
Dynamic Volume-Hiding Encrypted Multi-Maps with
Applications to Searchable Encryption

Ghous Amjad

Google

New York, New York, USA

gamjad@google.com

Sarvar Patel

Google

New York, New York, USA

sarvar@google.com

Giuseppe Persiano

Università di Salerno

Salerno, Italy

giuper@gmail.com

Kevin Yeo

Google

New York, New York, USA

kwlyeo@google.com

Moti Yung

Google

New York, New York, USA

moti@google.com

ABSTRACT
We study encrypted storage schemes where a client outsources data

to an untrusted third-party server (such as a cloud storage provider)

while maintaining the ability to privately query and dynamically

update the data. We focus on encrypted multi-maps (EMMs), a struc-

tured encryption (STE) scheme that stores pairs of label and value

tuples. EMMs allow queries on labels and return the associated

value tuple. As responses are variable-length, EMMs are subject

to volume leakage attacks introduced by Kellaris et al. [CCS’16].
To prevent these attacks, volume-hiding EMMs were introduced by

Kamara and Moataz [Eurocrypt’19] that hide the label volumes (i.e.,

the value tuple lengths).

As our main contribution, we present the first fully dynamic
volume-hiding EMMs that are both asymptotically and concretely

efficient. Furthermore, they are simultaneously forward and back-
ward private which are the de-facto standard security notions for

dynamic STE schemes. Additionally, we implement our schemes

to showcase their concrete efficiency. Our experimental evalua-

tions show that our constructions are able to add dynamicity with

minimal to no additional cost compared to the prior best static

volume-hiding schemes of Patel et al. [CCS’19].

KEYWORDS
Structured Encryption, Dynamic Encrypted Search, Volume-Hiding

1 INTRODUCTION
Structured encryption (STE) schemes, introduced by Chase and Ka-

mara [10], enable a client to outsource the storage of an encrypted

version of their structured data to an untrusted third-party server

(such as a cloud storage provider). The encrypted data is stored

in a structured manner so that the client may still perform oper-

ations on it without the server ever viewing the plaintext data.

For privacy, the ideal goal is to ensure that the adversarial server

does not learn any information about the outsourced data or opera-

tions performed by the client. Currently, this ideal privacy is only

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(1), 417–436
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0025

known to be achievable by using expensive cryptographic prim-

itives such as fully homomorphic encryption or oblivious RAMs

(ORAMs). Instead, STE schemes aim to strike a delicate balance

between efficiency and privacy by enabling some leakage that is

upper bounded by a well-defined and “sensible” leakage function

to obtain efficiency that is necessary for real-world applications.

In our work, we focus on the encrypted multi-map (EMM) primi-

tive that is an important example of an STE scheme that manage

collections of pairs of labels and value tuples consisting of one or
more values. EMMs form the basis of many important applica-

tions where clients outsourced encrypted data to a untrusted cloud

server. By leveraging EMMs, one can build systems that enable

searching over the encrypted data (also known as searchable en-

cryption [9, 11, 39]), or performing SQL queries over the encrypted

databases [19]. Therefore, the construction of efficient and private

EMMs is an important line of research to enable these real-world

applications. We will focus on dynamic EMMs that also enable

clients to update the outsourced encrypted data.

While efficiency is clear to evaluate, assessing the level of privacy

guaranteed by the leakage profile of an EMM (and STE schemes

in general) is a challenging problem. So far, our only measure of

privacy is a “sensible” or “reasonable” leakage function, which is

both vague and subjective. This has motivated the study of leakage-
abuse attacks that aim at leveraging specific leakage profiles to

compromise privacy. The first leakage-abuse attack was presented

by Islam et al. [18]. Many follow up works (such as [8, 14–16, 22,

28, 36, 43]) improve the accuracy of the attack or consider either

different leakage profiles and/or weaker assumptions. These attacks

significantly further our understanding of the dangers of various

types of leakage profiles.

Volume-Hiding EMMs. One recent line of works have leveraged
volume leakage to compromise privacy in certain settings (see [5,

17, 22, 24] and references therein). Previous works (such as [5]) have

shown that volume leakage may be used to compromise even the

most powerful cryptographic primitives including ORAMs. Kamara

and Moataz [20] introduced the notion of volume-hiding EMMs

to protect against these attacks. These schemes ensure that the

number of values (the volume) associated with any single label is

never leaked to the adversary to protect against volume leakage

attacks. This was subsequently improved by Patel et al. [35] that
presented asymptotically optimal schemes for the static setting.
In a concurrent work, Wang and Chow [42] presented another

417

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0025

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

static volume-hiding EMM that slightly reduced server storage by

increasing query computation.

Prior works focused on volume-hiding EMMs in the static set-

ting where users are only able to query the outsourced, encrypted

data. In many applications, dynamic EMMs are necessary where

users are able to manipulate the multi-map (MM) by either adding,

modifying or deleting pairs of label and value tuples. Kamara and

Moataz [20] briefly studied dynamic volume-hiding EMMs but only

present a scheme offering a subset of natural update operations (see

Appendix A for more details). Furthermore, these schemes are less

efficient than the static volume-hiding EMMs presented by Patel et
al. [35]. In our work, we fill this gap by presenting dynamic EMMs

offering natural update operations while being as efficient as their

static counterparts.

Dynamic EMMs. Before presenting our dynamic volume-hiding

EMMs schemes, we first elaborate on the importance of enabling

dynamicity for real-world usage. Consider any natural application

of EMMs where the storage of highly sensitive data is outsourced to

a potentially untrusted cloud server (outsourcing is typically done

for many reasons including fault tolerance and/or availability). In

many such applications, updating this data regularly is necessary.

Classic examples of highly sensitive data are financial or med-

ical information. For example, a firm may wish to keep track of

the transactions that occurred at each hour during a work day by

uploading its financial transactions to an outsourced EMM hourly

meaning the EMM is updated every hour. It can be immediately

seen that volume-hiding is important in this setting as the volume

directly reveals the number of transactions by the hour. A similar

situation can occur for hospitals that record their medical inventory

usage at the end of each day. The volume is correlated to the num-

ber of patients that were treated. Both cases are examples where

volume-hiding is integral as volumes would reveal information that

is not exposed elsewhere (for example, the patterns of updates do

not reveal anything as they occur at fixed, regular time intervals).

Moreover, even with volume-hiding during updates, (changes in)

volume during queries can essentially reveal the same information.

With medical data, any new information from patient examina-

tions or lab tests must be stored in the EMM that require modifying

the outsourced data. Similar updates are necessary for financial

settings where the information from every new transaction must be

propagated into the EMM. Even more importantly, it is straightfor-

ward to see that volume-hiding is also necessary in these scenarios.

For medical data, the number of examinations for a patient is, typi-

cally, correlated to the current health status of the patient. Similarly,

the number of financial transactions may correspond to that party’s

interest (or lack thereof) in the current market. By enabling dynam-

icity, our work will help open up volume-hiding EMMs to more

practical applications.

From a technical perspective, there are significant difficulties

when dealing with operations that enable updating the encrypted

data even when ignoring volume-hiding requirements. At a high

level, EMMs (and, generally, STE schemes) are attempting to find

a delicate balance between functionality, efficiency and privacy.

As dynamicity is increasing functionality, EMMs must ensure that

only minimal loss of efficiency and/or privacy are incurred com-

pared to the static setting. Due to this difficulty, there has been prior

works that explored and defined standard privacy requirements

in dynamic settings to avoid privacy degradation. Formally, these

standard notions for dynamic STE schemes are forward and back-
ward privacy [6, 7, 40]. Forward privacy guarantees that insertion

operations do not leak information on previous queries. Backward

privacy addresses a similar concern with respect to deletion ensur-

ing that it is not possible to apply a query to data that has been

deleted. Enabling update operations only becomes more difficult

when studying volume-hiding EMMs. For static volume-hiding

EMMs, schemes must ensure volume is not leaked only on query

operations. In the dynamic setting, volume must not be leaked by

either query or update operations. Furthermore, designers must en-

sure that combining leakage between query and update operations

does not reveal volumes as well.

In our work, we will design dynamic volume-hiding encrypted

multi-maps that provide forward and backward privacy while si-

multaneously being efficient.

1.1 Our Contributions
As ourmain contribution, we present dynamic volume-hiding EMMs

that are forward and backward private with better efficiency than

prior works. The state-of-the-art, dynamic, volume hiding scheme

was presented in the original work by Kamara and Moataz [20]

and is denoted as the Dense Subgraph Transform (DST). For aMM
with n total values and maximum volume ℓ,DST requiresO(ℓ logn)
overhead for both queries and updates. Furthermore, DST supports

only a subset of update operations and is not forward private, a

standard security notion of the dynamic setting. With this in mind,

there are four main challenges that we address in our work.

(1) Dynamicity andHidingVolume.The volume-hiding scheme

in [20] only enables adding, deleting or overwriting the entire

tuple associated with a label. In particular, users may not append

a single value or remove a value from an existing value tuple.

While one can achieve this functionality using a query before

an update, it turns out that this degrades privacy significantly

(see Appendix A). This motivates the following question: Is it
possible to construct fully-dynamic volume-hiding schemes with
the ability to add/remove a set of values from an already existing
tuple that is both efficient and private?

(2) Forward and Backward Privacy. Introduced by [6, 7] for the
special case of dynamic searchable encryptions, forward and

backward privacy are the de-facto standard security notions for

dynamic STEs to protect against various injection attacks [43].

At a high level, these notions guarantee that modified data

is not leaked until a query for the data is performed. Prior

volume-hiding schemes [20, 35] are not forward and backward

private, which motivates the following problem: Is it possible to
construct volume-hiding dynamic EMMs that are both forward
and backward private?

(3) Efficiency. DST [20] requires O(ℓ · logn) overhead for both

queries and updates, which is larger than the O(ℓ) overhead
needed by the best static volume-hiding scheme [35] and raises

the following question: Is it possible to construct a dynamic
volume-hiding scheme with better efficiency while simultaneously
providing forward and backward privacy?

(4) Leakage. Beyond forward and backward privacy, our schemes

will aim to leak as little information as possible. We identify

418

Proceedings on Privacy Enhancing Technologies 2023(1)

three leakages that are necessary for functionality or efficiency:

MM size n, maximum volume ℓ and label equality leakage

(whether two operations are for the same label). TheMM size n
is necessary as the server stores the EMM. We show that hiding

the maximum volume ℓ would require Ω(n) communication for

any reasonable error probability in Appendix B. Patel et al. [34]
showed that avoiding label equality leakage would require over-

head equivalent to ORAMs [3, 13, 31] (see Appendix J for more

details). It is not a coincidence that prior works [20, 35, 42]

leaked all three of n, ℓ and label equality. This leads to the natu-
ral question: Is it possible to construct dynamic volume-hiding
schemes supporting the above properties with minimal leakage?
We present two schemes 2chFB and 2chs

FB that address all three

problems simultaneously and present different trade-offs between

client storage and update overhead. We remind the reader that in

the following statements that ℓ is the maximum length of any value

tuple and n is the maximum total number of values.

Theorem 1 (Informal). There exists a fully-dynamic, volume-
hiding, forward and type-II backward private EMM, 2chFB with query
overhead ofO(ℓ log logn), amortized update overhead ofO(ℓ), server
storage ofO(n) and client storage of sizeO(m) wherem is the number
of unique labels in the MM.

2chFB achieves all our goals of dynamicity, volume-hiding, effi-

ciency, forward/backward privacy and minimal leakage of only n,
ℓ and label equality. However, 2chFB requires O(m) client storage,
which is common to the majority of forward private schemes, such

as schemes in [6, 7]. We present 2chs
FB with smaller permanent

client storage at the cost of slightly larger overhead.

Theorem 2 (Informal). There exists a fully-dynamic, volume-
hiding, forward and type-II backward private EMM 2chs

FB with query
overhead of O(ℓ log logn), amortized update overhead of O(ℓ logn),
server storage of O(n) and permanent client storage of size at most
f (n), for every function f (n) = ω(logn).

To our knowledge, 2chFB and 2chs
FB are the first dynamic EMM

schemes that simultaneously provide volume-hiding, forward and
backward privacy while being concretely efficient with a small num-

ber of roundtrips with minimal leakage of n, ℓ and label equality. A

comparison of the asymptotic performance of our schemes and prior

dynamic schemes obtaining at least one of volume-hiding, forward

or backward privacy are presented in Table 1. The experimental

evaluation in Section 5.1 shows that our schemes also improve

on the concrete performance of prior schemes. It also shows that

we enable dynamicity without incurring any additional cost when

compared with prior static schemes [35]. This is very surprising

as static schemes are optimized for query communication whereas

experimentally our schemes, despite having to support a very rich

set of dynamic operations, have query cost comparable with the

static scheme of [35]. In addition, our schemes exhibit a 2-3x im-

provement in query communication cost over DST [20], the best

existing non-lossy volume hiding dynamic scheme, while support-

ing a wider range of dynamic operations and providing stronger

security guarantees.

Discussion about Concurrent Works. Zhao et al. [44] give two

schemes for volume-hiding dynamic EMMs. Even though their

schemes offer stronger type-I backward privacy and avoid leaking

ℓ (along with similar security guarantees elsewhere), they fail to

return the correct value tuple for all instances. In particular, only an

ℓ/n-fraction is guaranteed to be returned. However, their schemes

obtain smaller query computation and communication of O(ℓ +
logn) compared to our schemes.

