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ABSTRACT
Machine Learning as a service (MLaaS) permits resource-limited

clients to access powerful data analytics services ubiquitously. De-

spite its merits, MLaaS poses significant concerns regarding the

integrity of delegated computation and the privacy of the server’s

model parameters. To address this issue, Zhang et al. (CCS’20) initi-

ated the study of zero-knowledge Machine Learning (zkML). Few

zkML schemes have been proposed afterward; however, they focus

on sole ML classification algorithms that may not offer satisfactory

accuracy or require large-scale training data and model parameters,

which may not be desirable for some applications.

We propose ezDPS, a new efficient and zero-knowledge ML in-

ference scheme. Unlike prior works, ezDPS is a zkML pipeline in

which the data is processed in multiple stages for high accuracy.

Each stage of ezDPS is harnessed with an established ML algorithm

that is shown to be effective in various applications, including Dis-

crete Wavelet Transformation, Principal Components Analysis, and

Support Vector Machine. We design new gadgets to prove ML op-

erations effectively. We fully implemented ezDPS and assessed its

performance on real datasets. Experimental results showed that

ezDPS achieves one-to-three orders of magnitude more efficient

than the generic circuit-based approach in all metrics while main-

taining more desirable accuracy than single ML classification ap-

proaches.

KEYWORDS
Verifiable Machine Learning, Zero-Knowledge Proofs, Principle

Component Analysis (PCA), Support Vector Machine (SVM).

1 INTRODUCTION
Machine learning (ML) has grown to become a game-changer for

the humane society. A well-trained ML model can effectively aid

in performing highly complicated tasks such as medical diagno-

sis, natural language processing, intrusion detection, or financial

forecasting. However, since a powerful ML model requires a large

amount of data and computational resources for training, it may

not be widely accessible to individuals or small organizations. To

address this issue, Machine Learning as a Service (MLaaS) has been

proposed, which permits resource-limited clients to access useful

ML services (e.g., visualization, training, classification) offered by

cloud providers.
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Despite its usefulness, MLaaS has posed new integrity and pri-

vacy concerns. When the client delegates the ML computation to

theMLaaS server, it is not clear if she will receive a reliable response.

A corrupted server may process the client data arbitrarily or even

substitute it with malicious data, making the outcome untrustwor-

thy. This is especially critical for sensitive applications such as

medical diagnosis, intrusion detection, or fraud detection. Com-

putation integrity can be addressed with Verifiable Computation

(VC), in which the MLaaS server attaches a proof to show that the

computation is carried out correctly [19]. However, VC itself may

not be sufficient for MLaaS because it only enables computation

integrity but not the privacy of the parameters used in the computa-

tion. In MLaaS, the server uses its private ML model to process the

client data. This sophisticated model may cost significant resources

to obtain and, therefore, it is considered the intellectual property

of the server. Moreover, such models may also be trained from

sensitive training data (e.g., medical). As a result, it is undesirable

that the MLaaS server leak any information about its private ML

models when processing the client query.

The above privacy concern in MLaaS can be addressed by adding

the zero-knowledge property to the VC proof, which permits verifi-

able computation without leaking any information other than the

computation result [22]. Preliminary zero-knowledge VC (zkVC)

protocols are computation and communication expensive with

strong assumptions. Thanks to the recent advancements in cryptog-

raphy, recent zkVC protocols have become more practical. Recently,

Zhang et al. [71] have initiated zero-knowledgeML (zkML) research.

In zkML inference, the server first commits to its ML model parame-

ters and then provides an interface for the client to process her data

sample. Given a client data sample, the server returns the ML com-

putation result along with a zero-knowledge proof, which permits

the client to verify the ML computation regarding the committed

model without learning the model parameters in the proof.

Few zkML schemes have been proposed such as zero-knowledge

Decision Tree (zkDT) [71], and zero-knowledge deep learning [40,

45]. Although the decision tree (DT) is simple with the lightweight

model parameters, it offers limited accuracy for predicted outcomes.

Deep neural networks (DNNs) permit a high accuracy rate, however,

it may require a large amount of training data and heavy model

parameters and, therefore, may not be ideal for some applications.

Most zkML schemes (e.g., [40, 45, 71]) also focus solely on the

final ML inference phase, while the data is generally processed

via a so-called ML pipeline with multiple processing phases (e.g.,

(pre)processing, feature extraction, and classification) to achieve

a desirable performance. Thus, there is a need to develop a zero-

knowledgeML pipeline to achieve balanced performance andmodel

complexity for some applications.
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Research Objective. The objective of this paper is to design an

efficient and zero-knowledge ML pipeline, which permits the data

to be processed in multiple phases for accuracy while at the same

time, permitting the verifiability without leaking private model

parameters at every processing phase.

Our Contributions. In this paper, we propose ezDPS, an efficient

and zero-knowledge ML inference pipeline, which offers desirable

security properties (e.g., zero-knowledge, verifiability) along with

high accuracy for MLaaS. ezDPS comprises typical phases of an

ML pipeline, including data (pre)processing, feature extraction, and

classification. In ezDPS, we instantiate with established classical

ML algorithms including, Discrete Wavelet Transformation (DWT)

[66] for preprocessing, Principal Components Analysis (PCA) [69]

for feature extraction, and Support Vector Machines (SVM) [7] for

classification due to their popularity and wide adoption in many

applications [47, 48]. To our knowledge, we are the first to propose a

zero-knowledge ML inference pipeline. Our concrete contributions

are as follows.

• New gadgets for critical ML operations. We create new gad-

gets for proving essential ML operations in arithmetic circuits

such as exponentiation, absolute value, and max/min in an ar-

ray (§4.1.2). These gadgets are necessary for proving concrete

ML algorithms in our proposed scheme but also for other ML

operations such as deep learning.

• New zero-knowledge ML inference pipeline scheme with
high accuracy. Built on top of our proposed gadgets, we design

ezDPS, an efficient and zero-knowledge ML inference pipeline,

permits the data to be processed with effective ML algorithms

for high accuracy (§4.2). We design new methods to prove DWT,

PCA, and multi-class SVM with different kernel functions via an

optimal set of arithmetic constraints. ezDPS significantly outper-

forms the generic approaches both in asymptotic and concrete

performance metrics. ezDPS is designed to be compatible with

any zkVC backend (similar to [71]), thus, its concrete efficiency

can be further improved when adopted with a more efficient zkVC.

We also propose a zero-knowledge proof-of-accuracy scheme to

enable public validation of the effectiveness of the committed ML

model on public datasets (§4.2.5).

• Formal security analysis. We present a formal security model

for zero-knowledge ML inference pipeline (§3) and rigorously

analyze the security of our scheme. We prove that ezDPS satisfies
the security of a zero-knowledge ML inference pipeline (§5).

• Full-fledged implementation, evaluation, and comparison.
We fully implemented our proposed techniques (§6) and con-

ducted a comprehensive experiment to evaluate their perfor-

mance in real-world environments. (§7). Experiments on real

datasets showed that ezDPS achieves one-to-three orders of mag-

nitude more efficient than the generic circuit approaches in all

performance metrics (i.e., proving time, verification time, proof

size). Our implementation is available at

https://github.com/vt-asaplab/ezDPS

Remark. In this paper, we focus on the verifiability of the ML

inference task and the privacy of the server model in the integrity

proof. Our technique does not permit client data privacy, in which

the client sends plaintext data to the server for computation. This

model is different from the standard privacy-preserving ML infer-

ence (PPMLI) (e.g., [10, 20, 34, 43, 56]), which preserves the privacy

of the client and server against each other but not computation

integrity (see §8 for more details). To our knowledge, it is not clear

how to combine zero-knowledge with PPMLI efficiently to enable

both client and server privacy plus computation integrity. We leave

such an investigation as our future work.

ApplicationUse-Cases. Our zkML inference scheme can be found

useful in various applications. First, it can be used to enable proof-
of-genuine ML services, in which the service provider can prove

that its ML model is of high quality, and the inference result is

computed from the same model. Another application is a fair ML

model trading platform with try-before-buy, in which the buyer can

attest to the ML model quality before purchase, while the sellers do

not want to reveal their model first. Finally, our technique can par-

tially address the reproducibility problem in ML [24], where some

ML models are claimed to achieve high accuracy without having

a proper way to validate them. Our technique can offer a solution

to this issue, in which the model owner can prove that there exists

an ML model that can achieve such accuracy (see §4.2.5), and the

verifier can verify that statement efficiently in zero knowledge.

2 PRELIMINARIES
Notations. For n ∈ N, we denote [1,n] = {1, . . . ,n}. Let λ be

the security parameter and negl(·) be the negligible function. We

denote a finite field as F. PPT stands for Probabilistic Polynomial

Time. We use bold letters, e.g., a and A, to denote vector and matrix,

respectively. A⊤ means the transpose of A. We write ab (or a · b)
to denote dot product and A ◦ B to denote Hadamard (entry-wise)

product. We use

c
≈ to denote that two quantities are computationally

indistinguishable.

2.1 Commit-and-Prove Argument Systems
Argument of Knowledge. An argument of knowledge for an NP

relation R is a protocol between a prover P and a verifier V , in

which P convincesV that it knows a witnessw for some input in

an NP language x ∈ L such that (x,w) ∈ R. Let ⟨P,V⟩ denote a
pair of PPT interactive algorithms. A zero-knowledge argument

of knowledge is a tuple of PPT algorithms zkp = (G,P,V) that
satisfies the following properties.

• Completeness. For any (x,w) ∈ R and pp← G(1λ), it holds that

⟨P(w, pp),V(pp)⟩(x) = 1

• Knowledge soundness. For any PPT prover P∗, there exists a PPT

extractor E such that given the access to the entire execution

process and the randomness of P∗, E can extract a witness w

such that pp ← G(1λ), π∗ ← P∗(x, pp),w ← EP
∗

(x, π∗, pp)
and

Pr

[
(x,w) < R ∧V(x, π∗, pp) = 1

]
≤ negl(λ)

• Zero-knowledge. There exists a PPT simulator S such that for

any PPT algorithm V∗, auxiliary input z ∈ {0, 1}∗, (x,w) ∈ R,

pp← G(1λ):

view(⟨P(w, pp),V∗(z, pp)⟩(x))
c
≈ SV

∗

(x, z)
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where view(⟨·, ·⟩(x)) denotes the distribution of the transcript of

interaction.

Commit-and-ProveZero-KnowledgeProof. Commit-and-Prove

(CP) Zero-Knowledge Proof (ZKP) permits the prover to prove the

NP-statements on the committed witness. Most generic ZKP proto-

cols support CP paradigm and the most efficient CP-ZKP protocols

harness the succinct polynomial commitment scheme (e.g., [35]) to

achieve succinctness properties. The prover first commits to the

witnessw using a zero-knowledge polynomial commitment scheme

before proving an NP statement, and the verifier takes the com-

mitted value as an additional input for verification. We denote the

commitment algorithm for CP-ZKP as cmw ← zkp.Com(w, r , pp),
where r is the randomness chosen by the prover.

