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ABSTRACT
In this paper we study verifiable sampling from probability distri-

butions in the context of multi-party computation. This has various

applications in randomized algorithms performed collaboratively

by parties not trusting each other. One example is differentially

private machine learning where noise should be drawn, typically

from a Laplace or Gaussian distribution, and it is desirable that no

party can bias this process. In particular, we propose algorithms to

draw random numbers from uniform, Laplace, Gaussian and arbi-

trary probability distributions, and to verify honest execution of the

protocols through zero-knowledge proofs. We propose protocols

that result in one party knowing the drawn number and protocols

that deliver the drawn random number as a shared secret.

KEYWORDS
differential privacy, sampling, zero knowledge proofs, multiparty

computation

1 INTRODUCTION
Nowadays, randomization is an important algorithmic technique.

Its numerous applications include randomized algorithms, e.g., for

many problems the simplest or most efficient known solution strat-

egy is a randomized algorithm, and hiding information, e.g., in

cryptography or in differential privacy. While true randomness is

hard to achieve in most cases it is sufficient to be able to gener-

ate pseudo-random numbers. A wide range of approaches exist to

generate pseudo-random numbers of good quality.

The situation becomes more complicated when we consider gen-

erating random numbers in the context of multi-party computation

between parties which do not trust each other. We are particularly

interested in algorithms which allow multiple parties to draw a

random number from a specified probability distribution in such

a way that all parties can be convinced that the number drawn is

truly random and that either all parties, only one party, or none of

the parties learn the drawn random number. This implies that no

party should be able to influence the probability distribution or be

able to predict or guess the random number.
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Such algorithms are particularly useful for differentially private

federated machine learning using sensitive data from multiple data

owners. In this setting, one would like to learn a statistical model

M with parameters θ on the sensitive data of multiple data owners.

Such model could reveal sensitive information and therefore one

possible technique is to perturb the model before publication suf-

ficiently such that it becomes differentially private [27], i.e., such

that from the perturbed model
ˆM with parameters

ˆθ one cannot

distinguish a change in a single individual. This can be achieved by

drawing some noise η from an appropriate probability distribution,

e.g., η often is a vector of Laplace or Gaussian random variables,

and setting
ˆθ = θ+η. In such scenario it is important nobody knows

η as else that party could subtract η from the published
ˆθ to obtain

the sensitive model parameters θ . At the same time, all data owners

want to be sure that η is drawn correctly: if anyone can bias the

distribution of this noise, privacy may not be guaranteed anymore

or the model parameters may be biased in a way similar as what

one can achieve with data poisoning [49, 53].

In this paper we develop algorithms to verifiably draw random

numbers. We consider uniform distributions, Laplace distributions,

Gaussian distributions and arbitrary distributions. We develop

strategies with three different privacy levels for the random num-

ber: strategies which verifiably draw a publicly known random

number, strategies which verifiably draw a random number which

is revealed to only one party and strategies which verifiably draw

a random number and output it as a shared secret so that none of

the parties knows the random number.

An important tool to prove correct behavior can be found in

zero knowledge proofs (ZKP). These are cryptographic techniques

that allow a party to prove statements without revealing anything

else. Typically, one considers statements involving logical and arith-

metic relations over private values which can be expressed using

additions, multiplications and other elementary operations such as

comparisons. For drawing from Laplace or Gaussian distributions,

transcendental functions are needed. We work towards bridging

this gap based on Cordic [52], a classic technique for computing

such functions.

The main contributions of this paper can be summarized as

follows: (1) we propose strategies to prove relationships involving

logarithms or trigonometric functions in zero knowledge, (2) we

propose and compare several strategies to let a party verifiably

draw Gaussian random numbers, (3) we propose algorithms to let

one party verifiably sample from the Laplace distribution and from

an arbitrary distribution, (4) we propose algorithms to draw from
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the Gaussian or Laplace distribution a random number represented

as a shared secret.

The remainder of this paper is structured as follows:

After reviewing some common notations and concepts in Sec-

tion 2, we formalize our problem statement in Section 3. Next, in

Section 4 we discuss related work and in Section 5 we provide a

high-level overview of our method. After that, in Section 6 we re-

view the Cordic algorithm and adapt it for zero-knowledge proofs.

In Sections 7 and 8 we apply these techniques for sampling from

the Laplace and Gaussian distributions. To show how our methods

work in practice, in Section 9 we provide an experimental compari-

son of the several possible strategies to sample from the Gaussian

distribution. In Section 10 we discuss the application of our tech-

niques to the problem of differentially private machine learning.

Finally, in Section 11 we conclude and outline directions of future

work.

2 PRELIMINARIES
We will denote the set of the first k positive integers by [k] = {i ∈
N | 1 ≤ i ≤ k}. We denote the security parameter by λ. We say that

a function is negligible in λ if, for each positive polynomial f , it
is smaller than

1

f (λ) for sufficiently big λ. We omit λ sometimes in

negligible functions when it is clear it refers to λ. a ←R S means

that a is sampled uniformly at random from elements of S . For
vectors a = (a1, . . . ,ak ) and b = (b1, . . . ,bk ), a+b and a ∗b are the
element wise addition and product. ab is the multi-exponentiation∏k

i=1
abii . For a scalar s , s + a = (s, . . . , s) + a, s ∗ a = (s, . . . , s) ∗ a

and as = a(s , ...,s). The function sign(x) is equal to 1 if x ≥ 0 and

to −1 otherwise.

2.1 Setting and Threat Model
We consider a set of n parties P = {P1, . . . , Pn }. We assume parties

have access to a public-key infrastructure which they can use to

prove their identity when sending messages. Parties communicate

through secure channels and have access to a public bulletin board

that they can use to post messages. When a party sends a message

to the bulletin board, it is forwarded to all other agents as when

using a broadcast channel. In addition, all broadcasted messages

remain publicly visible in the bulletin board, which allows to have

publicly verifiable protocols.

We assume that a subset of parties Pcor ⊂ P is corrupted and

controlled by an adversary A. A can make corrupted parties to

deviate arbitrarily from the protocol and perform coordinated at-

tacks. Our protocols are secure if at least one party is honest. The

set Pcor of corrupted parties is assumed to be static, meaning that

it does not change after the beginning of the execution.

We prove security in the simulation paradigm, using the model

of security with identifiable abort [33] for the stand-alone setting

[29]. This setting allows to obtain sequentially composable proto-

cols in which parties are able to detect malicious actions and can

in such cases abort the protocol. Deterrence measures may be in

place to discourage parties from being detected as malicious. In

fact, unless parties stop participating our protocols either complete

successfully or abort with a proof that a specific party is a cheater,

i.e., in case our protocols abort the message trace (which is kept on

the bulletin board) allows for proving that a specific party did not

follow the protocol. Assuming that adversaries will be deterred if

they risk getting caught is a standard assumption that applies in

many scenarios [3].

In parts of our protocols, wemake use of specific Zero Knowledge

Proofs that are non-interactive versions of compressed Σ-protocols
whose security relies on the Random Oracle Model [6]. We provide

a detailed description of our security framework and prove the

security of our protocols in Appendix B.

2.2 Commitment Schemes
A commitment scheme allows for committing to values while keep-

ing them hidden. We use the vector variant of the Pedersen commit-

ment scheme [47]. Let G be a cyclic multiplicative group of prime

order p exponential in λ in which the Discrete Logarithm Assump-

tion (DLA) holds. The setup of the commitment scheme takes as

input a string of lengthO(1λ) and outputs a vector g = (д1, . . . ,дk )
of elements sampled at random from G \ {1}. It is required that no

pairwise discrete logarithm on the elements д1, . . . ,дk is known,

which can be guaranteed without a trusted party as the setup only

requires public randomness. A commitment P ∈ G of a vector

x = (x1, . . . , xk ) ∈ Z
k
p satisfies P = gx. We say that x is an open-

ing of P . The scheme is binding as no computationally bounded

adversary can find two openings x and x′ of P such that x , x′

except with probability negligible in λ. If x = (x̂, r ), where x̂ is the

data and r is sampled uniformly at random from Zp , P is uniformly

distributed in G and therefore does not reveal any information

about x̂. This is known as the hiding property. In our protocols, one

coordinate of g is always reserved for randomness. The scheme

is also homomorphic as, given commitments P and Q of x and y
respectively, PQ is a commitment of x + y.

2.3 Arithmetic Circuits
An arithmetic circuit (or just circuit) C : Zkp → Z

s
p is a function

that only contains additions and multiplications modulo p. In the

following sections we will define circuits using the notation

C(a; i1, . . . , ik ) B


o1

...

os

 ,
where (i1, . . . , ik ) is the input, (o1, . . . ,os ) is the output, and a are

constants that may change the circuit structure, for example, in the

case we are defining a family of similar circuits.

2.4 Compressed Σ-Protocols
We will prove statements about private committed values using

Zero Knowledge Proofs [31]. In such proofs, for a NP relation R, a

prover P interacts with a verifier V to prove, for a public statement

a, the knowledge of a private witness w such that (a;w) ∈ R. At
the end of the interaction, V either accepts or rejects the proof.

ZKPs are (1) complete, as V always accepts a proof of an honest

P, (2) sound, as a proof of a dishonest P is rejected except with

negligible probability and (3) zero knowledge, as no information

other than (a;w) ∈ R is revealed by the protocol. The ZKPs that we

use are also called zero knowledge arguments, as they are sound if

P is computationally bounded. Additionally, they rely on the DLA.
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The ZKPs we use are called compressed Σ-protocols [2]. Partic-
ularly, we use Protocol Πcs of [2], that proves the nullity of the

output of arithmetic circuits in Zp applied to private inputs. Let

G, Zp , and g be as defined for commitments, then for any circuit

C : Zkp → Z
s
p , by applying Πcs to C we obtain a complete, sound

and zero knowledge proof for the relation

{(P ∈ G; x ∈ Zkp ) : P is a commitment of x ∧C(x) = 0)}.

While Πcs is an interactive protocol between P andV , it can be

turned into a non-interactive proof using the Strong Fiat-Shamir

heuristic [8]. By this transformation, ZKPs can be generated offline

by P and later be verified by any party.

Letm be the number of multiplication gates of C , then the proof

generated by the execution of Πcs has a size of 2⌈log(k+2m+4)⌉−1

elements of G and 6 elements of Zp . To generate such proof, the

dominant computations are modular exponentiations inG (GEX). P
performs 5k+8m+2⌈log

2
(k+2m+4)⌉+6 GEX, and the verification

cost is of k + 2m + 2⌈log
2
(k + 2m + 4)⌉ − 1 GEX.

We provide a detailed explanation of compressed Σ-protocols,
their cost and some optimizations in Appendix A.

2.5 Secret Sharing
Consider again n parties {Pi }

n
i=1

. For a positive prime p, group Zp ,
and a number a ∈ Zp , one can generate an additive secret share

for a by drawing a random vector (a1, . . . ,an ) ∈ Z
n
p subject to the

constraint that

∑n
i=1

ai = a mod p. We then denote this sharing of a
as ⟦a⟧ = (a1 . . . an ). The process of computing and revealing a from
the sharing ⟦a⟧ is called opening the sharing ⟦a⟧. If every party

Pi only receives ai (for i ∈ [n]), then if not all parties collude each

party can only see at most n − 1 uniformly randomly distributed

numbers, and hence has no information about the value of a.
If for one or more values a sharing is available, it is possible to

perform various operations on them without revealing any new in-

formation, see [24] for an overview. If ⟦a⟧ = (a1 . . . an ) is a sharing
of a and ⟦b⟧ is a sharing ofb, then ⟦a + b⟧ = (a1+b1 . . . an+bn ) is a
sharing ofa+b. Given a sharing ⟦a⟧ ofa and a public constant c , then
⟦ca⟧ = (ca1 . . . can ) is a sharing of ca. For multiplying two shar-

ings, one can use pre-computed triples of sharings (⟦x⟧, ⟦y⟧, ⟦z⟧)
with x and y random and xy = z. Given such triple, and two shar-

ings ⟦a⟧ and ⟦b⟧ which one wants to multiply, one can compute

⟦d⟧ = ⟦a⟧ − ⟦x⟧ and ⟦e⟧ = ⟦b⟧ − ⟦y⟧ and open both ⟦d⟧ and ⟦e⟧.
Then, a sharing of c = ab is obtained by ⟦c⟧ = ⟦z⟧+d⟦y⟧+e⟦x⟧+de .
Several approaches have been proposed to generate such triples of

sharings (⟦a⟧, ⟦b⟧, ⟦c⟧) efficiently, typically involving a somewhat

homomorphic encryption (SHE) scheme with distributed decryp-

tion, where the parties can generate random sharings ⟦a⟧ and ⟦b⟧
uniformly at random, encrypt them, multiply them and decrypt the

product in a distributed way to obtain ⟦c⟧ [24].
We’ll adopt a number of ideas from [23]. In particular, we will

represent sharings in binary form, denoting by BITS(x, (x (i))l−1

i=0
)

the relation ⟦x⟧ = ∑l−1

i=0
⟦x (i)⟧2

i
with x (i) ∈ {0, 1}. The protocol

Bit-add((⟦x (i)⟧)l−1

i=0
; (⟦y(i)⟧)l−1

i=0
) returns (⟦z(i)⟧)l−1

i=0
such that there

holds z = x + y for BITS(x, (⟦x (i)⟧)l−1

i=0
), BITS(y, (⟦y(i)⟧)l−1

i=0
) and

BITS(z, (⟦z(i)⟧)l−1

i=0
). To implement it, let c(−1) = 0. For i = 0 . . . l−1:

⟦z(i)⟧ = Bit-xor(⟦x (i)⟧, Bit-xor(⟦y(i)⟧, ⟦c(i−1)⟧))

whereBit-xor(a,b) = (a−b)2; and ⟦c(i)⟧ = ⟦x (i)⟧⟦y(i)⟧+⟦c(i−1)⟧((1
−⟦x (i)⟧)⟦y(i)⟧+⟦x (i)⟧(1−⟦y(i)⟧)). After this loop, return (⟦z(i)⟧)li=1

.

2.6 Random Numbers
A (secure) pseudo-random number generator (PRG) is a function G :

{0, 1}k → {0, 1}p(k ) for some polynomial p with p(k) > k such that

for any randomized polynomial time algorithm A : {0, 1}p(k ) →

{0, 1} there holds

|Px←R {0,1}k
(A(G(x)) = 1) − Px←R {0,1}p(k )

(A(x) = 1)| ≤ µ(k)

for some function µ negligible in k . In other words, a PRG is a

function which takes a string x as input and outputs a longer string

G(x) which cannot be distinguished from a random sequence by a

polynomial time algorithm.

3 PROBLEM STATEMENT
We call π a sampling protocol over a domain X if π is a randomized

multi-party protocol which outputs sequences of elements of X.