Wang and Chow [42] also construct dynamic volume-hiding

EMMs with the same privacy guarantees as ours along with very

small server storage overhead by using consistent hashing. To guar-

antee forward and backward privacy, they cache the update oper-

ations and then execute them as part of the first available query

operation. A query then requires time proportional to the number

of cached updates as it needs to handle them. To improve query

performance, they allow updates to be processed in batches. A set

of updates make a batch, if they arrive simultaneously. Each batch

update is stored in a separate volume-hiding EMM. A query con-

sists of querying all uploaded EMMs increasing query overhead for

each set of batch updates. Thus, the ability of handling updates in

batches does not improve the worst-case running time, unless the

client is willing to accumulate the updates in local memory to form

a batch. Our schemes also employ caching of the update operations

(that is, the updates are not instantly implemented on the main

data structure). However, this is done while guaranteeing that the

worst case query overhead is independent of the number of updates.

We note that when the number of batched updates is small such

as b = O(1), the scheme in [42] has smaller query communication

O(bℓ) but either larger query computation O(bℓ logn)1 or client

storage O(m) compared to 2chFB and 2chs
FB respectively.

Discussion about Backward Privacy. Both of 2chFB and 2chs
FB

provide type-II backward privacy as defined in [7]. We note that

there are several schemes that provide stronger type-I backward

privacy. However, current type-I backward private schemes are

expensive and resort to usage of ORAMs. As a result, we do not

consider type-I backward privacy and leave it as an open problem

for future work.

Discussion about Oblivious RAMs. From a theoretical perspec-

tive, ORAMs [3, 13, 31] address the problems of dynamicity, for-

ward and backward privacy (as outlined in [20]). However, ORAMs

are expensive as they require logarithmic number of client-server

roundtrips or fully homomorphic encryption schemes. As evidenced

by prior works such as [37], the high number of roundtrips of

ORAMs significantly hinder efficiency. In our work, we ensure our

schemes use either 1 or 2 roundtrips and only use cheap, symmetric

primitives instead of expensive cryptographic tools such as ORAMs

and FHE. DST [20] has the same asymptotic overhead as an ORAM,

but is faster in practice due to 1 roundtrip and no FHE usage.

Discussion about Parallelism. Prior works [21, 26, 40] investi-
gated enabling the client to issue multiple operations in parallel. In

our work, we will focus on constructing dynamic volume-hiding

schemes in the sequential setting that were previously not known

to exist with our efficiency and privacy guarantees. To our knowl-

edge, we believe that DST [20] and DSSE [44] may enable issuing

parallel queries (but could not verify this). We believe all other

volume-hiding works (including [42] and ours) do not have this

1
Theoretically, the authors in [42] mention the usage of more complex predecessor

data structures can reduce this to O (bℓ log logn).

419

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

Query

Comm.

Query Comp. Query

RT

Update Comm. Update Comp. Client

Storage

VH FP BP Correct

%-age

Leakage

Sofos [6] O (ℓlabel) O (ℓlabel) 1 O (ulabel) O (ulabel) O (m) × ✓ × 1 (n, ℓlabel, leq)
Fides [7] O (ℓlabel) O (ℓlabel) 2 O (ulabel) O (ulabel) O (m) × ✓ II 1 (n, ℓlabel, leq)
SDa [12] O (ℓlabel) O (ℓlabel) 1 O (ulabel logn) O (ulabel logn) O (1)∗ × ✓ II 1 (n, ℓlabel, leq)

DST [20] O (ℓ logn) O (ℓ logn) 1 O (ℓ logn) O (ℓ logn) O (1) ✓ × II 1 (n, ℓ, leq)
S4 [42] O (bℓ) O (bℓ logn) 1 O (ℓ) O (ℓ) O (m) ✓ ✓ II 1 (n, ℓ, leq)
DSSE [44] O (ℓ + logn) O (ℓ + logn) 1 O (ℓ logn) O (ℓ logn) O (1) ✓ ✓ I ℓ/n (n, leq)
DSSEk [44] Oλ (ℓ+logn) Oλ (ℓ + logn) 1 Oλ (ℓ logn) Oλ (ℓ logn) O (1) ✓ ✓ I ℓ/n (n, leq)

2ch O (ℓ log logn) O (ℓ log logn) 1 O (ℓ log logn) O (ℓ log logn) ω(logn) ✓ × II 1 (n, ℓ, leq)
2chFB O (ℓ log logn) O (ℓ log logn) 1 O (ℓ) O (ℓ) O (m) ✓ ✓ II 1 (n, ℓ, leq)
2chs

FB O (ℓ log logn) O (ℓ log logn) 2 O (ℓ logn) O (ℓ logn) ω(logn)∗ ✓ ✓ II 1 (n, ℓ, leq)

Table 1: A comparison of amortized query and update overhead of dynamic schemes that provide either volume-hiding, for-
ward or backward privacy with our schemes. We use the following abbreviations: roundtrips (RT), volume-hiding (VH), for-
ward privacy (FP) and backward privacy (BP). For notation, n denotes the maximum number of values in the multi-map MM
andm denotes the number of unique labels in the MM. For volume-hiding schemes, ℓ represents the maximum volume. We
denote ℓlabel to be the volume associated with the queried label and ulabel to be the number of updated values. Correct %-age
refers to the percentage of returned correct values. For client storage, an asterisk*means client storagemay increase up toO(n)
temporarily. For [42], b refers to the number of batch updates. In [44], Oλ(x)means there are hidden λ factors. Label equality
leakage is referred to by leq.

property. We leave it as an open problem to enable parallel queries

in our schemes.

2 DEFINITIONS
2.1 Structured Encryption
In a STE scheme, a client may encrypt and outsource storage of the

data structure to a server. The encryption is structured in such a

way that the underlying data structure may be operated on by the

client in a private manner. The notion of STE was first presented by

Chase and Kamara [10]. While we consider generic definitions for

encrypting any data structure, our work focuses onMMs as they

are a simple data structure with several applications.

STE schemes may be differentiated using several criteria. Static

STE schemes only enable clients to query the underlying data struc-

ture while dynamic STE schemes additionally enable clients to

update the underlying data structure. We will focus on dynamic

STE schemes that consist of three protocols to be executed between

the client and the server: the Setup protocol to compute the initial

encryption of the data structure, theQuery protocol to query the

data structure, and theUpdate protocol to update the data structure.
The number of communication rounds between the client and

server is an important measure. We say that an operation of an STE

scheme is r -interactive if it can be completed in at most r rounds of
communication between the client and the server. An STE scheme

is r -interactive if all operations use at most r rounds of interaction.
In our work, we will exclusively focus on STE schemes with a low

number of rounds of interaction as they are more practical.

Definition 1. An r -interactive dynamic STE scheme Σ = (Setup
,Query,Update) consists of the following protocols between client C
and server S:

(1) (st; EDS) ← Setup((1λ, params,DS); 1λ). The setup protocol is
executed jointly by C and S where C receives (1λ, params,DS)
and S receives 1λ . At termination, C receives its state st and S
receives the encrypted data structure EDS.

(2) ((Response, stnew); EDSnew) ←Query((st, qop); EDS). The
query protocol is executed jointly by C and S where C receives
(st, qop) and S receives EDS. For each i ∈ {0, . . . , r − 1}, C gen-
erates the i-th message using the state st, the query operation qop
and all previous messages. S generates the i-th message using
the encrypted data structure EDS and all previous messages. At
termination,C receives the query result Response and an updated
state stnew, and S receives an updated encrypted data structure
EDSnew.

(3) (stnew; EDSnew) ← Update((st, up); EDS). The update protocol
is executed jointly by C and S where C receives (st, up) and S
receives EDS. For each i ∈ {0, . . . , r − 1}, C generates the i-th
message using the state st, the update operation up and all previ-
ous messages. S generates the i-th message using the encrypted
data structure EDS and all previous messages. At termination, C
receives an updated state stnew and the S receives an updated the
encrypted data structure EDSnew.

2.2 Adaptive Security
We consider the notion of security for STE schemes against an

honest-but-curious PPT adversary A with respect to a leakage
function L = (LSetup,LQuery,LUpdate). The leakage function is an

upper bound on the amount of information leaked to the adversary

in the sense that (1) the initial setup reveals no information beyond

LSetup; (2) a query reveals no information beyond LQuery; and (3)

an update operation reveals no information beyond LUpdate. The

leakage on an operation may depend on all the previous operations

and the setup phase.

We consider adaptive security that considers adversaries that

view the execution of one operation before choosing the next opera-

tion that was first formalized by Curtmola et al. [11]. The definition

utilizes the real-ideal paradigm with a stateful, honest-but-curious,

PPT adversary A and a stateful, PPT simulator S.

More formally, let Σ = (Setup,Query,Update) be a dynamic

STE and consider the following real game RealΣ,A and ideal game
IdealL,SΣ,A between a stateful PPT adversary A and a challenger C.

420

Proceedings on Privacy Enhancing Technologies 2023(1)

In the ideal game, S is a stateful PPT simulator and L = (LSetup,L

Query,LUpdate) is a leakage function. RealΣ,A (1λ, z): Adversary
A(1λ, z), takes as input the security parameter 1λ and the auxiliary
information z, outputs an input data structure DS. The challenger C
executes Setup on DS obtaining client state st and encrypted data

structure EDS. C sends EDS to A.

For i = 1, . . . , poly(λ) :

• A adaptively picks operation oi .
• If oi is a query operation, A and C jointly execute

((Response, stnew); EDSnew) ←Query((st,oi); EDS).
• If oi is an update operation, A and C jointly execute

(stnew; EDSnew) ← Update((st,oi); EDS).
• In both cases A plays the role of the server S and challenger C

plays the role of the client C. Therefore, A receives a transcript

of the protocol and updates EDS by setting EDS← EDSnew and

C updates the client state by setting st← stnew.

Finally, A outputs b ∈ {0, 1}.

IdealL,SΣ,A (1
λ, z): Adversary A(1λ, z), on input the security parame-

ter λ and the auxiliary information z, outputs an input data struc-

ture DS. The challenger C runs the simulator S on input leakage

LSetup(DS,n, ℓ) and the auxiliary information z to obtain the en-

crypted data structure EDS that is sent to the adversary A.

For i = 1, . . . , poly(λ),

• A adaptively picks operation oi
• If oi is a query operation, then A and S jointly execute protocol

Query on input LQuery(DS,o1, . . . ,oi).
• Ifoi is an update operation, thenA andS jointly execute protocol

Update on input LUpdate(DS,o1, . . . ,oi).
• In both cases A plays the role of the server S and S the role of

the client C. Therefore, A receives a protocol transcript and an

updated version of EDS. Note, S may deviate from the protocol.

Finally, A outputs b ∈ {0, 1}.

Definition 2 (Adaptive Security). STE scheme Σ is adaptively
L-secure if there exists a stateful, PPT simulator S such that for all
stateful, PPT adversariesA and all auxiliary information z ∈ {0, 1}∗:��
Pr

[
RealΣ,A (1λ, z) = 1

]
− Pr

[
IdealL,SΣ,A (1

λ, z) = 1

] �� ≤ negl(λ)

2.3 Multi-Maps
AMM stores a collection of label and value tuple pairs (label, ®v)
where label is from the label universe L and ®v is a tuple of val-

ues from the value universe V. For a multi-map MM we denote

by LABEL(MM) the set of labels in MM and, for each label ∈
LABEL(MM), we denote byMM[label] the tuple ®v such that

(label, ®v) ∈ MM. If label < LABEL(MM) then MM[label] :=⊥.
We will use m := |LABEL(MM)| to denote the number of unique

labels inMM and its size by n :=
∑
label∈LABEL(MM) |MM[label]|.

We denote the volume of label ∈ LABEL(MM) by ℓMM(label) :=
|MM[label)]|. The maximum volume of MM, denoted ℓ, is the

maximum volume of a label; that is, ℓ := maxlabel∈LABEL(MM) |MM
[label]|. DynamicMMs support the following operations.

(1) Response←Query(label,MM). The query operation retrieves
the tupleMM[label].

(2) MMnew ← Update(op ∈ {edit, app, rm, del}, label, ®v,MM,n,
ℓ). The following types of update operations are supported:

(a) If op = edit, then the label edit operation sets the entry

MM[label] ← ®v.
(b) If op = rm, then the label removal operation removes the pair

(label,MM[label]) from MM. If label < LABEL(MM), the
label removal operation has no effect. The input ®v is ignored.

(c) If op = app, then the label value append operation sets

MM[label] ← (MM[label], ®v); to append tuple ®v to the

current tuple.

(d) If op = del, then the label value deletion operation. sets

MM[label] ← MM[label] \ ®v. That is, all values in ®v are

removed fromMM[label].

For convenience, we representMM operations as the tuple o =
(op, label, ®v) where op is the operation type, label is the input la-

bel and ®v is the input value tuple.We use op(o) ∈ {qop, edit, rm, app,
del} to denote the type of an operation o, label(o) to be the label

of o and ®v(o) to be the value tuple of o.
If the size n or maximum volume ℓ may change, the new values

must be submitted as parameters to Update.

2.4 Label Equality Leakage
The label equality pattern leaks whether two operations are per-

formed on the same label or not. For a sequence of operations

o1, . . . ,ot , leq(o1, . . . ,ot) = M consists of a t × t matrix such that

M[i][j] = 1 iff label(oi) = label(oj).
We note that [34] proved a lower bound showing mitigating

label equality leakage in any small way would require Ω(ℓ logn)
computational overhead. Our schemes will all leak label equality

to obtain better efficiency.

