
Two-Cloud Private Read Alignment to a Public Reference
Genome

Sindhuja Madabushi

sindhujamadabushi19@gmail.com

University of Wisconsin-Madison

USA

Parameswaran Ramanathan

parmesh.ramanathan@wisc.edu

University of Wisconsin-Madison

USA

ABSTRACT
The human genome is the ultimate identifier of an individual even

though most of it is identical across human beings. Biological dif-

ferences between two individuals are encoded in a set of base pair

variations called Single Nucleotide Polymorphisms (SNPs), which

may be indicative of an individual’s personal information such as

skin color and susceptibility to diseases. The large-scale nature of

human genome necessitates outsourcing of genomic computations

to public clouds. However, this raises some serious privacy con-

cerns. The fact that the human reference template is public poses

additional challenges. In this paper, we propose a two-cloud private

read alignment algorithm using the Burrows-Wheeler Transform

and the FM-Index. Our algorithm runs in the same order of complex-

ity as the core FM-Index alignment algorithm without privacy. Our

proposed scheme is able to achieve accuracy comparable to modern

alignment algorithms such as Bowtie with complete privacy.

KEYWORDS
Read Alignment, Privacy, FM-Index, Burrows-Wheeler Transform,

Human Genome

1 INTRODUCTION
The field of genomics has witnessed several major advances in the

last century. An important milestone was the design of the Sanger

sequencing technology in the 1970s [66], which was the primary se-

quencing technology for the next four decades. The human genome

project [25] and several applications in molecular medicine, energy,

and agriculture have, among others, led to the emergence of next

generation high-throughput sequencing technologies. Rapid ad-

vances in genome sequencing have led to the direct-to-consumer

genetic testing market being valued at over 1 billion USD. Genetic

tests have also become much more affordable, with the price of

sequencing an entire human genome reducing from over 500 mil-

lion USD in 2003 to nearly 1500 USD
1
in 2018 [14]. Today, genetic

tests can cost anywhere between 100 USD and 2000 USD and can

be used to diagnose, predict susceptibility to, and guide treatment

of diseases for individuals, and identify gene changes that may be

passed to children.

1
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-

Genome-cost

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(2), 449–463
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0062

There are several computational techniques from bioinformat-

ics [63] that are capable of making inferences from next generation

sequencing genomics data. At the core of these computations lies

full genome sequence alignment, which involves mapping a set

of genome sequences called reads to a publicly known reference

genome template. Human genome alignment typically involves

aligning tens of millions of reads of 20-1500 base pairs (bps) to a

reference human genome template that is approximately 3 billion

bps long. The challenges in handling such large human genome

data necessitates the use of modern computing paradigms, such as

cloud computing, for their storage and computation. This has led

to the advent of several “Genomics as a Service” platforms, such

as Microsoft Genomics platform on Azure Clouds and the Seven

Bridges Genomics platform on Amazon Web Services [62].

The human genome is the ultimate identifier of an individual

even though 99.5% of the genome is the same for all human be-

ings. This apparent paradox can be explained via key variations in

the genome known as Single Nucleotide Polymorphisms (SNPs).

Human DNA is a sequence comprising four nucleotide bases: Ade-

nine (A), Cytosine (C), Guanine (G) and Thymine (T). It encodes

all of the genetic information pertaining to an individual. SNPs are

certain key differences in the base pairs in specific regions of the

genome that uniquely identify a particular human being. These vari-

ations act as biological markers linking them to numerous health

conditions or unique phenotypic traits. In particular, SNPs are re-

sponsible for biological differences between individuals and can

be indicative of features such as the color of hair/eyes, height, and

even an increase in susceptibility to terminal diseases [50, 51, 59].

Consequently, genome alignment algorithms on cloud platforms

need to ensure that an individual’s SNP information is kept private.

Dealing with human genome data using cloud computing raises

ethical, legal, and social concerns [56, 68]. As discussed above,

knowledge of whether an individual’s genome contains a SNP at a

particular location can reveal sensitive information about that indi-

vidual. The privacy concern therefore boils down to ensuring that

an adversary is unable to gain any information about an individual’s

unique set of SNPs. Ad hoc approaches, such as anonymization of

the reads, may be insufficient to ensure privacy because SNPs are

still exposed to the sequencing server and an adversary may be able

to uniquely identify an individual with some additional informa-

tion [26]. In some other situations, details of the SNPs are part of

the intellectual property of the researcher, which may be violated

when sequencing is done by a cloud-based computing entity. Thus,

given that a sequencing task routinely evaluates the alignment for

millions of reads, designing scalable privacy preserving techniques

for alignment of genomic data is an important open problem in

computational biology [9, 28]. This is a challenge because we wish

to protect an individual’s personal identifiable information despite

449

https://orcid.org/0000-0002-8752-4872
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0062

Proceedings on Privacy Enhancing Technologies 2023(2) Madabushi and Ramanathan

the fact that the reference human genome template, which is nearly

identical to the individual’s genome, is public knowledge. In this

work, we design a two-cloud solution for private human genome

alignment that does not reveal SNP information in an individual’s

genome.

1.1 Existing Alignment Algorithms
Sequencing technologies produce fragments of DNA, RNA, or pro-

teins as reads. These reads need to be assembled in order to obtain

the complete genome sequence. Read alignment is usually the core

step in the genome assembly pipeline [45]. It is the process by

which a read is compared to a much larger reference genome to

determine where it occurs within the reference. Modern alignment

algorithms [39, 46, 47, 53] are designed to handle high-throughput

sequencing technologies such as Roche/454, SOLiD, and Illumina

that produce giga base-pairs in a machine day [55]. They also take

advantage of some characteristics specific to sequencing technolo-

gies, such as short read lengths from Illumina and low substitution

error rate from Helicos [45].

Most state-of-the-art alignment algorithms construct auxiliary

data structures for fast processing and can be broadly classified as

either local or global alignment algorithms. Global alignment algo-

rithms aim at aligning two related sequences end-to-end, whereas

local alignment algorithms align specific local regions of both se-

quences with high similarity. Needleman-Wunsch [57] and Smith-

Waterman [69] are popular global and local alignment algorithms,

respectively, and are among the earliest to use dynamic program-

ming for sequence alignment. Depending on the characteristics of

their auxiliary data structures, alignment algorithms can be grouped

into the following two categories [45]:

(1) HashTable-BasedAlgorithms:This category of algorithms

follows the seed-and-extend strategy. In this strategy, the al-

gorithm generates seeds from reads, maps the seeds to the ref-

erence template, and extends the seeds using standard align-

ment algorithms that use dynamic programming. BLAST

[3, 4] is one of the widely used seed-and-extend algorithms

for read alignment. SOAP [47], SeqMap [29], MAQ [46], and

SHRiMP [64] are some other modern alignment algorithms

that use hash tables.

(2) Suffix and Prefix Tree-Based Algorithms: These align-
ment algorithms build suffix trees, suffix arrays, or full-text

minute-space (FM) indices from tries in order to find exact

matches. They leverage the fact that the alignment of read

patterns in multiple locations of the template need to be

done only once. Aligners like MUMmer [35] and OASIS [54]

depend on suffix trees, Vmatch [1] and Segemehl [27] on

suffix arrays, and Bowtie [40], BWA [43], BWT-SW [36], and

SOAP2 [48] on the FM-index.

Long reads usually have a higher likelihood of containing se-

quencing errors. Therefore, it is imperative that read aligners allow

gaps and partial alignments. BLAT [30], SSAHA [58], and BWA-SW

[44] are a few modern read aligners available for long reads.

1.2 Related Work
Several works in the past few decades address (or can be adapted to

address) the problem of private genome alignment. Blatt et al. [12],

Kim and Lauter [31], and Lauter et al. [41] use homomorphic en-

cryption to perform genomic computations on encrypted genomic

data in a genome-wide association studies setting. Atallah et al.

[7], Baron et al. [10], and De Cristofaro et al. [19] propose private

string/pattern matching algorithms using homomorphic encryp-

tion that can be adapted to carry out private genome alignment.