We consider sampling protocols which take only one input per

party at the beginning of the protocol. In particular, let P = {Pi }ni=1

be the set of n parties which participate to a sampling protocol

π , and let si be the input (also called seed) of party Pi (for i ∈
[n]). We denote the output of π by π (s) where s = (si )ni=1

is the

vector of seeds.We assume that there is some increasing polynomial

p : N → N such that if s ∈ {0, 1}k×n then π (s) ∈ Xp(k ). Let
s−i = (s1, . . . , si−1, si+1, . . . , s |s |) denote the vector s without the
i-th component.

Definition 1 (Correct Sampling). For a multi-party protocol π , we
say a party is honest if it follows the steps of protocol π correctly

and does not collude with other parties. We say that a sampling

protocol π correctly samples from a probability distribution D if

there is a function µ with µ(k) negligible in k such that for every run

of π by parties P = {Pi }ni=1
among which there is at least one i ∈ [n]

such that party Pi is honest, for every s−i ∈ {0, 1}k×(n−1)
, for any

probabilistic polynomial time algorithmA : {0, 1}k (n−1) ×Xp(k ) →

{0, 1}, there holds that either π finishes correctly and

|Psi←R {0,1}k
(A(s−i , π (s)) = 1)

− Pt←R {0,1}k (n−1),x←RDp(k ) (A(t, x) = 1)| ≤ µ(k),

or π aborts and detects a party that attempted to cheat, whereDp(k )

draws vectors from Xp(k ) whose components are independently

distributed according to D.

In other words, if there is at least one honest party, then π acts

as a (generalized) PRG even if all parties except that honest party

would disclose their seeds. As a result, as soon as a single party is

honest it can trust that any output of π used by any party is pseudo-

random and no party could predict it in advance. We denote the

fact that x is correctly drawn from D by x ←∗R D.

We say a protocol π verifiably samples from D if π correctly

samples from D and after every execution of π the value of x is

uniquely defined given the union of the information obtained by all

parties and the information published by π is sufficient to convince

any party that x has been correctly drawn. We denote the fact that

x is verifiably drawn from D by x ←V
R D.
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In this paper, we will often informally consider both discrete

and continuous probability distributions, and PD then either rep-

resents a probability mass or probability density according to the

context. As computers work with finite precision, we will eventu-

ally discretize up to some parameter-defined precision. While in

the end all distributions will be discrete, we will use the continuous

representations whenever this simplifies the explanation.

In the sequel, unless made explicit otherwise, we’ll assume there

are n parties among whom at least one is honest, and that D is

a publicly agreed probability distribution. Also, to simplify the

explanation we will often describe protocols generating just one

random number, the extension to streams of random numbers is

then straightforward.

We can distinguish several types of verifiable sampling proto-

cols, depending on how they output the sampled number x . For a
verifiable sampling protocol π , we say it is a

• public draw if after running π the value of x is published.

• private draw if after running π exactly one party knows x ,
but the other parties have no information on x next to the

prior distribution D.

• hidden draw if after running π the parties have received

an additive secret share (x1, . . . , xn ) for x , but still no party

has any information about x next to the prior distribution

D.

In this paper, we study the problem of finding efficient verifiable

sampling protocols of each of the three above types given the prob-

ability distribution D.

This problem is reasonably straightforward if D is the uniform

distribution over the integers in the interval [0, L) for some L > 0:

Protocol 1 (Public uniform sampling). For each i ∈ [n] let
party Pi generate its own random number ri uniformly distributed

over [0, L) from its own secret seed si and publish a commitment Ci
to it. Then, all parties open their commitment, i.e., they publish ri and
the randomness associated to the commitment to prove that Ci was a
commitment to ri . Finally, all parties compute publicly

∑n
i=1

ri mod L.

It is easy to see Protocol 1 draws r verifiably: if at least one

party Pi is honest, it has generated a uniformly distributed number

ri and r is also uniformly distributed because non-honest parties

Pj cannot change their r j as a function of other parties because

they start with a commitment on their r j . Note that Protocol 1 is a
generalization for multiple parties of [10]. We present the protocol

in more detail and prove its security in Appendix B.3.

Protocol 2 (Private uniform sampling). One can sample a

vector of k numbers private to P1 as follows: P1 draws uniformly at

random a vector a = (a1, . . . ,ak ) ∈ [0, L)
k
and publishes a vector

commitmentC to it. Then, all parties generate jointly a public random

number r ∈ [0, L) with Protocol 1. P1 expands r to random numbers

(r1, . . . , rk ) ∈ [0, L)
k
using a PRG. Finally, for i ∈ [k], P1 computes

ui = ai + ri mod L and performs a zero knowledge proof of the

modular sum for each ui . (u1, . . . ,uk ) is a vector of private uniform
random numbers.

Again, it is easy to see that (u1, . . . ,uk ) is drawn verifiably. This

protocol has many aspects in common with the Augmented Coin-

Tossing protocol defined in [29, Section 7.4.3.5]. We provide a proof

of the security of Protocol 2 in Appendix B.4.

Protocol 3 (Hidden uniform sampling). For each i ∈ [n] let
party Pi generate its own random number ri uniformly distributed

over [0, L) and publish a commitment Ci to it. Then, they consider

(r1, . . . , rn ) as a secret share of the randomnumber r =
∑n
i=1

ri mod L.

After running Protocol 3, if there is a honest party, r is fixed and
follows the right probability distribution, and as not all parties col-

lude no party knows more about r than that it follows the uniform

distribution over [0, L).
The problem of finding efficient verifiable sampling protocols

becomes more challenging when D is not the uniform distribution,

but a more general distribution such as a normal distribution or a

Laplace distribution. Even for single party computation there some-

times exist multiple approaches with varying cost and precision.

4 RELATEDWORK
Below we describe lines of work that are related to ours.

Multiparty Computation Between Unreliable Participants. The

seminal work of [10] proposed the first protocol to sample a public

random bit (i.e. tossing a coin) between two parties that do not trust

each other. Subsequent works such as [13] proposed protocols to

perform coin tossing between an arbitrary number of parties.

The work of [20] proved that in the malicious model without

aborts it is impossible that a multiparty protocol is guaranteed to

finish correctly and perform an unbiased coin toss if the number of

malicious users is half or more of the total of participants. For such

cases, there is no other possibility than providing weaker security

guarantees. In the framework of malicious security with abort[29],

protocols either end correctly or are aborted by malicious parties.

This could lead to bias in the computations if a protocol is restarted

after an abort and the adversary speculatively chooses when allow

the protocol to finish correctly. To prevent this, a possible solution

is to identify and punish malicious parties that cause aborts. The

work of [3] proposes covert security, where cheating adversaries can

get caught with certain probability. This is weaker than malicious

security with abort, but allows cheaters to be detected. A stronger

notion is malicious security with identifiable abort[33], where a

party that cheats causes the protocol to abort with overwhelming

probability and, in addition, the cheater is identified. Our work fits

in that framework.

If deterrence measures are strong enough, this could be sufficient

to discourage malicious behavior. Otherwise, if corrupted peers are

willing to sacrifice themselves at any cost, other measures can be

taken to attenuate the bias as much as possible [5, 43].

The work [30] proposes a method to securely perform a wide

family of randomized computations (related to interactive games)

over private data and private random numbers, using zero knowl-

edge proofs to verify correctness. They prove that this is secure

in the ideal paradigm without abort if the majority of parties is

honest.

Sampling From Gaussians and Other Popular Non-Uniform Distri-

butions. Distributions such as the Gaussian distribution, the Laplace

distribution, the Poisson distribution or the exponential distribution

are important in the field of statistics. Algorithms to securely draw

from such distributions have applications in federated machine

learning. Several contributions concern the problem of verifiable
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noise for differential privacy [35, 50] and hence can benefit from

secure drawing.

Even in the semi-honest model where parties follow the specified

protocol, drawing hidden random numbers is sometimes non-trivial.

For example, in [19] one needs to make a sum of statistics and

a Laplacian-distributed noise term, hence the authors propose a

protocol where parties generate random numbers summing to a

Laplacian distributed value which can then be included in a secure

aggregation without being revealed.

In [26], protocols are proposed to generate secret-shared sam-

ples for Gaussian, Exponential and Poisson distributions. For the

Gaussian distribution, their approach generates samples by aver-

aging uniform seeds, a method which we call the Central Limit

Theorem (CLT) approach. We compare the CLT approach with our

approaches in Section 9. Even if more than a decade has passed

since [26], recent contributions still resort to these techniques to

generate Gaussian samples among unreliable participants. For ex-

ample, recent protocols use the technique of [26] by adapting it

to generate private draws from the Exponential distribution [45]

and to sample hidden draws from the Binomial distribution [9].

The work of [41] proposes techniques to securely sample from the

geometrical and Gaussian distributions, both building on [26], and

studies them in the light of differentially private memory access

patterns. In addition, [41] defines an extension of the malicious

security model which includes information leakage, as measured

in differential privacy, and proves the security of their protocols

within this model.

In our work, we propose new techniques for privately drawing

from the Gaussian distribution and show that all our techniques for

all but the lowest precision requirements outperform the technique

of [26], which is the most efficient method known so far. The same

dynamics are at play for exponential, Poisson and Laplace distri-

butions. Compared to the techniques in [26], our methods have a

better complexity as a function of the precision parameter. We ex-

tend our methodology to hidden draws of Gaussian, Laplacian and

Arbitrary distributions. Achieving sufficient precision when sam-

pling is important for both the statistical quality and the security

of the algorithms [42].

Implementation of Math Functions Using Cryptographic Primitives.

Using secret sharing techniques, there is a large body of work on

how to compute math functions such as square roots, logarithms

and trigonometric [1, 4, 25, 32, 32, 37]. However they usually rely on

splines or other approximation techniques that approximate func-

tions by splitting the domain and using low-degree polynomials

for each part. Alternatively, they rely on rational approximations.

Piecewise approximations require the use of conditionals which

are expensive when computing with secret shares, and rational

approximations only allow for a fixed precision. Our work uses

iterative approximations which allow to customize the precision

of the approximation and are easy to compute given that we avoid

the use of comparison gates in our circuits. Furthermore, for the

Gaussian distribution, piecewise approximations require an exter-

nal method to sample from the tails of the distribution. We also

show protocols for private sampling from Gaussian and Laplace

distributions where we avoid the high cost of secret shared compu-

tation by letting one party perform the calculation and then prove

correct behavior using compressed Σ-protocols.
Zero Knowledge Proofs for such functions, as we apply in our

work, is a less explored technique. [54] proposes techniques to prove

a limited set of relations involving common activation functions in

machine learning.

5 METHOD
We start with discussing two generic approaches: a strategy based

on the inverse cumulative probability distribution and a strategy

based on table lookup.

5.1 Inverse Cumulative Probability
Distribution

Assume D is a probability distribution on X ⊆ R. The cumulative

probability distribution is defined as

FD (x) =

∫
t ≤x

PD (t) dt

To the extentD is discrete, we can see PD as a sum of scaled Dirac

delta functions over which integration is possible and results in a

sum. Then, the inverse F−1

D
is a function on the interval (0, 1).

An approach to sampling from arbitrary distributions D on do-

mainsX ⊆ R, known as the inversion method, consists of sampling

uniformly from the (0, 1) interval and applying the inverse of the

cumulative distribution function F−1

D
. Indeed, if t ←R (0, 1), then

P(F−1

D
(t) = x) = PD (x).

Public Sampling From an Arbitrary Distribution. This approach

can easily be applied to draw random numbers publicly:

Protocol 4 (Public draw fromarbitrary distribution). Run

protocol 1 to generate a public uniformly distributed random number

r ′, and then publicly compute r = F−1

D
(r ′).

Using the inversion method for private or hidden draws is more

involved since one needs a multi-party algorithm to compute F−1

D

or a ZKP algorithm to prove to other parties that F−1

D
was applied

correctly. In many practical cases, F−1

D
does not have a simple closed

form. This especially holds for the Gaussian distribution which we

will discuss in more detail in Section 8.

We can extend this method to multi-variate distributions. For

example, consider a distribution D over R2
. To sample a pair (x,y)

according to D, we first define Px (x) =
∫
PD (x,y) dy, apply the

inversion method to draw a random number x according to Px , and
then define Py |x (y) = PD (y |x) = PD (x,y)/Px (x) and apply again

the inversion method to draw a random y.

5.2 Table Lookup
As pointed out above, practical inverse cumulative probability func-

tions are often expensive to compute, especially in a secure multi-

party setting. In such scenarios approaches such as the ones dis-

cussed in Sections 5.1 and 8 incur a high cost for each drawn random

number. In this section we consider an approach based on table

lookup. While the involved techniques are well-known, this ap-

proach is interesting as a baseline, especially as it has a number of
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properties which are different from the other methods considered

in this paper. In particular, the method studied here has a high

pre-processing cost but then allows for drawing random numbers

at a low constant cost per drawn random number.

Protocol 5 (Table-lookup private sampling).

• Preprocessing. Let M ∈ N. The parties publicly pre-compute

the pairs

(
i, F−1

D

(
2i−1

2M

))
for all i ∈ [M] and store them into a

database DB.
• Sampling. Party P1 privately draws using Protocol 2 a random

number r ′ distributed uniformly in [M]. Then, P1 sets r =

F−1

D

(
2r ′−1

2M

)
, publishes commitments to r ′ and r , and publishes

a ZKP that (r ′, r ) ∈ DB.

In Protocol 5 a zero knowledge set membership proof is needed.

There is a large body of work on this topic since in [15] the first

method was shown that has a large preprocessing cost (linear in

M) but only a unit communication cost for proving membership.

Several improvements have been proposed which vary in their

assumptions and efficiency, [7] discusses some lines of recent work.

Only already storing the database DB may take a prohibitive

amount of space if a high precision is needed, asM is exponential

in the number of desired correct digits. As a result, this technique

can only be used when the needed precision is not too high. If it is

feasible, it is expensive for drawing only a few random numbers but

it can become more efficient than other methods if a huge number

of random numbers need to be drawn, as asymptotically the cost

per sample will dominate.

5.3 Laplace Distribution
The Laplace distribution, denoted Lap(b) is defined by

PLap(b)(x) = exp(−|x |/b)/2b .

The cumulative distribution is

FLap (x) = 1/2 + sign(x)/2 − sign(x) exp(−|x |/2).

To sample a number r from Lap(b) it is convenient to separately

draw the sign s and absolute value a of r . Then, P(s = −1) = P(s =

1) = 1/2 and P(a) = 1

b exp

(
−ab

)
and P(a ≤ t) = 1 − exp

(
− t
b

)
. In

Section 7 we will describe protocols for both private and hidden

Laplace-distributed draws.

5.4 Gaussian Distribution
The Gaussian distribution, denoted by N(µ,σ 2), is defined by

PN(µ ,σ 2)(x) = exp(−(x − µ)2/2σ 2)/
√

2πσ .