2.5 Volume Hiding Leakage Functions
Volume-hiding leakage functions were introduced in [20] and for-

mally defined in [35] for static schemes. We present a definition of

a volume-hiding leakage function for dynamic EMMs that extends

the definition of Patel et al. [35] using game-based definitions.

For a leakage function L = (LSetup,LQuery,LUpdate) and ad-

versary A, we consider games VHGameA,L
η with η ∈ {0, 1}. The

adversary A selects twoMMs of his choiceMM0 andMM1 with

size at most n and maximum volume at most ℓ. The adversary then

issues a sequence of operations and, in game VHGameη it receives

the leakage with respect to MMη . After each operation, A must

report a valid upper bound of the size and maximum volume for

bothMM0 andMM1.

VHGameA,L
η :

(1) A picks size and volume upper bounds n and ℓ and sends two

multi-maps MM0

0
andMM0

1
to C satisfying n and ℓ.

(2) C computes LSetup(MM0

η ,n, ℓ) which is sent to A.

(3) For t = 1, . . . ,

(a) A adaptively picks ot
0
= (opt

0
, labelt

0
, ®vt

0
,nt , ℓt) and ot

1
=

(opt
1
, labelt

1
, ®vt

1
,nt , ℓt) such that

(i) The operation types and label equality leakage are the

same: opt
0
= opt

1
and leq(o1

0
, . . . ,ot

0
) = leq(o1

1
, . . . ,ot

1
).

(ii) Let MMt
0
(MMt

1
) be the MM obtained by executing ot

0
(ot
1
)

on MMt−1
0

(MMt−1
1

). nt and ℓt must be valid size and vol-

ume upper bounds forMMt
0
andMMt

1
.

421

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

(b) C returns LQuery(MMt
η ,o

1

η , . . . ,o
t
η) for queries and

LUpdate(MMt
η ,o

1

η , . . . ,o
t
η) for updates.

(4) Finally, A outputs a bit b ∈ {0, 1}.

We denote by pA,L
η as the probability that A outputs η when

playing game VHGameA,L
η (n, ℓ).

Definition 3 (Volume-Hiding Leakage Functions). A leakage
functionL = (LSetup,LQuery,LUpdate) is volume-hiding if and only
if for all adversaries A and for all values n ≥ ℓ ≥ 1,

pA,L
0
(n, ℓ) = pA,L

1
(n, ℓ).

Definition 4 (Volume-Hiding Encrypted Multi-Maps). An
EMM scheme Σ is volume-hiding if there exists a leakage function
L = (LSetup,LQuery,LUpdate) such that:

(1) Σ is adaptively L-secure according to Definition 2.
(2) L is a volume-hiding according to Definition 3.

We note this definitions reflects that both the MM size n and

maximum volume ℓ will grow over time as more operations occur.

An upper bound on n and ℓ will be inherently leaked after each

operation. In a concurrent work [44], an alternative definition is

provided where ℓ is not leaked. In Appendix B, we show such a

definition inherently requires large query communication. If we

want to even guarantee that ϵ-fraction of matching values are

returned, we show a query communication lower bound of Ω(ϵn).
In other words, if we want at least half the matching values, then the

query communication is already linear. As a result, we choose to use

a definition that leaks ℓ to ensure better efficiency and correctness.

The construction in [44] adheres to our lower bound as they can

only return (ℓ/n)-fraction of matching values when using O(ℓ)
query communication.

Discussion about Label Equality Leakage. In our volume

hiding definition, the adversary must choose two sequences with

the same label equality leakage. Instead, we could have chosen a

more general definition by parameterizing the game with some

leakage function Llabel,op over the labels and operations and force

the adversary to submit two sequences with the same leakage with

respect to Llabel,op. We chose label equality as prior works [34]

showed mitigating label equality requires large overhead similar

to ORAMs (see Appendix J for more details). On the other hand,

leaking only label equality is sufficient for faster constructions.

Therefore, label equality seems to be the minimal leakage required

to obtain efficient constructions faster than ORAMs.

2.6 Forward and Backward Privacy
Forward and backward privacy provide guarantees on the amount

of information leaked to an adversary as the client performs update

operations. We present the standard definitions of forward and

backward privacy (readers may also refer to [6, 7]).

Forward privacy guarantees that the leakage of update opera-

tions is independent of all previous operations. For any forward

private leakage, an update o does not give any information on the

sequence of operations O except the update operation itself.

Definition 5 (Forward Privacy). A leakage function L =
(LSetup,LQuery,LUpdate) is forward private if there exists a leak-
age function L′Update such that for any MM, sequence O and update
operation o, LUpdate(MM, (O,o)) = L′Update(op(o), ®v(o)).

Backward privacy controls the leakage viewed by the adversary

during queries about previous deletion operations. In our work, we

obtain type-II backward privacy where only the total number of

updates and their timestamps are revealed for deleted items.

Bost et al. [7] formally defined three types of backward privacy

where type-I provides the strongest privacy to type-III with the

weakest privacy. To define backward privacy, we need the follow-

ing three additional leakage functions that takes as argument a

sequence O of operations that is omitted for convenience.

TimeDB(label) = {(time(oi),v) | v ∈ MM[label] and oi
is the last operation to add v toMM[label]}.

TimeDB(label) contains values appearing in MM[label] and the

timestamp of the operation that inserted those values intoMM[label].
Next, we define

TimeUpdate(label) = {time(oi) |

op(oi) ∈ {edit, rm, app, del},label(oi) = label}

that consists of the timestamps of all update operations that modify

label. Finally,

DelHist(label) = {(time(oi), time(oj)) |

oi inserted v for label, removed by oj }

is a list of pairs of timestamps for operations oi and oj where oi
inserted a value into MM[label] that was later deleted by oj . Fi-
nally, let alabel denote the total number of values inserted into

MM[label] in total (including those values that were later deleted).

Definition 6 (Type-II Backward Privacy). A leakage function
L = (LSetup, LQuery, LUpdate) is Type-II backward private if there
exist leakage functions L′ and L′′ such that:

LUpdate(MM, (O,o)) = L′(op(o), label(o));

LQuery(MM, (O,o)) = L′′(TimeDB(label(o)), TimeUpdate(

label(o))).

We note that Type-II backward privacy reveals the total number

of updates performed on label and the timestamps of each update

operation for label. All our constructions will be type-II backward
private. We point readers to Appendix C for definitions of other

types of backward privacy.

2.7 Cryptographic Tools
We will utlize pseudorandom functions (PRFs) and IND-CPA en-

cryption. PRF F guarantees its output is computationally indistin-

guishable from random functions for a secret seed. In our proofs, we

may model them as random oracles. IND-CPA encryption scheme

SKE = (Gen, Enc,Dec) ensures each ciphertext is computationally

indistinguishable from random strings.

422

Proceedings on Privacy Enhancing Technologies 2023(1)

3 OUR CONSTRUCTIONS
In this section, we present our new constructions. We start with a

warm-up construction 2ch that achieves full dynamicity, efficiency

and backward privacy but not forward privacy. Next, we present

2chFB and 2chs
FB that build upon 2ch to obtain forward privacy

with different efficiency trade-offs. Throughout this section, we

focus on the simpler setting where the upper bounds onMM size

n and volume ℓ are fixed through all operations. In Section 4, we

present generic transformations to handle changing n and ℓ.

3.1 Problems with Naive Padding
We start by discussing a naive solution of adding padding to prior

dynamic constructions (such as [6, 7]) to obtain volume-hiding. At

a high level, one could pad the storage and communication with

sufficient dummy values to always return ℓ values. Unfortunately,

this straightforward approach incurs O(nℓ) blowup in server stor-

age, which can be very large for many values of ℓ (such as ℓ =
√
n).

Instead, we will utilize hashing (like prior works [20, 35, 42]) to

enable re-using encryptions of real values as padding for multiple

queries and avoid significant storage increase. As a result, all our

constructions will require the minimal O(n) storage.

3.2 2ch: Warm-Up Scheme
We start from the optimal static volume-hiding scheme by Patel et
al. [35]. Their construction utilizes cuckoo hashing [23, 30] to embed

data into server storage. Cuckoo hashing guarantees that each value

is stored in one of two hash table locations or in a small client stash.

To perform a query, one can simply access 2ℓ hash table locations,

two for each of the ℓ possible values associated with the label.

Unfortunately, inserting values with cuckoo hashing is much more

complex. Cuckoo hashing insertion works in an iterative fashion

where a value is placed into two locations and, if both locations are

occupied, the algorithm displaces one of the values; the displaced

value is inserted by using the same algorithm. This algorithm is not

volume-hiding as the adversary learns whether certain entries are

occupied or not by viewing how long the insertion algorithm runs.

Looking closer, the query algorithm with cuckoo hashing [35]

is volume-hiding because 2ℓ entries are retrieved regardless of the

hash table’s contents. On the other hand, the insertion algorithm

heavily depends on the hash table’s contents. It turns out that the

simple balls-into-bins hashing scheme obtains the property that

both query and update operations are independent of the table

contents. The balls-and-bins hashing scheme considers n bins. To

insert a value, it is placed into one of then bins uniformly at random.

If we have n values and n bins, the maximum number of values

assigned to a bin will be Θ(logn) (see [27]). To obtain volume-

hiding, all bins must be padded to the maximum load of Θ(logn).
Both query and update operations will access ℓ bins possibly with

dummies to attain volume-hiding resulting in O(ℓ logn) overhead
as employed by DST [20].

Our goal is to find a hashing scheme with efficiency better than

balls-into-bins hashing while ensuring both queries and updates are

volume-hiding. To achieve this goal, we utilize two-choice hashing
by Azar et al. [4]. Once again, there are n bins. To insert an value,

two bins are chosen uniformly at random and the item is placed

into the bin that is least loaded (i.e. currently contains less items).

Using this technique, the maximum bin size becomes O(log logn).
Unfortunately, the server storage grows toO(n log logn) since each
of the n bins must be padded to O(log logn) size to hide the true

number of values in each bin.

To avoid this extra storage, we can utilize a modified version of

two-choice hashing introduced by Patel et al. [33] that we denote
by H2ch. This hashing scheme reduces the amount of unused space

by arranging bins to share physical memory. At a high level, the

hash table consists of n/logn binary trees each of height log logn
such that there are n leaf nodes. All node store at most one value.

As a result, the total size becomes at most 2n. Each bin is uniquely

assigned to a binary tree leaf and the bin’s storage corresponds to

the nodes that appear on the unique path from the bin’s leaf to

the root of its respective binary tree. For insertion, the least loaded

bin is the one with the empty node that is at the highest level (i.e.

furthest away from its corresponding root). Additionally, there is

a stash to store overflows. Whenever a value is inserted into two

bins that are completely filled (all nodes appearing on the unique

leaf-to-root paths are occupied), the item is instead placed into

the stash. We formally present bounds on the stash size and point

readers to the proof in [33].

Theorem 3 ([33]). Let f (n) = ω(logn). When mapping at most
n items using H2ch, the stash stores at most f (n) items except with
probability negl(n).

Using theH2ch hashing scheme and padding empty binary nodes

with dummy values, we may obtain a dynamic volume-hiding

scheme with O(ℓ log logn) overhead that we denote as 2ch (stand-

ing for 2-choice hashing) following the same techniques as [20, 35]

that maps values to bins using pseudorandom functions. We note

that 2ch already results in a more efficient, volume-hiding construc-

tion than DST [20].

However, 2ch does not achieve forward privacy as updating a la-

bel enables association with previous queries to the same label. Our

next constructions will solve this problem to obtain forward pri-

vacy. In contrast, 2ch is already type-II backward private as updates

only reveal the timestamp of previous queries and updates for the

same label (encapsulated by TimeDB and TimeUpdate respectively
in Definition 6).

We present the pseudocode for 2ch in Appendix D along with a

formal proof of security and efficiency.

Comparison with [33]. Both [33] and our work aim to build

privacy-preserving maps. However, [33] aims to hide access pat-

terns using dummy queries for maps that store at most one value

per label. In contrast, our work aims to mitigate volume leakage

for MMs storing multiple values per label.

3.3 Construction 2chFB
We formally present our dynamic volume-hiding STE scheme for

MMs, 2chFB (standing for 2-choice hashing with Forward and

Backward privacy). 2chFB builds upon our hashing techniques from

the prior section. The major difference between 2chFB and prior

volume-hiding works lies in the update algorithms. For forward

privacy, we need tomake sure that an update on a label does not leak

anything about previous queries on the same label. In particular, we

need to hide label equality leakage during updates. In 2ch and [20],

423

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

identical bins are retrieved for both queries and updates. Otherwise,

an adversary can link that both operations were performed on the

same label, which is why prior constructions (as well as 2ch) are

not forward private.

We take a different approach to update operations for 2chFB
where update operations are not immediately applied to the un-

derlying MM inspired by prior works such as [6, 7, 26] to obtain

forward privacy. The update operation is only applied when a

query for the same label is performed. In more detail, 2chFB out-

sources two encrypted data stores to the server. The first multi-map

Table stores all values of update operations that have already been

queried (i.e. the update operations were applied). The other multi-

map EMMu will accumulate update operations for labels that have

not yet been queried. A table of PRF keys used to generate locations

for storing updates in EMMu is stored locally by the client. Once

a query for label is performed, all update operations pertaining

to label will be retrieved from EMMu and applied to Table before
returning the final result. As a result, all the accumulated updates

for label in EMMu cannot be linked until a query for label is

performed ensuring 2chFB achieves forward privacy. We note these

ideas have been abstracted in [26]. 2chFB is also type-II backward

private inheriting the same properties as 2ch.

We present the pseudocode of 2chFB in Figure 1.