An important drawback of homomorphic encryption is that it can

be computationally cumbersome because of the use of large keys to

achieve privacy. Atallah and Li [8] performs string matching using

Yao’s garbled circuits [74] and a secure two-party protocol. Atallah

et al. [7] and Jha et al. [28] are some other works that propose secure

multi-party protocols to perform private genomic computations

such as read alignment. Al Aziz et al. [2], Jha et al. [28], Szajda

et al. [71], and Wang et al. [72] propose privacy-preserving edit

distance protocols based on set intersection, garbled circuits, and

oblivious transfer that can be used as a building block for private

genome alignment. However, these approaches do not scale to

the human genome. Recently, Kim et al. [32] introduces SHiMMer,

a secure hidden Markov model evaluation method that uses ho-

momorphic encryption for read alignment. Cogo et al. [16], Loka

et al. [49], Widanage et al. [73] although for read alignment, use

privacy in the context of genome data to perform operations like

privacy-preserving real time filtering. Chen et al. [15] uses a hybrid

public-private cloud setting to design a secure seed-and-extend

alignment algorithm. Popic and Batzoglou [60] also proposes a

private read alignment algorithm in a hybrid public-private cloud

setting using the MinHash technique. Zhao et al. [75] proposes a

hybrid cloud alignment algorithm that delegates both the seeding

and extension subtasks to the public cloud, while only performing

encryption/decryption tasks on the private cloud. Lambert et al.

[37] leverage Intels SGX powered cloud enclave for secure align-

ment of filtered reads. Fernandes et al. [22] also use hybrid cloud

environments to securely align reads. Although private clouds are

more secure, they pose major challenges in terms of hardware

expenses, visibility and adaptability to communicate with public

clouds. Some of the recent secure Private Information Retrieval

protocols implemented by Angel et al. [5], Angel and Setty [6], Dai

et al. [18], Dong and Chen [21] achieve sub-linear communication

with k ≥2 copies of databases stored separately. In our two-cloud

algorithm, both clouds communicate with the client less than four

times. Bhuyan et al. [11] and Külekci [34] use the Burrows-Wheeler

transform for secure compression and transmission respectively.

Threat model: Our algorithm performs secure read alignment

across the whole human genome using two semi-honest and non-

colluding clouds. A semi-honest adversary follows the protocol as

specified honestly but they may try to learn as much information

as possible from the messages they receive from other parties.

1.3 Outline of the Paper
Our goal in this work is to devise an algorithm to align a set of reads

from an individual’s genome to a public reference human genome

(template) without revealing SNPs. We begin with an overview

of existing alignment algorithms in Section 1.1 and a survey of

related work in Section 1.2. We outline the conventional Burrows-

Wheeler Transform alignment algorithm in Section 2 and define the

450

Two-Cloud Shuffled BWT Proceedings on Privacy Enhancing Technologies 2023(2)

problem of private genome alignment in Section 3. Section 4 out-

lines the different components of our alignment algorithm in detail.

Section 5 discusses the security and computational complexity of

our algorithm, whereas Section 6 provides formal correctness and

privacy guarantees. We provide empirical evidence of the effective-

ness of our proposed algorithm in Section 7. Finally, we conclude

in Section 8 with some avenues for future work.

2 THE BURROWS-WHEELER TRANSFORM
(BWT) ALGORITHM

The Burrows-Wheeler Transform (BWT) is a reversible permutation

of a string [13]. The BWT algorithm begins by creating all possible

rotations of a string and sorting them lexicographically to create a

Burrows-Wheeler matrix of characters. The first column of this BW

matrix comprises lexicographical runs of all the characters present

in the string. The last column of the BW matrix is the Burrows-

Wheeler Transform. The BWT algorithm has applications in several

diverse fields, including sequence alignment [40, 43, 48], image and

data compression [17, 20, 52, 61]. A useful concept in the derivation

of the BWT is the so-called T -ranking.

Definition 1. [T -ranking] TheT -ranking assigns ranks to each
character in a string X such that the rank of its ith symbol X [i] is
defined as

rank(X [i]) := |{j ∈ {1, . . . , i} : X [j] = X [i]}| − 1.

The BWT algorithm considers strings to be cyclic and transforms

its characters by their right context. If a string t follows a symbol

s in the text, then t is called a right context of s . The BW matrix

will always have a row beginning with t and ending with s . Since
the rows are sorted lexicographically, all symbols with the right

context t appear consecutively in the BWT, which makes it easy

for compression. In addition, the sorting order of the rotations

of the string is exactly the same as the sorting order of suffixes.

Therefore, the algorithm can be implemented in linear time using

suffix arrays [13]. This concept is fundamental to the FM-index,

a data structure used for the compression and search over large

bodies of text [23]. The BWT can be easily reversed because the BW

matrix satisfies an important property known as LF mapping. The

LF mapping property notes that the ith occurrence of a character

in the first and last columns of the BW matrix correspond to the

same character and location in the original string. The LF mapping

helps us locate the occurrence of any particular symbol in the first

column of the BW matrix.

Reads are aligned using the FM-index. The FM-index comprises

the BWT and the first column of the BWmatrix. Consider a stringw
and lety be a substring ofw . The locations ofy withinw correspond

to an interval in the suffix array of w . Therefore, aligning a read

using the FM-index is the same as finding the right intervals corre-

sponding to the read in the suffix array. Figure 1 shows alignment

of a read “CCT ” to a template “ACCTCTA”. In order to map this

read to the template, the algorithm first locates all the occurrences

of the smallest suffix of the read in the template. This is equivalent

to checking for locations of the baseT in the first column. Next, the

algorithm looks for the baseC in the corresponding rows in the last

column. This is same as searching for all occurrences of the sub-

string “CT ” in the input template string. This corresponds to “C2T1”

and “C1T0” in our original template string. Then, the corresponding

C’s in the first column are located. In our example, these are C1

and C2 in the first column. The algorithm continues to look for the

next largest suffix. The algorithm stops once all the characters in

the read are processed. The suffix array interval is extracted using

the rows of the first column after the algorithm terminates. For

inexact alignment, algorithms such as the Bowtie and BWA employ

a backtracking approach to approximate string matching [38, 43].

There are several possible optimizations to ensure efficiency of the

BWT alignment algorithm [24, 33, 65]. The FM-Index can be used

in cloud setting by passing first column of Burrows-Wheeler Matrix

and the BWT to different clouds by allowing communication be-

tween clouds and finally retrieve the alignments using suffix array.

Our algorithm uses the FM-index with a few key modifications.

Instead of lexicographically sorting the rotations, our algorithm

independently shuffles the first and last columns of the rotation

matrix directly for privacy considerations. Additionally, the first

row of the rotation matrix is simply the concatenation of the refer-

ence template string and the $ symbol, whereas its last row is the

concatenation of the $ symbol and the reference template. There-

fore, our algorithm does not require explicit construction of all of

the rotations of the reference template string.

3 PROBLEM SETUP
We are given a publicly available reference human genome template

X and a list of reads. Our algorithm performs some processing steps

on a secure computer (Client) before sending selective information

to two non-colluding clouds (CloudF and CloudL). It then uses the

clouds to align the set of reads to the reference template privately

without revealing the contents of individual reads or the locations

of SNPs to either cloud. We assume that both the clouds are non-

colluding semi-honest adversaries. By semi-honest adversaries, we

mean that the clouds follow the exact specified protocol and will not

make an attempt to change their inputs/outputs however, they may

attempt to infer the truth from publicly available information, or

by running post-processing steps on any intermediate information

they get while executing our algorithm.

3.1 Notation
We write |e | to denote the length of a string/array e and e[i] to
denote its ith entry. Throughout, we index arrays and strings start-

ing from one. We assume that the reference human genome tem-

plate X and the n reads r1, r2, . . . , rn generated by the sequenc-

ing technology are strings over the alphabet Σ := {A,T ,G,C}.
We assume for simplicity that |ri | = l , ∀i ∈ {1, . . . ,n}. We write

conc(a1,a2, . . . ,aj) to denote the concatenation of strings/arrays

a1,a2, . . . ,aj in order. Let e[i : j] denote the substring/subarray

of a string/array e starting at position i and ending at position j
(both endpoints included). We often omit quotation marks while

writing strings. Let π (k) denote a random permutation of the ar-

ray [1, 2, . . . ,k]. In our algorithm, we transform the first and last

columns of the rotation matrix of the reference human template X .