In our framework, we use Spartan [61] (with Hyrax [67] as the

underlying polynomial commitment scheme) as the backend zkPC-
based CP-ZKP protocol due to its succinctness properties (e.g., linear

proving time, sublinear verification time, and proof size), transpar-

ent setup, and support generic Rank-1 Constraint System (R1CS).

Generally speaking, Spartan supports NP statements expressed as

R1CS, which shows that there exists a vector z = (x, 1,w) such
that Az ◦ Bz = Cz, where A,B,C are matrices for the arithmetic

circuits, x is the public input (statement), w is the witness of the

prover. All the witnesses are encoded as a polynomial on the La-

grange basis. Since it is easy to convert arithmetic statements into

R1CS, our main focus is to create arithmetic constraints for proving

algorithms in the ML pipeline efficiently that can be realized with

Spartan or any CP-ZKP backend.

Theorem 1 (Spartan ZKP [61]). Let F be a finite field and CF be
a family of the arithmetic circuit over F of size n. Under standard
cryptographic hardness assumptions, there exists a family of succinct
argument of knowledge for the relation

R = {(C, x ;w) : C ∈ CF ∧C(x ;w) = 1}

where x andw are the public input and the auxiliary input to the cir-
cuitC , respectively, and the prover incursO(n) toO(n logn) overhead,
the verifier’s time and communication costs range from O(log

2 n) to
O(
√
n) depending on the underlying polynomial commitment schemes

being used for multilinear polynomials.

Note that since Spartan is established on the polynomial com-

mitment schemes, it can support CP-ZKP paradigm.

2.2 Machine Learning Pipeline
ML pipeline is an end-to-end process that consists of multiple data

processing phases to train an ML model from a large-scale dataset

effectively and to predict an inference result for a new observa-

tion accurately [31]. An effective ML pipeline contains three main

phases, including data preprocessing, feature extraction, and ML

training/inference as illustrated in Figure 1. In data preprocessing,

raw samples x ∈ Fm are collected, and then some preprocessing

technique is used to reduce the impact of noise in the collection

environment. Feature extraction extracts the most prominent di-

mension of the preprocessed data so that only a small set of features

x′ ∈ Fk will be fetched for efficient computation and a high conver-

gence rate. Finally, the ML training computes a prediction model

w′ from a set of feature vectors {x′i } as well as their labels {yi },

Pre-
processing

Feature
Extraction

Model 
Training

Pre-
processing

Feature
Extraction Classification

{(𝐱!; 𝑦!)}

𝐱′ )𝐱′

𝑦

*𝐱′

Model parameters

ML Training pipeline

ML Inference pipeline

𝐰! 𝐰"

()𝐱!; 𝑦!) *𝐱!; 𝑦!

𝐰#

Figure 1: A general ML pipeline.

while ML inference computes the label y from the feature vector x′

of a new observation using the prediction model w′.
In this paper, we focus on the ML inference pipeline (MLIP), in

which the client collects raw data, and the server processes the

data in multiple stages (i.e., preprocessing, feature extraction, ML

classification) to obtain the final inference result. At each stage,

the server can employ its private ML model parameters obtained

from its training pipeline to process the client data. We denote such

MLIP functionality as y ← Fmlip(w, x), where x ∈ Fm is the data

sample, w ∈ Fn is MLIP model parameters in all stages, and y ∈ F
is the inference result.

3 MODELS
System and Threat Models. Our system consists of two parties,

including the client and the server. The server holds well-trained

MLIP model parameters w and provides an interface for the client

to classify her data sample x using its model w.

We consider the client and server to mutually distrust each other.

The adversarial server can be malicious, in which it may process

the client’s query arbitrarily. On the other hand, the client is semi-

honest, in which she is curious about the server’s model parameters.

In this setting, we aim to achieve inference integrity and model

privacy. To enable inference integrity, the server first commits

to its model w. Given a client request, the server computes the

inference result y along with a proof π to convince the client that

the result is indeed computed from the committed model rather

than an arbitrary answer. To ensure model privacy, the proof π
should not leak any information about the model w.

Formally speaking, a zero-knowledge MLIP is a tuple of algo-

rithms zkMLIP = (G,Com,P,V) as follows

• pp ← zkMLIP.G(1λ,n): Given a security parameter λ and a

bound on the size of the MLIP model parameters n, it outputs
public parameters pp.

• cm← zkMLIP.Com(w, r , pp): Given MLIP parameters w, it out-

puts a commitment cm under randomness r .
• (y, π ) ← zkMLIP.P(w, x, pp): Given MLIP model parameters w
and a data sample x, it outputs the inference resulty = Fmlip(w, x)
and the proof π .

• {0, 1} ← zkMLIP.V(cm, x,y, π , pp): Given a commitment cm, a

sample x, an inference result y, and a proof π , it outputs 1 if π
is the valid proof for y = Fmlip(w, x) and cm = Com(w, r , pp);
otherwise it outputs 0.
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SecurityModel. Wedefine the security definition of zero-knowledge

MLIP that captures inference integrity and model privacy in the

integrity proof as follows.

Definition 1 (Zero-KnowledgeMLIP). A scheme is zero-knowledge
MLIP if it satisfies the following properties.

• Completeness. For anyw∈ Fn and x∈ Fm , pp←zkMLIP.G(1λ,n),
cm← zkMLIP.Com(w, r , pp), (y, π ) ← zkMLIP.P(w, x, pp), it
holds that

Pr [zkMLIP.V(cm, x,y, π , pp) = 1] = 1

• Soundness. For any PPT adversary A, it holds that

Pr



pp← zkMLIP.G(1λ , n)

(cm∗, w∗, x, y∗, π ∗, r ) ← A(pp)

cm∗ = zkMLIP.Com(w∗, r , pp)

zkMLIP.V(cm∗, x, y∗, π ∗, pp) = 1

Fmlip(w∗, x) , y∗


≤ negl(λ)

• Zero-knowledge. For any MLIP model w ∈ Fn and PPT algorithm
A, there exists simulator S = (S1,S2) such that

Pr

 A(cm, x,y, π , pp) = 1

��������
pp← zkMLIP.G(1λ,n)

cm← zkMLIP.Com(w, r , pp)
x← A(cm, pp)

(y, π ) ← zkMLIP.P(w, x, pp)


c
≈

Pr

 A(cm, x,y, π , pp) = 1

��������
(cm, pp) ← S1(1

λ,n, r )
x← A(cm, pp)

(y, π ) ← SA
2
(cm, x, r , pp), given

oracle access to y = Fmlip(w, x)


Out-of-Scope Attacks. Our security definition captures the in-

ference integrity and the model privacy in the integrity proof π .
There exist model stealing attacks [6, 64] that target only the in-

ference result y to reconstruct the model w. In this paper, we do

not focus on addressing such vulnerabilities. It is because there

exist independent studies that address these vulnerabilities (e.g.,

[6, 30, 36, 41, 64]) and, with some efforts, they can be integrated

orthogonally into our scheme to protect w from both y and π . For
example, by simply limiting the inference result information (i.e.,

return only the predicted label like our scheme currently offers), it

makes the attack become 50-100× more difficult [64]. We elaborate

all these approaches in Appendix E. Our main goal is to ensure w
is not leaked from π via zero-knowledge so that the leakage from y
can be sealed or mitigated independently by these techniques. For

curious readers, we also show how π may leak significant informa-

tion about w if it is not zero-knowledge in Appendix F.

We also do not consider model poisoning/backdoor attacks (e.g.,

[57, 58]), in which the adversarial server may target adversarial

behaviors on certain data samples while maintaining an overall

high level of accuracy. Mitigating such attacks requires analyzing

the model parameters (e.g., [46], which may be highly challenging

in our setting, where the model privacy is preserved. Thus, we

leave this threat model as an open research problem for future

investigation.

4 OUR PROPOSED ZERO-KNOWLEDGE MLIP
FRAMEWORK

In this section, we present the detailed construction of our frame-

work. We start by giving an overview.

Overview. Our ezDPS framework contains three processing phases,

including data (pre)processing, feature extraction, and ML classi-

fication, as shown in Figure 1. We adopt ML algorithms for each

phase including Discrete Wavelet Transformation (DWT) [66] for

data preprocessing, Principal Components Analysis (PCA) [69]

for feature extraction, and Support Vector Machine (SVM) [7] for

classification. We focus on these algorithms because they were well-

established in various systems and applications with high efficiency

[47, 48]. ezDPS permits to verify a data sample was computed cor-

rectly with DWT, PCA, and SVM without leaking the parameters at

each phase including, for example, low-pass and high-pass filters in

DWT; mean vector and eigenvectors in PCA; and support vectors

in SVM.

In ezDPS, the server first commits to the model parameters of

eachML algorithm and provides an interface for the client to process

her data sample based on the committed parameters. To demon-

strate the validity of the committed model, the server can publish a

zero-knowledge Proof-of-Accuracy (zkPoA) to demonstrate that the

committed model maintains a desirable accuracy on public datasets

with ground truth labels. zkPoA permits the client to attest to the

genuineness and the effectiveness of the server’s committed model

before using the inference service on her data sample. zkPoA can

be derived from zero-knowledge proof of inference of individual

samples. We show how to construct zkPoA for our scheme in §4.2.5.

In the following sections, we first present new gadgets for critical

ML operations (e.g., max/min, absolute). Notice that our proposed

gadgets are not limited to the ML algorithms selected above. They

can be used to prove other useful ML kernels (Appendix C) and

deep learning components (Appendix D). We then present our

techniques for proving DWT, PCA, and SVM more efficiently than

the generic approaches. Finally, we show how to construct a zkPoA

scheme to attest to the effectiveness of the committed model on

public datasets.

4.1 Gadgets
A gadget is an intermediate constraint system consisting of a set

of arithmetic constraints for proving a particular statement in the

higher-level protocols.

4.1.1 Building Blocks. We first present building block gadgets that

were previously proposed.

Permutation Gadget [71]. Given two vectors v, v′ ∈ Fn , the per-
mutation Perm(v, v′) permits to prove that v is the permutation of

v′, i.e., v[i] = v′[σ (i)] for i ∈ [1,n] according to some permutation

σ . This can be done by showing that their characteristic polynomial

evaluates to the same value at a random point α chosen by the

verifier as

n∏
i=1

(v[i] − α ) =
n∏
i=1

(v′[i] − α )

Due to Schwartz-Zippel Lemma [60], the soundness error of the

permutation test is
n
|F |
= negl(λ).

433



Proceedings on Privacy Enhancing Technologies 2023(2) Haodi Wang and Thang Hoang

Binarization Gadget [59]. Given a vector v ∈ Fn and a value

a ∈ F, binarization gadget Bin(a, v,n) permits to prove that v is a

binary representation of a. This can be done by showing that{
v[i] × v[i] = v[i] for i ∈ [1, n]∑n
i=1

v[i] · 2i−1 = a

4.1.2 New Gadgets for Zero-Knowledge MLIP. We now construct

new gadgets that are needed in our ezDPS scheme. These gadgets

can be used to prove other ML algorithms that incur the same

operations.