Setup. The setup algorithm is executed by the client C to construct

an EMM. It takes as input a security parameter 1
λ
, params = (n, ℓ),

where n is an upper bound on the total number of values that

will be stored and ℓ is an upper bound on the maximum volume,

and a multi-map MM. Setup creates a two-choice hash table Table
by constructing s = ⌈n/(c logn)⌉ full binary trees each of height

⌈log(c logn)⌉ = O(log logn) for a sufficiently large constant c ≥
1. In the above, all logarithms are base 2. Each bin is assigned

uniquely to a binary tree leaf arbitrarily. The bin’s storage consists

of the storage of all nodes appearing on the root-to-leaf path to

the assigned leaf. A stash is also initialized for overflows that will

be stored by the client locally. Next, setup inserts all labels and

values ofMM into the two-choice hash table. The algorithm selects

a random seed K for PRF F and an encryption key KEnc. For each

label ∈ MM, setup first computes the seed FK (label); then, for
each ®v[j] ∈ MM[label], the two bins to store (label, ®v[j]) are
computed as GFK (label)(j | | 0) and GFK (label)(j | | 1), where G is a

PRF. An encryption of (label, j, ®v[j]) is stored in the empty node

of either bin with the highest level. If both bins are full, the tuple

(label, j, ®v[j]) is stored in the stash. Remaining empty tree nodes

are filled with encrypted dummies.

The forest of binary trees Tablewill be sent to the server S, along
with an empty multi-map EMMu (which is meant to store future

updates temporarily). The client maintains storage of the stash,

an initially empty multi-map MMst and seed K and key Ku for

accessing EMMu .

Update. For an update operation (op, label, ®v), the client checks
locally if MMst[label] is defined. If not defined, the client sets

MMst[label] := (0, 0). MMst[label][0] will denote the version of

the PRF seed currently being used for label and MMst[label][1]
will denote the number of tuples for label in the update encrypted

structure EMMu . To cache the update operation, first ®v is padded
with dummies until its length is exactly ℓ. Next, the client computes

x := H (Ku , label | | MMst[label][0]), y := H (x,MMst[label][1
]) and z := Enc(KEnc, (op, ®v)) and sends the pair (y, z) to the server

that sets EMMu [y] := z. The client also increments the count

at MMst[label][1] by one as the number of update tuples for

label in EMMu has incremented by one. The label version in

entry MMst[label][0] remains unchanged.

Query. To query for label, the client computes seed FK (label)
and checks if MMst[label] exists and MMst[label][1] > 0. If so,

the client computes another seed x := H (Ku , label | | MMst[0])

and sends seeds FK (label) and x to the server. Otherwise, when

MMst[label] is not defined or MMst[label][1] = 0, the client

only sends FK (label). The server expands the seed FK (label)
to find the 2ℓ bins {GFK (label)(i | | b)}i ∈[ℓ],b ∈{0,1} in the binary

trees. Afterwards, the server returns the encryptions stored at

{EMMu [H (x, i)]}i ∈[MMst[label][1]] along with the encrypted con-

tents of all 2ℓ bins to the client. The server also deletes the encryp-

tions retrieved from EMMu .

The client decrypts all contents to find all values that are associ-

ated with label in the 2ℓ bins along with values that may be stored

in the overflow stash. The client then decrypts the updates returned

from EMMu , applies them locally to the downloaded 2ℓ bins or

the overflow stash. These updated 2ℓ bins are re-encrypted with

fresh randomness and sent back to the server for storage. All values

associated with label in these 2ℓ bins and the overflow stash are

finally returned as the query’s answer. The client increments the

label version MMst[label][0] := MMst[label][0] + 1 in order to

ensure forward privacy for future updates as the server now knows

the current seed for label and EMMu . The client also resets the

countMMst[label][1] := 0 as there are no unapplied updates for

label in EMMu .

3.3.1 Security. We present the leakage of 2chFB against a persis-

tent adversary. At setup, the adversary learns nothing except for

the public parameter n. Therefore, LSetup(MM) = n. Let O be any

sequence of operations and o be the current operation. Then, the
update leakage is LUpdate(MM, (O,o)) = (ℓ, uop) where uop leaks
that the operation is an update but not anything specific about the

type of update operation (as exactly ℓ encrypted values are inserted

into a random entry of EMMu). We observe that our update oper-

ations are forward private as the update leakage is independent

of all previous operations. Type-II backward privacy is inherited

as 2chFB has essentially the same properties as 2ch for deletions.

Finally, the query leakage LQuery(MM, (O,o)) = (ℓ, leq(O,o), qop).
Label equality is revealed by retrieving all cached unapplied up-

dates for label(o) from EMMu and from the fact that all query

operations on the same label, access the same 2ℓ bins from the

two-choice hash table Table. The proof that 2chFB is L-secure for

the leakage function L described above is in Appendix E.

Theorem 4. If SKE is IND-CPA secure, F and G are PRFs, and
H is a keyed hash function modeled as a random oracle, 2chFB is
a volume-hiding, forward private and type-II backward private L-
secure dynamic, EMM scheme.

3.3.2 Efficiency. We split our analysis into amortized and worst

case overhead starting with amortized. The amortized communica-

tion and computational cost of an update operation isO(ℓ). During
updates, ℓ encrypted values are inserted into EMMu . During a

424

Proceedings on Privacy Enhancing Technologies 2023(1)

Let F , G , H be PRFs and SKE = (Gen, Enc, Dec) be an IND-CPA encryption scheme.

(st; EMM) ← 2chFB .Setup
(
1
λ , params = (n, ℓ, c),MM = {(labeli , ®vi)}i∈[|label∈MM|]

)
:

(1) C randomly selects a PRF seeds K , Ku ← {0, 1}λ and generates KEnc ← Gen(1λ).
(2) C creates s := ⌈n/(c logn)⌉ full binary trees, Table← (B1, . . . , Bs) each of height h := ⌈log(c logn)⌉. Roots are at level 0 and leaf nodes are

at height h. Each node has the capacity to hold a single encryption. Each of the n bins are uniquely assigned to n different leaf nodes.

(3) C initializes Stash← ∅ and two empty MMs: EMMu , MMst.

(4) For each labeli ∈ MM:

(a) Compute κ ← FK (labeli) and for each j ∈ [|®vi |]:
(i) C computes b0 ← Gκ (j | | 0) and b1 ← Gκ (j | | 1) and locates the two leaf-to-root paths associated with bins b0 and b1.
(ii) C computes Enc(KEnc, (labeli , j , ®v[j])) and places it into the empty node at the highest level in either bin b0 or b1.
(iii) If both bin b0 and bin b1 contain no empty nodes, add (labeli , j , ®v[j]) to Stash.

(5) For all empty nodes in the binary trees, C adds a fresh encryption of Enc(KEnc, (⊥, ⊥, ⊥)).

(6) C sets its state st← (K , Ku , KEnc, Stash,MMst) and S stores EMM← (B1, . . . , Bs , EMMu).

(st′; EMM′) ← 2chFB .Update
((
(op, label, ®v), st

)
, EMM

)
:

(1) If label < MMst, C setsMMst[label] ← (0, 0).
(2) C computes x ← H (Ku , label | |MMst[label][0]) and y ← H (x ,MMst[label][1]) .
(3) C pads ®v up to ℓ values with ⊥ and computes z ← Enc(KEnc, (op, ®v)).
(4) C sends (y, z) to S who updates EMMu by setting EMMu [y] ← z .
(5) C updates MMst[label][1] ← MMst[label][1] + 1.

((st′, ®v); EMM′) ← 2chFB .Query (((qop, label), st) , EMM):

(1) C sends κ := FK (label) to S and if label ∈ MMst and MMst[label] > 0, C computes x := H (Ku , label | |MMst[label][0]) and sends

(x , cnt := MMst[label][1]) to S.
(2) S computes {Gκ (j | | 0),Gκ (j | | 1)}j∈[ℓ] and retrieves the 2ℓ associated bins that are sent to C.

(3) S also sends entries EMMu [H (x , 0)], . . . , EMMu [H (x , cnt − 1)] to C.
(4) C decrypts the 2ℓ bins and all cached update operations for label.
(5) C locally compiles ®v containing all values tagged with label and deletes them from the downloaded bins and Stash.
(6) For each i = 0, . . . , cnt − 1:

(a) C computes (opi , ®vi) ← Dec(KEnc, EMMu [H (x , i)]).
(b) If opi = app, append ®vi to ®v. If opi = edit, set ®v← ®vi . If opi = rm, set ®v←⊥. If opi = del, remove any values in ®vi from ®v. Afterwards, C

compacts results so that all non-dummies appear before dummies.

(7) C adds back ®v to the 2ℓ bins and Stash, encrypts the bins and uploads them back to S.

(8) C increments the version numberMMst[label][0] by 1, resets the count MMst[label][1] to 0 and outputs ®v.

Figure 1: Pseudocode for Construction 2chFB

query operation, the same ℓ encrypted values are downloaded and

decrypted locally. Amortized communication and computational

complexity of a query is O(ℓ log logn) as exactly 2ℓ bins are re-

trieved where each bin contains O(log logn) values.
Next, we consider worst case overhead. For update operations, ℓ

encrypted values are always uploaded to EMMu . The worst case

query overhead heavily depends on the number of unapplied up-

date operations. For label, we denote the number of unapplied

update operations since the last query for label byu(label). Then,
the worst case overhead of a query operation is O(ℓ log logn +
ℓu(label)) from retrieving 2ℓ bins along with applying all prior

update operations for label.
The server storage consists ofO(n) value along with the number

of unapplied update operations. While this may be unbounded, we

present a variant in Appendix G where the update operations in

EMMu may be applied every O(n/ℓ) update operations to ensure
that server storage never exceeds O(n). The client storage consists
of MMst requiring at most O(m) storage wherem is the number of

unique labels. The other portion of client storage is the two-choice

hashing overflow stash using f (n) storage except with probability

negligible in n for any f (n) = ω(logn).

Discussion about Forward Privacy. In 2chFB, the client storage
increases as there are more update operations without intermediate

query operations. This directly maps to the setting that forward

privacy becomes more important as more information in the up-

dates are protected from the adversarial server. In other words,

the additional client storage is a direct result of providing stronger

protection for updates without intermediate queries. In the next

section, we present a construction providing the same forward

privacy protection without the increasing client storage.

3.4 Construction 2chs
FB

Next, we present our final scheme 2chs
FB (standing for 2-choice

hashing with Forward and Backward privacy and small client

storage) that is also volume-hiding, forward and type-II backward

private like 2chFB. 2chs
FB improves upon 2chFB by using smaller

permanent client storage. Recall that 2chFB uses client storage po-

tentially linear in the number of unique labels O(m). 2chs
FB will

only require permanent client storage of size ω(logn). Recall that
2chFB required the client to locally storeMMst. For any label ∈ L,
MMst[label] stores two integers; a version number required by

the keyed hash H and the number of unapplied update operations

that are in EMMu . Instead, we will outsource the storage of MMst
to the server inspired by ideas from recent work in ORAMs [25, 31]

and encrypted search [12].

In order to get rid of MMst at the client, 2chs
FB will explicitly

store the location of cached operations in EMMu , in a series of

425

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

static, encrypted multi-maps EMMloc
0
, . . . , EMMloc

t−1 of geometri-

cally increasing sizes stored on the server. The number of encrypted

multi-maps will be t = O(logu) where u is the number of previ-

ous update operations. For any i , EMMloc
i stores at most 2

i
cached

update operations. We instantiate these t structures using PiBas∗

(a modified version of PiBas [9]) that is a static, response-hiding,
volume-revealing, encrypted multi-map scheme as described in [12].

We note however that any static encrypted search scheme with

setup leakage being the size of the input multi-map and query

leakage being at most query equality and volume of the tuple, will

suffice as a replacement to PiBas∗. Specifically, 2chs
FB maintains

the invariant that the encrypted multi-map EMMloc
i will store the

locations of cached operations per label over the latest update

operations that are not stored in smaller encrypted multi-maps,

EMMloc
0
, . . . , EMMloc

i−1. As smaller encrypted multi-maps are filled,

their contents are percolated to larger encrypted multi-maps in

an efficient, but amortized, manner. As an example, suppose that

all encrypted multi-maps EMMloc
0
, . . . , EMMloc

i−1 are fully occupied.

For the next update operation, the contents will be combined and

placed into the larger encrypted multi-map EMMloc
i .

By querying all of EMMloc
0
[label], . . . , EMMloc

t−1[label], the
client learns the entries of EMMu that contain all cached update

operations. The result is the client forgoes local storage ofMMst
at the cost of an additional roundtrip and t additional encrypted
multi-map queries.

We present the pseudocode for 2chs
FB in Figure 2.

Setup. The client executes the same setup algorithm as 2chFB ex-

cept that the client does not storeMMst.

Update. For an update operation (op, label, ®v), the client chooses
a random location x and stores an encryption of the current up-

date operation at EMMu [x] after padding ®v to be length ℓ. To store

x , the client identifies the smallest, empty multi-map. Say, this is

EMMloc
i . Next, the client downloads all EMMloc

0
, . . . , EMMloc

i−1, de-

crypts them locally and combines all counts into a single multi-map

MMi . For each label′ that appears in one of the i downloaded en-

cryptedmulti-maps, the client setsMMi [label
′] = (EMMloc

0
[label′],

. . . , EMMloc
i−1[label

′]). The random location of the current update

x is also appended toMMi [label].MMi is then encrypted using

the setup algorithm of PiBas∗ or a valid replacement and sent to S

for storage as EMMloc
i while all EMMloc

0
, . . . , EMMloc

i−1 are emptied.