We call the transformed first column array F and the transformed

last column array L. We denote the transformed suffix array by SA.

451

Proceedings on Privacy Enhancing Technologies 2023(2) Madabushi and Ramanathan

$
A1
A0
C0
C2
C1
T1
T0

A0
$
C0
C1
T1
T0
A1
C2

C0
A0
C1
T0
A1
C2
$
T1

C1
C0
T0
C2
$
T1
A0
A1

C2
T0
T1
A1
C0
$
C1
A0

T0
C1
C2
T1
A0
A1
C0
$

T1
C2
A1
$
C1
A0
T0
C0

A1
T1
$
A0
T0
C0
C2
C1

$

A1

A0

C0

C2

C1

T1

T0

A1

T1

$

A0

T0

C0

C2

C1

$
A0
A1
C0
C1
C2
T0
T1

A
$
C
C
T
T
A
C

C
A
C
T
A
C
$
T

C
C
T
C
$
T
A
A

C
T
T
A
C
$
C
A

T
C
C
T
A
A
C
$

T
C
A
$
C
A
T
C

8
7
1
2
5
3
6
4

A0
T0
$
A1
T1
C0
C1
C2

Figure 1: Burrows-Wheeler Transform of the string “ACCTCTA”. Left: BWT with T -ranking; Middle: BWT reversibility using
LF mapping; Right: FM-index-based alignment of the string “CCT”

4 TWO-CLOUD SHUFFLED BWT
ALGORITHM

Our algorithm begins by transforming the reads and the public refer-

ence template on the client’s secure computer before sending them

as inputs to the clouds. The Two-Cloud Shuffled Burrows-Wheeler

Transform alignment algorithm is then carried out with communi-

cation between the clouds to generate candidate read alignments.

These candidate alignments are then returned to the client, which

then uses the transformed suffix array (only available to the client)

to retrieve the final set of alignments after post-processing.

Algorithm 1 Transforming a Reference Template Chunk

1: procedure TransformTemplateChunk(X)

2: Shuffle conc(X , $) and conc($,X) independently
to form F and L

3: Shuffle the suffix array in the same way as

conc(X , $) to form SA
4: Establish links between F and L
5: F ′[i] ← location in L of the ranked base to

the left of F [i] in X
6: L′[i] ← location in F of the ranked base L[i]
7: end procedure
8: Store L′ in CloudF, F ′, L in CloudL, SA with Client

Transforming the Reference Template: We begin by trans-

forming the reference template on Client. We first divide the ref-

erence template into large chunks and scramble them. Without

loss of generality, we also denote scrambled template chunks by

X . We then transform each scrambled chunk using Algorithm 1

on Client. As noted in Section 2, the first and last columns of the

matrix formed by all the left rotations of conc(X , $) can be written

as conc(X , $) and conc($,X), respectively.
Let U and V be the array representations of strings conc(X, $)

and conc($, X), and m := |U | = |V |. We generate independent

random permutations and use them to construct the shuffled first

and last column arrays F and L, respectively, from U and V , as
noted in Definition 2. The shuffled suffix array SA, which is the

same as the permutation applied to the first column of the rotation

matrix, can be used by the client to retrieve the original alignments

from the candidate alignments returned by the clouds.

Definition 2. [Shuffled first and last columns] Given random

permutations πf = π (m) and πl = π (m), the shuffled first and last

columns are defined as

F [i] = U [πf [i]], L[i] = V [πl [i]], ∀i ∈ {1, . . . ,m}.

The transformed suffix array SA is defined as

SA[i] = πf [i], ∀i ∈ {1, . . . ,m}.

We also define arrays F ′ and L′ to store the links between the

shuffled columns F and L. These linking arrays are required to

carry out the alignment algorithm between the two clouds because

the first and last columns are shuffled independently. F ′ and L′

are in-directions needed to shield the knowledge of F and L. For
instance, if CloudL has the knowledge of F and L, RO, it can deduce

the alignment positions of the different reads by storing a directed

graph whose nodes are the different list of rows of F encountered

during the course of the algorithm. This graph can yield a subset

of the different alignment positions. Similarly, ifCloudF had access

to both F and L, using the read order RO and the bases accessed

in F at every iteration, it is possible to build the read. F ′ and L′

give access to F and L when stored in different clouds. For example,

given F and L′, without, the knowledge of F ′, it is not possible
to construct L. However, given the indices, it may be possible to

construct F ′. Even then, it is computationally expensive and may

not be feasible to build F and L. We store L′ in CloudF and F ′ and L
in CloudL. Note that we do not store F or SA in CloudF or CloudL.

Definition 3. [Linking arrays F ′ and L′] Suppose we are given
random permutations πf = π (m), πl = π (m) andT -ranking is used
to define the first and last column arrays F and L. The array F ′ is
such that for each i ∈ {1, . . . ,m}, F ′[i] is the index/location in L of

the ranked base to the immediate left of F [i] in X . The array L′ is
such that for each i ∈ {1, . . . ,m}, L′[i] is the index/location in F of

the ranked base L[i].

Example 1. Let us revisit the example in Section 2. We have

X = A0C0C1T0C2T1A1 with T -ranking. Let πf = [5, 3, 2, 1, 8, 6, 4, 7]
and πl = [2, 1, 5, 6, 8, 7, 3, 4] be the random permutations used to

shuffle conc(X , $) and conc($,X), respectively. From Definition 2,

we have:

U = [A0,C0,C1,T0,C2,T1,A1, $],

V = [$,A0,C0,C1,T0,C2,T1,A1],

F = [C2,C1,C0,A0, $,T1,T0,A1],

L = [A0, $,T0,C2,A1,T1,C0,C1].

From Definition 3, we can also compute the linking arrays F ′ and
L′ as follows:

F ′ = [3, 7, 1, 2, 5, 4, 8, 6], L′ = [4, 5, 7, 1, 8, 6, 3, 2].

452

Two-Cloud Shuffled BWT Proceedings on Privacy Enhancing Technologies 2023(2)

Algorithm 2 Transforming the Input Reads

1: procedure TransformReads(reads,д)
2: Divide the reads into д groups

3: Create random bijections between reads in

group 1 and reads in groups 2 to д
4: Create read order RO for reads in group 1

5: Use RO to create super-read SR1 for reads in

group 1 satisfying Property 1

6: Create SRi for reads in groups i = 2 to д using

SR1 and the constructed bijections

7: end procedure
8: Store RO in CloudF, {SRi }

д
i=1 in CloudL, readGroups and

readMappinдs with Client

Here, F ′[1] is the index/location in L of the base T0, which is to the

immediate left of F [1] = C2 in X . Since T0 is in the third position

of L, we have F ′[1] = 3. Similarly, L′[1] is the index/location in F
of the base L[1] = A0. Since A0 occurs in the fourth position of F ,
we have L′[1] = 4. We can recover F and L by reverse engineering

the above steps. In order to do this, access to both F ′ and L′ is
required. We use T -ranking in F and L only for illustration, but do

not store ranks of occurrence of the bases in either cloud unlike

the conventional FM-index.

Transforming Reads: Next, we describe the procedure for

transforming the reads on the client’s secure computer. We ran-

domly partition the set of reads into д ≥ 2 groups of equal size.

We then interleave the reads of each group using a randomized

procedure while preserving the relative ordering of the symbols in

the individual reads to construct a super-read SRk for each read

group k that satisfies Property 1. In other words, a super-read SRk
is an interleaved arrangement of the set of input reads in group k
such that the jth symbol of each read ri [j] in group k occurs before

the (j+1)th symbol of the same read ri [j+1]within SRk for each i
and j . The motivation for constructing a super-read for each group

is to ensure that the clouds are oblivious to the individual contents

of the reads in the group.

Property 1. A super-read SR of reads r1, . . . , rn , each of length

l , is a restrictive random permutation of conc(r1, . . . , rn) such that

for each i ∈ {1, . . . ,n} and j ∈ {1, . . . , l − 1}, ri [j] occurs before
ri [j + 1] in the permutation.