ExponentGadget. Given two valuesb, x ∈ F, we propose a gadget
Exp(b,a, x) to prove b = ax for public value a ∈ F1. This can be

done using the multiplication tree and the binarization gadget (Bin).
Let v ∈ Fn be an auxiliary witness. It suffices to show that{

Bin(x , v, n)
b =

∏n
i=1
(a2

i−1

· v[i] + (1 − v[i]))

GreaterThan Gadget. Given two values a,b ∈ F, we create a

gadget GT(a,b) to prove that a > b. The main idea is to compute an

auxiliary witness c := 2
n+(a−b), wheren is the length of the binary

representation of a and b, and show that the most significant bit of

c is equal to 1. Let c ∈ Fn+1
and a, b ∈ Fn be additional auxiliary

witnesses. The set of arithmetic constraints to prove a > b is

c = 2
n + a − b

Bin(a, a, n)
Bin(b , b, n)
Bin(c , c, n + 1)

c[n + 1] = 1

Maximum/MinimumGadget. Given a valuev ∈ F and an array

a ∈ Fn , we create a gadgetMax(v, a) (resp.Min(v, a)) to prove that
v is the maximum (resp. minimum) value in a. The idea is to harness
Perm and GT gadgets to prove that v is equal to the first element

of the permuted array of a, whose first element is the largest (resp.

minimum) value. Specifically, to prove v = max(a), it suffices to

show (i) v = a′[1], (ii) a′[1] > a′[i] for all i ∈ [2,n], and (iii) a′ is
the permutation of a. Let a′ ∈ Fn be an auxiliary witness. The set

of arithmetic constraints to prove a maximum value in an array is
GT(a′[1], a′[i]) for all i ∈ [2, n]
v = a′[1]
Perm(a, a′)

The constraints to prove a minimum value in an array can be

defined analogously.

Absolute Gadget. Given a′,a ∈ F, we create gadget Abs(a′,a)
to prove that a′ is the absolute value of a, i.e., a = a′ or −a = a′.
The idea is to compute c = a + 2

n
, where n is the length of the

binary representation of a, and show that the most significant bit

of c represents the sign difference of a and a′. Let c ∈ Fn+1
and

a ∈ Fn be auxiliary witnesses, the set of arithmetic constraints to

show that a′ is the absolute value of a is

1
The exponent gadget was briefly mentioned in [71], but no concrete constraints were

given. We give concrete arithmetic constraints for proving exponent in arithmetic

circuits.

Table 1: Notation table.

Variables Description
DWT components

x ∈ Fm Sample input of sizem to DWT

h, h̄ ∈ Fc low-pass filter of size c and its inverse

g, ḡ ∈ Fc high-pass filter of size c and its inverse

η Filter threshold

PCA components
x̂ ∈ Fm Sample input of sizem to PCA

x̄ ∈ Fm Mean vector

V = [vT
1
, ..., vTm ] Eigenvectors

(λ1, ..., λm ) Eigenvalues

k Size of PCA output

SVM components
ϕ kernel function

γ RBF kernel parameter

x(ĉ )i Support vectors for class ĉ
w(ĉ ), b (ĉ ) Weights and bias for class ĉ
y(ĉ )i ∈ {0, 1} Label of class ĉ
δ (ĉ ) Coefficients of class ĉ in RBF kernel

f (ĉ ) Decision function of class ĉ
Proof components
σ Permutation function

λ Security parameter

π Proof

w Witness

aux Auxiliary witness

cm Commitment

α , ᾱ , β Random challenges


c = a + 2

n

Bin(a, a, n)
Bin(c , c, n + 1)

(1 − c[n + 1])(a + a′) + c[n + 1](a − a′) = 0

4.2 Our Proposed Scheme
We now give the detailed construction of our ezDPS scheme with

DWT, PCA, and SVM algorithms. We provide the overview of

each algorithm and show how to prove it with a small number

of constraints. We summarize all the variables and notation being

used for our detailed description in Table 1.

4.2.1 DWT-BasedData Preprocessing. DWT [66] exerts thewavelet

coefficients on the raw data sample to project it to the wavelet do-

main for efficient preprocessing. A DWT algorithm contains three

main operations, including decomposition, thresholding, and recon-

struction. The decomposition transforms the raw input from the

spatial/time domain to the wavelet domain consisting of approxima-

tion and detail coefficients. The thresholding is then applied to filter

some detail coefficients, which generally contain noise. Finally, the

reconstruction is applied to reconstruct the original data after noise

reduction. Such decomposition and thresholding processes can be

applied recursively until a small constant number of coefficients is

obtained. Let x ∈ Fm be the input data sample of lengthm, tℓ := m
2
ℓ ,

t ′
ℓ

:= m
2
ℓ−1

. The DWT computes the frequency component zℓ ∈ F
t ′
ℓ

at the recursion level ℓ ≥ 1 as
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zℓ [i] =
c∑
j=1

h[j] · zℓ−1[(2i + j − 2)
mod t ′

ℓ
]

zℓ [i + tℓ ] =
c∑
j=1

g[j] · zℓ−1[(2i + j − 2)
mod t ′

ℓ
]

(1)

for i ∈ [1, tℓ], where h, g ∈ Fc are low-pass and high-pass filters

respectively, and z0 = x. The thresholding is applied to compute

high-frequency components (i.e., detail coefficients) as

z′ℓ [i] = zℓ [i]

z′ℓ [i + tℓ ] =

{
sign(zℓ [i + tℓ ])(zℓ [i + tℓ ] − η) if |zℓ [i + tℓ ] | − η > 0

0 if |zℓ [i + tℓ ] | − η < 0

}
(2)

for i ∈ [1, tℓ], where η is the public threshold parameter, sign(x)
returns the sign of x (i.e., 1 if x ≥ 0, and −1 otherwise). The decom-

position and thresholding can be applied recursively until tℓ < c , or
the number of rounds reaches a set value. Finally, the reconstructed

data x̂ℓ ∈ F
t ′
ℓ at recursion level ℓ is computed as

x̂ℓ [2i − 1] =

c/2∑
j=1

(h̄[2j − 1] · z′ℓ [(i + j − 1)
mod tℓ ]

+ h̄[2j] · z′ℓ [tℓ + (i + j − 1)
mod tℓ ])

x̂ℓ [2i] =
c/2∑
j=1

(ḡ[2j − 1] · z′ℓ [(i + j − 1)
mod tℓ ]

+ ḡ[2j] · z′ℓ [tℓ + (i + j − 1)
mod tℓ ])

(3)

for i ∈ [1, tℓ], h̄, ḡ ∈ Fc are the coefficients of the inverse low-pass

and high-pass filters, respectively. In summary, the DWT model

parameters are h, g, h̄, ḡ,η. The size of the model parameter is 4c+1,

where c depends on the concrete DWT algorithm used in practice,

e.g., c = 4 in DB-4 algorithm.

Proving DWT Computation. We can see that (1) incurs 8m(1 −
1

2
l ) constraints, wherem is the length of the data sample, l is the

number of recursion levels. We propose a novel method to prove

DWT computation in a more efficient way using our proposed

split technique along with the product of sums and random linear

combination. Our optimization reduces the complexity of proving

the decomposition and reconstruction from O(m) to O(logm). Fur-
thermore, if the recursion level l is set to a constant, the complexity

can be reduced to O(1). Specifically, we first split each element in

zℓ ∈ F
t ′
ℓ into two parts as

zℓ [i](1) =
c/2∑
k=1

h[2k − 1] · zℓ−1[(2k + 2i − 3)
mod t ′

ℓ
]

zℓ [i](2) =
c/2∑
k=1

h[2k ] · zℓ−1[(2k + 2i − 2)
mod t ′

ℓ
]

zℓ [i + tℓ ](1) =
c/2∑
k=1

g[2k − 1] · zℓ−1[(2k + 2i − 3)
mod t ′

ℓ
]

zℓ [i + tℓ ](2) =
c/2∑
k=1

g[2k ] · zℓ−1[(2k + 2i − 2)
mod t ′

ℓ
]

(4)

for i ∈ [1, tℓ]. Let α ∈ F be a random scalar chosen by the verifier,

the prover can prove (4) holds such that

tℓ∑
i=1

α i zℓ [i]
(1) =

tℓ∑
i=1

α i ·
c/2∑
k=1

h[2k − 1] · zℓ−1
[(2k + 2i − 3)

mod t ′
ℓ
]

tℓ∑
i=1

α i zℓ [i]
(2) =

tℓ∑
i=1

α i ·
c/2∑
k=1

h[2k ] · zℓ−1
[(2k + 2i − 2)

mod t ′
ℓ
]

tℓ∑
i=1

α i zℓ [i + tℓ ]
(1) =

tℓ∑
i=1

α i ·
c/2∑
k=1

g[2k − 1] · zℓ−1
[(2k + 2i − 3)

mod t ′
ℓ
]

tℓ∑
i=1

α i zℓ [i + tℓ ]
(2) =

tℓ∑
i=1

α i ·
c/2∑
k=1

g[2k ] · zℓ−1
[(2k + 2i − 2)

mod t ′
ℓ
]

(5)

We convert (5) to the product of sums as

tℓ∑
i=1

α
c
2
+i−2zℓ[i] =

c/2∑
k=1

α
c
2
−kh[2k − 1] ·

tℓ∑
i=1

α i−1zℓ−1
[2i − 1]

+

c/2∑
k=1

α
c
2
−k · h[2k] ·

tℓ∑
i=1

α i−1zℓ−1
[2i] + (α tℓ − 1)

c
2
−1∑

q=1

αq−1

·

q∑
p=1

(zℓ−1
[2p]h[c − 2q + 2p] + zℓ−1

[2p − 1]h[c − 2q + 2p − 1])

tℓ∑
i=1

α
c
2
+i−2zℓ[i + tℓ] =

c/2∑
k=1

α
c
2
−kg[2k − 1] ·

tℓ∑
i=1

α i−1zℓ−1
[2i − 1]

+

c/2∑
k=1

α
c
2
−kg[2k] ·

tℓ∑
i=1

α i−1zℓ−1
[2i] + (α tℓ − 1)

c
2
−1∑

q=1

αq−1

·

q∑
p=1

(zℓ−1
[2p]g[c − 2q + 2p] + zℓ−1

[2p − 1]g[c − 2q + 2p − 1])

(6)

In (6), the number of constraints for provingDWTdecomposition

is reduced frommc to c( c
2
−1)+4. To aid understanding, we present

a toy example of our split technique in Appendix A. To prove the

thresholding computation in (2), we employ the GT gadget, such

that for i ∈ [1, tℓ]:


GT(zℓ[i + tℓ],η) for all z′

ℓ
[i + tℓ] , 0

GT(η, zℓ[i + tℓ]) for all z′
ℓ
[i + tℓ] = 0

z′
ℓ
[i] − zℓ[i] = 0

(7)

In our protocol, the prover provides |zℓ[i]| and sign(zℓ[i]) as the
auxiliary witnesses so that the number of constraints reduces from

5n + 14 to 3n + 9 for each zℓ[i + tℓ], where n is the length of the

binary representation of zℓ[i + tℓ].
The final step is proving the DWT reconstruction, which is ana-

log to proving the decomposition. Let ᾱ ∈ F be a random challenge

chosen by the verifier. The prover can prove DWT reconstruction

in (3) such that
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tℓ∑
k=1

ᾱ
c
2
+i−2x̂ℓ[(2k + 1)

mod t ′
ℓ
] =

c/2∑
k=1

ᾱ
c
2
−k h̄[2k − 1] ·

tℓ∑
i=1

ᾱ i−1z′ℓ−1
[i] +

c/2∑
k=1

ᾱ
c
2
−k h̄[2k] ·

tℓ∑
i=1

ᾱ i−1z′ℓ−1
[i + tℓ]

+ (ᾱ tℓ − 1) ·

c
2
−1∑

q=1

ᾱq−1 ·

q∑
p=1

(
z′ℓ−1
[p]h̄[c − 2q + 2p] + z′ℓ−1

[p + tℓ]h̄[c − 2q + 2p − 1]

)
tℓ∑
k=1

ᾱ
c
2
+i−2x̂ℓ[(2k)mod t ′

ℓ
] =

c/2∑
k=1

ᾱ
c
2
−k ḡ[2k − 1] ·

tℓ∑
i=1

ᾱ i−1z′ℓ−1
[i] +

c/2∑
k=1

ᾱ
c
2
−k ḡ[2k] ·

tℓ∑
i=1

ᾱ i−1z′ℓ−1
[i + tℓ]

+ (ᾱ tℓ − 1)

c
2
−1∑

q=1

ᾱq−1 ·

q∑
p=1

(
z′ℓ−1
[p]ḡ[c − 2q + 2p] + z′ℓ−1

[p + tℓ]ḡ[c − 2q + 2p − 1]

)
(8)

4.2.2 PCA-Based Feature Extraction. PCA [69] is a method to re-

duce the dimensionality of the data input by representing the most

significant characteristics of x̂ ∈ Fm in a smaller feature vector

with minimal information loss (i.e., eigenvalues). The PCA training

computes a mean vector x̄ ∈ Fm for all data samples {x̂i }Ni=1
as

x̄ =
∑
i x̂i
N , where N is the number of samples in the training set. A

covariance matrix is then computed as S = 1

N
∑N
i=1
(x̂i − x̄)(x̂i − x̄)⊤.

The PCA training aims at finding eigenvectors V = [v⊤
1
, . . . , v⊤m ]

and eigenvalues (λ1, . . . , λm ) of S such that S × V = V × Λ where

Λ = diag(λ1, . . . , λm ). To reduce the dimension while retaining

the most information about data distribution, we select k eigenvec-

tors V′ = [v⊤i1 , . . . , v
⊤
ik
] corresponding with k largest eigenvalues

(λi1 , . . . , λik ). To this end, the server retains the eigenvectors V′

and the mean vector x̄ as model parameters. In the inference phase,

given a new observation x̂, the feature vector of x̂ can be computed

via PCA as

x̃ = (x̂ − x̄) × V′ (9)

Proving PCA Computation. There are O(m · k) constraints in
(9), where m is the input dimension and k is the feature vector

dimension. We reduce the number of constraints of proving PCA

computation from O(m · k) to O(m) using the random linear com-

bination by using the powers of a random challenge chosen by the

verifier. This transformation converts variables’ multiplication to

constant multiplication, where the latter comes for free in R1CS,

therefore reducing the computing complexity. Specifically, (9) is

equivalent to

x̃[1] = (x̂ − x̄) × V′[1]

. . .

x̃[k ] = (x̂ − x̄) × V′[k ]
(10)

where V′[k] is the kth term in V′, e.g., V′[k] = v⊤ik . Let α ∈ F be
a random challenge chosen by the verifier. We apply the random

linear combination to combine constraints in (10). Specifically, the

prover can prove (10) holds by proving that

k∑
i=1

α i x̃[i] = (x̂ − x̄) ×
k∑
i=1

α iV′[i]

=

m∑
j=1

(
k∑
i=1

α iV′[i]

)
· (x̂[j] − x̄[j])

(11)

where α i is the power of the random challenge α computed by the

prover, V′ is the eigenvector and x̄ is the mean vector.

4.2.3 SVM Classification. SVM [7] is a supervised ML for classifi-

cation problems by finding optimal hyperplane(s) that maximizes

the separation of the data samples to their potential labels. Suppose

the number of samples in the training set is N . Let x1, . . . , xN ∈ Fk

be the feature vector of data samples and y1, . . . ,yN ∈ {1, . . . , s}
be its corresponding label. To deal with data non-linearity, kernel

SVM projects xi to a higher dimension using a mapping function

Φ : Fm → Fm
′

, where m′ > m and applies a kernel function

ϕ(xi , xj ) = Φ(xi ) · Φ(xj ) for training and classifying computation.

Radial Basis Function (RBF) [7] ϕrbf(xi , xj ) = e−γ · | |xi−xj | |2
is the

most popular SVM kernel due to its effectiveness.

SVM was initially designed for binary classification, but it can

be extended to multiclass classification by breaking down the mul-

ticlass problem into multiple one-to-rest binary classification prob-

lems. For each class ĉ , data samples are assigned to two classes,

where y
(ĉ)
i = 1 if yi = ĉ , otherwise y

(ĉ)
i = 0.

The trainable parameter of SVM is the tuple (x(ĉ)i , δ
(ĉ)
i ,b

ĉ ), where

for class ĉ , x(ĉ)i is the support vector, δ
(ĉ)
i is the coefficient, andb(ĉ) is

the bias. The range of i depends on |I(ĉ) | := |{i : δ
(ĉ)
i > 0}|, which

equals to the number of the support vectors for class ĉ . Note that

δ
(ĉ)
i ≤ 0 are dropped during the training. The tuple (x(ĉ)i , δ

(ĉ)
i ,b

ĉ )

acts as the secret of the prover, which will be committed to prove

the computation.

Given a new observation x̃ ∈ Fk , its label y can be predicted as

y = argmax

ĉ

∑
i ∈I(ĉ )

δ
(ĉ)
i y
(ĉ)
i ϕ(x̃, x(ĉ)i ) + b

(ĉ)
(12)

ProvingMulti-Class SVMClassificationwithRBFKernel. Su-
ppose f (ĉ) =

∑
i ∈I(ĉ ) δ

(ĉ)
i y
(ĉ)
i ϕ(x̃, x(ĉ)i ) + b

(ĉ)
is the decision func-

tion’s evaluation for each class ĉ ∈ [1, s]. To prove the SVM classifi-

cation in (12), we harness Exp andMax gadgets in §4.1.2 to prove the
exponent in the RBF kernel projection, and the class output being

the maximum value among all evaluations, respectively. We adopt

the representation in [71] where f (ĉ) is expanded to a value-index

pair, i.e., f := {(f (1), 1), (f (2), 2), . . . , (f (s), s)}. Let

f̄ := {( ¯f (1),σ (1)), ( ¯f (2),σ (2)), . . . , ( ¯f (s),σ (s))}

be the permutation of f , where σ (·) is the permutation function

such that
¯f (ĉ) = f (σ (ĉ)) and ¯f (1) is the maximum value in f . The

prover provides f̄ as the auxiliary witness and shows that the output
label y = σ (1). Let β be a random challenge from the verifier, the

prover binds each value-index pair in f and f̄ to a single value as

p(ĉ) = f (ĉ) + β · ĉ

p̄(ĉ) = ¯f (ĉ) + β · σ (ĉ)
(13)
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Protocol 1 (ezDPS). Let λ be the security parameter.

• pp← ezDPS.G(1λ ): Output pp← zkp.G(1λ )
• ˆcm← ezDPS.Com(w, r , pp): Let w =

(h, g, h̄, ḡ, η, x̄, V′, {xi , δ
(ĉ )
i , b (ĉ ) }i∈I(ĉ ) ,ĉ∈[1,s ], γ ). Compute

ˆcm ← zkp.Com(w, r , pp), where r is randomness chosen by the
server.

• (y, π ) ← ezDPS.P(w, x, pp):
(1) The server executes Algorithm 1 to compute y ← DPS(w, x), and

commits to all the auxiliary witnesses aux in (6), (7) (8), (11), (14)
as cm′ ← zkp.Com(aux, r ′, pp) under randomness r ′ chosen
by the server.

(2) Upon receiving the randomness ®α chosen by the client for check-
ing the random linear combination and maximum value, the
server invokes backend ZKP protocol to get the proof as π ←
zkp.P((w, aux), x, y, pp). The server sends (y, π ) to the client.

• b ← ezDPS.V(cm, x, y, π , pp): Let cm = ( ˆcm, cm′), the client in-
vokes b ← zkp.V(cm, x, y, π , pp) and outputs b .

Figure 2: Our ezDPS Protocol.

and invokes a permutation check using Perm gadget, where β is

a random number chosen byV . Let l
(ĉ)
i ∈ F for i ∈ I

(ĉ), ĉ ∈ [1, s],

[ ¯f (1), . . . , ¯f (s)] be the auxiliary witness used in the gadget Max.
Suppose y is the claimed output label and f (y) is the evaluation of

the corresponding decision function. Let p = {p(ĉ)} and p̄ = {p̄(ĉ)}
be intermediate vectors, where p(ĉ) and p̄(ĉ) are computed by (13),

respectively. The set of arithmetic constraints to prove (12) is



k (ĉ )i = −γ | |x̃ − x(ĉ )i | |
2
for i ∈ I(ĉ ), ĉ ∈ [1, s]

f (ĉ ) =
∑
i∈I(ĉ ) δ

(ĉ )
i y(ĉ )i l (ĉ )i + b

(ĉ )
for ĉ ∈ [1, s]

Exp(l (ĉ )i , e , k (ĉ )i ) for i ∈ I
(ĉ ), ĉ ∈ [1, s]

Max(f (y), [f (1), . . . , f (s )])
Perm(p, p̄)
f (y) + β · y = p̄(1)

(14)

Proving Other SVM Kernels. Our techniques can be used to

prove other SVM kernels such as the polynomial kernel, Sigmoid

kernel, etc. The polynomial kernel ϕply(xi , xj ) = (γxTi xj + a)b

can be easily proved via addition and multiplication gates, where

γ ,a,b are parameters. Although it is relatively easy to prove, the

polynomial kernel usually achieves a lower accuracy than the RBF

kernel [13]. Due to the space constraint, we show how to prove

other kernels in Appendix C.