Query. For a query to label ∈ L, 2chs
FB performs t queries with the

server S to retrieve the locations of all cached update operations

for label in EMMu . Afterwards, C uses the same algorithm as

2chFB.Query to retrieve the final result. The only difference being

that instead of sending a seed to S to compute the locations in

EMMu , C sends the locations directly.

3.4.1 Security. We present the leakage profile for 2chs
FB when each

EMMloc
i is initialized by PiBas∗. While one could present generic

leakage, we choose to present leakage of a specific instantiation

for ease of readability. Recall this construction has setup leakage

of simply the total number of values and query leakage of label-

equality and the queried label volume. Let MM be the input multi-

map,O be a operation sequence and o be the current operation. The
setup leakage of 2chs

FB is identical to 2chFB as the adversary’s view

is the same. Therefore,LSetup(MM) = n. In terms of update leakage,

the server learns information about which EMMs are downloaded

and uploaded by the client. Note, this is a pre-determined schedule

depending only on the number of previous updates. So, the update

leakage is LUpdate(MM, (O,o)) = (ℓ, uop) which is also same as

2chFB. Finally, the query leakage of 2chs
FB is similar to 2chFB but it

also has an extra leakage of queries on EMMloc
i that we denote as

Lloc. However, Lloc is a strict subset of the label-equality leakage.

Therefore, LQuery(MM, (O,o)) = (ℓ, leq(O,o), qop,Lloc). As this is

essentially the same leakage as 2chFB, 2chs
FB also inherits forward

and type-II backward privacy. The security proof of 2chs
FB is found

in Appendix F.

Theorem 5. If SKE is IND-CPA secure and PiBas∗ is a static,
response-hiding EMM scheme, then 2chs

FB is a volume-hiding, for-
ward private and type-II backward private L-secure dynamic, EMM
scheme.

3.4.2 Efficiency. We start with the main improvement of 2chs
FB

over 2chFB that is client storage. The client storage of 2chs
FB

becomes only the overflow stash of size at most f (n) for any func-

tion f (n) = ω(logn) except with negligible probability. In Sec-

tion 5.1, we show the overflow stash never exceeded more than a

couple of items at a time through experimental evaluation. We note

that client storage may be temporarily higher during operation time

if and when rebuilding (discussed in Appendix G) is required. The

additional server storage consists of EMMloc
0
, . . . , EMMloc

t−1 that

stores at most |Update(O)| values. So, 2chs
FB has identical worst

case client storage cost as 2chFB.
Note, the only additional query and update overhead costs con-

sist of the downloading, uploading, constructing and querying the

encrypted multi-maps used to store counts. Consider the encrypted

multi-map EMMloc
i that stores at most 2

i
counts. We note that

EMMloc
i is downloaded and re-uploaded when EMMloc

0
, . . . , EMM

loc
i−1 are full. This occurs every 2

i
update operations. For u update

operations, the total cost of EMMloc
i is O(2i · u/2i) = O(u) or O(1)

amortized cost across all 2
i
update operations. Over all t encrypted

multi-maps, the amortized cost of update operations becomes O(t).
As we set t = O(logu) where u is the number of prior update oper-

ations, the additional additive cost is O(logn) assuming at most a

polynomial number of operations u = poly(n). The cost of query-

ing each EMMloc
i is equivalent to O(logn + u(label)) as O(logn)

queries occur and a total ofu(label) encrypted values are retrieved
in the worst case. Therefore, the worst case communication and

computational cost of queries areO(ℓ log logn+ ℓu(label)+ logn).
In terms of amortized cost, we note that each update operation

incurs O(ℓ) overhead at update time by writing ℓ encrypted values

into the smallest multi-map. As each of these encrypted values

may move up through the O(logn) levels, the amortized update

cost may be viewed as O(ℓ logn). Through this lens, the amortized

query overhead remains O(ℓ log logn).

4 MODIFYING n AND ℓ
In Section 3, we assume that the upper bounds multi-map size

(n) and volume (ℓ) never change. We will now present a generic

transformations to handle changing upper bounds. In this section,

will use n and ℓ as the current size and volume upper bounds

respectively. Values n and ℓ will also be inputs for each operation.

426

Proceedings on Privacy Enhancing Technologies 2023(1)

Let SKE = (Gen, Enc, Dec) be an IND-CPA encryption scheme, 2chFB be as described in Figure 1 and PiBas∗ (a modified version of PiBas [9]) be a
static, response-hiding, encrypted multi-map scheme as described in [12].

(st; EMM) ← Setup
(
1
λ , params = (n, ℓ, c),MM = {(labeli , ®vi)}i∈[|label∈MM|]

)
:

(1) C executes

(
st2, EMM2

)
← 2chFB .Setup(1λ , params,MM).

(2) C sets t = 0 and stores st← (t , st2), and S stores EMM = (EMM2).

(st′; EMM′) ← Update
((
(op, label, ®v), st

)
, EMM

)
:

(1) C generates random x ← {0, 1}λ , pads ®v with dummies until ®v contains ℓ values and computes y ← Enc(KEnc, (op, ®v)).
(2) S stores EMMu [x] ← y , finds the smallest i such that EMMloc

i is empty or un-initialized and sends EMMloc
0
, . . . , EMMloc

i−1 to C.

(3) For each j ∈ {0, . . . , i − 1}, C decrypts each EMMloc
j using stj to obtainMMj .

(4) For each label′ appearing in at least one of theMMj , C computesMMi such thatMMi [label
′] = (EMMloc

0
[label′], . . . , EMMloc

i−1[label
′]).

(5) C incorporates the current update operation by appending x toMMi [label].

(6) C executes (sti ; EMMloc
i) ← PiBas∗ .Setup(1λ ,MMi).

(7) C updates st by removing st0, . . . , sti−1 and adding sti . If i ≥ t , C updates st by setting t ← i + 1.
(8) C sends EMMloc

i to S. S empties all of EMMloc
0
, . . . , EMMloc

i−1 and adds EMMloc
i to EMM.

((st′, ®v); EMM′) ←Query (((qop, label), st) , EMM):

(1) C executes PiBas∗ .Query for label to all non-empty EMMloc
i to obtain EMMloc

i [label] and sets L ← (EMMloc
0
[label], . . . , EMMloc

t−1[label]).

S removes all entries in L from their corresponding EMMloc
i .

(2) C and S execute ((st2′, ®v); EMM2
′) ← 2chFB .Query(((qop, label), st2); EMM2). In the execution, C uses L as the locations of cached update

operations for label in EMMu instead of sending a seed to S to compute these locations.

(3) C computes st′ by updating st2 to st2′ and S computes EMM′ by updating EMM2 to EMM2
′
.

Figure 2: Pseudocode for construction 2chs
FB

4.1 Changing Multi-Map Size n
We start with handling either growing or shrinking the multi-map

(i.e., changes to n). To do this, we will leverage a technique used in

most common data structure implementations. Consider a dynamic

array implementation (such as std::vector in C++). The array is

initialized in memory with some fixed capacity upper bound. Once

data grows beyond the capacity, the array implementation increases

the capacity by some multiplicative factor (such as 2x), allocates

new memory for the increased capacity and copies the contents to

the new allocation. Our transformation will use the same paradigm.

Consider any dynamic volume-hiding EMM Σwith leakageL for

fixed n and ℓ. We build Σ′ with an additional Rebuild functionality.

(st′, EMM′) ← Σ′.Rebuild((st,n, ℓ), (EMM,n, ℓ)) :

(1) C downloads EMM and decrypts using st to get plaintextMM.

(2) C and S execute Σ.Setup(1λ, (n, ℓ, params),MM) to receive st′

and EMM′ respectively.

First, we evaluate the leakage of executing Rebuild. The first step
leaks nothing as C simply downloads EMM. The second step leaks

setup leakage LSetup(MM,n, ℓ). So, LRebuild = LSetup.

When the client reports a change to n, Σ′ will first execute
Rebuild before running the original algorithm of Σ for either queries

or updates. So, there is additional leakage informingwhenn changes
that we will model with N such that N [i] = LSetup(MM,n, ℓ) if n
changes on the i-th operation and N [i] =⊥ otherwise. We choose

n to double (halve) to increase (decrease) capacity.

Theorem 6. Let Σ be a dynamic volume-hiding encrypted multi-
map EMM with leakage function L for fixed values of n and ℓ. Then,
Σ′ is a dynamic volume-hiding EMM with leakage (LSetup, (LQuery,

M), (LUpdate,M)). If n is only doubled or halved, Σ′ has no increased
amortized overhead.

Proof. For leakage, the simulator can detect when Rebuild is

run and simulate setup usingM . In terms of efficiency, consider the

setting where capacity is doubled. That means, there must have

been at leastΩ(n) values added. The cost ofRebuild isO(n)meaning

that the amortized overhead is at most O(1) per updated value. A

similar argument can be applied if capacity is halved. □

Instantiation with 2chFB or 2chs
FB. If Σ is chosen to be 2chFB or

2chs
FB, then LSetup(MM,n, ℓ) = n. So, the leakage of Σ′ is L′ =

(LSetup, (LQuery,n), (LUpdate,n)) asM may be upper boundedwith

LSetup(MM,n, ℓ) = n.

Discussion about Approach. At a high level, the transformation

is a straightforward approach of downloading, modifying locally

and re-uploading the multi-map. To our knowledge, this remains

the most efficient technique in the literature. For example, similar

techniques were used in [12] for avoiding local storage of large

count tables. We also employ similar techniques in 2chs
FB. To our

knowledge, techniques with smaller client storage utilize more

expensive algorithms including oblivious shuffling or sorting [1,

2, 29, 32]. We leave it as an open problem to improve handling

multi-map size changes beyond the straightforward approach.

4.2 Changing Maximum Volume ℓ
For changing values of ℓ, we could also apply the same technique

for handling changing n. However, the amortized overhead may be

larger as only a small number of keys need to be added to force a

change in ℓ. Instead, we present an even simpler transformation

that may be applied to either 2chFB or 2chs
FB.

We augment the Query and Update algorithms in the following

way. The state of the client will also include the current maximum

volume ℓ. Whenever ℓ changes, the client communicates the new

value to the server. Afterwards, the protocols use the new value of

ℓ to continue. Combining with techniques in Section 4.1, we get

the following theorem that we prove in Appendix H:

Theorem 7. Let Σ′ be either 2chFB or 2chs
FB with the above mod-

ifications to handle changing n and ℓ with leakage L = (LSetup,L

427

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2
16

2
17

2
18

2
19

2
20

2
21

2
22

T
im

e
 (

s
)

Number of label, value pairs

2chFB
2ch

s
FB

Figure 3: Setup time for 2chFB and 2chs
FB

Query, LUpdate). Then, Σ′ is a dynamic volume-hiding EMM with
leakage L′ = (LSetup, (LQuery,n, ℓ), (LUpdate,n, ℓ)).

5 EXPERIMENTAL EVALUATION
In this section, we evaluate the practicality of our volume-hiding

schemes. First, we describe the experimental setup and our choice

of parameters for our constructions. Using these experiments, we

aim to answer whether our constructions concretely efficient while

providing better privacy and more operations.

5.1 Experimental Setup
Our experiments are performed using the samemachine for both the

client and the server; a Ubuntu PCwith an Intel(R) Core(TM) i5-9400

CPUwith 6 cores, and 64 GB of RAM. Our schemes are implemented

in Rust in about 500-800 lines of code each. Both schemes are

instantiated in-memory. All the results of our experiments have

standard deviations less than 2% of their average and were repeated

at least 10 times.

 0

 5

 10

 15

 20

 25

 0 0.5 1 1.5 2 2.5 3 3.5 4

 C
lie

n
t

S
ta

s
h

 S
iz

e
 /

 S
e

rv
e

r
S

to
ra

g
e

 S
iz

e
 (

%
)

Value of parameter ’c’.

n= 65,536
n= 262,144

n= 1,048,576
n= 4,194,304

Figure 4: Stash size as a percentage of total encrypted storage
size on the server for different values of n and c

Primitives.We use and build on top of cryptographic primitives

provided by ring [38] and OPENSSL [41] rust crates. For symmetric

encryption, we use AES in CTR mode with key of size 32 bytes.

In all our experiments, we consider PRFs with 32 byte outputs. In

particular, we implement our PRFs using HMAC with SHA256.

Input Multi-Maps. We will consider general multi-maps contain-

ing n ∈ {216, 218, 220, 222} maximum values which are considered

standard in the literature [12, 35]. As our schemes are dynamic, we

initialize our input multi-maps with 90% of their maximum capacity.

The final 5% is set aside to support updates. Since we are trying

to guage efficiency of volume-hiding schemes, we set the number

of unique labels to be n/100 so that volume of labels are large and

also comparable to experiments in other works such as [12]. The

size of label and value strings will be 20 bytes.

Setup Protocol. The time taken by the setup algorithm of both

2chFB and 2chs
FB ranges from 0.35s to 36.7s as the size of the input

multi-map increases. For our experiments, we set the value for the

parameters c = 1. We refer the readers to Figure 3 for a detailed

plot of setup times. We also varied the value of c from 0.01 to 4 to

study how the value of c effects the stash size when we put up to n
values in our encrypted multi-map. This experiment was repeated

100 times and results are plotted in Figure 4. We find that for values

of c ≥ 0.1 the client stash size averaged 0 regardless of the value of

n we picked.