We now explain how such a super-read may be constructed in

practice. A super-read SR satisfying Property 1 can be constructed

using a random permutation of the following array of read indices

of length l × n:

conc([1, . . . , 1︸ ︷︷ ︸
l terms

], [2, . . . , 2︸ ︷︷ ︸
l terms

], . . . , [n, . . . ,n︸ ︷︷ ︸
l terms

]).

We call this random permutation the read order RO in the super-

read SR. Given a read order RO, we can construct the super-read

SR as follows. Suppose RO[i] = j for some j ∈ {1, . . . ,n} and the

read index j occurs exactly k ∈ {1, . . . , l} times in the subarray

RO[1 :i]. Then we set SR[i] = r j [k]. We follow a similar procedure

to specify each element of the super-read SR using RO. We use

the above procedure to create the super-read and read order for the

first group of reads. We then construct random bijections between

the reads in group 1 and the reads in each of the other д − 1 groups.
We use these mappings to form the super-reads for the remaining

д − 1 groups by transforming the read order and super-read of read

group 1 using these bijections. We provide CloudF with the read

order for group 1 and CloudL with the super-reads for all д groups.

Example 2. Suppose we have four reads r1 = ACC , r2 = CCT ,
r3 = TCT , and r4 = CTA and divide them into two groups with

readGroups = [[1, 4], [2, 3]]. Let readMappinдs = {1 : [2], 4 : [3]}

denote the random bijections from reads in group 1 to the reads in

the remaining groups. Suppose RO = [1, 4, 4, 1, 4, 1]. Note that RO

comprises only the read numbers 1 and 4 since readGroups[1] =
[1, 4]. We use the read order RO to construct a super-read SR1 =

[A,C,T ,C,A,C] for group 1 that satisfies Property 1. Using the

random bijection defined by readMappinдs , we construct the im-
plicit read order for group 2 to be RO2 = [2, 3, 3, 2, 3, 2]. We use

this implicit read order for group 2 to build the super-read SR2 =

[C,T ,C,C,T ,T] for group 2.

Encoding Group Information: CloudL selects a list of large

random primes Pk for each group k . Instead of communicating the

group number k to CloudF, CloudL selects a random prime p′k from

Pk and sends a random number r ′ such that r ′ ≡ 1 (mod p′k) to
CloudF. CloudF picks a large random number N and a polynomial

poly with positive coefficients that sum (sumCoe f f) to N . CloudF
then returns polyVal = poly(r ′) and N to CloudL. Finally, CloudL
assigns group number j if poly(r ′) (mod p′) equals N (mod p′) for
some p′ ∈ Pj and j ∈ {1, . . . ,д}. Because poly(r ′) (mod p′k) equals

N (mod p′k) for the original group number k and chosen prime

p′k ∈ Pk , the original group number k will be recovered by CloudL.

The Alignment Algorithm: The alignment of the reads to

each scrambled reference template chunk proceeds in a manner

similar to the conventional BWT alignment algorithm. This pro-

cedure is outlined in Algorithm 3. The partial alignments for the

reads in groups 2 to д are stored in the entry corresponding to the

read in group 1 to which they are mapped.

CloudF sends (index, polyVal, sumCoeff) pairs corresponding to

the current read number in the read order RO to CloudL. CloudL
identifies the group number for each tuple sent by CloudF. It also
transforms the indices of F to indices of L using the links F ′. CloudL
then collects all of the candidate indices of L corresponding to each

group. It then determines which of these locations in L contains

the current base of the corresponding group’s super-read. CloudL
encodes the group number and sends the (index, E(groupNum))

pairs for indices in L that contain the current base in the super-

read to CloudF. CloudF converts the encoded group numbers into

(polyVal, sumCoeff) pairs. CloudF then transforms the indices of

L to the corresponding indices of F using the links L′ and updates

the entry in A of the current read number in RO. The algorithm

terminates when the entire read order RO is processed from right

to left. After termination, CloudF returns the final list of ordered

pairs of candidate alignments and encryptions for all reads to the

client. Finally, Client computes the final alignment positions for

each read after post-processing the candidate alignments using

Algorithm 4.

453

Proceedings on Privacy Enhancing Technologies 2023(2) Madabushi and Ramanathan

CloudF CloudL

Client

L’ F’L

Read order

Super reads

Index, polyVal,

 sumCoeff

Index, E(groupNum)

Q

Alignment between two clouds

 Partial

alignment

 indices

SA, Read groups

AT

TA

CT

GA

1221

(3003)

TCTA

GATA

Reads

Read

order

Super

reads

ATAGTAGCCTGGGACCA

 Random

permutations

F’L’ Links

 L
Shuffled last column of BWT

Preprocessing in private client

1221
TCTA

GATA

Figure 2: Outline of the alignment procedure between two
clouds in the Two-Cloud Shuffled BWT Algorithm

Inexact Alignment: When none of the candidate indices of L
contain the current base of the super-read for a particular read in

group k , CloudL does not return any partial alignment indices for

this read to CloudF during that iteration. Our Two-Cloud Shuffled

BWT alignment algorithm can be adapted for the case of inexact

alignment as follows: if CloudL does not encounter any candidate

indices of L for a particular read groupk , it simply returns all indices

of L that contain the current base of SRk to CloudF. Since this

inexact alignment strategy may sometimes lead to an explosion in

the number of candidate alignments, especially if the read contains

a SNP among its first few bases, the post-processing algorithm

filters these alignments depending on the maximum number of

allowed mismatches specified.

Post-processing Candidate Alignments: The indices of F
returned by the Two-Cloud Shuffled BWT algorithm are post-

processed on Client using Algorithm 4. This algorithm begins by

decrypting group numbers and separating the candidate alignments

for each individual read. The algorithm then filters the alignments

given a limit on the maximum number of mismatches allowed to

determine final alignments for each read.

Optimization of Communication Between Clouds: In each
chunk, our algorithm produces more inexact alignments than exact

ones. This results in explosion of communication costs as both

clouds exchange nearly half the template size of indices whenever

there is an inexact alignment. In order to cut down on these costs,

in addition to groups numbers, we also maintain a threshold Y
for all reads and a cutoff Ci , i ∈ {1 . . .n} for each read. Suppose

the threshold is the minimum of number of occurrences of all the

bases in the reference template. We increase the cutoff for a read

by 1 whenever CloudL transfers more than Y indices to CloudF.
We communicate the cutoff by obfuscating them using the same

scheme we use of the group numbers. Once the cutoff exceeds 2,

we do not send any indices for that read from then on.

5 DISCUSSION OF THE PROPOSED
APPROACH

Modern DNA sequencing technologies produce millions of reads.

These reads contain recurring patterns (e.g., codons) in the hu-

man genome. Patterns in the human genome are public knowledge

because the reference human genome template is publicly avail-

able. Consequently, private genome alignment algorithms should

be carefully designed to ensure that these patterns do not risk expo-

sure of SNPs or alignment positions. In our algorithm, we use two

clouds to achieve our goal of privacy for SNPs. We achieve this by

only providing selective information to each of the clouds without

compromising the security of the reads during any given phase of

execution. In addition, we introduce the following five novel ideas
to achieve our correctness and privacy goals:

(1) Shuffling First and Last Columns of the Rotation Ma-
trix: We list all of the left rotations of the template string

in order to obtain the rotation matrix of characters. The ith
entry in the first column of the rotation matrix is linked

to the ith entry in the last column, whereas the ith entry

in the last column of the rotation matrix is linked to the

(i − 1)th element of the first column. We shuffle the first and

last columns of this rotation matrix independently and use

the corresponding permutations to determine the new links

between the shuffled columns. As noted in Section 2, we

directly shuffle conc(X , $) and conc($, X) to achieve this.

(2) Constructing Super-reads: In order to keep the reads pri-

vate, we transform groups of reads into super-reads. Each

super-read is constructed using a restrictive random per-

mutation of the concatenation of the reads in its group (or

alternatively, using a sequence of read numbers called the

read order).

(3) Dividing Reads into Groups and Encrypting Group In-
formation: We randomly partition the set of reads into

д ≥ 2 groups of equal size. We then create the super-read

and read order for the first read group as detailed in Section 4.