4.2.4 Putting Everything Together. We combine everything together

and present the complete algorithmic description of ezDPS scheme

in Protocol 1. We describe the functionality (Algorithm 1) that pro-

cesses a data sample x ∈ Fm with DWT (Figure 3, lines 1-14), PCA

(line 15), and SVM (lines 16-19), and returns an inference result y.

4.2.5 Zero-Knowledge Proof of Accuracy. We construct a zkPoA

scheme that is derived from the inference of individual samples to

attest to the effectiveness of the committed model by demonstrating

its accuracy over public dataset D = (x1, . . . , xM ) with ground

truth labelsT = (t1, . . . , tM ). zkPoA requires the server to commit to

a model with claimed accuracy on public sources. Once the model is

committed and zkPoA is generated, it cannot be altered. The server

has to use the model that has been committed previously for the

successive inference tasks. Let Y = (y1, . . . ,yM ) be the predicted
labels of D, where yi ← DPS(w, xi ) for i ∈ [1,M]. The accuracy

of MLIP model over D isψ =
ΣMi=1
(yi

?

=ti )
M where 0 ≤ ψ ≤ 1.

In our zkPoA, it suffices to show the committed model maintains

at least ψ accuracy (rather than the precise number) by proving

that at least ψ · M samples are classified correctly. This reduces

the complexity since the prover does not have to prove some sam-

ples are misclassified (which incurs complex circuits for proof of

inequality). Our zkPoA is as follows.

We expand Y and T to value-index pairs as Y = {(y1, 1), . . . ,

(yM ,M)}, T = {(t1, 1), . . . , (tM ,M)}. The prover shuffles Y and T to

Y′ and T′ using permutation functions σ1, σ2, respectively, which

have two goals: (i) hide which samples are classified correctly, and

(ii) reduce the computation cost by rearranging correctly classified

samples as first items in Y′ and T′. Therefore, P needs to prove:

(i) firstψ ·M items in Y′ and T′ are identical, (ii) Y′ (resp. T′ ) is a
permutation of Y (resp. T), and (iii) two permutations are the same.

Suppose the permuted sets are Y′= {(y′
1
,σ1(1)),. . . , (y

′
M ,σ1(M))}

and T′ = {(t ′
1
,σ2(1)), . . . , (t

′
M ,σ2(M))}, where y

′
i = yσ1(i) and t

′
i =

tσ2(i). The prover provides Y′ and T′ as the auxiliary witnesses. Let

ξ be a random challenge chosen by the verifier. To perform the

permutation test, P computes intermediate values Ỹ = {ỹi }, Ȳ =
{ȳi }, T̃ = {t̃i } and T̄ = {t̄i } such that for each i ∈ [1,M]:

ỹi = yi + ξ · i and ȳi = y
′
i + ξ · σ1(i)

t̃i = ti + ξ · i and t̄i = t ′i + ξ · σ2(i)

The set of constraints for our zkPoA includes all the constraints to

prove each yi plus the following constraints
y′i − t

′
i = 0 for i ∈ [1,ψ ·M ]

σ1(i) − σ2(i) = 0 for i ∈ [1,M ]
Perm(Ỹ, Ȳ)
Perm(T̃, T̄)

5 ANALYSIS
Complexity. Letm,k be the dimensions of the raw data sample

and the feature vector by PCA, respectively. Let s, t be the number

of SVM classes and the number of support vectors for all classes,

respectively. In DWT, our scheme requires 8 log
2

2m
c constraints for

DWT decomposition (6) and reconstruction (8), while the thresh-

olding (2) incurs (3n + 9)(m − c
2
) constraints, where n is the size

(in bits) of each value per dimension of the raw data sample, c is
the dimension of the high-pass and low-pass filters. In total, our

scheme requires 16 log
2

2m
c + (3n + 9)(m − c

2
) constraints for prov-

ing DWT. In PCA, the number of constraints is m (11). This is

reduced frommk compared with direct proving (9) due to random

linear combination. In SVM classification (14), our scheme incurs

(2n + k)t + 2s constraints for proving RBF kernel projection, and

(3n + 6)(s − 1) + 2s constraints for proving the classification for s
classes and t constraints for the final decision function. The permu-

tation trick in our proposedMax gadget permits us to reduce the

number of comparisons from O(s2) in generic circuits to O(s) . In
total, our scheme incurs (2n + k)t + 4s + (3n + 6)(s − 1) constraints

for proving s-class SVM classification with RBF kernel. Table 2 sum-

marizes the complexity of our framework, compared with directly

proving DWT, PCA, and SVM computations with generic circuits.
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Algorithm 1 (y ← DPS(w, x)).
Input: Data sample x ∈ Fm , MLIP model parameters w =

(h, g, h̄, ḡ, η, x̄, V′, {xi , δ
(ĉ )
i , b (ĉ ) }i∈I(ĉ ) ,ĉ∈[1,s ], γ )

Output: Inference result y .
1: for ℓ = 1 to d do
2: tℓ ← m

2
ℓ and t ′

ℓ
← m

2
ℓ−1

3: for i = 1 to tℓ do
4: zℓ [i] ←

∑c
j=1

h[j] · zℓ−1[(2i + j − 2)
mod t ′

ℓ
]

5: zℓ [i + tℓ ] ←
∑c
j=1

g[j] · zℓ−1[(2i + j − 2)
mod t ′

ℓ
]

6: for i = 1 to tℓ do
7: z′

ℓ
[i] ← zℓ [i]

8: if |zℓ [i + tℓ ] | − η > 0 then
9: z′

ℓ
[i + tℓ ] ← sign(zℓ [i + tℓ ])(zℓ [i + tℓ ] − η)

10: else
11: z′

ℓ
[i + tℓ ] ← 0

12: for i = 1 to tℓ do

13: x̂ℓ [2i − 1] ←
c/2∑
j=1

(h̄[2j − 1] · z′
ℓ
[(i + j − 1)

mod tℓ ]

+h̄[2j] · z′
ℓ
[tℓ + (i + j − 1)

mod tℓ ])

14: x̂ℓ [2i] ←
c/2∑
j=1

(ḡ[2j − 1] · z′
ℓ
[(i + j − 1)

mod tℓ ]

+ḡ[2j] · z′
ℓ
[tℓ + (i + j − 1)

mod tℓ ])

15: x̃← (x̂d − x̄)V′

16: for ĉ = 1 to s do
17: Let I(ĉ ) = {i : δ (ĉ )i > 0}

18: yĉ ←
∑
i∈I(ĉ ) δ

(ĉ )
i y(ĉ )i ϕ(x̃, xi ) + b (ĉ )

19: yc ← max(y1, . . . , ys )
20: return c

Figure 3: MLIP with DWT, PCA and SVM algorithms.

Table 2: Complexity of ezDPS vs. generic circuit (baseline).

ezDPS Generic circuit

DWT

Decomposition 8 log
2

2m
c 8m − 4c

Thresholding (3n + 9)(m − c
2
) (5n + 12)(m − c

2
)

Reconstruction 8 log
2

2m
c 8m − 4c

PCA m mk

Multi-class SVM (2n + k)t + 2s (2n + k + 2)t + s
(w/ RBF) +(3n + 6)(s − 1) + 2s +(s2 − s)(2n + 5) + 2s − 2

For zkPoA, suppose the number of samples in the testing dataset

isM , and proving one testing data incurs N constraints. Therefore,

our zkPoA incurs (N + 4)M constraints for proving the accuracy.

Security. We analyze the security of our scheme. Specifically, we

have the following theorem.

Theorem 2. Our ezDPS scheme in Protocol 1 is a zero-knowledge
MLIP as defined in Definition 1 given that the backend CP-ZKP is
secure by Theorem 1.

Proof. See Appendix B □

6 IMPLEMENTATION
We fully implemented our proposed framework in Python and Rust,

consisting of approximately 2,500 lines of code in total. For DWT,

we implemented the Daubechies DB4 algorithm [66]. We used

sklearn [55] to implement the training phase of PCA and SVM.

On the other hand, we implemented the inference phase of PCA

and SVM from scratch to obtain all the witnesses for generating the

proofs.We used fixed-point number representation for all the values

being processed in our framework. Each value can be represented

by 64 bits, which reserves 1 bit for the sign, 31 bits for the integer

part, and 32 bits for the fractional part.

We used the exponent gadget to prove the RBF kernel of the form

eγ | |xi−xj | |2
, where the base eγ is public and the exponent | |xi−xj | |2

is secret (witness). As shown in §4.1.2, our gadget precomputesa2
i−1

,

where a = e−γ and i is the index of the binary representation of

the exponent. We used a fixed-point arithmetic to represent the

exponent. Since it suffices to setγ = 10
−3

for RBF kernel, we used 20

bits to represent the fractional part of the exponent, which suffices

to cover most of the cases in our test set. There are few samples that

cause the fractional part of the exponent to exceed 20 bits. In this

case, we truncated the fractional part of the witness that exceeds

20 bits, leading to a small accuracy loss (see §7.4).

In our implementation, we transformed the arithmetic constraints

and the witnesses generated from ML algorithms into R1CS re-

lations using the compact encoding method in libspartan [62]

and then invoked its library APIs to create proofs and verification.

Concretely, we used SplartanDL scheme, which implements (i)
Hyrax polynomial commitment [67], (ii) curve25519-dalek [27]
for curve arithmetic in prime order ristretto group, (iii) a sepa-

rate dot-product proof protocol for each round of the sum-check

protocol for zero-knowledge property, and (iv) merlin [12] for

non-interactive proof via Fiat-Shamir transformation.

Our implementation is available at https://github.com/vt-asaplab/

ezDPS.

7 EXPERIMENTAL EVALUATION
7.1 Configuration
Hardware. We ran all the experiments on a 2020 Macbook Pro,

which was equipped with a 2.0 GHz 4-core Intel Core i5 CPU,

16GB DDR4 RAM. Currently, we did not make use of thread-level

parallelization to accelerate the proving/verification time. The ex-

perimental results reported in this section are with single-thread

computation, which can be further improved once multi-thread

parallelization is employed.

Dataset. We evaluated our scheme on three public datasets, in-

cluding the ECG dataset in UCR Time Series Classification Archive

(UCR-ECG)[11], Labeled Faces in the Wilds (LFW) [26], and Cifar-

100 [38]. UCR-ECG contains 1800 records of ECG signals, each

being of length 750. LFW contains 5749 human faces, where each

image is of size 125 × 94 bits. Cifar-100 contains 100 classes, and

the dimension of the samples is 3072. We used the subset of each

dataset for the different number of classes.

Parameters. We used standard parameters as suggested in Spartan

[61] (e.g., curve25519) for 128-bit security. We evaluated the perfor-

mance of our proposed methods with varied numbers of classes (s)
and PCA dimensions (k) (see Table 3). For LFW dataset, we scaled

the dimension of the image inputs to 4200 when the number of

classes is small (i.e., 8 and 16), and to 5655 for many classes (> 32).

