, the

corresponding elements in ®S and ®T are overwritten to −∞ in Line 4.

®p 0 1 1 1 0 1

®S 2 −∞ −∞ −∞ 3 −∞

®T 4 −∞ −∞ −∞ 9 −∞

In Line 5, for each group, the values corresponding to the element with the largest ®S are copied

within the group.

®S 2 2 −∞ 3 3 3

®T 4 4 −∞ 9 9 9

Figure 6: Example of batch attribute-wise test selection according to Algorithm 5
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Table 10: Summary of variables.

Notation Description

n Number of samples

m Number of input attributes

h Tree height

Layer(k) Layer information at k-th layer

NID(k ) Formatted node numbers at k-th layer

AID(k ) Formatted attribute numbers at k-th layer

Threshold(k) Formatted thresholds at k-th layer

Label(k) Formatted leaf labels at k-th layer

®xi i-th input attribute

®y Output attribute

®д Group flag vector

®b Test results

®N Node numbers

®A Attribute numbers

®T Thresholds

®L Leaf labels

®S Scores

Table 11: Summary of protocols.

Notation Description Reference

GroupSum Group-wise sum Instantiated from Algorithm 3

GroupPrefixSum Group-wise prefix sum Instantiated from Algorithm 2

GroupMax Group-wise max Instantiated from Algorithm 3

ModifiedGini Modified Gini index Algorithm 4

AttributewiseTestSelection Batch attribute-wise test selection Algorithm 5

GlobalTestSelection Batch global test selection Algorithm 6

FormatLayer Summarizing a privately grouped vector Algorithm 7

TrainInternalNodes Training internal nodes Algorithm 8

TrainLeafNodes Training leaf nodes Algorithm 9

DecisionTreeTraining Decision tree training Algorithm 10

GroupSum2 Alternative group-wise sum Algorithm 11

GroupPrefixSum2 Alternative group-wise prefix sum Algorithm 12

GroupMax2 Alternative group-wise max Algorithm 13
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Suppose we are given the following input attribute vectors ®x j (j = 1, 2) and an output attribute vector

®y that are privately grouped by a group flag vector ®д.

®x1 4 3 4 4 5 5

®x2 3 1 5 2 5 3

®y 0 0 1 1 0 1

®д 1 0 1 1 0 0

First, let’s look at the first input attribute ®x1. In Line 2, ®x1 and ®y are sorted within each group

with respect to ®x1, and the resulting vectors are denoted ®u1 and ®v1, respectively. Then, in Line 3,

AttributewiseTestSelection computes the optimal thresholds ®T1 and the scores ®S1 for the test with
the first input attribute.

®u1 3 4 4 4 5 5

®v1 0 0 1 1 0 1

®T1 7 7 −∞ 9 9 9

®S1 2 2 −∞ 2 2 2

In addition, the optimal thresholds ®T2 and the scores ®S2 are computed for the second input attribute

in parallel as well.

®u2 1 3 5 2 3 5

®v2 0 0 1 1 1 0

®T2 4 4 −∞ 8 8 8

®S2 2 2 −∞ 3 3 3

Finally, in Lines 5 and 6, we select the test with the highest score for each group.

®A 1 1 1 2 2 2

®T 7 7 −∞ 8 8 8

Figure 7: Example of batch global test selection according to Algorithm 6

Letw = 4. Let other input values be as follows.

®д 1 0 1 1 0 0

®u 7 7 3 8 8 8

In Line 1, we overwrite all but the first element of each group in ®u with NULL to obtain ®r and further
sort in descending order by ®д to obtain ®v .

®r 7 NULL 3 8 NULL NULL

®v 7 3 8 NULL NULL NULL
In Line 3, the firstw elements in ®v are output as ®z.

®z 7 3 8 NULL

Figure 8: Example of summarizing according to Algorithm 7
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Let the input values be as follows.