The random one-to-one mappings of the read numbers in

group 1 to those of other groups ensures correctness of the al-

gorithm when reads of all д groups are processed in clusters.

CloudL aligns the next bases of the current set of д reads as

determined by the read order and the д super-reads. It then

combines the partial alignments for the current reads of all

д groups and encrypts group information. This encryption

precludes CloudF from developing pattern-based attacks. We

provide more details below and in Section 6.

(4) Partitioning and Scrambling the Template into Multi-
ple Chunks: After each iteration of the algorithm, CloudF
gets a set of partial alignment indices from CloudL. These
indices will be a subset of indices of F of the corresponding

base. If group information is known, the number of partial

alignment indices for a particular read indicate the number of

occurrences of its processed substring. With the knowledge

of the public reference template, the cloud could compare

the number of occurrences of every possible realization of

this pattern with the number of partial alignment indices to

potentially deduce the pattern. To avoid this, we divide the

template into several large chunks and concatenate a part

454

Two-Cloud Shuffled BWT Proceedings on Privacy Enhancing Technologies 2023(2)

Algorithm 3 Outline of the Two-Cloud Shuffled BWT Alignment Algorithm

1: procedure TwoCloudShuffledBWT(L, F ′, L′,RO, {SRk }
д
k=1)

2: CloudF
3: Initialization
4: Get L′ and RO from Client
5: Define dictionary A with A[readNum] = [] for each unique readNum in RO

6: Set current iteration number i ← |RO|

7: Alignment
8: if iteration number i < |RO| then
9: Get list of (index, E(groupNum)) tuples from CloudL for read number RO[i]
10: Convert all indices of L (first terms of tuples) to indices of F using L′

11: Convert second terms of tuples (E(groupNum)) to (polyVal, sumCoeff) tuples

12: Update A[RO[i]] to the list of (index, polyVal, sumCoeff) tuples and set i ← i − 1
13: end if

14: Communication
15: Send list of (index, polyVal, sumCoeff) tuples from A[RO[i]] to CloudL

16: CloudL
17: Initialization
18: Get F ′, L and super-reads SRk , k ∈ {1, . . . ,д}, from Client

19: Alignment
20: Get list of (index, polyVal, sumCoeff) tuples from CloudF
21: Identify group numbers from (polyVal, sumCoeff) pairs

22: Convert all indices of F (first terms of tuples) to indices of L using F ′

23: Pool together candidate indices of L for each group

24: No candidate indices of L for a group =⇒ use all indices of L as candidates

25: for each group k ∈ {1, . . . ,д} do
26: Among the indices for group k , check for current base of the super-read SRk [i] in L
27: For each matching index of L, assemble the index and E(k) as a tuple
28: end for

29: Communication
30: Send the list of (index, E(groupNum)) ordered pairs to CloudF
31: if iteration number i == 0 then
32: Return list (index, E(дroupNum)) of ordered pairs to Client
33: end if

34: Client
35: Preprocessing
36: Transform the reference template chunk using Algorithm 1 to get F , L, F ′, L′, and SA
37: Transform input reads using Algorithm 2 to get the super-reads {SRk }

д
k=1 and read order RO

38: Send L′, RO to CloudF, and L, F ′, {SRk }
д
k=1 to CloudL

39: Post-processing
40: Post-process candidate alignments returned by CloudL using Algorithm 4

41: Return final set of alignments F for each read given limit on number of mismatches

42: end procedure

or whole of a template chunk with another template chunk.

This ensures CloudF cannot employ direct pattern attacks

because the number of partial alignment indices now only

corresponds to the number of patterns of a read substring in

that particular template chunk.

(5) Inexact Alignment: If a read contains a SNP, none of can-

didate indices of the shuffled last column L may contain its

455

Proceedings on Privacy Enhancing Technologies 2023(2) Madabushi and Ramanathan

Algorithm 4 Post-processing Candidate Alignments

1: procedure Postprocessing(X , reads,A, SA,
readGroups, readMappinдs,misLimit)

2: Initialize F = {j : ∅ for j ∈ {1, . . . ,n}}
3: for readNum in readGroups[1] do
4: for (index,pv, sc) in A[readNum] do
5: Let i ← D(pv, sc) be the group number

6: if i == 1 then
7: j ← readNum
8: else
9: j ← read number in group i

corresponding to readNum
10: end if
11: Set k ← SA[index]
12: if diff(X [k : k + l − 1], r j) ≤ misLimit
13: F [j] ← F [j] ∪ {k}
14: end if
15: end for
16: end for
17: end procedure
18: Return final set of alignments F to Client

SNP base (i.e., the current base of its group’s super-read).

We let CloudL return an empty set of partial alignments and

continue with the alignment for the rest of the read. During

post-processing, we filter these inexact alignments based on

the specified mismatch limit.

Since the reference human genome template is public knowledge,

one may question the need to transform the first and last columns

of the rotation matrix. Consider an alternative approach where

CloudF only contains the read order RO in the super-read, while

CloudL contains the unshuffled first and last columns F and L of

the BWT matrix along with the super-read SR. Although CloudL
does not know the read order RO, it can deduce the alignment

positions of the different reads by storing a directed graph whose

nodes are the different list of row indices of F encountered during

the course of the algorithm. An edge from node u to node v of

the graph indicates that during some iteration and for some read,

the list of matching row indices of L was the subset v of the row

indicesu of L. The leaves of this graph yield a subset of the different

alignment positions. Moreover, CloudL can traverse the graph to

locate the relative position of any SNPs within a read. Therefore,

it is crucial to transform the public reference template and only

provide selective information to the two clouds.

Computational Complexity: The pre-processing steps for the

reference template and the computation of F ′, L′, and SA require

O(m) space and memory, wherem denotes the size of each template

chunk. The pre-processing steps for the n reads, including the con-

struction of the read-orderRO and theд super-readsSR1, . . . ,SRд ,
requireO(nl) space and memory. The per-iteration cost of our align-

ment algorithm is equal to O(m) per read, which is the same as the

per-iteration cost of the traditional BWT alignment algorithm that

uses the FM-index (although the actual realized cost may be signifi-

cantly smaller). Practical implementations of the BWT alignment

algorithm, such as Bowtie [38], implement several optimizations

that improve the efficiency of the basic alignment algorithm. While

some of these techniques might be adapted to our two-cloud align-

ment algorithm as well, we must take care to ensure that they do

not compromise security of our approach.

6 CORRECTNESS AND PRIVACY
GUARANTEES

In this section, we prove that our Two-Cloud Shuffled BWT algo-

rithm recovers all exact and inexact alignments whenever a read

does not contain a SNP in its first position. We also analyze the

security of the algorithm and provide argumentation for why it

does not reveal the presence of SNPs in an individual’s genome.

6.1 Proof of Correctness
We begin with the following definitions of exact and inexact align-

ments.

Definition 4. [Exact alignment] A read r of length l is said
to align exactly with the template X at position p if the substring

X [p : (p + l − 1)] is identical to the string r .

Definition 5. [Inexact alignment] Given a mismatch limitM ≥
1, a read r of length l is said to align inexactly with the template X
at position p if X [p : (p + l − 1)] and r differ by at least one and at

mostM elements.

We now prove that the Two-Cloud Shuffled BWT algorithm

recovers all exact alignments of reads in the original template X .
While without loss of generality we consider a simplified setting

with one template chunk, two reads, two read groups, and trivial

encodings for ease of exposition, our arguments readily extend to

the more general setting of Algorithm 3.

Theorem 2. [Correctness of the Two-Cloud Shuffled BWT Algo-

rithm] Consider the setting with one template chunkX of lengthm,

two reads each of length l (n = 2), two read groups (д = 2),

and with trivial encodings, i.e., E(i) ≡ i and the corresponding

(polyVal, sumCoeff) ≡ (i, i) for i = 1, 2. Assume without loss of

generality that reads r1 and r2 are in read groups 1 and 2, respec-

tively. Suppose read r1 has an exact alignment with the template

X at position p. Then the index p is an element of the set of final

alignments F [1] determined by Client after post-processing using

Algorithm 4.