Wewill sometimes use the shorthand PN = PN(0,1). The cumulative

distribution is

FN(x) = (1 + erf(x/
√

2))/2 (1)

where erf is the error function. There is no closed form for PN , FN
nor its inverse. In the single party setting multiple strategies have

been investigated to sample from this important distribution:

• the Central Limit Theorem (CLT) approach, which consists

of sampling repeatedly from a uniform distribution and com-

puting the average, which is simple but requires O(1/∆2)

time for a root mean squared error ∆,

• the Box-Müller method [12], that can obtain two Gaussian

numbers from two uniform samples by the application of

a closed form formula, but involves the computation of a

square root, trigonometric functions and a logarithm,

• rejection sampling methods, such as the polar version of

Box-Müller [36] or the Ziggurat Method [40] are efficient

and highly accurate. While the former avoids the compu-

tation of trigonometric functions and leads to an efficient

verifiable implementation, the latter uses several conditional

branches which are expensive to prove in zero knowledge

and requires an external method for sampling in the tails of

the distribution,

• the inversion method for Gaussians that involves the approx-

imation of the inverse error function erf
−1
, which can be

done with rational functions or Taylor polynomials, and

• the recursive method of Wallace [51], which is very popular

for its efficiency, but requires as input a vector of already

generated Gaussian samples to generate an output vector

of the same size; furthermore, samples from input and out-

put vectors are correlated, which deteriorates the statistical

quality.

Before studying some of these in the multi-party setting, we will

first provide Σ-protocols of relations involving approximations of

certain elementary functions.

6 PROOFS OF ELEMENTARY FUNCTIONS
In this section, we construct zero knowledge proofs of statements

that involve the approximation of elementary functions, i.e. sine,

cosine, natural logarithm and square root. These functions can

be numerically approximated using basic operations such as addi-

tion and multiplication. While classic cryptographic tools are used

to prove statements over integers, we operate with real numbers

which we approximate with fixed precision. Therefore, we use rep-

resentations of integer multiples of 2
−ψ

by multiplying our values

with 2
ψ
and rounding them deterministically to obtain elements of

Zp . Negative numbers are represented in the upper half of Zp . For

example, the number a < 0 is represented with p + 2
ψ a. The set of

representable numbers is denoted by

Q⟨p,ψ ⟩ = {v ∈ Q : 2
ψv ∈ Z ∧ −p/2 ≤ 2

ψv < p/2}

which is closed under addition andmultiplicationmodulop (rounded

up to 2
−ψ

). The encoding of v ∈ Q⟨p,ψ ⟩ is denoted by ⟨v⟩ =

2
ψv mod p.
We show circuits such that the nullity of their output is equiv-

alent to the statements we want to prove. We will first construct

circuits to describe low level statements and then use these as

building blocks for higher level statements. In the end, we apply

compressed Σ-protocols (see Section 2.4) to produce zero knowl-

edge proofs of these circuits. For parameters (a;b) of all circuits
defined below, a always contains public constants and b private

values.

We present in Section 6.1 circuits for proving various types of

simple statements. In Section 6.2, we introduce Cordic, the core

approximation algorithm.We implement circuits to prove its correct

execution in Section 6.3, and details on how to expand its domain
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of application, particularly for our sampling techniques, in Section

6.4.

6.1 Building Blocks
We introduce below proofs of basic statements that we will use to

prove approximations, including the handling of some statements

of numbers in Q⟨p,ψ ⟩ . Note that additions, multiplication by an

integer and range proofs port directly to Zp by our encoding ⟨·⟩.

In Appendix A.5, we show that to prove that an integer x ∈ Zp
belongs to [0, 2k ) we can use the circuit

CRa (k ;x, x) B
[

x ∗ (1 − x)
x −

∑k
i=1

xi2
i−1

]
where x = (x1, . . . , xk ) is the bit map of x . Here, x ∗ (1 − x) is a
vector with at position i the value xi (1−xi ), which is 0 if xi ∈ {0, 1}.
The second expression evaluates to 0 if x is indeed the correct bit

map of x . Hence, the nullity of the circuit, i.e., its righthandside

evaluating to the zero vector, proves x ∈ [0, 2k ).

Generalized Range Proof. CRa can be used twice to prove mem-

bership in any range [a,b] ⊂ Zp . To prove x ∈ [a,b] we use the
circuit

CGRa (a,b;x, s1, s2) B

[
CRa (⌊log(b − a)⌋ + 1;x − a, s1)

CRa (⌊log(b − a)⌋ + 1;b − x + a, s2)

]
where s1, s2 ∈ {0, 1}

⌊log(b−a)⌋+1
the auxiliary bit vectors required

for CRa .

(Right) Bit-Shift. For a ∈ Q⟨p,ψ ⟩ and an integer k > 0, a bit shift

a >> k is equal to the biggest value in Q⟨p,ψ ⟩ smaller than a/2k .

We have that b = a >> k if ⟨a⟩ − 2
k ⟨b⟩ ∈ [0, 2k ). For the vector s

of the bit decomposition of ⟨a⟩ − 2
k ⟨b⟩, the circuit is

C>>(k ; ⟨a⟩, ⟨b⟩, s) B CRa (k ; ⟨a⟩ − 2
k ⟨b⟩, s).

Note that in the definition ofC>> , as in all subsequent circuits, the

evaluation of inputs to sub-circuits such as CRa are computations

performed within the circuit.

Approximate Product. For private a,b, c ∈ Q⟨p,ψ ⟩ , it can be

proven that c is the rounding of ab, that is by proving that ⟨c⟩ −

⟨a⟩⟨b⟩+ ⟨1/2⟩ ∈ [0, 2ψ ). For s ∈ {0, 1}ψ the bitmap of ⟨c⟩− ⟨a⟩⟨b⟩+
⟨1/2⟩ our circuit is

CProd (ψ ; ⟨a⟩, ⟨b⟩, ⟨c⟩, s) B CRa (ψ ; ⟨c⟩ − ⟨a⟩⟨b⟩ + ⟨1/2⟩, s).

Approximate Division. For private a,b, c ∈ Q⟨p,ψ ⟩ , we prove that

c is approximately a/b with error 2
−ψ

. We also require that b ∈

[A,B] for publicA,B ∈ Q⟨p,ψ ⟩ . We prove that ⟨b⟩⟨c⟩−2
ψ ⟨a⟩+⟨b⟩ ∈

[0, 2⟨b⟩). Our range proofs require that the bounds are public, so we

prove that ⟨b⟩⟨c⟩ − 2
ψ ⟨a⟩ + ⟨b⟩ ∈ [0, 2sb+1) and 2

ψ ⟨a⟩ − ⟨b⟩⟨c⟩ ∈

[0, 2sb+1) where sb = ⌊log
2
(⟨B⟩ − ⟨A⟩)⌋ + 1. For s1, s2 ∈ Z

sb+1

p
auxiliary bit vectors, the circuit is

CDiv (ψ , sb ; ⟨a⟩, ⟨b⟩, ⟨c⟩, s1, s2)

B

[
CRa (sb ; ⟨b⟩⟨c⟩ − 2

ψ ⟨a⟩ + ⟨b⟩, s1)
CRa (sb ; 2

ψ ⟨a⟩ − ⟨b⟩⟨c⟩, s2)

]
.

Exponentiation in Zp . Let y, x ∈ Zp be private values with x ∈

[0, 2k ) and E ∈ Zp a public integer such that Ex < p/2. We prove

that y = Ex . Let x ∈ {0, 1}k the vector of bits of x , we prove that

y =
∏k
y=1

yi where for i ∈ {1, . . . ,k}, yi is equal to E
2
i−1

if xi = 1,

or to 1 if xi = 0. The circuit is

CI Ex (k, E;x,y, x) B
[

CRa (k ;x, x)
y −

∏k
i=1

1 + xi (E2
i−1

− 1)

]
.

Modular Sum. We prove, for private x, z ∈ Zp and public y ∈ Zp
such that all belong to [0,M), that z = x + y mod M . Let x1, x2, z1

and z2 vectors of intermediate values for CGRa , and let b ∈ {0, 1},
our circuit is

CMod (M,y;x, z, x1, x2, z1, z2,b) B


CGRa (0,M − 1;x, x1, x2)

CGRa (0,M − 1; z, z1, z2)

b(1 − b)
z − (x + y − bM)

 .
Ideas for CI Ex and CMod are taken from pages 112-115 of [16].

Private Magnitude Shift. Here, we prove that y = x >> k for

public K and private k ≤ K . Let k, k′, k′′ ∈ {0, 1}K and h ∈ Zp be

intermediate values for range proofs and integer exponentiations

and I>> = (h, k, k′, k′′), our circuit is

CP>>(K ;x,k,y, I>>) B


CI Ex (K, 2;k,h, k)
CRa (K ;x − hy, k′)

CRa (K ;h − x + hy − 1, k′′)

 .
6.2 Cordic Algorithm
We use the Cordic algorithm [52] for approximations, which has

long been state of the art for computations of elementary functions

from simple operations [44]. Essentially, it uses the same core it-

eration algorithm, which only uses additions and bit-shifts, for all

elementary function approximations. We will use Cordic parame-

terized for two settings described below, the first is used for sine

and cosine and the second for square root and logarithm. In what

follows, we only provide an algorithmic description of the Cordic

algorithm as is needed in order to understand our extension to the

zero knowledge setting in Section 6.3.

Setting 1 (Sine and Cosine). Let θ0 = 0. From input values X0, Y0,

θ ∈ Q⟨p,ψ ⟩ , the following iterations are performed:

Xi = Xi−1 − ξi (Yi−1 >> i)

Yi = Yi−1 + ξi (Xi−1 >> i)

θi = ξi tan
−1(1 >> i) + θi−1

where ξi ∈ {−1, 1} is equal to sign(θ − θi−1) and tan
−1(1 >> i)

is taken from a precomputed table. Let ν be the total number of

iterations, and let constants K1,ν =
∏ν

j=0

√
1 + (1 >> 2j) and K1 =

limν→∞ K1,ν ≈ 1.6. We have that

lim

ν→∞


Xν
Yν

θν − θ

 = K1


X0 cosθ − Y0 sinθ
X0 sinθ + Y0 cosθ

0

 .
Recall the representation parameter ψ of Q⟨p,ψ ⟩ defined at the

beginning of the section. By the convergence rate of Cordic, if

ψ ≥ ν + ⌈log
2
(ν )⌉ + 1, with input X0 = 1/K1,ν , Y0 = 0, and
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θ ∈ [−π/2, π/2], then Xν and Yν are approximations of sin(θ )
and cos(θ ) respectively with error at most 2

1−ν
.

Setting 2 (ln(x) and
√
x). In this setting Cordic only takes two

inputs X0,Y0 ∈ Q⟨p,ψ ⟩ and, with θ0 = 0, it performs the iterations

Xi = Xi−1 + ξi (Yi−1 >> Fi )

Yi = Yi−1 + ξi (Xi−1 >> Fi )

θi = ξi tanh
−1(1 >> Fi ) + θi−1

with ξi = sign(−Yi−1) and shift magnitude Fi = i + 1 − k where

the small value k is equal to the biggest integer such that 3
k+1 +

2k − 1 ≤ 2(i + 1). Now let K2,ν =
∏ν

j=1

√
1 + (1 >> 2Fj−1) and

K2 = limν→∞ K2,ν ≈ 0.8. In Setting 2, we have that

lim

ν→∞


Xν
Yν
θν

 =

K2

√
X 2

0
− Y 2

0

0

tanh
−1

(
Y0

X0

)
 .

With ψ as in Setting 1, x ∈ [ 1
4
, 1) and fixing X0 = x + 1, Y0 =

x − 1 we get by the identity ln(x) = 2 tanh
−1( x−1

x+1
) that θν is an

approximation of
1

2
ln(x)with error at most 2

1−Fν
. Similarly, for the

sameψ and domain of x ,
√
x can be obtained by setting (X0,Y0) =(

x + 1

K 2

2,n+1

, x − 1

K 2

2,n+1

)
with error at most 2

1−Fν
.

6.3 Cordic in Zero Knowledge
We first specify a set of statements that together are equivalent to

a correctly performed Cordic computation. Note that the iterations

in Settings 1 and 2 are very similar. Except for the correctness of

the ξi values, they can be described by equations

ξi = −1 ∨ ξi = 1 ∀i ∈ {1, . . . ,ν }, (2)

Yi = Yi−1 + ξi (Xi−1 >> Fi ) ∀i ∈ {1, . . . ,ν }, (3)

Xi = Xi−1 −mξi (Yi−1 >> Fi ) ∀i ∈ {1, . . . ,ν }, (4)

θν =
ν∑
i=1

ξiαi , (5)

where the constants in Setting 1 are m = 1, Fi = i and αi =
tan
−1(1 >> i) and in Setting 2, Fi is already defined, m = −1

and αi = tanh
−1(1 >> Fi ). To prove the correct value of the ξi ’s,

we avoid wide range checks at each iteration (on θ − θi or Yi−1),

but instead we use properties of the convergence of Cordic: all of

ξ1, . . . , ξν ∈ {−1, 1} have been chosen correctly if

θν − θ ∈ [−αν ,αν ] (6)

in Setting 1, and

Yν ∈ [−2
−Fν−1 , 2−Fν−1 ] (7)

in Setting 2.

We outline below the circuits that imply the above statements.

Let S ∈ {1, 2} be the Cordic setting that defines the involved con-

stants. Let ξ ∗ = (ξ1, . . . , ξν ) and let

I = (⟨Xi ⟩, ⟨Yi ⟩)ν−1

i=1
, (si , s′i , ⟨X

′
i ⟩, ⟨Y

′
i ⟩)

ν−1

i=0
, ξ ∗)

be the vector of all intermediate values. The nullity of circuit

CCrd (ν, S ; ⟨X0⟩, ⟨Y0⟩, ⟨Xν ⟩, ⟨Yν ⟩, ⟨θν ⟩, I)

B



C>>(Fi ; ⟨Xi−1⟩, ⟨X
′
i−1
⟩, si−1) ∀i ∈ [ν ]

C>>(Fi ; ⟨Yi−1⟩, ⟨Y
′
i−1
⟩, s′i−1

) ∀i ∈ [ν ]
(1 + ξ ∗) ∗ (1 − ξ ∗)

⟨Yi ⟩ − ⟨Yi−1⟩ − ξi ⟨X
′
i−1
⟩ ∀i ∈ [ν ]

⟨Xi ⟩ − ⟨Xi−1⟩ +mξi ⟨Y
′
i−1
⟩ ∀i ∈ [ν ]

⟨θν ⟩ −
∑ν
i=1

ξi ⟨αi ⟩


is a proof of the core of the execution in eqs. (2) to (5). Here, for

i ∈ {1, . . . ,ν }, si , s′i ∈ {0, 1}
Fi

are auxiliary bit vectors to prove bit

shifts of Xi and Yi with result X ′i−1
and Y ′i−1

respectively.