Query Protocol. For both our schemes, we computed the total

latency taken by the client and the server collectively on average to

produce a final query result. We first focus on query times without

any updates. In our experiments, for each data point, we would

do multiple rounds of three queries on the same label but each

time we would increase the number of updates done on that label

prior to a round of queries. At a certain point the volume of the

label would approach the maximum volume set for that particular

instantiation of the scheme and we would stop updating further.

We would then take the average of query times for this label across

these rounds. This experiment is done in this way to factor in the

effect of updates on query times. Figures 5a and 5b show query

times for different input multi-map sizes against different maximum

volumes. Note that the query time in these graphs are per result

where the number of results for a query is the maximum volume.

This is done so that a direct comparison to the static volume hiding

schemes in [35] can be made. Here we note that the query times

are comparable to the query times in [35] even though our schemes

support dynamic operations. The query times of 2chFB and 2chs
FB

are also very comparable even though updates are stored differently

in both schemes. Queries for both schemes ranged from 0.027ms to

0.051ms per result.

Update Protocol. For 2chFB, the time taken by an update stays

under 25ms and for 2chs
FB under 76ms even for maximum volume

of 20, 000 as shown in Figures 5c and 5d. This is primarily becuase

of forward and backward privacy, updates are not directly applied

to the two-choice hashing structure and some of the work is post-

poned, until queries. The updates for 2chs
FB are costly compared to

2chFB as expected because unlike 2chFB where a tuple is directly

inserted into an encrypted multi-map, in 2chs
FB multiple encrypted

structures are downloaded and rebuilt which takes extra time. How-

ever, 2chs
FB is still desirable due to smaller permanent client state.

Due to lack of space and for a detailed look at query times inter-

posed with updates to show the effects updates have on a query,

we refer the reader to Appendix I.

Comparison with DST [20]. We compare with DST [20]. The

other construction based on Pseudo-Random Transform in [20] is

lossy in nature and leads to inaccurate query results. Hence, we do

not believe a fair comparison is possible there. For DST, we note
428

Proceedings on Privacy Enhancing Technologies 2023(1)

DST 2chFB 2chs
FB

InputMM
Number of Values (n) 2

16
2
18

2
20

2
22

2
16

2
18

2
20

2
22

2
16

2
18

2
20

2
22

EMM Storage
Server (MB) 13.8 56.85 220.6 961 7.99 44.78 167.90 634.98 13.52 66.59 255.14 983.95

Client (KB) < 1 < 1 < 1 < 1 4.09 11.58 32.76 92.68 < 1 < 1 < 1 < 1

Table 2: Observed sizes of structures. We denote n as the total number of label, value pairs in the inputMM.

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 128 256 512 1024 2048 4096 8192 16384

T
im

e
 (

m
s
)

Maximum Volume for a label

2
16

2
18

2
20

2
22

(a) 2chFB Query

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 128 256 512 1024 2048 4096 8192 16384

T
im

e
 (

m
s
)

Maximum Volume for a label

2
16

2
18

2
20

2
22

(b) 2chs
FB Query

 0

 5

 10

 15

 20

 25

 30

 128 256 512 1024 2048 4096 8192 16384

T
im

e
 (

m
s
)

Maximum Volume for a label

2
16

2
18

2
20

2
22

(c) 2chFB Update

 40

 45

 50

 55

 60

 65

 70

 75

 80

 128 256 512 1024 2048 4096 8192 16384

T
im

e
 (

m
s
)

Maximum Volume for a label

2
16

2
18

2
20

2
22

(d) 2chs
FB Update

Figure 5: Query and Update times for different values of ℓ and different database sizes.
that it lacks several features offered by our constructions such as

forward privacy and full-dynamicity (see App. A). For a compre-

hensive treatment, we still present a comparison with DST. We will

show that 2chFB and 2chs
FB offer the additional functionalities with

minimal (or no) increased costs compared to DST.
For updates, DST takes from 7ms-1000ms for ℓ ranging from 128

to 20,000. During an update of a label x , DST downloads all the

bins for x , deletes them on the server and re-uploads the edited

bins. In comparison Figures 5c and 5d, show that for updates, our

schemes have smaller communication and computation than DST.
This is not surprising as for an update 2chFB only uploads a vector

of size ℓ to the server and 2chs
FB rebuilds a series of encrypted

structure up until the smallest empty one. For smaller values of ℓ

(≤ 1024), 2chs
FB takes more time than DST during updates due to

additional cost of re-executing setup protocols on the underlying

data structures dominating the cost incurred due to value of ℓ.

Startingwith the simple casewhen ignoring updates, our schemes

2chFB and 2chs
FB improve the communication during queries by

2-3x as our bins contain 4-5 items each using c = 1 whereas bins

in DST contain at least 21-32 items (see experiments in [35]). Now

taking updates into account during queries, and for different values

of ℓ and n, we observed that 12-22 updates on a label before a query

on that label would increase the query time to as much as that of

DST. This is because downloading these additional updates during

our queries makes our communication/computation costs similar

to DST (countering our small bin size advantage). This is not sur-

prising as we provide more stronger privacy guarantees. The total

cost would still be same or better than DST as this increase in cost

of query time is actually amortized over updates in DST.

429

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

ACKNOWLEDGMENTS
This research received no specific grant from any funding agency

in the public, commercial, or not-for-profit sectors.

REFERENCES
[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. 1983. An 0 (n log n) sorting

network. In Proceedings of the fifteenth annual ACM symposium on Theory of
computing. 1–9.

[2] Gilad Asharov, TH Hubert Chan, Kartik Nayak, Rafael Pass, Ling Ren, and Elaine

Shi. 2020. Bucket oblivious sort: An extremely simple oblivious sort. In Symposium
on Simplicity in Algorithms. SIAM, 8–14.

[3] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico,

and Elaine Shi. 2020. OptORAMa: Optimal Oblivious RAM. In EUROCRYPT 2020,
Anne Canteaut and Yuval Ishai (Eds.). 403–432.

[4] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Upfal. 1999. Balanced

allocations. SIAM journal on computing 29, 1 (1999), 180–200.

[5] Laura Blackstone, Seny Kamara, and Tarik Moataz. 2020. Revisiting Leakage

Abuse Attacks. In NDSS 2020. https://doi.org/10.14722/ndss.2020.23103

[6] Raphael Bost. 2016. Sophos: Forward Secure Searchable Encryption. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1143–1154.

[7] Raphael Bost, Brice Minaud, and Olga Ohrimenko. 2017. Forward and backward

private searchable encryption from constrained cryptographic primitives. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1465–1482.

[8] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-

abuse attacks against searchable encryption. In CCS ’15.
[9] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,

Marcel-Catalin Rosu, and Michael Steiner. 2014. Dynamic searchable encryption

in very-large databases: data structures and implementation.. In NDSS, Vol. 14.
23–26.

[10] Melissa Chase and Seny Kamara. 2010. Structured Encryption and Controlled

Disclosure. In Advances in Cryptology - ASIACRYPT 2010, Masayuki Abe (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 577–594.

[11] Reza Curtmola, Juan A. Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-

able symmetric encryption: improved definitions and efficient constructions.. In

CCS ’06. 79–88.
[12] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Papadopoulos, and Char-

alampos Papamanthou. 2020. Dynamic Searchable Encryption with Small Client

Storage. In NDSS.
[13] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation

on Oblivious RAMs. J. ACM 43, 3 (1996).

[14] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson.

2018. Pump up the Volume: Practical Database Reconstruction from Volume

Leakage on Range Queries. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. 315–331.

[15] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and

Vitaly Shmatikov. 2016. Breaking web applications built on top of encrypted data.

In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 1353–1364.

[16] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muhammad Naveed, and

Thomas Ristenpart. 2017. Leakage-abuse attacks against order-revealing encryp-

tion. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 655–672.
[17] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:

New Volume Attacks against Range Queries. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security (London, United

Kingdom) (CCS ’19). Association for Computing Machinery, New York, NY, USA,

361–378. https://doi.org/10.1145/3319535.3363210

[18] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access

Pattern disclosure on Searchable Encryption: Ramification, Attack andMitigation.

In 19th Annual Network and Distributed System Security Symposium, NDSS 2012,
San Diego, California, USA, February 5-8, 2012.

[19] Seny Kamara and Tarik Moataz. 2018. SQL on structurally-encrypted databases.

In International Conference on the Theory and Application of Cryptology and
Information Security. Springer, 149–180.

[20] Seny Kamara and Tarik Moataz. 2019. Computationally Volume-Hiding Struc-

tured Encryption. In EUROCRYPT 2019. 183–213.
[21] Seny Kamara and Charalampos Papamanthou. 2013. Parallel and dynamic search-

able symmetric encryption. In International conference on financial cryptography
and data security. Springer, 258–274.

[22] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. 2016. Generic

Attacks on Secure Outsourced Databases. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October
24-28, 2016. 1329–1340.

[23] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. 2009. More Robust Hash-

ing: Cuckoo Hashing with a Stash. SIAM J. Comput. 39, 4 (2009), 1543–1561.
[24] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.

2021. Response-Hiding Encrypted Ranges: Revisiting Security via Parametrized

Leakage-Abuse Attacks. In 2021 IEEE Symposium on Security and Privacy, SP 2021,
May 24-27, 2021. IEEE.

[25] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2012. On the (in) security

of hash-based oblivious RAM and a new balancing scheme. In Proceedings of
the twenty-third annual ACM-SIAM symposium on Discrete Algorithms. SIAM,

143–156.

[26] Russell WF Lai and Sherman SM Chow. 2017. Forward-secure searchable encryp-

tion on labeled bipartite graphs. In International Conference on Applied Cryptog-
raphy and Network Security. Springer, 478–497.

[27] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: Random-
ization and probabilistic techniques in algorithms and data analysis. Cambridge

university press.

[28] Muhammad Naveed, Seny Kamara, and Charles V. Wright. 2015. Inference

Attacks on Property-Preserving Encrypted Databases. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, Denver, CO,
USA, October 12-16, 2015. 644–655.

[29] Olga Ohrimenko, Michael T Goodrich, Roberto Tamassia, and Eli Upfal. 2014.

The Melbourne shuffle: Improving oblivious storage in the cloud. In International
Colloquium on Automata, Languages, and Programming. Springer, 556–567.

[30] Rasmus Pagh and Flemming Friche Rodler. 2001. Cuckoo hashing. In European
Symposium on Algorithms. Springer, 121–133.

[31] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. 2018.

PanORAMa: Oblivious RAM with logarithmic overhead. In FOCS ’18.
[32] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. 2018. CacheShuffle: A family of

oblivious shuffles. In 45th International Colloquium on Automata, Languages, and
Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[33] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. 2019. What Storage Access

Privacy is Achievable with Small Overhead?. In Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (Amster-

dam, Netherlands) (PODS ’19). Association for Computing Machinery, New York,

NY, USA, 182–199. https://doi.org/10.1145/3294052.3319695

[34] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. 2020. Leakage Cell Probe Model:

Lower Bounds for Key-Equality Mitigation in Encrypted Multi-Maps. In CRYPTO
2020.

[35] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating

Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps

via Hashing. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (London, United Kingdom) (CCS ’19). Association
for Computing Machinery, New York, NY, USA, 79–93. https://doi.org/10.1145/

3319535.3354213

[36] David Pouliot and Charles V Wright. 2016. The shadow nemesis: Inference

attacks on efficiently deployable, efficiently searchable encryption. In CCS ’16.
[37] Daniel S Roche, Adam Aviv, and Seung Geol Choi. 2016. A practical oblivious

map data structure with secure deletion and history independence. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 178–197.

[38] Brian Smith. 2012. RING. docs.rs/ring/0.17.0-alpha.1/ring/index.html.

[39] D. Song, D. Wagner, and A. Perrig. 2000. Practical techniques for searches on

encrypted data. In Proceeding 2000 IEEE Symposium on Security and Privacy. S&P
2000. 44–55.

[40] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-

namic Searchable Encryption with Small Leakage.. In NDSS, Vol. 71. 72–75.
[41] docs.rs/openssl/0.10.29/openssl/. 1998. OPENSSL-RUST.

[42] Jiafan Wang and Sherman SM Chow. 2021. Simple Storage-Saving Structure for

Volume-Hiding Encrypted Multi-maps. In IFIP Annual Conference on Data and
Applications Security and Privacy. Springer, 63–83.

[43] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All Your

Queries Are Belong to Us: The Power of File-Injection Attacks on Searchable

Encryption.. In USENIX Security Symposium. 707–720.

[44] Yongjun Zhao, Huaxiong Wang, and Kwok-Yan Lam. 2021. Volume-Hiding

Dynamic Searchable Symmetric Encryption with Forward and Backward Privacy.

Cryptology ePrint Archive, Report 2021/786. https://eprint.iacr.org/2021/786.

A SEMI-DYNAMICITY OF DST [20]
Throughout our work, we refer to the DST construction of Kamara

and Moataz [20] as semi-dynamic. In particular, the construction

only provides adding, deleting or overwriting an entire value tuple

associated with a label. The missing functionality is appending or

removing values from an existing value tuple. The acute reader

might note that one could implement this using two semi-dynamic

430

https://doi.org/10.14722/ndss.2020.23103
https://doi.org/10.1145/3319535.3363210
https://doi.org/10.1145/3294052.3319695
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
docs.rs/ring/0.17.0-alpha.1/ring/index.html
docs.rs/openssl/0.10.29/openssl/
https://eprint.iacr.org/2021/786

Proceedings on Privacy Enhancing Technologies 2023(1)

EMM operations: querying the value tuple, modifying the value tu-

ple locally and updating the entire value tuple. While this achieves

the desired functionality, it degrades privacy significantly. A recent

work [34] shows that, unless one is willing to utilize ORAM-like

overheads, leakage of label equality patterns must be revealed by

queries. Recall that label equality patterns reveal whether two dif-

ferent operations are performed on the same label or not (see Sec-

tion 2.4). Using the above approach of replacing an update with two

semi-dynamic operations will leak label equality leakage for every

update (due to the usage of the semi-dynamic query). This ends up

being a significant privacy degradation as label equality leakage

during updates violates the privacy requirements of being forward

private. Therefore, the above transformation requires either the

EMM to use ORAM-like overhead or not provide forward privacy.