Proof. Given random permutations πf = π (m) and πl = π (m),
let the shuffled first and last columns F and L and the shuffled suffix

array SA be defined as in Definition 2. Let the linking arrays F ′

and L′ be defined as in Definition 3. Note that the super-read SRk
for group k ∈ {1, 2} is simply the array rk [1 : l − 1] since there is
exactly one read in each group.

We proceed by induction. For the base case, we argue that the

set of partial alignmentsA[1] returned by CloudL after one base of

reads r1 and r2 are processed includes the tuple (j, 1, 1), where the
index j is such that F [j] = X [p+l−1] = r1[l]. Then, as the induction
hypothesis, we assume that after k ≥ 1 bases of reads r1 and r2
are processed, the set of partial alignments A[1] includes the tuple

(j, 1, 1), where the index j is such that F [j] = X [p+l−k] = r1[l+1−k].
We then demonstrate that after one more iteration of the Two-

Cloud Shuffled BWT algorithm is executed (i.e., after k + 1 bases

456

Two-Cloud Shuffled BWT Proceedings on Privacy Enhancing Technologies 2023(2)

of reads r1 and r2 are processed), the tuple (q, 1, 1) is an element of

the set of partial alignments A[1], where the index q is such that

F [q] = X [p+l −k −1] = r1[l −k]. Finally, we conclude by induction
that when the Two-Cloud Shuffled BWT algorithm terminates (i.e.,

after all l bases of reads r1 and r2 are processed), the tuple (q, 1, 1) is
an element of the set of partial alignmentsA[1], where the index q
is such that F [q] = X [p] = r1[1]. This readily implies that the exact

alignment at index p for read r1 is recovered by the secure client

computer after post-processing.

Base Case. We begin by showing that the base case of our in-

duction hypothesis holds. Note that the set of partial alignments

A[1] returned by CloudL after one base of reads r1 and r2 are pro-
cessed includes all pairs (j, 1, 1) with indices j ∈ {1, . . . ,m} of F
such that F [j] = r1[l]. Since read r1 aligns with the template ex-

actly at position p by assumption, we have X [p + l − 1] = r1[l].
Consequently, the set A[1] includes the tuple (j, 1, 1) such that

F [j] = X [p + l − 1] = r1[l].

Inductive Step. Suppose that after k ≥ 1 bases of reads r1 and r2
are processed, setA[1] includes the tuple (j, 1, 1), where the index j
is such that F [j] = X [p+ l −k] = r1[l +1−k]. We wish to show that

after one more iteration of the Two-Cloud Shuffled BWT algorithm

is executed (i.e., after k + 1 bases of reads r1 and r2 are processed),
the tuple (q, 1, 1) is an element of the set of partial alignmentsA[1],

where the index q is such that F [q] = X [p + l − k − 1] = r1[l − k].
By assumption, the list of ordered pairs A[1] sent by CloudF to

CloudL includes the tuple (j, 1, 1), where the index j is such that

F [j] = X [p + l − k] = r1[l + 1 − k]. CloudL first decrypts the group

number to identify that the index j is among the list of indices of F
for group 1. It then transforms the index j of F to the index F ′[j] of
L, which by Definition 3 yields the index v of L such that

L[v] = X [p + l − k − 1] (1)

since F [j] = X [p+ l −k]. CloudL then checks whether L[v] contains
the same base as SR1[l − k] := r1[l − k]. Since read r1 has an exact

alignment at position p of X by assumption, we have from (1) that

L[v] = X [p + l − k − 1] = r1[l − k]. (2)

Therefore, L[v] contains the same base as SR1[l − k] and CloudL
sends the tuple (v, 1, 1) among its list of ordered pairs to CloudF.
Finally, CloudF transforms the index v of L to the index L′[v] of F ,
which by (2) and Definition 3 yields the index q of F such that

F [q] = X [p + l − k − 1].

Therefore, when the set of partial alignments A[1] is updated by

CloudF after k + 1 bases of reads r1 and r2 are processed, it contains
the tuple (q, 1, 1) such that F [q] = X [p + l − k − 1] = r1[l − k]. This
proves our inductive step.

Inductive Argument. By induction, when the Two-Cloud Shuffled

BWT algorithm terminates after all l bases of reads r1 and r2 are
processed (i.e., k = l − 1), the tuple (q, 1, 1) is an element of the set

of partial alignments A[1], where the index q is such that F [q] =
X [p] = r1[1]. Therefore, the set of candidate alignments returned

by CloudF to the client includes the tuple (q, 1, 1) such that F [q] =
X [p] = r1[1]. This readily implies that the exact alignment at index

p for read r1 is recovered by the secure client computer after post-

processing. □

We next show that our algorithm recovers all inexact alignments

for reads with SNPs so long as these SNPs do not occur at the first

read index. For ease of exposition, we consider the same setting

as Theorem 2 but when read r1 has an inexact alignment with one

mismatch.

Corollary 3. [Alignment with single SNP] Consider the setting

in Theorem 2 with mismatch limit M = 1. Suppose read r1 has

an inexact alignment with the template X at position p with one

mismatch. Assume further that r1[1] = X [p] and read r1 does not
align exactly with template X . Then the index p is an element of

the set of final alignments F [1] determined by Client after post-
processing using Algorithm 4.

Proof. Let i ∈ {2, . . . , l} denote the index of read r1 such that

r1[i] , X [p+i−1]. Such an index i exists because r1 aligns inexactly
withX at positionp with onemismatch. Note that r1[j] = X [p+j−1]
for each j , i . Theorem 2 thus implies that CloudL returns a non-

empty list of partial alignments to CloudF after each of the bases

r1[j], j ∈ {i + 1, . . . , l}, are processed. By assumption, r1 does not
align exactly with X . Consequently, there is an index q ∈ {2, . . . , i}
such that after the base r1[q] is processed by the alignment algo-

rithm, CloudL returns an empty list of partial alignments for read

r1 to CloudF (note that q , i necessarily). Since the substrings

r1[1 : q − 1] and X [p : p + q − 2] match exactly, when the next base

r1[q − 1] of r1 is processed by the alignment algorithm, CloudL
returns a non-empty list of partial alignments for r1[q − 1] in X to

CloudF. Similarly, by Theorem 2, for any index j ∈ {1, . . . ,q − 1},
after the base r1[j] is processed by the alignment algorithm, CloudL
returns a non-empty list of partial alignments for r1[j :q− 1] in X to

CloudF. Therefore, at termination, CloudL returns the list of partial

alignments for r1[1 : q − 1] in X to CloudF. Since the substrings

r1[1 : q − 1] and X [p : p + q − 2] match exactly, Theorem 2 then

implies that the index p is an element of the set of candidate align-

ments A[1] returned by CloudF to the Client. Because r1 aligns

inexactly with X at position p with one mismatch, the index p is an

element of the set of final alignments F [1] determined by Client
after post-processing using Algorithm 4. □

6.2 Security Analysis
In this section, we formally analyze security guarantees for our

algorithm. We begin by discussing the privacy guarantees afforded

by our modified BWT structure. In particular, we argue that CloudF
and CloudL cannot simply use pattern analysis to identify the indi-

vidual contents of the reads. We assume throughout that CloudF
and CloudL are non-colluding clouds. In addition, each client in-

dependently generates the data structures used in the clouds. In

order to make sure that only a legitimate client can interact with a

given data structure in the cloud, authentication mechanisms can

be used.

Security Analysis for CloudF. We shuffle the first and last columns

of the rotation matrix independently preserving the links between

indices of the elements. Storing L′ and F ′ in different clouds ensures
that neither cloud knows the indices of L that corresponds to indices
of F and vice versa. Additionally, neither cloud has access to the

shuffled suffix array. This ensures that the final alignments cannot

be deduced by both CloudF and CloudL. Randomly scrambling large

457

Proceedings on Privacy Enhancing Technologies 2023(2) Madabushi and Ramanathan

template chunks provides security from pattern attacks. For exam-

ple, it is known that the substring TAT occurs 239268 times in the

human genome. Similar counts can be computed for all substrings

of size three (codons) in the reference human genome. Therefore, a

possible privacy leak while computing partial alignments for the

last three bases of each read is that CloudF can compare the num-

ber of partial alignments for a read with the counts of different

codons in the reference template. CloudF can then use this infor-

mation to infer the shuffled first column array F and the contents

of the individual reads. We preclude this privacy leak by randomly

scrambling and splitting the reference template into chunks. This

ensures the counts of each codon in each template chunk is a ran-

dom fraction of the total codon count in the reference template. By

re-numbering reads, generating different read groups, read map-

pings across groups, and super-reads for each scrambled template

chunk, we ensure that CloudF cannot directly add up the number

of partial alignments across each template chunk to identify the

contents of individual reads.