For DWT processing, we set the number of recursion levels to be 1

for noise reduction and η = 0.2 for processing the detail coefficients.
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Table 3: Detailed model parameters.

UCR-ECG Cifar-100 LFW
m k s t m k s t m k s t
750 33 4 54 3072 98 4 676 5655 119 8 1005

750 34 8 115 3072 108 8 1967 5655 121 16 1236

750 57 16 317 3072 121 16 2950 5655 123 32 1533

750 55 32 795 3072 120 32 3354 5655 125 64 1718

750 47 42 1061 3072 112 64 4627 5655 120 128 1384

3072 108 100 6623 5655 106 256 4895

5655 102 512 3862

5655 121 1024 3233

5655 118 2048 2645

m: dimension of raw data, k : dimension of feature vector by PCA, s : number of distinct

class labels, t : number of all support vectors in all classes.

For PCA, we selected the number of eigenvectors k such that they

can capture at least 90% of the variance. We presented the concrete

number of k w.r.t different sizes of the datasets in Table 3. Finally,

we used the Grid Search method to find the best parameters for

SVM and set C = 1, γ = 0.001.

Counterpart Comparison. To our knowledge, we are the first

to propose a zero-knowledge MLIP. There is also no prior work

that suggests zero-knowledge proof for each of the ML algorithms

(i.e., DWT, PCA, and SVM) in our framework. Thus, we chose to

compare with the naïve approach, in which we hardcore the whole

DWT, PCA, and SVM computation into the circuit and ran the

same CP-ZKP backend (i.e., Spartan). We compared ezDPS with

this baseline to demonstrate our advantage in reducing the proving

time, verification time, and proof size. We also report the accuracy

of ezDPS to demonstrate the advantage of ML pipeline processing.

Evaluation Metrics. We assess the performance of our scheme

and the baseline approach in terms of proving time, verification

time and proof size (§7.2 and §7.3). Note that for such cryptographic

performance evaluation, we only used a reduced dataset of Cifar-

100 and LFW that yield concrete model parameters after training

as presented in Table 3. For UCG-ECG, we used the whole set as

it is already small. We did not not evaluate on the whole set of

Cifar-100 and LFW due to our limited hardware and the expensive

cryptographic overhead incurred by the baseline. Instead, we report

the accuracy of plain ML techniques and estimate the performance

of our scheme when tested on the whole dataset (§7.4).

7.2 Overall Results
ezDPS is one to three orders of magnitudes more efficient than

the baseline in all metrics. Figure 4 presents the performance of

our technique compared with the baseline approach in terms of

proving time, verification time, and proof size, in three datasets

with different sizes. For example, on UCR-ECG dataset, our proving

time is from 321 to 518 seconds for 4 to 42 classes, while it takes

from 1429 to 2807 seconds if using the baseline approach. The gap

between our scheme and the baseline is more significant when

the number of classes increases. Specifically, on LFW dataset, with

8 classes, our scheme achieves 6.75× faster proving time, where

it only takes 1702 seconds, compared with 11491 seconds in the

baseline. With 2048 classes, our proving time is 6977 seconds, ap-

proximately 1842× faster than the baseline, which takes 2439811

seconds. The verification time and proof size follow a similar trend,

in which ezDPS achieves an order of magnitude faster verification

time and smaller proof size than the baseline. Specifically, on LFW

dataset, the verification time is 6.6 seconds for 16 classes and 19.2

seconds in the baseline. The proof size is 3059 KB in our scheme,

compared with 11946 KB in the baseline. On the LFW dataset with

2048 classes, our verification time is 9 seconds, and the proof size

is 4411 KB, while it takes 123.6 seconds for verification with 56856

KB proof size in the baseline. This results in around 12× faster on

the verification time and 14× smaller proof size, respectively.

We can also see the verification and bandwidth in ezDPS are

highly efficient, i.e., less than 10 seconds and 5 MB, respectively,

compared with the proving. This is because we use Spartan as the

CP-ZKP backend, which offers sublinear verification and proof size

overhead.

The concrete end-to-end computation latency and communi-

cation in Figure 4 also confirm the efficiency improvement of our

optimization techniques. By introducing the split technique and em-

ploying the random linear combination, the complexity is reduced

from O(mc +mk) to O(c2 +m), where c is a very small constant in

practice (e.g., c = 4 for Daubechies DB4 DWT). The most significant

improvement in the overall cost is achieved when the number of

classes is large. That is due to the employment of Max and Exp
gadgets in the SVM phase, which reduces the complexity from

O(s2) to O(s). Such asymptotic improvement helps to achieve one

to three orders of magnitude faster computation time and lower

communication overhead on real datasets.

Finally, we report the performance of zkPoA scheme proposed

in §4.2.5. Since zkPoA is derived from the proof of inference for

individual samples, our scheme maintains the same ratio of per-

formance gain over the baseline as reported in §7.2. Concretely,

we tested zkPoA on the reduced LFW dataset with 64 samples. As

shown in Figure 6, we achieve 6× to 9× faster on the prover’s time,

3× faster on the verifier’s time compared with the baseline. Re-

garding proof size, our scheme incurs 171392–226432 KB, which is

three times smaller than the baseline that requires 576148–827968

KB. The complexity of zkPoA is linear with the number of samples,

and its main overhead stems from the inference proof of individual

samples.

We can see that our zkPoA scheme currently only supports plain

accuracy verification, meaning the proof is given only for a specific

test set. In the ML setting, cross-validation over different test sets

is generally applied to report a more reliable accuracy result. It

is interesting to explore if an zkPoA scheme can permit accuracy

verificationwith cross-validationwithout leaking themodel privacy

due to multiple test sets. We leave it as an open research problem

for future investigation.

7.3 Detailed Cost Analysis
Wedissected the total cost of our scheme to investigate the impact of

each data processing on the overall performance. Figure 5 presents

the detailed cost of ezDPSwith three datasets. In ezDPS, the sample

was processed in three phases, includingDWTnoise reduction, PCA

feature extraction, and SVM classification.

•DWT Processing: The cost of DWT processing is stable when vary-

ing the number of classes (s) and contributes a considerable portion
to the overall performance. This is because the complexity of DWT

is independent of s , i.e.,O(mn), which is bigger than PCA (i.e.,O(m)),
but smaller than SVM (i.e., O((n + k)t + ns)) for a large number
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Figure 4: Performance of our scheme compared with the baseline.

Table 4: Inference accuracy of ML algorithms on whole datasets.

Method UCR-ECG Cifar-100 LFW
# classes 8 16 32 42 8 16 32 64 100 8 16 32 64 128

DT only 0.84±0.09 0.73±0.10 0.65±0.06 0.65±0.01 0.37 0.23 0.17 0.11 0.09 0.47±0.06 0.36±0.08 0.27±0.09 0.21±0.05 0.10±0.03

DWT+PCA+DT 0.79±0.07 0.77±0.07 0.65±0.07 0.66±0.04 0.32 0.22 0.17 0.11 0.09 0.43±0.07 0.32±0.05 0.24±0.05 0.17±0.07 0.15±0.04

SVM only 0.96±0.01 0.96±0.01 0.91±0.04 0.91±0.02 0.13 0.07 0.03 0.02 0.01 0.39±0.07 0.30±0.07 0.23±0.06 0.18±0.07 0.08±0.2

DWT+PCA+SVM 0.99±0.03 0.97±0.04 0.93±0.03 0.92±0.05 0.55 0.41 0.35 0.29 0.24 0.73±0.07 0.60±0.08 0.48±0.06 0.36±0.07 0.20±0.06

DWT+PCA+SVM (FPA)
‡

0.97±0.03 0.95±0.04 0.91±0.02 0.91±0.06 0.55 0.4 0.35 0.28 0.24 0.73±0.07 0.6±0.06 0.47±0.06 0.36±0.06 0.19±0.05

‡ FPA stands for fixed-point arithmetic.

of classes. On the UCR-ECG dataset, the proving time is around

160 seconds, and the verification time and proof size are around

0.47 seconds and 256 KB, respectively. On Cifar-100, the proving

time, verification time, and proof size are around 656 seconds, 1.94

seconds, and 1046 KB, respectively. On LFW dataset, the perfor-

mance of the DWT phase ranges from 898 to 1209 seconds, 2.2 to 2.6

seconds, and 676 to 1421 KB, respectively. There is a considerable

difference in proving DWT across three datasets. That is because

the dimension of inputs varies between different datasets, e.g.,m

equals 750, 3072, and 4200 (or 5655) on UCR-ECG, Cifar-100, and

LFW datasets, respectively.

•PCA-Based Feature Extraction: The cost of PCA processing is sta-

ble even when the number of classes s increases and it contributes

the least portion to the overall performance of our scheme. This is

because the complexity of PCA is O(m) (which is also independent

to s), compared with O(nm) in DWT and O((n + k)t + ns) in SVM.

For example, it costs around 17 seconds for proving, 0.198 seconds

for the verification, and around 141 KB for the proof size on the

UCR-ECG dataset. The cost of proving PCA is nearly negligible
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Figure 5: Detailed cost of ezDPS.
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Figure 6: Performance of zkPoA on reduced LFW.

on UCR-ECG and LFW datasets. This is because the number of

constraints for PCA is relatively small (i.e., 750 on UCR-ECG and

5655 on LFW) compared with DWT and SVM (e.g., on UCR-ECG,

there are 75439 and over 110322 constraints in DWT and SVM,

respectively). Since the verification time and proof size is sublin-

ear, the proportion of PCA processing becomes larger relatively

compared with DWT and SVM.

•SVM Classifcation: SVM computation is the most dominant factor,

especially on large datasets (with more than 256 classes), which

contributes over 73% to the total proving cost. That is because the

cost of SVM is O((n + k)t + ns), and thus it grows linearly with

s . Notice that the increase of the number of classes also leads to

the increase of the model parameters (t ). On UCR-ECG dataset,

the proving time of SVM ranges from 142 to 339 seconds. The

verification time is from 1.65 to 4.24 seconds, and the proof size

is 688 KB to 1623 KB for 4 to 42 classes. On Cifar-100 dataset,

the proving time of SVM costs from 43 to 722 seconds, while its

verification time and proof size are from 0.4 to 1.925 seconds and 179

KB to 785 KB, respectively, for 4 to 100 classes. On the LFW dataset,

the proving time ranges from 704 to 6011 seconds for 8 to 2048

classes, while the verification time ranges from 1.89 to 5.73 seconds,

and the proof size ranges from 779 to 2286 KB, respectively. The gap

between SVM vs. DWT and PCA looks smaller in the verification

time and proof size due to their sublinear growth of complexity by

Spartan ZKP.