We complete the above core circuit for Setting 1. Let

γ = ⌊log
2
(2⟨αν ⟩)⌋ + 1,

and let sα ∈ {0, 1}γ be the bit decomposition of ⟨θ⟩ − ⟨θν ⟩. The
circuit

CCrd1
(ν ; ⟨θ⟩, ⟨X0⟩, ⟨Y0⟩, ⟨Xν ⟩, ⟨Yν ⟩, ⟨θν ⟩, I, sα )

B

[
CCrd (ν, 1; ⟨X0⟩, ⟨Y0⟩, ⟨Xν ⟩, ⟨Yν ⟩, ⟨θν ⟩, I)

CRa (γ ; ⟨θ⟩ − ⟨θν ⟩ + ⟨αν ⟩, sα )

]
.

proves eqs. (2) to (6). Similarly, we extend the core circuit to a

complete one for setting 2: for sY equal to the bit decomposition of

Yν ,

CCrd2
(ψ ,ν ; ⟨X0⟩, ⟨Y0⟩, ⟨Xν ⟩, ⟨Yν ⟩, ⟨θν ⟩, I, sY )

B

[
CCrd (ν, 2; ⟨X0⟩, ⟨Y0⟩, ⟨Xν ⟩, ⟨Yν ⟩, ⟨θν ⟩, I)

CRa (ψ − Fν ; ⟨Yν ⟩, sY )

]
.

proves eqs. (2) to (5) and (7).

The instantiation of CCrd1
and CCrd2

for elementary functions

is straightforward. Inputs that are intermediate values are defined

as above. For trigonometric functions, we set IT = (⟨θν ⟩, I, sα ) and
use

CT r (ν ; ⟨θ⟩, ⟨c⟩, ⟨s⟩, IT ) B CCrd1
(ν ; ⟨θ⟩, ⟨1/K1,ν ⟩, 0, ⟨s⟩, ⟨c⟩, IT )

to compute s = sin(θ ) and c = cos(θ ). For the logarithm, let IL =
(⟨Xν ⟩, ⟨Yν ⟩, ⟨θν ⟩, I, sY ). Then,

CLoд(ψ ,ν ; ⟨x⟩, ⟨l⟩, IL) B
[
CCrd2

(ψ ,ν ; ⟨x⟩ + ⟨1⟩, ⟨x⟩ − ⟨1⟩, IL)
⟨l⟩ − 2⟨θν ⟩

]
proves l = ln(x). For the square root let IS = (⟨Yν ⟩, ⟨θν ⟩, I, sY ), then

CSqr t (ψ ,ν ; ⟨x⟩, ⟨s⟩, IS ) B

CCrd2
(ψ ,ν ; ⟨x⟩ + ⟨1/4K2

2,ν+1
⟩, ⟨x⟩ − ⟨1/4K2

2,ν+1
⟩, ⟨s⟩, IS )

proves s =
√
x .

Finally, we point out that, with minor adjustments to the above

approximations, proofs of hyperbolic trigonometric functions and

ex can be obtained.

6.4 Extending the Domain
Here we extend the domain of approximations, which is necessary

for our sampling applications. We sometimes do not define inputs

such as bit vectors for range proofs and other intermediate values

that are clear from the context or that are already defined in previous

circuits.
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Sine and Cosine. As shown, sine and cosine can be approximated

in

[
− π

2
, π

2

]
. For Q ∈ {1, 2, 3, 4} we use the identity

sin

(
Q
π

2

+ θ ′
)
=


cos(θ ′) if Q = 1

− sin(θ ′) if Q = 2

− cos(θ ′) if Q = 3

sin(θ ′) if Q = 4

extend the domain to [0, 2π ]. Let sπ , s′π be bit vectors as needed for

CGRa , and ITд = (⟨θ ′⟩, ⟨s ′⟩, ⟨c ′⟩,Q, sπ , s′π , IT ). Let

([j1], [j2], [j3], [j4]) = (⟨c
′⟩,−⟨s ′⟩,−⟨c ′⟩, ⟨s ′⟩)

and

([k1], [k2], [k3], [k4]) = ([j2], [j3], [j4], [j1])

for i ∈ {1, 2, 3, 4} be literal variable replacements. Circuit

CT rG (ν ; ⟨θ⟩, ⟨s⟩, ⟨c⟩, ITд)

B


CT r (ν ; ⟨θ ′⟩, ⟨s ′⟩, ⟨c ′⟩, IT )

CGRa (⟨−
π
2
⟩, ⟨ π

2
⟩; ⟨θ ′⟩, sπ , s′π )

⟨θ⟩ −Q ⟨ π
2
⟩ − ⟨θ ′⟩∏

4

i=1
(Q − i)2 + ([ji ] − ⟨s⟩)

2 + ([ki ] − ⟨c⟩)
2


proves s = sin(θ ) and c = cos(θ ) in the extended domain.

Natural Logarithm. We extend the domain of ln(x) to (0, 1). For
x ′ ∈ [ 1

2
, 1) and non-negative integer e such that x = 2

−ex ′ ∈ (0, 1).
We prove that l = ln(x ′)−e ln(2) = ln(x). Let ILд = (e,h, e, sx ′, ⟨x ′⟩,
⟨l ′⟩, IL), then

CLoдG (ψ ,ν ; ⟨x⟩, ⟨l⟩, ILд) B


CLoд(ψ ,ν ; ⟨x ′⟩, ⟨l ′⟩, IL)

CRa (ψ − 1; ⟨x ′⟩ − ⟨0.5⟩, sx ′)
CI Ex (ψ − 1, 2; e,h, e)

h⟨x⟩ − ⟨x ′⟩
⟨l⟩ − ⟨l ′⟩ + e ⟨ln(2)⟩


proves our approximation.

Square Root. Now, for a public bound B > 0 and a private x ∈
[0,B], we prove that s =

√
x . Let γ = ⌊log

2
(B)⌋ + 1. We choose

x ′ ∈ [ 1
2
, 1) and an integer e ∈ [−ψ ,γ ] such that x = 2

ex ′, and we

have that

√
x =

{
2
e/2√x ′ if e is even

2
(e+1)/2

√
x ′/2 if e is odd.

We break the proof in several circuits to handle different cases. For

that we use bit variables as flags to decide which computation will

be proven. Let ne ∈ {0, 1} be the “negativity flag” of e and e ′ ≥ 0

such that e = (1 − ne )e
′
. Let ie ∈ {0, 1} be the “parity flag” of

e , such that e = 2f − ie for an integer f . We also define f ′ ≥ 0

such that f = (1 − ne )f
′
. We first handle the relations between

x , x ′, s =
√
x and s ′ =

√
x ′/(1 + ie ) when e is non-negative, or

equivalently, when ne = 0. Let ID1 = (l, f, I>>), then our circuit is

CSDom1(B; ⟨x⟩, ⟨s⟩, ⟨x ′⟩, ⟨s ′⟩, ie , e
′, f ′, ID1)

B


CP>>(γ ; ⟨x⟩, e ′ + ie , ⟨x

′⟩, I>>)

e ′ − 2f ′ + ie
CI Ex (γ , 2; f ′, l, f)
⟨s⟩ − ⟨s ′⟩l

 .

Similarly, for ID2 = (h, e, I′>>) the case when e is negative is de-

scribed by

CSDom2(ψ ; ⟨x⟩, ⟨s⟩, ⟨x ′⟩, ⟨s ′⟩, ie , e
′, f ′, ID2)

B


CI Ex (ψ − 1, 2; e ′ − ie ,h, e)

⟨x ′⟩ − h⟨x⟩
e ′ − 2f ′ − ie

CP>>(ψ − 1; ⟨s⟩, f ′, ⟨s ′⟩, I′>>)

 .
Now we describe the main circuit. For ID = (⟨x ′⟩, ⟨s ′⟩, ie , e ′, f ′)
and ISд = (ne , sx ′, IS , ID , ID1, ID2) vectors of intermediate values,

we prove s =
√
x with

CSqr tG (ψ ,ν,B; ⟨x⟩, ⟨s⟩, ISд)

B



CSqr t (ψ ,ν ; ⟨x ′⟩, ⟨s ′⟩, IS )
ie (1 − ie )
ne (1 − ne )

ie ∗CRa (ψ − 2; ⟨x ′⟩ − ⟨0.25⟩, sx ′)
(1 − ie ) ∗CRa (ψ − 1; ⟨x ′⟩ − ⟨0.5⟩, sx ′)
(1 − ne ) ∗CSDom1(B; ⟨x⟩, ⟨s⟩, ID , ID1)

ne ∗CSDom2(ψ , ⟨x⟩, ⟨s⟩, ID , ID2)


.

While the circuit above is easier to read, the practical implemen-

tation contains a number of further optimizations to reduce the

number of multiplications. In particular, additional variables are

introduced to avoid multiplying flags such as ie with larger vec-

tors such as the output of a CRa circuit. This introduces additional

variables, e.g., ie ∗ CRa (ψ − 2; ⟨x ′⟩ − ⟨0.25⟩, sx ′) would become

ie (x
′ − x ′aux ) and CRa (ψ − 2; ⟨x ′aux ⟩ − ⟨0.25⟩, sx ′aux ).

7 THE LAPLACE DISTRIBUTION
7.1 Private Laplace Sampling

Protocol 6 (private drawing from Laplace). First, party P1

privately draws s0 and a
′
uniformly at random in [0, L) with L suf-

ficiently large (Protocol 2). Then, P1 computes a = −b log(1 − a′/L),
s = 2(s0 mod 2)−1 and r = sa, and provides a ZKP for these relations
(in Section 6.3 we showed a ZKP for the logarithm function, in Section

6.1 for approximate division).

As Protocol 2 verifiably draws random numbers uniformly and

for the other computations in Protocol 6 a ZKP is provided, Protocol

6 verifiably draws random numbers from the Lap(b) distribution.
An alternative method could be based on work by [26] (see also

[19] for related ideas). In particular, [26] proposes a technique to

sample directly from the exponential distribution using a range of

independent biased coin flips. The main advantage of our method

is that we only need one uniformly sampled public random number,

which strongly reduces the communication cost.

This remark also holds for the protocol of Laplace hidden draws

which we will present in Section 7.2 below.

7.2 Hidden Laplace Sampling
We can also make hidden draws from the Laplace distribution, i.e.,

drawing a Laplace-distributed random number r as a secret share
⟦r⟧. For this, we build on the basic operations discussed in Section

2.5.

First, we observe that one can sample a sign s uniformly from

{−1, 1} as follows: the parties apply Protocol 3 to draw a secret
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shared random number uniformly distributed in Zp , obtaining the

sharing ⟦t⟧, next they multiply the sharing with itself to obtain

�
t2
�

and open

�
t2
�
to reveal t2

, and finally they multiply ⟦t⟧ with the

public constant 1/
√
t2

to obtain ⟦s⟧ =
�
t/
√
t2

�
∈ {−1, 1}. Drawing

a secret shared random bit b ∈ {0, 1} is then just drawing a sign ⟦s⟧
and computing ⟦b⟧ = (⟦s⟧ + 1) /2 (this is protocol RAN2 in [23]).

The Cordic algorithm for logarithm computation described in

Section 6.2 requires only additions, bit shifts and comparisons (when

setting ξi = sign (−Yi−1)). While it does not directly use multipli-

cations, implementations of bit operations and comparisons, e.g.,

as in [23], often are using multiplications so the use of multiplica-

tions cannot be fully avoided. Alternative strategies to compute the

logarithm suffer from similar challenges.

As in Section 7.1, we want to draw a number a′ uniformly from

[0, L), compute a = −b log(1 − a′/L) and multiply it with a random

sign s to get the random number as distributed according to Lap(b).
To compute log(x), Cordic expects x ∈ [1/4, 1), so before applying

Cordic we may need to scale its input to fit this interval.

We set L = 2
l
for some sufficiently large integer l and generate a′

as an l-bit number, i.e., ⟦a′⟧ = ∑l−1

i=0

�
a(i)

�
2
i
where a(i) are random

bits.

We can find the highest zero bit of a′ as follows: sethl = 0,h′l = 1

and a(−1) = 0, and for i = l − 1 . . . − 1, set

�
h′i
�
=
�
h′i+1

�⟦1 − hi+1⟧
and ⟦hi⟧ =

�
h′i
��

1 − a(i)
�
. The meaning of hi then is ’bit i is the

highest 0-bit’, and the meaning of h′i is ’the bits higher than bit i
are all ones’. Exactly one hi equals 1 and all others are 0 among

i = −1 . . . l − 1. We then can write log(1− a′/L) = ah + log(x) with�
ah

�
=

∑l−1

i=0
⟦hi⟧ log(2i+1−l ) and BITS(x, (x (i))li=0

) where

(⟦x (i)⟧)li=0
= Bit-add(2l , (⟦x (i)− ⟧)l−1

i=0
)

and ⟦x (i)− ⟧ = ∑l−1

j=0
⟦hj⟧⟦a(i+j+1−l )⟧ (with a(i) = 0 for i < 0).

Now we can apply Cordic on x . Cordic needs additions (using
the Bit-add protocol), bit shifts (moving bits to the right and dupli-

cating the highest bit), the sign(·) function (check the highest bit)

and negation (invert all bits and add 1).

Protocol 7 (hidden drawing from Laplace). One can verifi-

ably draw a hidden Laplace-distributed random number by following

the steps explained above, and by providing ZKP for all computations.

The ZKP are similar to those for private sampling, where parts of

secret shares are transfered between parties, the parties can agree on

the commitment which will represent the shared number.

8 THE GAUSSIAN DISTRIBUTION
In this section we elaborate several strategies to sample from the

Gaussian distribution.

In particular, we are interested in protocols such that upon termi-

nation one party has a private numbery ∈ Q⟨p,ψ ⟩ and has provided

a zero knowledge argument that y ∼ N(µ,σ 2) for some public µ
and σ .

All methods require as a subprotocol sampling uniformly dis-

tributed numbers. Therefore all our protocols for private drawing

numbers from the Gaussian distribution follow the same high-level

structure:

(1) use Protocol 2 to verifiably draw uniformly distributed num-

ber(s),

(2) transform the uniformly distributed number(s) into Gaussian

distributed number(s), and

(3) use an arithmetic circuit matching this transformation to-

getherwith compressed Σ-protocols (see Section 2.4) to prove
the transformation.

We implement ZKPs of the correct execution of Gaussian draws.

The sampling methods we implement are (1) the central limit theo-

rem approach (averaging over uniform samples), (2) the Box-Müller

method [12], (3) the Polar Method [39], (4) the inversion method

using a series expansion for erf
−1

[18], and (5) the inversion method

using a fractional polynomial to approximate erf
−1

[28].

8.1 The Central Limit Theorem Method
The uniform distribution over the interval [0, L) has variance L2/12.

Let a party privately draw N random numbers {xi }
N
i=1

uniformly

distributed over [0, L), and compute x = µ + σ
√

12

L
√
N

∑N
i=1

(
xi −

L
2

)
.