In our work, we avoid this problem by directly building update

operations that avoid performing query operations.

B LOWER BOUNDS WHEN HIDING ℓ
In this section, we analyze the dynamic volume-hiding definition

in [44] that hides the maximum volume ℓ. Additionally, they in-

troduce the notion of (p, ϵ)-correctness meaning that ϵ-fraction of

matching values are returned with probability at least p. We refer

readers to [44] for both definitions. We show a strong and simple

query communication lower bound in this model.

Theorem 8. Let Σ be a dynamic volume-hiding encrypted multi-
map EMMaccording to the definition in [44] that is (p, ϵ)-correct. Then,
the sum of the expected query communication and client storage of Σ
must be Ω(p · ϵ · n).

Proof. Consider any MM. We show that when MM is input to

Σ, the query communication must be Ω(ϵn). To do this, we con-

struct the following adversaryA. In the first phase of the definition

in [44], A chooses any label k appearing in MM and constructs

MM′ with k associated with a value tuple of size |MM|. For opera-
tions, A chooses to query k repeatedly. Note, that the size of the

query communication is viewed by the adversary. By the correct-

ness requirement, it must be that Ω(ϵn) values are returned when

querying MM′ with probability at least p. So, the query communi-

cation and client storage must be Ω(p · ϵ · n) in expectation. By the

volume-hiding requirement and the fact that the adversary sees the

size of query communication, this means that queries to MM must

satisfy the same requirement. □

For reasonable parameters such as p ≥ 0.5 and ϵ ≥ 0.5 and

sublinear client storage, then Ω(n) expected query communication

is required.

C BACKWARD PRIVACY
Definition 7 (Backward Privacy). A leakage function L =

(LSetup, LQuery, LUpdate) is Type-I, Type-II, Type-III backward
private if there exist leakage functions L′ and L′′ such that the
following conditions are satisfied.

Type-I backward private:

LUpdate(MM, (O,o)) = L′(op(o));

LQuery(MM, (O,o)) = L′′(TimeDB(label(o)),alabel);

Type-II backward private:

LUpdate(MM, (O,o)) = L′(op(o), label(o));

LQuery(MM, (O,o)) = L′′(TimeDB(label(o)), TimeUpdate(

label(o)));

Type-III backward private:

LUpdate(MM, (O,o)) = L′(op(o), label(o));

LQuery(MM, (O,o)) = L′′(TimeDB(label(o)),DelHist(

label(o)));

As seen from the definition, at query time for label, type-I back-
ward privacy reveals the total number of updates performed on

label. Type-II backward privacy also reveals the timestamps of

each update operation for label. Finally, type-III backward privacy
additionally reveals pairings of update operations that deleted val-

ues inserted by a prior update operation. All our constructions will

be type-II backward private.

D 2ch: PSEUDOCODE AND ANALYSIS
The pseudocode of 2ch is presented in Figure 6.

Security. We present the leakage profile for our scheme against a

persistent adversaries. During Setup, no information is leaked about

the plaintextMM other than an upper bound n on the total number

of values stored and hence LSetup(MM) = n. As far as query and

update operations are concerned, we observe that operations on

the same label access the same 2ℓ bins. So, the adversary may link

different operations as operating on the same label or not. Moreover,

update operations write back the bins accessed whereas query

operations do not and so the type of operation, update or query, is

also leaked. For a sequence of operations O and the last operation

o, we have query leakage LQuery(MM, (O,o)) = (op(o), leq(O,o), ℓ)
and update leakage LUpdate(MM, (O,o)) = (op(o), leq(O,o), ℓ). We

now prove that following theorem for 2ch.

Theorem 9. If SKE is an IND-CPA-secure encryption and F ,G are
pseudorandom functions, then for every n ≥ ℓ ≥ 1, 2ch is a volume-
hiding and type-II backward private, L-secure dynamic STE scheme
for multi-maps.

In order to prove this Theorem 9, we first prove Theorem 10,

Lemma 1 and Lemma 2.

Theorem 10. If SKE is an IND-CPA-secure encryption and F ,G
are pseudorandom functions, then for every n ≥ ℓ ≥ 1, 2ch is an
adaptive L-secure dynamic STE scheme for multi-maps.

Proof of Theorem 10. We consider a stateful simulator S

with state st that works as follows:

EMM← S.SimSetup(1λ,n):
(1) Construct s = ⌈n/c log(n)⌉ full binary trees B1, . . . ,Bs each

with height h = ⌈log(c logn)⌉.
(2) Fill each node of every tree with an encryption of ⊥.

(3) Return B1, . . . ,Bs .

Response← S.SimQuery(1λ, leq(O,o), ℓ):
(1) From leq(O,o), fix smallest i where label(o) = label(O[i]).
(2) If no such i exists, set st[|O | + 1] to be a uniformly random

string from {0, 1}λ and set i ← |O | + 1.

431

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

Let F and G be PRFs and SKE = (Gen, Enc, Dec) be an IND-CPA encryption scheme.

(st; EMM) ← 2ch.Setup
(
1
λ , params = (n, ℓ, c),MM = {(labeli , ®vi)}i∈[m]

)
:

(1) C randomly selects a PRF key K ← {0, 1}λ and generates KEnc ← Gen(1λ).
(2) C creates s := ⌈n/(c logn)⌉ full binary trees, Table← (B1, . . . , Bs) each of height h := ⌈log(c logn)⌉. Roots are at level 0 and leaf nodes are

at height h. Each node has the capacity to hold a single encryption. Each of the n bins are uniquely assigned to n different leaf nodes.

(3) C initializes Stash← ∅.
(4) For each labeli ∈ MM:

(a) Compute x ← FK (labeli) and for each j ∈ [|®vi |]:
(i) C computes b0 ← Gx (j | | 0) and b1 ← Gx (j | | 1) and locates the two leaf-to-root paths associated with bins b0 and b1.
(ii) C computes Enc(KEnc, (labeli , j , ®v[j])) and places it into the empty node at the highest level in either bin b0 or b1.
(iii) If both bin b0 and bin b1 contain no empty nodes, add (labeli , j , ®v[j]) to Stash.

(5) For all empty nodes in the binary trees, C adds a fresh encryption of Enc(KEnc, (⊥, ⊥, ⊥)).

(6) C sets its state st← (K , KEnc, Stash) and sets EMM← (B1, . . . , Bs).
((st′, ®v); EMM′) ← 2ch.Query ((st, (qop, label)) , EMM).

(1) C parses st as (K , KEnc, Stash), and S parses EMM as (B1, . . . , Bs).
(2) C computes x ← FK (label) that is sent to the S.

(3) S computes {Gx (i | | 0),Gx (i | | 1)}i∈[ℓ] and retrieves the 2ℓ associated bins that are sent to C.

(4) C decrypts all 2ℓ bins and returns ®v consisting of all values that are tagged with label in the bins as well as in Stash.

(st′; EMM′) ← 2ch.Update
((
st, (op, label, ®v′)

)
, EMM

)
:

(1) C computes x ← FK (label) that is sent to the S.

(2) S computes {Gx (i | | 0),Gx (i | | 1)}i∈[ℓ] and retrieves the 2ℓ associated bins that are sent to C.

(3) C decrypts all 2ℓ bins and compiles ®v consisting of all values that are tagged with label that are removed the downloaded bins.

(4) C checks Stash for any values also tagged with label that should be added to ®v. All entries corresponding to label are removed from Stash.
(5) If op = app, C appends ®v′ to ®v. If op = edit, C sets ®v← ®v′. If op = del, C removes the values in ®v′ from ®v. If op = rm, C sets ®v← ⊥.
(6) For i ∈ [|®v |]:

(a) C computes b0 ← Gx (i | | 0) and b1 ← Gx (i | | 1).
(b) C locally checks binb0 and binb1, finds highest level node with a dummy encryption and replaces the dummywith Enc(KEnc, (label, i , ®v[i])).
(c) If both bin b0 and bin b1 contain no nodes with dummy encryptions, add (label, i , ®v[i]) to Stash.

(7) C re-encrypts all 2ℓ bins and sends back to S for storage.

Figure 6: Pseudocode for Construction 2ch

(3) Return st[i].

Response← S.SimUpdate(1λ, leq(O,o), ℓ):
(1) From leq(O,o), fix smallest i where label(o) = label(O[i]).
(2) If no such i exists, set st[|O | + 1] to be a uniformly random

string from {0, 1}λ and set i ← |O | + 1.
(3) Return st[i].
(4) Return 2·ℓ arrays (A0,i ,A1,i)i ∈[1,ℓ] of sizeh each. Each entry

of the array is an encryption of ⊥.

We now show that for all PPT adversariesA, the probability that

Real2ch,A (1
λ) outputs 1 is negligibly different from the probability

that Ideal2ch,A,S(1
λ) outputs 1. To do this, we use the following

sequence of games:

• Game0 is identical to Real2ch,A (1
λ).

• Game1 replaces the PRF F with a random function. This

is indistinguishable from Game0 because of the pseudo-

randomness of F .
• Game2 replaces the IND-CPA encryption SKE.Enc stepswith
encryptions of ⊥ that are indistinguishable due to IND-CPA

guarantees.

• Game3 replaces the outputs of random functions with uni-

formly random chosen values. This is indistinguishable from

Game2 as the output of random function and a random string

are indistinguishable.

Game3 is the same as the ideal experiment completing the proof.

□

Next we will prove that 2ch is volume-hiding.

Lemma 1. Leakage function L is volume-hiding.

Proof. To prove that L is volume-hiding, we consider any two

multi-maps with the number of values ≤ n and with maximum

volume of a label ≤ ℓ. Note that the only other leakage is the label-

equality pattern which is independent of the input maps as well as

the response lengths of the query operations even after updates.

As a result, the input to the adversary in both games with different

multi-maps is identical, completing the proof. □

Next we will prove that 2ch is type-II backward private.

Lemma 2. Leakage function L is type-II backward private.

Proof. Note that LUpdate is dependent on the public parameter

ℓ and the label on which the update is being performed. The leakage

during queries on previous updates is the timestamps of all previous

updates via leq. This leakage profile falls under the definition of

type-II backward privacy. □

Proof of Theorem 9. Follows directly from Theorem 10,

Lemma 1 and Lemma 2. □

Efficiency. Communicational and computational query and update

operations areO(ℓ log log(n)) as the client uploads a single PRF eval-
uations and uploads and/or downloads 2ℓ bins of size O(log logn).
By the analysis of [33], the overflow stash in client storage con-

tains at most f (n) values, for any function f (n) = ω(logn), except

432

Proceedings on Privacy Enhancing Technologies 2023(1)

with probability negligible in n. Server storage for our scheme is

⌈n/(c logn)⌉ · ⌈log(c logn)⌉ = O(n) encrypted values. If we had used
standard two-choice hashing, server storage would beO(n log logn)
without a client stash.

Variants. In our pseudocode, query and update algorithms are

distinguishable since query algorithms are non-interactive while

update algorithms are interactive. If we wish to hide operational

types from the adversary, we can modify the query algorithm in

the following way. After receiving the 2ℓ bins, the query algorithm

re-encrypts all values in 2ℓ bins and re-uploads them back to the

server. The resulting variant of 2ch will ensure that adversaries

cannot distinguish between query and update algorithms.

E SECURITY PROOF OF 2chFB
For convenience, we present the leakage function L of 2chFB (re-

peated from Section 3.3.1).

• LSetup(MM) = n.
• LUpdate(MM, (O,o)) = (ℓ, uop).
• LQuery(MM, (O,o)) = (ℓ, leq(O,o), qop).

As a reminder, the above leakage means that only the size of

the multi-map is leaked during setup. During the update operation,

only the maximum volume and update operation is leaked. Finally,

the maximum volume, query operation and label equality leakage

pattern are revealed during queries.

Theorem 11. If SKE is an IND-CPA-secure encryption and F ,G
are pseudorandom functions and H is modeled as a random oracle,
then for every n ≥ ℓ ≥ 1, 2chFB is an adaptive L-secure dynamic
STE scheme for multi-maps.

Proof. We consider a stateful simulator S with state st that
works as follows:

EMM← S.SimSetup(1λ,n):
(1) Construct s = ⌈n/c log(n)⌉ full binary trees B1, . . . ,Bs each

with height h = ⌈log(c logn)⌉.
(2) Fill each node of every tree with an encryption of ⊥ and

initialize an empty multi-map EMMu .

(3) Set st ←
(
M,U

)
where M is an empty map and U is an

empty array.

(4) Return (B1, . . . ,Bs , EMMu).
Response← S.SimQuery(1λ, qop, ℓ, leq(O,o)):

(1) Using leq(O,o), find smallest i such that label(o) = label(O
[i]) and O[i] is a query.

(2) If no such i exists, set i ← |O |+ 1 andM[i] to be a uniformly

random string from {0, 1}λ .

(3) Let j be the largest integer such that O[j] is a query and

label(O[j]) = label(o). If no such j exists, set j to −1. For
all m > j, is label(o) = label(O[m]) and if O[m] is an
update, append the corresponding string fromU to a listU ′.