Suppose CloudF can use associativity rules to partition the in-

dices of F into four disjoint groups—one for each base A,C,T , and
G. Additionally, suppose CloudF randomly assigns the symbols W,
X, Y, and Z to these four groups. Note that there are 4! possible

bijections from {W, X, Y, Z} to {A,C,T ,G}, i.e., 4! valid assignments

for the tuple (W, X, Y, Z). To motivate our analysis, consider a single

scrambled template chunk of lengthm. After any iteration of our

Two-Cloud Shuffled BWT algorithm, each row of A contains the

combined partial alignments for reads in д groups. Without loss of

generality, we focus on trying to identify read r1 using the informa-

tion only in CloudF (or only in CloudL). Suppose read r1 belongs to
read group 1. Because the partial (candidate) alignments for read r1
are combined with the partial alignments for corresponding reads

in groups 2 − д in A[1] after each iteration of the Two-Cloud Shuf-

fled BWT algorithm, it may not be possible to uniquely deduce read

r1 (or any of the corresponding reads in groups 2−д) in terms of the

symbols W, X, Y, and Z. We explain this in detail using the following

example.

Example 3. Suppose д = 2 groups, reads r1 and r2 are in groups

1 and 2, and read r2 is mapped to read r1. Additionally, suppose the
last three bases of r1 are WXW and the last two bases of r2 are WZY
in terms of the symbols W, X, Y, and Z. Note that CloudF does not

know the true mapping from {W, X, Y, Z} to {A,C,T ,G}. The partial
alignments A[1] will contain indices of F corresponding to both

symbols W and Y. Since CloudF has no way of deducing which sym-

bol corresponds to which read (r1 or r2), read r1 has the two possible
“super-patterns” W and Y in terms of the symbols W, X, Y, and Z. Once
the next base (from the right) of reads r1 and r2 are processed by the
Two-Cloud Shuffled BWT alignment algorithm in Algorithm 3, the

list of partial alignmentsA[1] will contain indices of F correspond-

ing to the symbols X and Z. Consequently, read r1 will have the four
possible super-patterns XW, XY, ZW, and ZY after this iteration of our

alignment algorithm. Next, after the third-last base of reads r1 and
r2 are processed by our algorithm, the list of partial alignments

A[1] will only contain rows corresponding to the symbol W since
the third-last base of both r1 and r2 is W. Consequently, read r1 will
only have the four possible super-patterns WXW, WXY, WZW, and WZY
after this iteration. Note that the number of patterns associated

with each super-pattern is O(1) because there are only O(1) possi-
ble bijections from {W, X, Y, Z} to {A,C,T ,G} (even after excluding

duplicate patterns arising from different super-patterns).

In what follows, we study how the number of super-patterns

and patterns of a read grow as more of its bases are processed by

the alignment algorithm.

Lemma 4. Let Sj denote the number of possible super-patterns

for read r1 in terms of the symbols W, X, Y, and Z after j of its
bases have been processed by the alignment algorithm 3. Let Nj ∈

{1, 2, 3, 4} denote the number of unique symbols in A[1] after j
bases of r1 are processed. We have

Sj+1 = Nj+1Sj , ∀j ∈ {0, 1, . . . , l − 1},

with S0 := 1. Consequently, the number of possible patterns Pj for
r1 (in terms of A, C , T , and G) after j bases of it are processed is

given by

Pj+1 = O(1)Nj+1Pj , ∀j ∈ {0, 1, . . . , l − 1},

with P0 := 1.

As the number of groups д ≥ 2 increases, so does the probability

that Nj > 1 for each j ∈ {1, . . . , l}. Lemma 4 then clearly implies

that the number of super-patterns (and patterns) is expected to

grow exponentially with the number of bases of a read processed.

Therefore, the number of patterns and super-patterns for a read will

be very large with high probability for reads of moderate length

(≥ 100 bps). We formalize this in our next result.

Lemma 5. Let Nj be defined as in Lemma 4. Suppose each read

is a random string of length l from the alphabet {A,C,T ,G} and
the д ≥ 2 read groups are formed uniformly at random. Then

P(Nj > 1) = 1 −
1

4
д−1 .

Proof. We have

P(Nj > 1) = 1 − P(Nj = 1)

= 1 −
4

4
д = 1 −

1

4
д−1 ,

where P(Nj = 1) = 4

4
д follows from the fact that there are 4

different situations in which all groups can correspond to the same

symbol (W, X, Y, or Z), whereas there are 4д possibleд-tuples of group
symbols. □

Next, we identify conditions under which a candidate bijection

from {W, X, Y, Z} to {A,C,T ,G} can be eliminated using pattern anal-

ysis on the reference template.

Lemma 6. Consider the setting with one template chunk. Let

ψ : {W, X, Y, Z} → {A,C,T ,G} denote a candidate bijection from

{W, X, Y, Z} to {A,C,T ,G}. Let SP := {σ1σ2 · · ·σj }, with σk ∈
{W, X, Y, Z}, denote the set of possible super-patterns for read r1 after
j of its bases are processed by the alignment algorithm. Further-

more, let P := {s1s2 · · · sj : sk = ψ (σk)}, denote the corresponding
set of possible patterns for read r1 when the mappingψ is applied to

the set of super-patterns SP. Then, we can eliminate the bijection

ψ if the number of times every pattern s1s2 · · · sj in P occurs in the

public reference template is different than the number of partial

458

Two-Cloud Shuffled BWT Proceedings on Privacy Enhancing Technologies 2023(2)

candidate alignments observed in A[1] for each of the д groups

after j bases of r1 are processed.

Although we can expect the counts of k-mers in the reference

template to be unique, the following result indicates that it might

still not be easy for CloudF to eliminate a specific bijectionψ . This is
because we divide the template into several chunks, re-number and

re-organize the reads into different groups, and generate different

read order and super-reads for each individual template chunk.

Lemma 7. Consider the setting with multiple template chunks.

Let ψ : {W, X, Y, Z} → {A,C,T ,G} denote a candidate bijection

from {W, X, Y, Z} to {A,C,T ,G}. Let SP := {σ1σ2 · · ·σj }, with σk ∈
{W, X, Y, Z}, denote the set of possible super-patterns for read r1 in
a particular template chunk after j of its bases are processed by

the alignment algorithm. Furthermore, let P := {s1s2 · · · sj : sk =
ψ (σk)}, denote the corresponding set of possible patterns for read
r1 when the mappingψ is applied to the set of super-patterns SP.

Then, we can eliminate the bijectionψ if the number of times every
pattern s1s2 · · · sj inP occurs in the entire public reference template

is less than the number of partial candidate alignments observed in

A[1] for any of the д groups after j bases of r1 are processed.

While Lemma 7 focuses on the case of exact alignments, it can

be easily adapted to the setting where some of the reads in a cluster

have inexact alignments in a particular template chunk. When the

counts of different k-mers in the reference template are on the same

order of magnitude and the number of template chunks is on the

order of 10, it becomes less likely that CloudF can use Lemma 7 to

eliminate a particular bijection. Along with the fact that the number

of super-patterns grows exponentially with high probability, this

provides argumentation for why the individual contents of the

reads (and therefore, SNPs) cannot be deduced by CloudF easily.

Security Analysis for CloudL. We store the last column array L,
the linking array F ′, and the set of super-reads in CloudL. Because
each super-read is constructed using a restrictive random permuta-

tion of the concatenation of the reads in its group, CloudL cannot

readily deduce the contents of each individual read. This ensures

privacy for the set of reads and possible SNPs. If a read contains

a SNP, CloudF may send an empty set of indices of F for its cor-

responding read group during a particular iteration. Since CloudL
does not know the read order and the read number corresponding

to this iteration, it cannot deduce the read in which a SNP is present.