Then, x isN(µ,σ 2) distributed. For a ZKP for this relation between

x and the xi we only need the homomorphic property of the Ped-

ersen commitment (for the additions and the multiplication with

a constant) and a range proof (for the rounding). This method

is essentially the technique of [26] to sample from the Gaussian

distribution.

8.2 The Box-Müller Method
The Box-Müller method [12] consists of drawing two uniform sam-

plesU1 andU2 in the interval (0, 1) and to compute

ρ =
√
−2 ln(U1), X1 = ρ cos(2πU2) and X2 = ρ sin(2πU2).

Then, X1 and X2 are distributed according to N(0, 1). Now we use

circuits of elementary functions defined in Section 6 to construct

our proof. Recall parametersψ and the number of Cordic iterations

ν defined therein. Let

IBM = (s1, s2, s3, ⟨s⟩, ⟨c⟩, ITд, ⟨aπ ⟩, ⟨X ′1⟩, ⟨X
′
2
⟩

ISд, ⟨ρ⟩, ILд, ⟨l⟩, a′1, a
′
2
,U′

1
,U′

2
, a′′

1
, a′′

2
,U′′

1
,U′′

2
)

be a vector containing all intermediate values of the computation.

Then the approximation circuit is

CBM (ψ ,ν, z1, z2; ⟨U1⟩, ⟨U2⟩, ⟨X1⟩, ⟨X2⟩, IBM )

B



CMod (2
ψ − 1, z1;a1, ⟨U1⟩ − 1, a′

1
, a′

2
,U′

1
,U′

2
)

CMod (2
ψ − 1, z2;a2, ⟨U2⟩ − 1, a′′

1
, a′′

2
,U′′

1
,U′′

2
)

CLoдG (ψ ,ν ; ⟨U1⟩, ⟨l⟩, ILд)
CSqr tG (ψ ,ν, 2ψ ln(2);−2⟨l⟩, ⟨ρ⟩, ISд)

CProd (ψ ; 2⟨π ⟩, ⟨U2⟩, ⟨aπ ⟩, s1)

CT rG (ν ; ⟨aπ ⟩, ⟨s⟩, ⟨c⟩, ITд)
CProd (ψ ; ⟨ρ⟩, ⟨c⟩, ⟨X ′

1
⟩, s2)

CProd (ψ ; ⟨ρ⟩, ⟨s⟩, ⟨X ′
2
⟩, s3)


.

Private values a1 and a2 and public challenges z1 and z2 are used

in the modular proofs of circuit CMod to generateU1 andU2 with

Protocol 2. To obtain a sample with standard deviation different

than 1, the resulting samples can be scaled with an extra CProd
circuit. Different mean requires an extra addition gate.
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8.3 The Polar Box-Müller Method
The polar method [36] is an optimization of Box-Müller that avoids

the computation of sine and cosine by the use of rejection sampling.

It samples two uniform valuesV1 andV2 in the (−1, 1) interval, and

keeps the result only if 0 < V 2

1
+V 2

2
≤ 1. Otherwise V1 and V2 are

re-sampled. For non rejected V1 and V2 it computes

α = V 2

1
+V 2

2
, Y1 = V1

√
−2 ln(α)/α, and Y2 = V2

√
−2 ln(α)/α .

Y1 and Y2 have distribution N(0, 1).

In the private sampling, if V1 and V2 are rejected, the prover can

just reveal them and start new uniform draws until acceptance,

when it proves the correctness of accepting pairs. As in Box-Müller,

parameters ν andψ define our elementary function approximations,

and a1,a2, z1, z2 are used to generate V1 and V2 in Protocol 2. Let

IPol = (⟨s⟩, ISд, ⟨d⟩, ⟨α⟩, ⟨l⟩, ILд, s6, s5, s4, s3, s2, s1, ⟨α⟩,

⟨V ′
2
⟩, ⟨V ′

1
⟩, v′, v, a′

1
, a′

2
,V′

1
,V′

2
, a′′

1
, a′′

2
,V′′

1
,V′′

2
)

be a vector of intermediate computation values, then the imple-

mented circuit is

CPol (ψ ,ν, z1, z2; ⟨V1⟩, ⟨V2⟩, ⟨Y1⟩, ⟨Y2⟩, IPol )

B



CMod (2
2ψ − 2, z1;a1, ⟨V1⟩ + ⟨1⟩ − 1,

a′
1
, a′

2
,V′

1
,V′

2
)

CMod (2
2ψ − 2, z2;a2, ⟨V2⟩ + ⟨1⟩ − 1,

a′′
1
, a′′

2
,V′′

1
,V′′

2
)

CProd (ψ ; ⟨V1⟩, ⟨V1⟩, ⟨V
′

1
⟩, v)

CProd (ψ ; ⟨V2⟩, ⟨V2⟩, ⟨V
′

2
⟩, v′)

⟨α⟩ − ⟨V ′
1
⟩ − ⟨V ′

2
⟩

CGRa (1, ⟨1⟩ − 1; ⟨α⟩, s1, s2)

CLoдG (ψ ,ν ; ⟨α⟩, ⟨l⟩, ILд)
CDiv (ψ ;−2⟨l⟩, ⟨α⟩, ⟨d⟩, s3, s4)

CSqr tG (ψ ,ν, 2
ψ+1ψ ln(2); ⟨d⟩, ⟨s⟩, ISд)

CProd (ψ ; ⟨s⟩, ⟨V1⟩, ⟨Y1⟩, s5)

CProd (ψ ; ⟨s⟩, ⟨V2⟩, ⟨Y2⟩, s6)



.

To avoid multiple interactions due to rejection, Protocol 2 is set

to draw a sufficiently large number of uniform samples such that at

least one pair is not rejected with high probability. The cost of the

extra samples is negligible. To obtain a distribution with different

mean and variance, we scale V1 and V2 with addition and product.

8.4 The Inversion Method
Inverting eq. (1) we get

F−1

N
(x) =

√
2erf
−1(2x − 1).

There are many numerical strategies to approximate either erf or

erf
−1
, of which we implemented two.

A first strategy due to [18] is to use the series

erf(x) =
2

√
π

∞∑
l=0

(−1)lx2l+1

l !(2l + 1)
.

However, its approximation error gets larger as x gets bigger. There-

fore, when x is large, it is better approximate erfc(x) = 1 − erf(x)
using the series

erfc(x) =
e−x

2

x
√
π

(L−1∑
l=0

(−1)l (2l − 1)!!

(2x2)l

)
+ RL(x),

where

RL(x) ≤
e−x

2

x
√
π

(2L − 1)!!

(2x2)L

is the remainder, l !! = 1 for l < 1 and (2l − 1)!! =
∏l

i=1
(2i − 1). The

number of terms L of the series is tuned for minimal error. If we

set B to be the maximum error of our approximation, we use erf if

x <

√
ln(1/B)

2
+ 0.788 and erfc otherwise. The ZKP of this method

proves that y = erf(x) or 1 − y = erfc(x) depending on the domain

of x .
A second strategy is proposed in [28] and uses a rational approx-

imation. Therein, erf
−1

is computed by

erfinvSP(x) =

{
xp1(w) ifw ≤ 5 (central region)

xp2(s) ifw > 5 (tail region)

wherew = − log(1−x2), s =
√
w and p1 and p2 are two polynomials

of degree 8. We use Cordic, product and range ZKPs to prove its

computation.

8.5 Hidden Drawing
For the several strategies for sampling the Gaussian distribution

described above, one can construct a protocol based on secret shar-

ing for hidden sampling. Similar considerations apply as for the

discussion in Section 7.2. As an example, we show a protocol using

the Central Limit Theorem approach.

Protocol 8. Let N /12 be a power of 4. For i = 0 . . . l − 1 and

j = 1 . . .N , draw a random bit sharing ⟦x (i)j ⟧. This yields N random

numbers {x j }
N
j=1

in the interval [0, 2l ). For j ∈ [N ] and i = l . . . l +

log
2
N , set x

(i)
j = 0. Let (⟦y(i)

1
⟧)l+log

2
N

i=0
= (⟦x1⟧)l+log

2
N

i=0
and for

j = 2 . . .N let

(⟦y(i)j ⟧)l+log
2
N

i=0
= Bit-add((⟦y(i)j−1

⟧)l+log
2
N

i=0
, (⟦x (i)j ⟧)l+log

2
N

i=0
).

Finally let ⟦r⟧ = ∑l+log
2
N

i=log
2
(N /12)/2

y
(i)
N 2

i−log
2
(N /12)/2

. Then, r approx-

imatesN(2l
√

3N , 2l ). The computations can be made verifiable using

a ZKP where parties send a number to each other can agree on using

the same commitment.

9 EVALUATION
In this section, we present an empirical comparison of several

methods to privately sample from the Gaussian distribution. We

will publish code to reproduce all experiments together with the

final version of this paper.

9.1 Setup
We evaluate the costs of themethods presented in Section 8. Namely,

the Central Limit Theorem approach (CLT), the Box-Müller (BM),

the Polar Method (PolM) and the inversion method. In the latter,

we evaluate the two described strategies: using series (InvM-S) and

rational approximations (InvM-R). Samples are generated for the

N(0, 1) distribution.

We evaluate the cost of each method instantiated for several

parameters against the statistical quality of the generated samples.

For the computational cost we measure the exponentiations in G
(GEX), which dominate the computation. The total communication
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cost is the number of elements of G and Zp sent (see Section 2.4).

To measure the statistical quality, we generate 10
7
samples and

measure the Mean Squared Error (MSE) from the ideal Gaussian

CDF.

The varying parameter for BM and PolM is the number of itera-

tions ν of their Cordic approximations, which is chosen between 2

and 14. For CLT we vary the number of averaged uniform terms

between 2 and 400. For InvM-R, the number of terms of the approxi-

mation series is changed in order to obtain different approximations

with errors between 0.5 and 2
−20

. The rational approach InvM-R

has no varying parameter. The representation parameterψ which

defines Q⟨p,ψ ⟩ is chosen to be the smallest as allowed by BM, PolM,

InvM-S due to approximation constraints, and for CLT is set to

optimize the quality/cost tradeoff .

9.2 Results
Figure 1 shows the communication costs, i.e., the number of el-

ements of G required to prove one Gaussian draw. Note that, as

described in Section 2.4, 6 elements of Zp must be added to ob-

tain the final cost. If high precision isn’t important, CLT performs

well, but in general PolM, BM and Inv-R give the best precision

for a given computational investment. The Inv-R method is much

simpler but can’t be tuned to other precisions.

Figure 2 shows the number of GEX to prove (by the party who

draws the number) or to verify (by another party) one Gaussian

draw. Here too, BM and PolM are the most efficient methods as

soon as a good statistical quality is required. We note that, as the

communication cost is logarithmic in the number of inputs and

multiplication gates, several parameter settings give different points

in Figure 2 but may have the same communication cost, so in Figure

1 we just show the proof with best statistical quality.

For illustration, if we implement Pedersen commitments using

the secp256k1
1
elliptic curve, we obtain 128 bit security and an

element of G can be represented with 257 bits. One GEX using this

curve takes nomore than 30microseconds on an Intel Core i7-6600U

at 2.60 GHz CPU. With BM, PolM and InvM-R, a sample with MSE

< 2
−20

requires less than 900 Bytes of communication. With PolM,

such sample takes less than 360 milliseconds (ms) to prove and 75

ms for its verification. While CLT quickly gets very expensive, if

quality is less important and an MSE > 2
−13

is satisfactory, it is

the most efficient approach. A proof of a sample using CLT with

MSE 0.01 can be generated in less than 10 ms, verified in 3 ms and

has a size of 482 Bytes. We also note that it is possible to further

optimize our implementation using special-purpose algorithms [46]

to compute multiple exponentiations in the form gb.
Finally, in Figure 3 we show the gap in the communication cost

between our PolM and CLT sampling techniques implemented

with classic (non-compressed) Σ-protocols [21, 22] to the presented
compressed techniques.

1
See https://www.secg.org/SEC2-Ver-1.0.pdf and https://github.com/bitcoin-core/

secp256k1

Figure 1: (Comm. costs) Required Group Elements for one
sample against the MSE for BM, PolM, InvM and CLT ap-
proaches.

(a) Proving cost.

(b) Verification cost.

Figure 2: (Comp. costs) Required group exponentiations for
one sample against the MSE for BM, PolM, InvM and CLT
approaches. Costs in the left side plots are in logarithmic
scale. The right side plots are zooms of their left plots, in
linear scale and with a detailed view on the most efficient
methods.

Figure 3: (Comparison w. classic Σ-protocols) Required Group El-
ements for one sample against the MSE using compressed
and classic Σ-protocols for PolM (left) and CLT (right).
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10 APPLICATION: DIFFERENTIALLY
PRIVATE MACHINE LEARNING

An important application of verifiable sampling can be found in the

field of federated machine learning under differential privacy. Con-

sider parties P = {Pi }ni=1
where each party Pi has some sensitive

private data xi . The parties P want to keep their data xi private but
want to collaborate to obtain statistical information θ of common

interest. For example, assume that xi ∈ R and the parties in Pwould

like to compute θ = 1

n
∑n
i=1

xi .
Even if no inputs nor intermediate results are revealed, com-

puting and sharing the exact statistic θ may impact privacy. For

example, suppose thet xi = 1 if Pi likes a particular idea or xi = 0

if Pi doesn’t like it. It may turn out that no party likes the idea of

interest, in which case we would get θ = 0. If we publish that θ = 0

no party can claim anymore that it liked the idea, so its privacy is

lost. Statistical notions of privacy, such as differential privacy [27],

add noise to guarantee the privacy of the individuals independently

of the output. In particular, let θ be a function mapping datasets on

values in X. We say datasets are adjacent if they differ in the data

of only one party. Then, we say a randomized algorithm A is (ϵ, δ )-
differentially private (DP) if for any two adjacent datasets D1 and

D2 and for any subset X ∈ X, P(A(D1) ∈ X ) ≤ eϵP(A(D2) ∈ X )+δ .
A is ϵ-DP if it is (ϵ, 0)-DP.

The most common strategy to make information DP before pub-

lication is to add noise from appropriately scaled Laplace or Gauss-

ian distributions. For example, consider again the above example

where the parties in P want to average their private xi . Assume

that ∀i ∈ [n] : 0 ≤ xi ≤ 1. Then, for any ϵ > 0, if we set
ˆθ = θ + η

with η ∼ Lap(1/ϵ) there holds that ˆθ is ϵ-DP. Alternatively, for any

ϵ > 0 and δ > 0, if we set
ˆθ = θ + η with η ∼ N(0, 2ln(1.25/δ )/ϵ2)

there holds that
ˆθ is (ϵ, δ )-DP.