Estimated Performance on Whole Datasets. Based on the

overall results (§7.2) and the above cost analysis on the reduced

datasets, we estimated the cryptographic overhead of our scheme

when tested on the whole Cifar-100 and LFW. ForX ∈ {8, 16, 32, 64,

100} classes in Cifar-100 with the standard train/test method, the

proving time of our scheme is estimated to take 8189 to 108698

seconds. The verification time and proof size are estimated to take

8.8-26 seconds and 4154–11247 KB, respectively. In LFW dataset

with X most sampled classes, the proving time is estimated to

take 5823 to 24772 seconds, while the verification time and proof

size is estimated to take 9.24–16.34 seconds and 4487–7424 KB,

respectively. The estimated proving time is significant, since the

estimation is based on our current hardware (i.e., a laptop without

multi-threading). In practice, since the prover is the server that

generally has better computational resource (e.g., multi-core CPU

with higher frequency and multi-threading), we expect the actual
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proving time will be significantly faster. For the whole Cifar-100,

since the number of support vectors (t ) is large, it incurs a large
model size, resulting in high proving time. We expect that once

some optimization techniques (e.g., [32, 42]) are applied to reduce

the model complexity, all the cryptographic overhead will be sig-

nificantly reduced. We leave such optimization as our future work.

7.4 Accuracy
We report the accuracy of ML algorithms on the whole dataset

of UCR-ECG, Cifar-100, and LFW. In Cifar-100, we used all data

from classes 0, 1, . . . ,X − 1 for X ≤ 100 classes and tested with its

standard train/test method. For LFW and UCR-ECG, since there

is no standard train/test split, we applied the cross-validation to

report the accuracy. In LFW, since the number of samples in each

class is unbalanced, we selected X classes that have the most data

samples. In UCR-ECG, we chose data from classes 0, 1, . . . ,X −
1. Table 4 presents the plain accuracy of ML algorithms on the

selected datasets. The last row of Table 4 presents the accuracy of

executing DWT+PCA+SVM inference with Fixed-Point Arithmetic

(FPA), which is similar to how our ezDPS works. We can see that

FPA leads to an accuracy decrease of around 1% to 2%. In LFW,

DWT+PCA+SVM with floating-point arithmetic achieves 73% ± 7%

and 60% ± 8% accuracy rates for 8 and 16 classes, respectively.

The accuracy decreases 1% to 2%, leading to the accuracy rates

of 72% ± 7% and 60% ± 6%, respectively. A similar trend is also

observed in UCR-ECG and Cifar-100 datasets, where the accuracy

loses around 1% to 2% due to FPA.

For curious readers, we conservatively report the best inference

accuracy that each of our benchmark datasets currently achieves

with different state-of-the-art ML pipeline techniques (without in-

tegrity and model privacy). UCR-ECG can achieve 97.5% accuracy

by combining Gated Recurrent Unit with Fully Convolutional Net-

work [14]. Cifar-100 can achieve 96.08% accuracy by combining Im-

ageNet pre-trained model with sharpness-aware minimization [16].

Finally, LFW can achieve 99% accuracy using optimized VarGNet

[70]. Since these pipeline techniques are highly optimized for each

dataset, they yield higher accuracy than our generic framework. We

leave the investigation on zero-knowledge proofs for optimization

techniques that can be integrated into our framework to further

improve the accuracy of our future work.

8 RELATEDWORK
Privacy-Preserving ML. Privacy-Preserving ML (PPML) permits

secure evaluation of ML computation without leaking informa-

tion about the ML model and training/testing data. Most PPML

techniques rely on either secure computation protocols such as

Multi-party computation (MPC) [9] and Homomorphic Encryption

(HE) [18], or Trusted Execution Environment (TEE) such as Intel-

SGX [8]. PPML has been investigated in both training and inference

phases. Many PPML training schemes have been proposed for estab-

lished ML algorithms such as decision tree [2], k-means clustering

[4, 28], SVM [65], linear regression [50, 51], logistic regression (LR)

[37, 50] and neural networks (NN) [50]. Other frameworks focus on

the inference phase such as GAZELLE [34], SWIFT [37], MiniONN

[43], XONN [56], CHET [10], Delphi [49], CryptoNets [20] and its

variants [3, 25]. Given MPC and FHE incur high costs in large-scale

data processing, some studies harnessed Intel-SGX to make PPML

more practical [52]. Unlike our ezDPS or zkML, PPML protects the

privacy of client and server data but not computation integrity.

Verifiable and Zero-Knowledge ML. Unlike PPML, verifiable

ML (vML) and zkML focus on the integrity of delegated ML compu-

tation using VC and zero-knowledge techniques [5, 17, 21, 54, 61].

Both vML and zkML are still in the early development stage, with

a limited number of schemes being proposed. In vML, the resource-

limited client delegates the training/inference tasks to the server,

and later checks if the task has been performed correctly (no privacy

guarantee). Zhao et al. [72] proposed VeriML, a vML framework

for linear regression, LR, NN, SVM, and DT training. Some vML

schemes are designed for DNN inference (e.g., [19, 63]) using VC

protocols (e.g., [21, 23]) or TEE [8]. On the other hand, zkML, first

studied in 2020 [71], enables integrity and model privacy in the

inference phase, where the client can verify if the inference result

on her data is indeed computed from the server’s committed model

without learning the model parameters. Zhang et al. designed a

zkDT scheme [71], followed by a few zero-knowledge DNN infer-

ence constructions [15, 40, 45]. Weng et al. proposed Mystique [68],

a zkVC compiler for efficient zero-knowledge NN inference.

9 CONCLUSION
We proposed ezDPS, an efficient and zero-knowledge MLIP instan-

tiated with effective ML algorithms including DWT, PCA, and SVM.

We introduced new gadgets for proving ML operations in arith-

metic circuits more effectively than generic approaches. We fully

implemented our ezDPS and evaluated its performance on real-

world datasets. Experimental results showed that ezDPS is highly

efficient, which achieves orders of magnitudes more efficient than

generic approaches.
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A EXAMPLE OF SPLIT TECHNIQUE AND
APPLICATION

We present a concrete example to demonstrate how the split tech-

nique reduces the number of constraints in proving DWT. Suppose

the input data is x = [x1, x2, x3, x4, x5, x6], the low-pass filter is

h = [h1,h2,h3,h4]. Directly computing the first half of the DWT

frequency component y = [y1,y2,y3], where

y1 = x1h1 + x2h2 + x3h3 + x4h4

y2 = x3h1 + x4h2 + x5h3 + x6h4

y3 = x5h1 + x6h2 + x1h3 + x2h4

(15)

requires 12 multiplications. The above computation can be com-

bined by adopting the random linear combination, such that

(α3h1 + α
2h2 + αh3 + h4)(x1 + αx2 + α

2x3 + ... + α
5x6)

= α3y1 + α
5y2 + y3 − D

(16)

where D is the terms that have to be subtracted from the left side

of (16) such that

D = x1h4 + α(x1h3 + x2h4)

+ α2(x1h2 + x2h3 + x3h4)

+ α4(x2h1 + x3h2 + x4h3 + x5h4)

+ α6(x4h1 + x5h2 + x6h3)

+ α7(x5h1 + x6h2) + α
8x6h1 − y3

(17)

We can see that there are 20 multiplications in D as the step of

the sliding window between two rounds is two (i.e., computing y1

starts with x1, while computing y2 starts with x3).

To improve the efficiency, the splitting technique separates the

data sample and the low-pass filter into two parts, i.e., the odd

part and the even part. Specifically, let x(1) = [x1, x3, x5], x(2) =
[x2, x4, x6], h(1) = [h1,h3], and h(2) = [h2,h4]. Therefore, (15) is

equivalent to

(x1 + αx3 + α
2x5)(αh1 + h3) + (x2 + αx4 + α

2x6)(αh2 + h4)

= Σ3

i=1
α iyi − D

′

= Σ3

i=1
α iyi − (x1h3(α

3 − 1) + x2h4(α
3 − 1))

which only requires 4 multiplications to prove compared with 20

in (17). It reduces the number of intermediate terms in D ′, thereby
reducing the number of constraints. We present the above toy

example in Figure 7.

Application to zkCNN. We show that the split technique can be

used to improve the efficiency of zkCNN [45] in some cases when

the sliding step s between two rounds of convolution is larger than

1. Note that s ≥ 2 is generally adopted in deep learning regions

[39].

Suppose the input matrix X is of size n ×n and the kernel matrix

W is of sizew×w . The 2-D convolution between these two matrices

is a matrix U of size (n−ws + 1) × (n−ws + 1) such that

U[i][j] =
w−1,w−1∑
u=0,v=0

X[si + u][sj +v] ·W[u][v] (18)

for 0 ≤ i, j ≤ (n/s − 1).

By zkCNN, the input and kernel matrices are first transformed to

1-D vectors to reduce the computation. Specifically, let x̄, w̄, ū ∈ Fn
2

be
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Figure 9: IFFT delay in zkCNN w/ or w/o split technique.

x̄[un +v] = X[n − 1 − u][n − 1 −v], 0 ≤ u < n, 0 ≤ v < n

w̄[un +v] =

{
W[u][v], 0 ≤ u,v < w

0, otherwise

ū[i] =
i∑
j=0

x̄[i − j]w̄[j]

(19)

(18) becomes

U[i][j] = ū[n2 − 1 − sni − sj] (20)

To compute 1-D convolution using the Fast Fourier Transform

(FFT) and Inverse FFT (IFFT), x̄, w̄ are transformed to polynomials

x̄(η), w̄(η) with x̄, w̄ as coefficients, then ū(η) = x̄(η)w̄(η) by taking

ū as the first n2
coefficients. In zkCNN, the convolution x̄ ∗ w̄ can

be proven by

ū = x̄ ∗ w̄ = IFFT(FFT(x̄) ⊙ FFT(w̄))

where ⊙ represents the Hadamard product. Since the size of x̄ and

w̄ are n2
, the proving time is O(n2), the verifier’s time and proof

size are O(log
2 n) given oracle access to the multilinear extensions

of the input and the output.

We observe that in (20), the majority of terms in ū are not the

convolutional results when s ≥ 2. By applying our split technique

to (18), we show that the proving time for IFFT can be reduced by s
times. Specifically, we split X,W for s times respectively, such that

U[i][j] =
s∑

k=1


w−1,w/s−1∑
u=0,v=0

X[si + u][sj + sv + k] ·W[u][2v + k]


Instead of creating x̄ and w̄ of size n2
, we transform X[si+u][sj+

sv + k],W[u, 2v + k] to x̄(k ), w̄(k), respectively, following the same

rule as in (19). Then
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ū(k )[i] =
i∑
j=0

x̄(k)[i − j] · w̄(k)[j] (21)

The prover could use FFT to prove the correctness of (21) such

that

s∑
k=1

ū(k) = IFFT

( s∑
k=1

(FFT(x̄(k )(η)) ⊙ FFT(w̄(k )(η)))

)
By adopting the split technique to convolution layers in zkCNN,

the proving time for the inverse FFT is reduced by s . To further

demonstrate how it works, we provide an example in Figure 8 when

n = 4,w = 2, and s = 2. As shown in Figure 8, directly transform-

ing the inputs and kernels results in the vectors of size n2 = 16

(case 1 ). Adopting the split technique reduces the dimension to

1

2
n2 = 8 (case 2 ). Based on the zkCNN implementation [44], our

experiments showed that adopting the split technique reduces the

proving latency of IFFT in zkCNN from approximately 2 to 4 times

in Lenet and VGG11 datasets (Figure 9).