®x1 4 3 4 4 5 5

®x2 3 1 5 2 5 3

®y 0 0 1 1 0 1

®д 1 0 1 1 0 0

®N 1 1 2 3 3 3

In Line 1, the best tests ®A and ®T are computed considering only the stopping criterion (2).

®A 1 1 1 2 2 2

®T 7 7 −∞ 8 8 8

In Lines 2 to 4, nodes satisfying the stopping criterion (2) are detected as
®f .

®c 2 2 1 3 3 3

®c0 2 2 0 1 1 1

®c1 0 0 1 2 2 2

®f 1 1 1 0 0 0

In Line 5, for each element
®f [i] such that

®f [i] = 1, we overwrite ®A[i] and ®T[i] with 1 and −∞. They

represent the test 2X1 < MIN_VALUE which is never satisfied.

®A 1 1 1 2 2 2

®T −∞ −∞ −∞ 8 8 8

In Line 6, ®N, ®A, and ®T are summarized by FormatLayer and output as [[Layer(k )]] =
(NID,AID, Threshold).

NID 1 2 3 NULL
AID 1 1 2 NULL

Threshold −∞ −∞ 8 NULL

In Lines 7 and 8, the input attribute values specified by attribute numbers ®A is computed and set to

®x∗. Then, the test result ®b is computed by comparing 2 × ®x∗ and ®T in Line 9.

®e1 1 1 1 0 0 0

®e2 0 0 0 1 1 1

®x∗ 4 3 4 2 5 3

®b 0 0 0 1 0 1

Figure 9: Example of internal node training according to Algorithm 8

Let the input values be as follows.

®д 1 0 0 1 0 1

®y 1 0 1 0 1 0

®N 1 1 1 2 2 3

In Lines 1 and 2, Algorithm 7 computes the most frequent values of ®y for each group and as ®L.
®c0 1 1 1 1 1 1

®c1 2 2 2 1 1 0

®L 1 1 1 0 0 0

In Line 3, ®N and ®L are summarized by FormatLayer and output as [[Layer(h)]] =

([[NID]](h), [[Label]](h)).

NID(h) 1 2 3 NULL
Label(h) 1 0 0 NULL

Figure 10: Example of leaf node training according to Algorithm 9
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Let h = 2. Let the input values and initialized values be as follows. These are the input to the 0-th

layer.

®x
(0)

1
3 5 2 5 4 4

®x
(0)

2
3 2 5 4 5 1

®y(0) 0 1 0 0 1 0

®д(0) 1 0 0 0 0 0

®N(0) 1 1 1 1 1 1

At the first iteration, the layer information and test results are computed in Line 4.

NID(0) 1

AID(0) 1

Threshold(0) 7

®b 1 0 1 0 0 0

Then, ®N and ®д are updated using
®b in Lines 5 and 6.

®N+ 2 1 2 1 1 1

®д+ 1 1 0 0 0 0

In Line 7, current dataset is sorted by
®b and we obtain the inputs for the 1-th layer.

®x
(1)

1
5 5 4 4 3 2

®x
(1)

2
2 4 5 1 3 5

®y(1) 1 0 1 0 0 0

®д(1) 1 0 0 0 1 0

®N(1) 1 1 1 1 2 2

The same computation is repeated at the second iteration.

NID(1) 1 2

AID(1) 2 1

Threshold(1) 3 −∞

®b 0 0 0 1 0 0

®N+ 1 1 1 3 2 2

®д+ 1 0 0 1 1 0

®x
(2)

1
5 5 4 3 2 4

®x
(2)

2
2 4 5 3 5 1

®y(2) 1 0 1 0 0 0

®д(2) 1 0 0 1 0 1

®N(2) 1 1 1 2 2 3

Finally, the layer information for h-th layer is computed in Line 8.

NID(2) 1 2 3 -1

Label(2) 1 0 0 -1

Figure 11: Example of decision tree training according to Algorithm 10
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