It is important that no party knows the added noise η, because

knowing both
ˆθ and η would allow to reconstruct θ = ˆθ − η. We

present two protocols, one privately drawing random numbers,

which produces a less accurate result, and one based on the more

expensive hidden drawing which has optimal precision.

Protocol 9 (DP learning using private sampling). Let Pcor ⊂
P be the set of corrupted parties of size at most ρn (with 0 ≤ ρ < 1).

As described in Section 8, let all parties Pi (i ∈ [n]) privately verifi-

ably draw a Gaussian random number η ∼ N(0,σ 2/n(1 − ρ)), where
noise with variance σ 2

on θ would be sufficient to achieve the desired

privacy level. Then, securely sum
ˆθ = 1

n
∑n
i=1
(xi + ηi ) and publish ˆθ .

Even if the corrupted parties would collect all noise they have

contributed ηcoll =
∑
i ∈Pcor ηi and subtracts it from

ˆθ to obtain

θcoll = ˆθ − ηcoll /n, then there is still Gaussian noise with variance

σ 2

1−ρ − ρ
σ 2

1−ρ = σ
2
left on their best estimation of θ . This strategy,

which adopts some ideas from [26], works best for Gaussian noise,

as the sum of Gaussian distributions is again a Gaussian distribution.

Protocol 10 (DP learning using hidden sampling). Let all

parties Pi (with i ∈ [n]) represent their private number xi as a shared
secret. Let the parties next together verifiably drawn a hidden random

number η, i.e., a random number they obtain only as a shared secret.

Finally, let them sum the secret shares and reveal
ˆθ =

∑n
i=1

xi + η

The advantage of this protocol is that no parties see η or parts of

it, so it is impossible to get back towards the sensitive statistic θ . On
the other hand, the full computation needs to be performed through

multi-party computations, e.g., using shared secrets, which is clearly

more expensive than the ZKPs which are needed in Protocol 9,

especially as compressed Σ-protocols allow for ZKPs of size only

logarithmic in the circuit size while calculations on secret shares

have a linear communication cost.

As such drawing of random noise is a basic building block and

needs to be performed repeatedly by secure federated differentially

private machine learning algorithms, being able to draw from these

probability distributions with low communication cost is essential

to make algorithms more efficient.

Issues of Finite Precision. The work of [42] shows the impact that

finite precision approximation of continuous distributions can have

on DP guarantees. As explained in [42, Sec. 5.2], these vulnerabili-

ties can be overcome by appropriately adjusting the precision and

truncating the outcome after the noise is added to private values.

This can be achieved in our protocols by using the correct precision

parameters and range proofs.

To overcome vulnerabilities of finite precision approximations,

other lines of work have explored the use of discrete distributions

[17, 34]. These methods require in expectation comparable compu-

tational effort as our protocols. However, sampling from a discrete

distribution requires in the worst case many iterations which results

in longer zero-knowledge proofs.

11 CONCLUSION
We have presented novel methods for drawing random numbers in

a verifiable way in a public, private and hidden setting. We applied

the ideas to the Laplace and Gaussian distribution, and evaluated

several alternatives to sample from the Gaussian distribution.

We see several interesting directions for future work. First, we

hope to develop novel strategies to let our methods scale better

when in the course of an algorithm many random numbers are

needed. Second, we would like to develop new methods which

allow for more efficient sampling in the hidden setting where the

random numbers are output as shared secrets. In particular, our

current methods based on generic secret sharing techniques require

multiple rounds of computation and communication, it may be

possible to develop more efficient special-purpose strategies.
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A COMPRESSED Σ-PROTOCOLS
In this appendix, we explain all necessary notions to understand

compressed Σ-protocols [2]. In Appendix A.1, we explain the basic

concepts of ZKP. Classic approaches to construct ZKP of linear

relations are shown in Appendix A.2 and techniques to compress

the communication cost in Appendix A.3. In Appendix A.4 we

explain how linear proofs can be used to construct ZKP involving

circuit computations. Finally, Appendix A.5 has an application for

range proofs and Appendix A.6 discusses the costs of the techniques.

A.1 Zero Knowledge Proofs and Arguments
An interactive proof of knowledge (PoK) for an NP relation R is

a protocol between a prover P and a verifierV in which P tries

to prove toV that they know a witness w such that (a,w) ∈ R for

a public statement a. At the end of the protocol,V either accepts

or rejects the proof. We denote by (a;w) a member of a relation

or an input of a protocol, using a semicolon to separate the public

statement a from the private witnessw . The tuple of all messages

in a proof is called the conversation or transcript. Proofs may satisfy

the following properties:

• Completeness: a proof is complete ifV always accepts the

proof when (a;w) ∈ R and P knowsw .

• Soundness: a proof is sound if any prover whose proof for

statement a is accepted by the verifier knows a valid wit-

nessw such that (a;w) ∈ R with overwhelming probability.

The notion of soundness we use is called witness extended

emulation [38]. Proofs that are sound only if the prover is

computationally bounded are also called arguments.

• Zero Knowledge: a proof is zero knowledge if its transcript
reveals no or negligible information about the witness other

than its validity.

A.2 Σ-Protocols for Linear Relations
We now show how to prove linear relations over secret committed

values. Recall the definition of Pedersen vector commitments pre-

sented in Section 2.2, which defines the commitment domain Zp ,
our underlying cryptographic group G and vector of elements g.
As explained in Section 2.2, we reserve one of the components of g
for randomness so that commitments are hiding. For L : Zkp → Zp
a linear function in Zp , that is L(x1, . . . , xk ) = a1x1 + · · · + akxk
for coefficiens a1, . . . ,ak ∈ Zp , a vector commitment P ∈ G and a

value y ∈ Zp , a prover P proves to know an opening x ∈ Zkp of P

such that L(x) = y. We formally describe our linear relation by

RL = {(P ∈ G,y ∈ Zp ; x ∈ Zkp ) : P = gx ∧ y = L(x)}.

Note that in our case x has a coordinate reserved for randomness,

so in valid relations the correspondent coefficient of L must be

0. However, in later auxiliary protocols we will not impose such

restriction. To provide a zero knowledge proof for RL we use a

family of zero knowledge proofs called Σ-protocols [21] and its

compressed version proposed in [2]. They provide soundness un-

der the Discrete Logarithm Assumption (DLA). Protocol Π0 below

describes a classic proof of RL originally stated for more general

types of commitments defined in [21, 22] and which we instantiate

for the Pedersen scheme. Π0 takes as input (P,y; x):
Protocol Π0(P,y, x):

(1) P computes: r←R Z
k
p , A = gr, t = L(r)

(2) P sends toV: A, t
(3) V sends to P: c ←R Zp
(4) P sends toV: z = cx + r
(5) V: if gz = APc and L(z) = cy + t then accept, else reject.

Theorem 2. Π0 is a complete, sound and zero knowledge proof of

RL .

We provide an intuition of how these properties are obtained.

Completeness follows directly from the homomorphic property. For

soundness, consider a prover P∗ that by following Π0 can produce

an accepting transcript ((A, t), c1, z1) with significant probability.

Then it is shown that also with non-negligible probability, by using

P∗’s strategy many times, another accepting transcript of the form

((A, t), c2, z2) can be produced, where the first message is equal

in both transcripts and such that c1 , c2. Now, since both tran-

scripts are accepting, we have gz1 = APc1
and gz2 = APc2

so P∗

can efficiently compute the witness x = z1−z2

c1−c2

such that gx = P .

Acceptance also implies that L(z1) = c1y + t and L(z2) = c2y + t
and it follows that L(x) = y. Therefore is x a valid witness. Either

P∗ already knew it or they can efficiently compute the discrete

logarithms between components of g, which is a contradiction due

to the DLA.

Zero knowledge is obtained by showing that all information

seen in the proof is random that does not depend on the secrets.

By only knowing the statement (P,y) one can compute z′ ←R Zp ,

c ′ ←R Zp , A
′ = P−c

′

gz
′

and t ′ = L(z′) − c ′y, and the transcript

((A′, t ′), c ′, z′) has the same distribution as a conversation between
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an honest prover and a honest verifier. Note that, as it is computed

in reverse, ((A′, t ′), c ′, z′) cannot be efficiently produced in the ac-

tual protocol by a dishonest prover. Note that this reasoning only

holds if the verifier is honest and generates its messages uniformly

at random. To circumvent this, we implement our proofs transform-

ing them into non-interactive proofs using the Strong Fiat-Shamir

heuristic [8], where the verifier is replaced by a hash function and

therefore without the need of involving a trusted party. The con-

struction is secure under the Random Oracle Model [6].

A.3 Compression Mechanism
Now we reduce the communication cost of Π0 using ideas of com-

pressed Σ-protocols [2] and also present in [11, 14]. The transfer in

Π0 is dominated by the thirdmessage of the protocols in Step 4, with

size of k elements of Zp . It can be reduced if instead of sending z, P
proves that (APc , cy + t ; z) ∈ RL which would imply the condition

tested in Step 5. Note that this proof does not need to be zero knowl-

edge as z is originally revealed in Π0. We first present Π1, a proof

of R that halves communication cost by “folding” z before sending
it. Next, we show how to use this protocol to reduce cost of Π0. By

assuming that k is even, we define gL = (д1, . . . ,дk/2) ∈ G
k/2

and

gR = (д(k/2)+1
, . . . ,дk ) ∈ G

k/2
and analogously for xL ∈ Z

k/2
p and

xR ∈ Z
k/2
p . We also define LL : Z

k/2
p → Zp and LR : Z

k/2
p → Zp

such that LL(a) = L(a, 0) and LR (a) = L(0, a). We use, an additional

group element д̂ ∈ G generated in the same way as the components

of g.
Protocol Π1(P,y; x):

(1) P computes: A = gxLR д̂LR (xL ), B = gxRL д̂LL (xR )

(2) P sends toV: A,B
(3) V sends to P: c ←R Zp
(4) P sends toV: z = xL + cxR
(5) V: if (gcL ∗ gR )

zд̂cLL (z)+LR (z) = A(Pд̂L(x))cBc
2

then accept,
else reject

Π1 is a complete and sound proof of RL with half the communica-

tion of Π0. The communication of Step 4, can be further reduced

by applying Π1 recursively until the size of z is sufficiently small.

Let ΠB ⋄ΠA be the interactive proof obtained executing ΠA except

for the last message and then executing ΠB . Now we can define to

Πc = Π1 ⋄ . . . ⋄ Π1 ⋄ Π0 where the ⋄ is applied log
2
(k) − 2 times.

Note that k requires to be a power of 2, but padding vectors with

0’s is sufficient to fix this. Presented with more detail, it is proven

in Theorem 3 of [2], that Πc is a complete, sound and zero knowl-

edge protocol for RL . Completeness is straightforward, and for zero

knowledge it is sufficient to see that Π0 is already zero knowledge,

and the rest of the protocol only reveals as much as Π0. Soundness

follows from similar ideas than those shown for Theorem 2.

Amortization techniques can be applied to prove many nullity

checks, where the prover claims for linear relations L1, . . . , Lr
that Li (x) = 0 for all i ∈ {1, . . . , r }. For that, V sends a ran-

dom value ρ ← Zp and then P and V execute Πc on input

(P,
∑r
i=1

ρi−1Li , 0; x). If L(x) = 0 then Li (x) = 0 for all i with over-

whelming probability 1 − (r − 1)/p. Amortized nullity checks also

hold when replacing linear forms by affine forms Φ1, . . . ,Φr where
each one is the application of a linear form plus a constant. We

denote this protocol by ΠN and its input by (P, (Φ1, . . . ,Φr ); x). A

prover can prove the opening of an affine map Φ : Zkp → Z
r
p to

y = (y1, . . . ,yr ) ∈ Z
r
p by runningΠN on input (P, (Φ1−y1, . . . ,Φr−

yr ); x) where Φ1, . . . ,Φr : Zkp → Zp are the affine forms that com-

pose Φ. The communication cost of these protocols sends r − 1

elements of Zp more than Πc , which account for the size of y.

A.4 Proving Multiplications and Circuits
Now, we show the idea of [2] to prove multiplicative relations only

with black-box access to ΠN . For a set committed triplets

(α1, β1,γ1), . . . , (αm, βm,γm ),

P proves to V that αiβi = γi for all i ∈ {1, . . . ,m}. Let α =
(α1, . . . ,αm ), β = (β1, . . . , βm ) and γ = (γ1, . . . ,γm ).

Protocol ΠM :
(1) P: samples random polynomials f (X ),д(X ) in Zp of degree

at mostm that define a secret sharing over α and β by fixing

f (i) = αi and д(i) = βi for all i ∈ {1, . . . ,m} and sampling

f (0),д(0) ←R Zp .
(2) P: computes the product polynomialh(X ) = f (X )д(X )which

has degree at most 2m.

(3) P sends toV: a vector commitment of

x = (α, β, f (0),д(0),h(0), . . . ,h(2m)).

Note that γ = (h(1), . . . ,h(n)).
(4) V sends to P: c ←R Zp \ {0, . . . ,m}
(5) P andV run ΠN to prove that f (c), д(c), h(c) open to some

points u,v andw respectively. This is possible by Lagrange

interpolation, where by having sufficient points of f ,д and
h, which are in the commitment of x, they can be evaluated

its domain by applying an affine form to x
(6) V: if uv = w then accept else reject
As before, completeness is straightforward. Zero knowledge fol-

lows from fact that f ,д and h are random polynomials and their

evaluations do not reveal information and that ΠN is zero knowl-

edge. If the multiplicative relations does not hold in all triplets, the

probability that uv = w is negligible. From that and the soundness

of ΠN , soundness is obtained.

Now, let C : Zkp → Z
s
p be a circuit, i.e. a function that only

contains addition and multiplication gates in Zp . For a vector com-

mitment P , we adapt ideas from ΠM to construct a proof that P

knows a opening x ∈ Zkp of P such that C(x) = 0. Suppose that C

hasm multiplication gates. We enumerate the multiplication gates

from 1 tom. For i ∈ {1, . . . ,m}, let αi and βi be inputs of the ith
multiplication gate, and γi its output. Let α ,β and γ as defined in

the multiplication protocol. It is not necessary to commit to α and

β as a commitment of them can be obtained from affine forms on

inputs (x,γ ) which are only dependent on C . Similarly, the output

of C can be computed from an affine map ω : Zk+2m
p → Zsp that

takes as input (x,γ ). When committing to x and γ , the prover only
needs to prove that multiplication gates hold and that ω opens to 0.

This can be done with amortized nullity checks. Let [a] be a hiding
vector commitment of a i.e., [a] = g(a,r ) where r ∈ Zp is chosen at

random.

Protocol Πcs (C):
(1) P: Computes f ,д and h from α , β as in Steps 1 and 2 of ΠM .
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(2) P sends toV: [y], where

y = (x, f (0),д(0),h(0),h(1), . . . ,h(2m)) ∈ Zk+2m+3

p .