B SECURITY PROOFS
Proof of Theorem 2. We argue the completeness, soundness,

and zero-knowledge properties of our scheme as follows.

Completeness. The circuit in ezDPS.P outputs 1 ify is the correct
inference label of data sample x by Figure 3 on MLIP parameters w.

The correctness of our protocol in Figure 2 follows the correctness

of the backend ZKP protocol by Theorem 1.

Soundness. LetC be the arithmetic circuit that represents the com-

putation of MLIP with DWT, PCA, and SVM. By the extractability

of commitment used by the backend ZKP, there exists an extrac-

tor E such that given cm, it extracts a witnessw∗ such that cm =
zkp.Com(w∗, r , pp) with overwhelming probability. By the sound-

ness of zkMLIP in Definition 1, if cm = zkMLIP.Com(w, pp, r ) and
zkMLIP.V(cm, x,y, π , pp) = 1 but y , Fmlip(w, x), then there are

two scenarios:

• Scenario 1: w∗ = (w, aux) satisfying to C((cm, x,y, r′);w∗) = 1.

There are three cases for this to happen: (i) w is not the one

committed to cm but passing the verification for cm; (ii) y is not

the class label corresponding with the maximum predicted value

among the auxiliary witnesses (f (1), . . . , f (s)) ∈ aux in (14), but

passing the max and permutation test; (iii) Some witnesses in

aux are not valid, but passing the random linear combination

test. The probability of the first case is negligible in λ due to

the soundness of the commitment scheme used by the backend

ZKP protocol. AsMax gadget relies on the permutation test, its

soundness error is negligible in λ due to the soundness of the

characteristic polynomial check, which achieves the probability of

s/|F| due to Schwartz-Zippel Lemma [60]. Finally, the soundness

error of the random linear combination over a small number of

constraints is negligible in λ. By the union bound, the probability

that P can generate suchw∗ is negl(λ).
• Scenario 2:w∗ = (w, aux) andC((cm, x,y, ®α);w∗) = 0. According

to the soundness of the backend ZKP, given a commitment cm∗,
the probability thatA can generate a proof πw makingV accept

the incorrect witness is negligible in λ.

Simulator 1 (Simulation of Protocol 1). Let λ be the security pa-
rameter, F be a finite field, w with n values. Let pp← ezDPS.G(1λ ).
• ˆcm ← S1(n, r , pp): S1 invokes Szkp to generate ˆcm =

Szkp(n, r , pp) where r is randomness generated by SzkPC.
• (y, π ) ← SA

2
(w, x, pp): S2 queries the oracle to get y ←

DPS(w, x). S2 shares all public input of C to Szkp and invokes
cmw ← Szkp .Com(pp). Upon receiving randomness ®α from A,
S2 invokes π ← Szkp .P(C , ( ˆcm, x, y, ®α ), pp), and sends π to A.

• b ← A(cm, x, y, π , pp): Let cm = ( ˆcm, cmw ), wait A for valida-
tion.

Figure 10: Simulator of Protocol 1.

In overall, the soundness of ezDPS holds except with a negligible

probability in λ.

Zero Knowledge. We construct a simulator for Protocol 1 in Fig-

ure 10 and show that the following hybrid game is indistinguishable.

• Hybrid H0: H0 behaves as the honest prover in Protocol 1.

• Hybrid H1: H1 uses the real ezDPS.Com() in Protocol 1, for the

commitment phase, and invokes S to simulate the proving phase.

• Hybrid H2: H2 behaves as Simulator 1.

Given the same commitment, the verifier cannot distinguish H0

and H1 due to the zero-knowledge property of the backend zero-

knowledge protocol, given the same circuitC and public input. If the

verifier can distinguish H1, and H2, we can find a PPT adversary

A to distinguish whether a commitment of an MLIP with zero

strings or not, which is contradictory with the hiding property

of the underlying commitment scheme. Thus, the verifier cannot

distinguish H0 from H2 by the hybrid, which completes the proof

of zero-knowledge. □

C PROVING OTHER SVM KERNELS
Let c ∈ F be the output of the kernel function. We present con-

straints for other SVM kernels as follows.

• Laplace kernel. ϕla(xi , xj ) = e−γ
′ | |xi−xj | |

can be proven with the

following constraints{
b = −γ ′ | |xi − xj | |
Exp(c , e , b)

(22)

where b ∈ F is intermediate value.

• Sigmoid kernel. ϕsig(xi , xj ) = tanh[α(xTi xj ) − β], where α, β > 0

are hyper-parameters, can be proven with following constraints


b = α (xTi xj ) − β
Exp(a1, e , b)
a1 · a2 = 1

c · (a1 + a2) = a1 − a2

where b ∈ F is the intermediate value, and a1,a2 ∈ F are auxiliary
witnesses.

D PROVING DEEP LEARNING TECHNIQUES
In this paper, we mainly focus on designing techniques to prove

classical ML algorithms in zero-knowledge. However, we show that

they can be used to prove some deep learning techniques as follows.
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Convolutional Layers. A convolutional layer computes the dot

product between an input vector x ∈ Fn and a small kernel k ∈ Fc .
In the ith round, it computes the ith entry of the output such that

o[i] =
∑c
j=1

k[j] · x[s(i − 1) + j], where s is the step between two

rounds. Our proposed technique can be applied to the convolutional

layers w.r.t different settings of s .

• s = 1. This includes only addition and multiplication operations.

Thus, the random linear combination can be applied to reduce the

number of constraints, or other optimization techniques [40, 45]

can be used.

• s = 2. Our split technique in §4.2.1 can be applied. Both the

kernel and inputs are split into two parts, and a random linear

combination can be performed.

• s ≥ 2. Our split technique can be extended when the step is

greater than two. We first split x and k to s parts, such that in the

lth part,

o[i](l ) = Σ
c/s
i=1

k[l + s(j − 1)] · x[l + s(i + j − 2)]

and o[i] can be computed as

o[i] = Σsl=1
o[i](l )

Then the random linear combination can be utilized as described

in §4.2.1.

Activation Layers. Let c ∈ F be the output of the activation

function. We show how to prove activation functions with our

gadgets as follows.

• Sigmoid activation. fsig(x) = 1

1+e−x can be proven with following

constraints {
Exp(a, e, x)

a = (1 + a) · c

where a ∈ F is the auxiliary witness.

• ReLU activation. frelu(x) = max(x, 0) can be proven with the

gadget asMax(c, (x, 0)).
• Leaky ReLU activation. flrelu(x) = max(0.01x, x) can be proven

asMax(c, (b, x)) where b = 0.01x is intermediate value.

• Tanh activation. ftanh(x) = ex−e−x
ex+e−x can be proven with following

constraints 
Exp(a1, e, x)

a1 · a2 = 1

c · (a1 + a2) = a1 − a2

where a1,a2 ∈ F are auxiliary witnesses.

Pooling Layers. The max pooling layer c = max(x) can be proven

withMax(c, x) gadget.

E MITIGATING MODEL STEALING ATTACKS
As discussed, model stealing attacks [6, 29, 64] aim to reconstruct

the ML model from the inference result, given that the adversary

has black box access to the model parameters. To our knowledge,

there is no general defense against these attacks beyond limiting

the number of queries the client can make to the model [29]. We

present several strategies that can mitigate these attacks, and, with

some efforts, they can be integrated orthogonally into our scheme

to protect the model privacy for both the inference result and the

proof.

Limiting Prediction Information. The model holder can limit

the output information by releasing class probabilities only for

high-probabilities classes (e.g., top-5 in ImageNet dataset [39]) [64],

or only releasing the class labels [6, 64]. Limiting output informa-

tion forces the adversary to query more, which permits the model

holder to identify them by augmenting adversarial detection meth-

ods (see below) that analyze their behaviors against benign users.

Tramer et al. [64] showed that by returning the class label without

the confidence score (like ezDPS currently offers), the number of

required queries to extract the model increases by 50-100 times.

Thus, the model holder can increase the cost per query, thereby

reducing the profit the adversary can make.

Adversarial Detection. Juuti et al. [33] proposed an efficient

method to detect whether the adversary is attempting to steal the

model by analyzing the distribution of the adversary’s queries

against the normal (Gaussian) distribution. Kesarwani et al. [36]

proposed two performance metrics (e.g., the information gain and

the coverage of the input space) that quantify the rate of information

the adversaries gained from the queries and are used to represent

the status of the model extraction process. Another approach is

to embed watermark techniques so that if the adversary steals the

model, the owner can detect and certify the stolen model [1, 30].

Obfuscating PredictionResults. Several approaches suggest per-
turbing or adding noise to the prediction results to prevent the

adversary from executing the (supervised) retraining process to

reconstruct the model [6, 41, 64]. This can be achieved with Differ-

ential Privacy to hide the decision boundary between prediction

labels regardless of howmany queries are executed by the adversary

[73]. Another approach is to poison the training objective of the

adversary by actively perturbing the predictions without impacting

the utility for benign users [53].

F MODEL LEAKAGE IN PROOF OF
INFERENCEWITHOUT ZERO
KNOWLEDGE

We show how the proof of inference, without zero-knowledge, can

leak model parameters. Let w ∈ Fn be the MLIP model parameters,

x ∈ Fm be the public inputs and outputs, and s = ⌈logn⌉. According
to Spartan, our backend ZKP protocol, the secret parameter z =
(x, 1,w) is encoded as a function Z (·) : {0, 1}s → F that the low
degree extension of it is a multilinear polynomial Z̃ (y), such that

Z̃ (y) = Σe∈{0,1}s Z (e) ·
s∏
i=1

(yi · ei + (1 − ei )(1 − yi ))

To prove the satisfiability of the arithmetic circuits, both parties in-

voke two sumcheck protocols, where a dot-product-proof protocol

[67] is applied to guarantee the zero-knowledge property. Suppose

we do not have the zero-knowledge property, the sumcheck protocol

would leak the information of the secret parameter z. Specifically,
in the first round of the sumcheck protocol, upon receiving a ran-

dom challenge rx ∈ Fs , P computes vA = Σy∈{0,1}s Ã(rx , y) · Z̃ (y),
where Ã : Fs × Fs → F is a sparse multilinear polynomial, which

is the low degree extension of matrix A in R1CS. Therefore, once
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acquiring vA,V could compute the value of Z̃ (y), which contains

private information of the model. This demonstrates the impor-

tance of having zero-knowledge in the integrity proof to protect

the model parameter privacy.
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