(4) If | U ′ |> 0, set x to be a uniformly random string from

{0, 1}λ and program the random oracle H as follows: for all

s ∈ [| U ′ |], H (x, s) := U ′[s].
(5) If | U ′ |> 0, return ((x, | U ′ |),M[i]). Else, returnM[i].
(6) Initialize 2 · ℓ arrays (A0,i ,A1,i)i ∈[1,ℓ] of size h each. Each

entry of the array is an encryption of ⊥.

(7) Return (A0,i ,A1,i)i ∈[1,ℓ].

(st,Response) ← S.SimUpdate(1λ, uop, ℓ):

(1) Compute an y that is an encryption of tuple (⊥, ®v⊥) where
®v⊥ consists of ℓ values of ⊥.

(2) Choose x uniformly at random from {0, 1}λ and append x
toU .

(3) S returns (x,y).
We now show that for all PPT adversaries A, the probability

that Real2chFB,A (1
λ) outputs 1 is negligibly different from the prob-

ability that Ideal2chFB,A,S(1
λ) outputs 1. To do this, we use the

following sequence of games:

• Game0 is identical to Real2chFB,A (1
λ).

• Game1 replaces the PRFs F ,G with a random function. This

is indistinguishable from Game0 because of the pseudo-

randomness of F ,G.
• Game2 replaces output of H with random strings during

update protocol and during search the random oracle H is

programmed so that H outputs the random strings picked

during update when queried.

• Game3 replaces the IND-CPA encryption SKE.Enc stepswith
simply producing a random string. RCPA security of SKE
guarantees indistinguishability between a ciphertext and a

randomly generated string.

• Game4 replaces the outputs of random functions with uni-

formly random chosen values. This is indistinguishable from

Game3 as the output of random function and a random string

are indistinguishable.

Game4 is the same as the ideal experiment. □

Note that the random oracle assumption may be removed by

using H as a pseudo-random function PRF and the client sending

all PRF evaluations to the server.

Lemma 3. Leakage function L is volume-hiding.

Proof. To prove that L is volume-hiding, we consider any two

multi-maps with the number of values ≤ n and with maximum

volume of a label ≤ ℓ. Note that the only other leakages are the

global label-equality pattern and the number of updates performed

for queried labels since the last searches on them. In particular, no

leakage about the value tuples associated with update operations is

leaked. As a result, the input to the adversary in both volume-hiding

games with different multi-maps is identical. □

Lemma 4. Leakage function L is forward private and type-II back-
ward private.

Proof. Note that LUpdate is only dependent on the public pa-

rameter ℓ and independent of all previous operations. Therefore,

L is forward private. For type-II backward privacy, we note that

the leakage during queries on previous updates is the number of

previous updates on the queried label that may be computed using

TimeUpdate(O) where O is all previous operations. Therefore, L

is also type-II backward private. □

Proof of Theorem 4. Follows directly from above. □

433

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

F SECURITY PROOF OF 2chs
FB

For convenience, we present the leakage function L of 2chs
FB (re-

peated from Section 3.4.1).

• LSetup(MM) = n.
• LUpdate(MM, (O,o)) = (ℓ, uop).
• LQuery(MM, (O,o)) = (ℓ, leq(O,o), qop).

The leakage is identical to 2chFB for all of setup, updates and

queries. We note that the proof will consider the leakage of Lloc
from EMMloc

i . However, this turns out to be a subset of label equal-

ity leakage.

Theorem 12. If SKE is an IND-CPA-secure encryption and F , G
are pseudorandom functions, then for every n ≥ ℓ ≥ 1, 2chs

FB is an
adaptive L-secure dynamic STE scheme for multi-maps.

Proof. We will utilize a simulator Spi for our initialization of

each EMMloc
i using the PiBas∗ construction. We assume S′ to be

the simulator for 2chFB. We consider a stateful simulator S with

state st that works as follows:

EMM← S.SimSetup(1λ,n):

(1) Execute S′.SimSetup(1λ,n)
Response← S.SimQuery(1λ, uop, ℓ, leq(O,o),Lloc):

(1) Using the total number of updates so far, determine en-

crypted multi-maps EMMloc
i that are non-empty.

(2) For each EMMloc
i that is non-empty, execute and return

Spi .SimQuery(1λ,Lloc).

(3) Using leq(O,o), find smallest i such that label(o) = label
(O[i]) and O[i] is a query.

(4) If no such i exists, set i ← |O |+ 1 andM[i] to be a uniformly

random string from {0, 1}λ .

(5) Let j be the largest integer such that O[j] is a query and

label(O[j]) = label(o). If no such j exists, set j to −1. For
all m > j, if label(o) = label(O[m]) and if O[m] is an
update, append the corresponding string fromU to a listU ′.

(6) Return (U ′,M[i]).
(7) Initialize 2 · ℓ arrays (A0,i ,A1,i)i ∈[1,ℓ] of size h each. Each

entry of the array is an encryption of ⊥.

(8) Return (A0,i ,A1,i)i ∈[1,ℓ].
(st,Response) ← S.SimUpdate(1λ, ℓ, uop):

(1) Using the total number of updates so far, determine the

encrypted multi-map EMMloc
i that will be constructed and

uploaded. Execute and return Spi .SimSetup(1λ, 2i).
(2) Compute an y that is an encryption of tuple (⊥, ®v⊥) where
®v⊥ consists of ℓ values of ⊥.

(3) Choose x uniformly random from {0, 1}λ and append x to

U .

(4) S returns (x,y).
We now show that for all PPT adversaries A, the probability

that Real2chs
FB,A
(1λ) outputs 1 is negligibly different from the prob-

ability that Ideal2chs
FB,A,S(1

λ) outputs 1. To do this, we use the

following sequence of games:

• Game0 is identical to Real2chs
FB,A
(1λ).

• Game1 replaces the PRFs F ,G with a random function. This

is indistinguishable from Game0 because of the pseudo-

randomness of F ,G.

• Game2 replaces the IND-CPA encryption SKE.Enc stepswith
simply producing a random string. RCPA security of SKE
guarantees indistinguishability between a ciphertext and a

randomly generated string.

• Game3 replaces the outputs of random functions with uni-

formly random chosen values. This is indistinguishable from

Game2 as the output of random function and a random string

are indistinguishable.

• Game4 replaces the search and setup algorithms of PiBas∗

with corresponding algorithms of Spi . This is indistinguish-

able from Game3 as otherwise this would break the security

of PiBas∗.
Game4 is the same as the ideal experiment. □

Lemma 5. Leakage function L is volume-hiding.

Proof. As discussed above, the only additional leakage of 2chs
FB

compared to 2chFB is Lloc when the query protocol is executed

and that adds no additional information about the volume of the

searched-for label. □

Lemma 6. Leakage function L is forward private and type-II back-
ward private.

Proof. Note, the update leakage remains independent of all

previous operations. Hence, 2chs
FB is forward private. The query

leakage is identical for both 2chFB and 2chs
FB except for Lloc. Look-

ing closer, Lloc only reveals the number of updates that occured for

ℓ, which is something that is already revealed by 2chFB. Therefore
L is type-II backward private. □

Proof of Theorem 5. Follows directly from above. □

G VARIANTS OF 2chFB AND 2chs
FB

Note that both 2chFB and 2chs
FB require server storage linear in

the number of update operations in the worst case (i.e. the updated

labels are never queried). Moreover, the static structures EMMloc
i

in 2chs
FB do not take into account the space wasted due to resolved

updates. We show that one can ensure the server storage stays at

O(n) using a scheduled clean-up algorithm. Every O(n/ℓ) update
operations, the client and server agree to perform a scheduled clean-

up. The client downloads the entire encrypted storage, decrypts

locally, applies all cached update operations and re-uploads a freshly

encrypted version of the two-choice hash table. As a result, the

server storage never exceeds O(n). Furthermore, the additional

amortized cost of each update operation increases by O(ℓ) that
does not increase the total cost. Also particularly for 2chs

FB, one

can modify the update algorithm in such a way that EMMloc
i that

is selected to be locally reconstructed is one that has some space

newly freed due to a deletion of an entry from EMMloc
i during

update resolution in a past query operation.

Discussion about Forward Privacy.We note that the server stor-

age increases as there are more update operations without inter-

mediate query operations. Similar to the growing client storage

of 2chFB discussed in Section 3.3.2, the additional server storage

enables providing stronger protection for updates without inter-

mediate queries. We leave it as an open problem to achieve this

protecting without additional storage costs.

434

Proceedings on Privacy Enhancing Technologies 2023(1)

H PROOF OF THEOREM 7
Proof of Theorem 7. We note that the proof is essentially iden-

tical to Theorems 4 and 5. The only modification is that after each

operation, the simulator is provided n and ℓ. The simulator will

run the same algorithm with these newly provided values. For cor-

rectness, both 2chFB and 2chs
FB compact their results such that

non-dummy values appear before dummy values. As long as ℓ is a

valid upper bound, then all correct values are always returned. □

I EFFECTS OF UPDATES ON QUERIES
We refer to Figure 7 for a detailed look at 2chFB’s query times

interposed with its updates to show the effects updates have on a

query. In each of the graphs in this figure, there are 9 queries issued

and the x-axis represents the ith query of the 9 queries. The y-axis
represents the total query time for each query. Right before the

first, fourth and seventh query on a label, there were 10 , 50 and 100

updates made on that label, respectively. The size of each update

was randomly sampled. The graphs, hence show small spikes in the

first, fourth and seventh query times because of unresolved updates

at those times and sudden speed up of the following two queries. We

observed that 2chs
FB (Figure 8) which saves a lot on client storage,

tends to be comparable but slower than 2chFB. This is because its
query protocol takes two rounds and has to do considerably more

rebuilding than 2chFB. We, however, note that our query times are

in order of microseconds (25µs to 50µs) per single label, value pairs
for both 2chFB and 2chs

FB. Compared to Figures 5a and 5b, we do

see a slight increase as queries now need to apply updates.

J CIRCUMVENTING LABEL EQUALITY
LOWER BOUND [34]

In a work by Patel et al. [34], it was shown that encrypted multi-

map scheme that aims to leak anything less than label equality

leakage will inevitably require Ω(logn) overhead that is similar to

an oblivious RAM (ORAM). Throughout our work, we justify the

leakage of label equality leakage as a way to obtain efficiency faster

than ORAMs and circumvent this lower bound.

One may wonder whether it is possible to circumvent the lower

bound in [34] in other ways without leaking label equality. One

attempt may be to restrict the sequence of valid operations to avoid

the one that was used to prove the lower bound in [34]. Recall

that the proof in [34] considers a hard sequence of k operations

with k/2 updates with value tuples of length ℓ to unique labels

followed by k/2 queries to the same labels in any order. For this set

of sequences, it was shown that Ω(log(kℓ)) overhead is required for
a wide range of choices for k and ℓ. One obtains the above lower

bound by setting kℓ = nα for any constant 0 < α ≤ 1.

In theory, it is possible to construct an encrypted multi-map

that is faster for sequences that are not the above hard sequences

without leaking label equality. That is, the construction is faster for

non-hard sequence but slower for hard sequences. Unfortunately,

the set of hard sequences is large and considers a natural setting of

updating k/2 different labels followed by querying them. Therefore,

the practical benefits of such a construction remain unclear. Never-

theless, we leave it as an interesting open question as to whether

this efficiency dichotomy is achievable.

435

Proceedings on Privacy Enhancing Technologies 2023(1) Amjad et al.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 100

2
16

2
18

2
20

2
22

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 1000

2
16

2
18

2
20

2
22

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 10,000

2
16

2
18

2
20

2
22

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1 2 3 4 5 6 7 8 9
T

im
e
 (

m
s
)

ith Query, Maximum Volume for a label = 20,000

2
16

2
18

2
20

2
22

Figure 7: This is the time cost when executing queries in 2chFB for ℓ ∈ {100, 1000, 10000, 20000}. For each value of ℓ, we executed
queries over varying database sizes as shown in the graphs.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 100

2
16

2
18

2
20

2
22

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 1000

2
16

2
18

2
20

2
22

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 10,000

2
16

2
18

2
20

2
22

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1 2 3 4 5 6 7 8 9

T
im

e
 (

m
s
)

ith Query, Maximum Volume for a label = 20,000

2
16

2
18

2
20

2
22

Figure 8: Similar to Fig. 7, this figure represent total time taken when executing queries in 2chs
FB.

436

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Definitions
	2.1 Structured Encryption
	2.2 Adaptive Security
	2.3 Multi-Maps
	2.4 Label Equality Leakage
	2.5 Volume Hiding Leakage Functions
	2.6 Forward and Backward Privacy
	2.7 Cryptographic Tools

	3 Our Constructions
	3.1 Problems with Naive Padding
	3.2 2ch: Warm-Up Scheme
	3.3 Construction 2chFB
	3.4 Construction 2chFBs

	4 Modifying n and l
	4.1 Changing Multi-Map Size n
	4.2 Changing Maximum Volume l

	5 Experimental Evaluation
	5.1 Experimental Setup

	Acknowledgments
	References
	A Semi-Dynamicity of DST[KM19]
	B Lower Bounds when Hiding l
	C Backward Privacy
	D 2ch: Pseudocode and Analysis
	E Security Proof of 2chFB
	F Security Proof of 2chFBs
	G Variants of 2chFB and 2chFBs
	H Proof of Theorem 7
	I Effects of Updates on Queries
	J Circumventing Label Equality Lower Bound[PPY19]