(3) V sends to P: c ←R Zp \ {1, . . . ,m}.
(4) P sends toV: z1 = f (c), z2 = f (c), z3 = f (c).
(5) P andV run ΠN with input

([y], (ω, f (c) − z1,д(c) − z2,h(c) − z3); y) ,

where linear forms are obtained by Lagrange interpolation

as in Step 5 of ΠM .

(6) V: if z1z2 = z3 then accept else reject
Note that [y], additionally to α and β , is an implicit commitment to

γ = (h(1), . . . ,h(m)). Properties of completeness, zero knowledge

and soundness, which can be found in Theorem 4 of [2], follow

from the same arguments as the multiplication protocol.

A.5 Range Proofs
A straightforward application of circuit proofs are range proofs.

Namely, for a secret x ∈ Zp and an integer k < log
2
(p), that

x ∈ [0, 2k ). For that you commit to the first k bits b1, . . . ,bk of x .
Then, for b = (b1, . . . ,bk ), a circuit proof for circuit

CRa (x, b) B
[

b ∗ (1 − b)
x −

∑k
i=1

2
i−1bi

]
implies the range constraint. Note that in CRa the output of the

multiplication gates is 0. Therefore, in protocol Πcs , it is not neces-

sary to include in y the elements h(1), . . . ,h(k), which reduces the

proof cost.

A.6 Cost of Proofs
We now briefly summarize communication and computational cost

of the proofs. As previously stated in the Appendix, k is the number

of inputs andm of multiplication gates in circuits.

Theorems 3 and 4 of [2] give the communication costs for Πc and

Πcs respectively. As we use versions of the protocols transformed

by the Fiat-Shamir heuristic, the verifier does not send any message.

Therefore, the proof sizes are 2⌈log(k + 1)⌉ elements of G and 3

elements of Zp for Πc , and 2⌈log(k + 2m + 4)⌉ − 1 elements of G
and 6 elements of Zp for Πcs .

For the computational cost, we count the amount of group ex-

ponentiations in G (GEX) as they dominate the work. In protocol

Π0, P performs k GEX to compute A, andV performs k + 1 GEX,
which corresponds to the verification of Step 5. In Π1, P performs

k + 2 GEX to compute A and B, and V does k/2 + 4 GEX in the

verification of Step 4. Πc is a composition of one instance of Π0 and

µ = ⌈log
2
(k)⌉ − 2 instances of Π1. After the first Π1 proof, k halves

at each instance of Π1. Additionally, P and V have to compute

g′ = gcL + gR after the first Π1 to update parameters for each of

following sub-protocols.V avoids each of the verification checks

except for the last one, which requires a constant amount of GEX.
Therefore, P performs k + 2 +

∑µ
i=1

k
2
i−1
+ k

2
i = 4k + 2µ − 10 GEX

andV does 3+
∑µ
i=1

k
2
i +2 = k +2µ −1 GEX. Protocol ΠN requires

the same amount of GEX than Πc .

In Πcs , P is required to compute a (hiding) commitment of

y ∈ Zk+2m+3

p , which costs l = k + 2m + 4 GEX. Then P and V

engage in ΠN for an affine form of l inputs. The final costs for

Πcs are then 5k + 8m + 2⌈log
2
(k + 2m + 4)⌉ + 6 GEX for P and

k+2m+2⌈log
2
(k+2m+4)⌉−1GEX forV . For a proof of membership

to the range [0, 2k ), as discussed in Appendix A.5, h(1), . . . ,h(k)
are not included in y which then has 2k + 4 elements. The costs are

of 9k + 2⌈log
2
(2k + 5)⌉ + 11 GEX for P, and 2k + 2⌈log

2
(2k + 5)⌉

GEX forV .

We apply the same optimization done for range proofs to all

of our circuits. That is, multiplication gates that are expected to

be equal to 0 are not included in y. Therefore, for circuits with k
inputs,m multiplication gates, andm0 multiplication gates that will

be equal to 0,

• P performs 5k + 8m − 4m0 + 2⌈log
2
(k + 2m −m0 + 4)⌉ + 6

GEX
• V performs k + 2m−m0 + 2⌈log

2
(k + 2m−m0 + 4)⌉ − 1 GEX.

B SECURITY OF OUR PROTOCOLS
In this section, we prove the security of the protocols presented in

the main paper. In the sequel, we will often restate in more detail

and more formally the protocols. We consider a set of n parties

P = {P1 . . . Pn }. We will denote by P−i the set of all parties except
i , i.e., P−i = P \ {Pi }. We assume that a subset of parties Pcor ⊂ P
is corrupted and controlled by an adversary A. The set Pcor of

corrupted parties is static, i.e. does not change after the beginning

of the execution.

For the description of our protocols, we will denote the fact that

a party A sends a message M to a party B by “A→ B: M”. Recall

that we use a bulletin board for communication. Among others, this

means that when a protocol contains a broadcast instruction a single

message is sent from one party to all others, in practice by sending

it from that party to the bulletin board, which forwards it to all

other agents. We will also use hiding vector Pedersen commitments

defined in Section 2.2. Recall the finite groups Zp and G defined

therein. For any integer k > 0, we will denote byCom(x; r ) ∈ G the

commitment of the k-dimension vector x ∈ Zkp with randomness

r ∈ Zp .
We describe our security framework in Appendix B.1. In Appen-

dix B.2, we describe our model of compressed Σ-protocols in our

security analysis. In appendices B.3 and B.4 we prove the security

of Protocols 1 and 2 respectively. We conclude by discussing the

security of our protocols for public and private draws from some

other distributions in Appendix B.5.

B.1 Security Definitions
We prove security in the simulation paradigm, using the model of

malicious security with identifiable abort [33] in the stand-alone

setting [29]. Therefore, we assume parties are able to detect mali-

cious actions and can in such cases abort the protocol. Deterrence

measures may be in place to discourage parties from being detected

as malicious. In fact, unless parties stop participating our protocols

either complete successfully or abort while detecting that a specific

party is a cheater.

We start by introducing the key concepts of multiparty compu-

tation under the model of security with identifiable abort in the

stand-alone setting (see [33, App. B of the full version]). A multi-

party computation between our n parties in P is a protocol that

computes a stochastic process F : ({0, 1}∗)n → ({0, 1}∗)n , which
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is also called an ideal functionality, where for all i ∈ {1, . . . ,n}, the
ith component of the input and output of Fmaps respectively to

the private input and output of party Pi .
In the simulation paradigm, a multiparty protocol securely com-

putes an ideal functionality in the presence of malicious adversaries

if any possible malicious behavior in the protocol caused by col-

luding malicious parties is not more harmful than what such party

can cause in the ideal model as defined below.

Ideal Model. In this model, it is assumed that there exists a trusted

party that computes F. A malicious adversary S controls a set of

corrupted parties Pcor . The ideal execution comprises 7 phases and

goes as follows:

(1) Inputs: Each party Pi receives a private input ui . Addition-
ally, S has an auxiliary input u∗ which represents the extra

knowledge other than its regular input.

(2) Send inputs to the trusted party: All honest parties send
their input to the trusted party, while parties controlled by

S might deviate and send what S wishes.

(3) Early abort or corrupted input: S can send aborti in-
stead of a valid input, which means that some corrupted

party Pi performed an early abortion or sent a corrupted

input. In that case, the trusted party sends aborti (choosing
the index i deterministically if many parties aborted or sent

a corrupted input) to all honest parties and halts.

(4) Detect cheating parties: During the execution, S can send

aborti to the trusted party, which means that a corrupted

party Pi attempted to cheat. In that case, the trusted party

sends aborti to all parties (i.e. the attempt of cheating is

detected).

(5) Trusted party answers the adversary: If no aborti is

sent, then the trusted party sends to S the outputs of F

of the corrupted parties. After receiving them, S can send

aborti to the trusted party or instruct it to continue.

(6) Trusted party answers thehonest parties: IfS instructed

the trusted party to continue, then the latter sends their out-

puts of F to the honest parties.

(7) Output: The honest parties always output what the trusted
party sent to them. S outputs any arbitrary computable

function of the inputs {ui }i ∈Pcor , the auxiliary input u∗ and
the messages obtained from the trusted party.

Let ū = (u1 . . .un ) be the vector of inputs of all parties and u
∗

the auxiliary input of S. Recall that λ is the security parameter. We

denote by idealF,S(u∗),Pcor (ū, λ) to the vector of outputs of parties
in the above execution.

The Real Model. The real model of an n-party protocol Π de-

scribes its execution in the presence of non-uniform probabilis-

tic polynomial time advesary A that corrupts a set of parties

Pcor . Parties in P \ Pcor behave as described by Π . We denote

by realΠ ,A(u∗)(ū, λ) the vector of outputs of parties in the real

execution of Π with input ū and where A has auxiliary input u∗.
We formalize the notion of security with identifiable abort [33,

Def. 16 of the full version] below.

Definition 3 (Security with identifiable abort in the stand-alone

setting). Let λ be the security parameter and F : ({0, 1}∗)n →

({0, 1}∗)n be an n-party ideal functionality. A protocol Π securely

computes F with identifiable abort if for every non-uniform proba-

bilistic polynomial time (PPT) adversaryA in the real model, there

exist a non-uniform PPT adversary S in the ideal model such that

the distributions of

{idealF,S(u∗),Pcor (ū, λ)}ū ,u∗∈({0,1}∗)n+1,λ∈N

and

{realΠ ,A(u∗),Pcor (ū, λ)}ū ,u∗∈({0,1}∗)n+1,λ∈N
are computationally indistinguishable.

Hybrid Model. In addition to the security definition, the simula-

tion paradigm facilitates tools to prove security of protocols which

use sub-protocols already known to be secure. Given functionalities

F
1
, . . . , Fk , where k is polynomial in λ, it allows to define a proto-

col in which both parties can send messages to each other and place

“ideal calls” to a trusted party that computes Fi for i ∈ {1, . . . ,k}.
In these ideal calls, parties can send their input to the trusted party

and wait for the output of Fi . However, (1) they cannot send any

messages between each other after invoking an ideal functional-

ity and before its response is returned by the trusted party and

(2) functionalities cannot be called concurrently. In other words,

functionalities can only be sequentially composed with all other in-

teractions. We denote such model as the (F
1
, . . . , Fk )-hybrid model.

When we describe a protocol in the (F
1
, . . . , Fk )-hybrid model, we

say that F
1
, . . . , Fk are hybrid functionalities.

Sequential Composition. Consider the protocol Π and functionali-

ties F
1
, . . . , Fk as defined above and let ρ1, . . . , ρk be protocols. We

define the protocol Πρ1, ...,ρk to be the protocol in the ideal model

that behaves exactly as Π in real messages, but for all i ∈ {1, . . . ,k}
each ideal call to Fi is replaced by the execution of protocol ρi .
We now state conditions such in which sequential composition is

secure.

Theorem 4 (Seqential composition [29]). Let F
1
, . . . , Fk be

secure multiparty functionalities and let ρ1, . . . , ρk be protocols that

securely compute F
1
, . . . , Fk respectively with identifiable abort. Let

G be a multiparty functionality and let Π be a multiparty protocol

that securely computes G in the (F
1
, . . . , Fk )-hybrid model with

identifiable abort. Then Πρ1, ...,ρk securely computes G in the real

model with identifiable abort.

We note that the model of [33] is defined for more general types

of composition. Nevertheless, it is compatible with the definition

described above.

Assumptions on Adversaries. We can see A as a deterministic

algorithm with a special input which is a random tape of uniformly

distributed bits. In the ideal model, we can also rewind A to a

previous state in execution, where the random tape also rewinds.

B.2 Compressed Σ-Protocols as Ideal
Functionalities

We will use compressed Σ-protocols implemented with the Fiat-

Shamir heuristic which are proven secure in the random oracle

model [48]. They have been proven secure against (by definition)

malicious provers and there is no interaction with malicious veri-

fiers. Therefore we can consider them as secure and abstract them

as hybrid functionalities. In particular, when we write P → F R
Σ

:
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(x ;w); F R
Σ
→ O : [b, x ′], we mean that F R

Σ
gets as input from

party P the public data x and secret witnessw , gets from all other

relevant parties as input the empty string, and returns to all parties

in O the same pair [b, x ′] where x ′ is the data provided as input by

P and b is 1 if (x ;w) ∈ R (the proof succeeds) and 0 otherwise.

B.3 Proof of Protocol 1
LetU be the random variable uniformly distributed over the interval

[0, L) for L ≤ p. We consider the ideal functionality

Fp1
({} . . . {}) = (U . . .U ),

i.e., Fp1
takes as input from each of the n parties an empty string

and outputs to every party the same uniformly distributedU .

Protocol. The protocol Πp1
is explained below.

Protocol Πp1
:

Security Parameter: λ
Hybrid Functionality sub-protocols: Functionalities F R1

Σ
and

F
R2

Σ
are zero knowledge proofs of respectively

• R1 = {(C;x, r ) : C = Com(x, r )}
• R2 = {(C, x ; r ) : C = Com(x, r )} (only r is secret),

Protocol:
(1) For i = 1 . . .n :

• Pi : choose xi ∈ [0, L), ri ∈ Zp at random

• Pi : compute the commitment Ci = Com(xi , ri )
• Pi : broadcast Ci
• Pi → F

R1

Σ
: (Ci ;xi , ri )

• F
R1

Σ
: broadcast [bi ,C

′
i ]

• P−i : if bi , 1 or C ′i , Ci , detect Pi as a cheater and abort

(2) For i = 1 . . .n:

• Pi → F
R2

Σ
: (Ci , xi ; ri )

• F
R2

Σ
: broadcast [b ′i ,C

′′
i , x
′
i ]

• P−i : if xi < [0, L), b
′
i , 1 orC ′′i , Ci , detect Pi as a cheater

and abort

(3) For i = 1 . . .n:
• output

∑n
i=1

x ′i mod L.

We state the security of protocol Πp1
in the theorem below.

Theorem 5 (Security of Πp1
). Let Com be a computationally

binding and perfectly hiding commitment scheme and let F
R1

Σ
and

F
R2

Σ
be secure multiparty functionalities of computationally sound

zero-knowledge proofs of relations R1 and R2 respectively. Then, Pro-

tocol Πp1
securely computes Fp1

in the (F
R1

Σ
, F R2

Σ
)-hybrid model

with identifiable abort if at least one party is honest.

Proof. It is clear that Πp1
securely computes Fp1

in the honest-

but-curious setting.

Below, we will use A to denote a non-uniform probabilistic

polynomial-time (PPT) adversary that controls covert parties.

In Figure 4, we define four very similar algorithms Sv , v ∈
{0, 1, 2, 3} where S0

is a simulator and for which we will prove that

their ideal execution output is indistinguishable from the hybrid

execution output. Each simulator Sv will internally run a copy of

A which we will denote by Av . Without loss of generality, we

can assume that at the points where all parties send messages,

the messages of the honest parties arrive first, as everything an

adversary can infer from the messages of a subset of honest parties

it can also infer from the messages of all honest parties.

To see that the simulation of S0
is indistinguishable from the

(F
R1

Σ
, F R2

Σ
)-hybrid model with adversary A, we define our simula-

tors such that

• The outputs ofS0
andS1

are identically distributed, because

their only difference is the moment on which z is chosen

uniformly at random (and hence independently from other

variables).

• The outputs ofS1
andS2

are identically distributed, the only

difference is that S1
first draws z in line 28 and then com-

putes xi′ from it, while S2
first draws xi′ and then computes

z from it.

• The outputs of S2
and S3

are indistinguishable. All inputs to

A are the same, except for a commitment Com(0, ri′) versus
a commitment Com(xi′, ri′). As the commitment scheme is

hiding and ri′ is chosen independetly, the distributions of

these commitments are indistinguishable and for any A3

getting input Com(xi′, ri′) there is an A
2
producing a com-

putationally indistinguishable output.

• The output of S3
is identically distributed as the output of

Πp1
in the hybrid model.

□

Vectorized Version. We can now consider the ideal functionality

F
(k)
p1
({} . . . {}) = ((U1 . . .Uk ) . . . (U1 . . .Uk )),

i.e., F
(k )
p1

takes as input from each of the n parties an empty string

and outputs to every party the same vector (U1 . . .Uk ) where every
Ui is uniformly distributed in [0, L) independently for i = 1 . . .k .

We can then similarly construct a protocol Π
(k )
p1

that draws a vector

z uniformly distributed in [0, L)k .
In this protocol we will use a pseudo-random number generator

aswe defined in 2.6.We use a similar but equivalent definitionwhich

is more convenient in our proof, in particular, for some polynomial

p, this is a function G : {0, 1}q → [0, L)p(q) such that for any

randomized polynomial time algorithm A : [0, L)p(q) → {0, 1}

there holds that |Px←R {0,1}q (A(G(x)) = 1) − Px←R [0,L)p(q) (A(x) =

1)| ≤ µ(q) with µ a negligible function. We choose q sufficiently

large such that p(q) ≥ k ⌈log(L)⌉ and µ(q) is sufficiently small.

We describe this protocol in the hybrid model using the ideal

functionality Fp1[0, 2q ), which is a variant on the Fp1
functionality

we introduced above where L is set to 2
q
. The protocol Π

(k)
p1

is

described below:

1: Protocol Π(k)p1

2: Security parameter: λ
3: Hybrid functionality sub-protocols:
• Fp1[0, 2q ) : draws a single public random number in [0, 2q ).

4: Protocol:
5: All parties collaboratively perform:

6: z′ = Fp1[0, 2q )({} . . . {})
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1: Phase 1: choosing z (see also phase 4)

2: if v = 0 then
3: Fp1

→ S0
: z (S0

invokes trusted party delivering ideal functionality)

4: end if
5: Phase 2: Sv simulates honest parties:

6: Sv : i ′ = max{i | Pi ∈ P \ Pcor }
7: for Pi ∈ (P \ Pcor ) \ {Pi′} do
8: Sv : choose xi randomly in [0, L) and ri randomly in Zp

9: Sv : Ci = Com(xi , ri ); [bi ,C
′
i ] = F

R1

Σ
(Ci ;xi , ri )

10: Sv → Av : [bi ,C
′
i ] (as if it is sent by Pi )

11: end for
12: if v ∈ {0, 1, 2} then
13: draw ri′ randomly; Ci′ = Com(0, ri′); [bi′,C

′
i′] = [1,Ci′]

14: else
15: draw xi′ and ri′ randomly; Ci′ = Com(xi′ ; ri′); [bi′,C

′
i′] = F

R1

Σ
(Ci′ ;xi′, ri′)

16: end if
17: Sv → Av : [1,C ′i′] (as if it is the answer of F

R1

Σ
(Ci′ ;xi′, ri′))

18: Phase 3: Sv simulates Av :

19: for i ∈ Pcor do
20: Av → Sv : Ci
21: Av → F R1

Σ
: (Ci ;xi , ri ); S

v
records Ci , xi and ri .

22: F
R1

Σ
→ Sv : [bi ,C

′
i ] (as if sent to members of P \ Pcor )

23: If C ′i , Ci or Ci , Com(xi , ri ) detect Pi as cheater
24: end for
25: Phase 4: choosing z and xi′

26: if v ∈ {0, 1} then
27: if v = 1 then
28: S1

chooses z uniformly at random

29: end if
30: xi′ = z −

∑
i,i′ xi mod L

31: else (i.e., if v ∈ {2, 3})
32: draw xi′ uniformly at random and set z =

∑
i ∈P xi mod L

33: end if
34: Phase 5:

35: for Pi ∈ P \ Pcor do
36: Sv : set x ′i = xi ; C

′′
i = Ci ; b

′
i = 1

37: Sv → Av : [b ′i ,C
′′
i , x
′
i ] (as if it is sent by F

R2

Σ
in answer to (xi ,Ci ; ri ))

38: end for
39: Phase 6: Sv continues simulation of Av

40: for Pi ∈ Pcor do
41: Av → F R2

Σ
: (C ′′i , x

′
i ; r
′
i ); S

v
records C ′′i , x

′
i and r

′
i

42: F R2

Σ
→ Sv : [b ′i ,C

′′
i , x
′
i ]

43: If x ′i , xi or C
′′
i , Ci or b

′
i = 0 detect Pi as cheater

44: end for
45: Phase 7: Output

46: Av → Sv : z′ (the output of Av )
47: output z′

Figure 4: Simulators Sv , for v ∈ {0, 1, 2, 3}.

7: For Pi ∈ P:
8: Pi : Output z = (z1 . . . zk ) with zj containing bits

(j − 1)⌈log(L)⌉ + 1 . . . j ⌈log(L)⌉

of G(z′) for j = 1 . . .k

Theorem 6 (Security of Π
(k )
p1

). Let Fp1[0, 2q ) be a secure mul-

tiparty functionality and G be a PRG as defined above. Then, Protocol

Π
(k )
p1

securely computes F
(k )
p1

in the Fp1[0, 2q )-hybrid model with

identifiable abort if at least one party is honest.
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Proof. It follows from the definition of random number gener-

ator that the output of the protocol is indistinguishable from the

output of the ideal functionality when all parties are honest-but-

curious.

The protocol consists of first a call to a secure sub-protocol and

then a public computation which each agent can do for himself

without any interaction. It is hence easy to see that the protocol is

secure. □

B.4 Proof of Protocol 2
Now we prove the security of Protocol 2, which performs a pri-

vate uniform draw. Without loss of generality, we assume that

the drawn sample should be private to P1. The ideal functionality

Fp2
: ({0, 1}∗)n → ({0, 1}∗)n is defined as

Fp2
({} . . . {}) = ((z, rz ),Cz , . . . ,Cz )

where Cz = Com(z, rz ), z is uniformly randomly distributed in

[0, L)k and rz is uniformly randomly distributed in Zp (as a conse-

quence of the distributions of z and rz , Cz is uniformly distributed

over G). The pair (z, rz ) is private to P1 while Cz is known by all

parties. We will describe a detailed version of Protocol 2 in the hy-

brid model. Our hybrid functionalities will be Fp1
and F

(k )
p1

, which

correspond to Protocol 1, and F
Rm
Σ

, which, for some modulus L ≤ p

is the ideal functionality of a zero knowledge proof for relation

Rm = {(y ∈ [0, L)
k , ry ∈ Zp ,Cx ∈ G,Cz ∈ G;

x ∈ [0, L)k , rx ∈ Zp , z ∈ [0, L)
k , rz ∈ Zp ) :

Cx = Com(x, rx ) ∧Cz = Com(z, rz ) ∧ x ∈ [0, L)

∧ z = x + y mod L ∧ rz = rx + ry mod Zp }.

Such proof can be performed by applying the techiques decribed in

Section 6.1. In Figure 5, we define the protocol Πp2
which describes

Protocol 2 in more detail.

Theorem 7. Let Com be a computationally binding and perfectly

hiding commitment scheme and let F
Rm
Σ

be a secure multiparty func-

tionality of a computationally sound zero-knowledge proof of relation

Rm . Let F
(k )
p1

and Fp1[0, 2q ) be secure multiparty functionalities

as defined above. Then, protocol Πp2
securely computes Fp2

in the

(F
(k )
p1
, Fp1Zp , F

Rm
Σ
)-hybrid model with identifiable abort if at least

one party is honest.

Proof. First note that, except for P1, the other parties are only

supposed to perform ideal calls and do not interact with each other.

We will consider first the most difficult case in which P1 is among

the corrupted parties controlled by A. In Figure 6, we define our

adversary S that simulates the output of A in the ideal model.

We show that the ideal and hybrid execution outputs are indis-

tinguishable. We first start by analyzing the view ofA in the hybrid

protocol and when interacting with S.

• Since A has not seen any other message, the first commit-

mentCx ofA is the same in both hybrid and ideal executions

• y and ry have the same distribution in the hybrid and ideal

model as they are part of an ideal call. Therefore, also the

Cz broadcasted by A follows the same distribution in the

hybrid and ideal model.

• if A cheats in Cz (i.e., Cz is not a commitment according

to relation Rm ), it gets caught both in the hybrid and ideal

executions

• before rewinding A, S recovers x and rx such that Cx =
Com(x, rx ) with overwhelming probability (this is because

A cannot fake the zero knowledge proof in F
Rm
Σ

except

with negligible probability)

• in the ideal world, S sets y and ry such that z = x +y mod L
and rz = rx + ry mod p, where x and rx are chosen by A,

z and y are uniformly randomly distributed in [0, L)k and r
and ry are uniformly randomly distributed in Zp . This is the
same distribution as in the hybrid world.

• now A broadcast C ′′z and either is detected as cheater or

C ′′z = Com(z, rz ) with overwhelming probability both in the

hybrid or ideal executions

Up to this point, from the view ofA the transcripts simulated by

S in the ideal execution and the transcript in the hybrid execution

are indistinguishable. Since A runs in polynomial time, his output

must be indistinguishable in both executions.

Now we analyze the case where P1 is among then honest parties.

Particularly, consider the worst case where all other parties are

malicious and P1 is the only honest party. This case is still easy

since the only interaction of malicious users is to perform ideal calls

to F
(k )
p1

, Fp1Zp and F
Rm
Σ

. The only role of S is to send inputs that

might be consistent according to the behavior of A. Even if all the

verifiers are malicious, the honest party can still detect them. □

B.5 Non-Uniform Public and Private Draws
Public and Private draws from many distributions such as Gaus-

sians or Laplace distributions can be performed by first drawing uni-

formly distributed samples with either Protocol 1 for public draws

or Protocol 2 for private draws, then applying a non-interactive

transformation. For private draws, this transformation is a non-

interactive compressed Σ-protocol as described in Appendix B.2.

For each technique, we explain the appropriate transformation in

Sections 7.1, 8.1, 8.2, 8.3 and 8.4. This procedure is secure as it is

essentially a secure drawing of a uniformly distributed random

number as discussed in the previous sections followed by a private

but verifiable single-party post-processing.
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1: Protocol Πp2
(to generate single private sample):

2: Security Parameter: λ
3: Hybrid Functionalitiy sub-protocols:
• F

(k )
p1

draws publicly a random number from [0, L)k .

• Fp1Zp is a variant of Fp1
that draws a random number from Zp rather than from [0, L).

• F
Rm
Σ

performs a zero-knowledge proof for the relation Rm defined above

4: Protocol:
5: P1:

6: draw x ∈ [0, L)k and rx ∈ Zp uniformly at random

7: compute Cx = Com(x, rx )
8: broadcast Cx
9: All parties in P collaboratively:

10: call F
(k )
p1

to obtain a public y uniformly distributed over [0, L)k

11: call Fp1Zp to obtain a public ry uniformly distributed over Zp

12: P1:

13: Compute z = x + y mod L and rz = rx + ry mod p
14: Compute Cz = Com(z, rz )
15: broadcast Cz
16: Parties perform an ideal call to F

Rm
Σ

:

17: P1 → F
Rm
Σ

: (y, ry ,Cx ,Cz ;x, rx , z, rz )

18: F
Rm
Σ

: broadcast [b,y′, r ′y ,C
′
x ,C
′
z ]

19: P−1: if b = 0 ∨ ru , r
′
y ∨ y , y

′ ∨Cx , C
′
x ∨CZ , C

′
z , detect P1 as a cheater and abort, otherwise continue the execution

20: P1: output (z, rz )
21: P−1: output Cz

Figure 5: Protocol Πp2
, a detailed description of Protocol 2.
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1: S: internally run A until broadcast Cx (line 8 in Πp2
)

2: A → S : Cx
3: S: continue the run of A until after the ideal call to F

(k )
p1

(line 10 in Πp2
)

4: S: draw a random value y ∈ [0, L)k

5: S → A : y (as if it came from F
(k )
p1

)

6: S: continue the run of A until after the ideal call to Fp1Zp (line 11 in Πp2
)

7: S: draw a random value ry ∈ Zp
8: S → A : ry (as if it came from Fp1Zp )

9: A → S : Cz
10: S: continue run of A: P1 → F

Rm
Σ

: (y′, r ′y ,C
′
x ,C
′
z , x
′, r ′x , z

′, r ′z )

11: F
Rm
Σ

: broadcast [b,y′, r ′y ,C
′
x ,C
′
z ]

12: if b = 0 ∨ y′ , y ∨ r ′y , ry ∨C
′
x , Cx ∨C

′
z , Cz , detect P1 as a cheater

13: S: invoke trusted party computing Fp2

14: Fp2
returns ((z, rz ) ∈ [0, L)

k × Zp , (Cz , . . . ,Cz ) ∈ G
|Pcor |−1

) to S and (Cz , . . . ,Cz ) ∈ G
|P\Pcor |

to the honest parties

15: S sets y = z − x mod L and ry = rz − rx mod p

16: S rewinds A to before the invocation of F
(k )
p1

17: S continues the internal run of A, which performs ideal calls to F
(k )
p1

and Fp1Zp .

18: S → A : y, ry (as if they were sent by F
(k )
p1

and Fp1Zp )

19: A → S : C ′′z ; if C
′′
z , Cz , detect P1 as a cheater

20: S continues to run A: P1 → F
Rm
Σ

: (y′′, r ′′y ,C
′′
x ,C

′′
z , x
′′, r ′′x , z

′′, r ′′z )

21: F
Rm
Σ

: broadcast [b ′,y′′, r ′′y ,C
′′
x ,C

′′
z ]

22: if b ′ = 0 ∨ y′′ , y ∨ r ′′y , ry ∨C
′′
x , Cx ∨C

′′
z , Cz , detect P1 as a cheater

23: output whatever A outputs

Figure 6: Simulator of advesary A in Protocol Πp2
, for the case when P1 is corrupted.
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