For the same reason, CloudL cannot deduce the reads even though

it has the knowledge of which indices of F correspond to each read

group at any particular iteration. Furthermore, it is not possible to

find out the actual alignment position of any of the reads as we

keep the shuffled suffix array SA private from both CloudF and

CloudL.

7 EMPIRICAL RESULTS
7.1 Setup of Computational Experiments
We implemented our methods for preprocessing the reads and the

reference genome on the secure client computer, alignment across

both clouds, and postprocessing on the client in Python 3.8. We run

our algorithm using a high throughput cluster computing facility.

We used the cluster computing facility to record accuracy, network

bandwidth and memory footprints, run times for our algorithm.

The communication between the two clouds are implemented using

Message Passing Interface (MPI). MPI is a portable message-passing

standard designed to function on parallel computing architectures.

We simulated a total of 150K 150bp and 350bp PacBio reads from all

the chromosomes of the human genome [67] using SimLoRD [70]

read simulation software with 0%, 1% (0.1% indels and 0.9% SNPs),

and 2% (0.2% indels and 1.8% SNPs) error probabilities. The rest of

SimLoRD’s parameters are set to default. We use Chromosome 11

as a representative chromosome to report our results and of the

100K reads, 4000 align in chromosome 11. We divide the alignment

into a set of jobs, each of our jobs involves a template chunk of

size 1M and a read batch with 1000 reads. Our algorithm uses

the two clouds only for alignment. Our client is also located in the

cluster computing facility. The client performs all the preprocessing

steps and transfers our index structures to the MPI processes. We

analyze the scalability of our algorithm, empirically compare our

approach with the state-of-the-art aligners Bowtie [40], BWA [43],

Minimap2 [42], and Balaur [60], and empirically assess the security

of our algorithm on various test instances.

7.2 Discussion of Results
Scaling Analysis: We evaluate the effect of varying template

length, read length, number of reads, and number of read groups

on the time to preprocess the reference template and the reads.

Figure 3 shows that the template and read preprocessing times

scale linearly with the template and read lengths and the number

of reads. It also demonstrates that the read preprocessing times

decrease with increasing read groups. Note that the alignment times

do not change significantly with increasing number of read groups

because the total number of operations executed by the alignment

algorithm remains the same for any number of read groups. Our

alignment algorithm is also massively parallelizable. We can run

alignment for multiple template chunks and read batches in parallel

and retrieve alignments with full accuracy and privacy. With the

power of cloud computing, parallelization and little communication

between the clouds, our algorithm can achieve rapid alignment

speeds and high performance.

Run Times and Memory Footprint: We compare the run times

of our preprocessing step on the Client with state-of-the-art read

aligners such as Bowtie [40], BWA [43] and Minimap2 [42] and

the private read aligner Balaur [60]. Table 1 demonstrates that the

amount of client work done by our algorithm is either lower or

comparable to the existing state-of-the-art approaches. Note that

the run time for Balaur preprocessing is extrapolated to Chromo-

some 11 based on random template substrings of length ranging

from 1M to 10M (we could not index Chromosome 11 directly us-

ing Balaur since its execution was killed by the system). The run

time for each of our alignment jobs took about three and half min-

utes on the cluster. This means that aligning to the entire human

genome may require a couple of days of runtime. However, our

implementation is only a prototype that is not fully optimized. For

example, unlike Balaur, we have not considered any preprocessing

that yields an approximate region of the template to which each

read aligns. We align each read to the whole reference template

instead of relatively much small regions of it. By adding additional

459

Proceedings on Privacy Enhancing Technologies 2023(2) Madabushi and Ramanathan

P
re

p
ro

ce
ss

in
g
 T

im
e

(s
)

0.0

1.0

1.5

0.5

2.0

0 4 8 12 16 20
Template Length (M)

P
re

p
ro

ce
ss

in
g
 T

im
e

(s
)

0

2

4

6

8

0 200 400 800 1000600
Number of Reads (K)

P
re

p
ro

ce
ss

in
g
 T

im
e

(s
)

0

2

4

6

8

400 800 1200 1600 2000
Read Length (bp)

P
re

p
ro

ce
ss

in
g

 T
im

e
(s

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 20 30 40
Number of Read Groups

Figure 3: Preprocessing times for varying template and read dimensions. Default parameters across the plots are: template
length = 10M , number of reads = 100K , read length = 150bp, and number of read groups = 2.

preprocessing step to our algorithm to yield approximate alignment

regions for each read, the run times may reduce significantly. For

example, if the alignment is being done to determine genetic risks

based on a set of SNPs, then one can align reads only to parts of

the genome around the SNP locations and thereby disregard large

parts of the genome to reduce the runtime. There are many other

possible strategies for reducing the genomic regions to which a

read may have to be aligned. In addition, in our current implemen-

tation, the time for processing groups takes about 40% of the total

time in CloudL. Most of these computations can be pruned and/or

parallelized, but not yet implemented in the current prototype. This

will also significantly reduce the runtime for aligning to the full

human genome. In addition, in our current implementation, the

time for processing groups takes about 40% of the total time in

CloudL. A lot of this computation can be pruned and/or parallelized.

If run sequentially, the total CPU time of our prototype is several

days and thus not scalable to full human genome. Our algorithm’s

memory footprint is also less or comparable to existing cloud-bases

private read aligners. For example, Chen et al. [15] requires about

6TB for storing its index files for the entire genome. Balaur [60]

takes about 3.7GB to store index files for Chromosome 11 of length

135M. Our algorithm sends only 1GB of index files to the clouds

for Chromosome 11. State-of-the art aligners such a Bowtie and

BWA without privacy have a peak memory footprint of 2.3 GB for

single-end mapping and about 3 GB for paired-end mapping of the

entire human genome [43]. These memory footprints are similar

to other approaches and are small for the memory availability of

modern day cloud computing platforms.

Network Latency. In our experimental setup and implementation

with MPI, the latency was an average of 10 millisenconds for trans-

ferring 100K indices or 250KB of data. If we run the experiments

over a wide-area network, the network latencies may be larger.

However, since all the jobs in our algorithm are independent and

since there are a large number of jobs, even a large network latency

can be hidden by interleaving computations from multiple jobs.

Correctness Analysis: Out of the true alignments in Chromosome

11, for 1% error rates, our algorithm retrieves 99.7% of the original

alignments for both read lengths 150bp and 350bp. Note that our

algorithm guarantees recovery of all alignments with 1 SNP when

the reference template contains no exact alignments. Our algorithm

C
o
m

m
u

n
ic

a
ti

o
n

 O
v
e
r
h

e
a
d

 (
K

B
)

0

100

200

300

400

500

600

700

0 100 200 300
Iterations

CloudL
CloudF

Figure 4: Average number of indices (averaged over 1K 150
bp reads and chunks of Chromosome 11) transferred be-
tween CloudL to CloudF (solid line) and CloudF to CloudL
(dashed line) during the course of the alignment algorithm.

retrieves 98.8% and 99.1% of the original alignments for 150bp and

350bp reads simulated with 2% error rates. Out of the remaining

reads, only a handful of them could have aligned in Chromosome

11.

Client-Cloud Communication: For Chromosome 11 and 100K
reads, our algorithm transfers less than 1GB data in total to both

clouds. The data the client receives from the clouds is a few kilo

bytes. Data transfer costs can be further reduced if tailored ap-

proaches are used to store the index files. With good network band-

width and throughput, large index files can be transferred within

seconds.

Communication Between Clouds: Figure 4 plots the number of

indices transferred between CloudF and CloudL during the course

of Algorithm 3. For each job, 330K indices on average per read is

communicated by each cloud to the other during the execution

of our alignment algorithm. Each index can be represented using

20 bits for template size of 1M. The total network usage in bits is

the integral of the curve in the Figure 4 times 20. This translates

to roughly 6.5MB of communication per read per job without any

compression mechanisms. Therefore, for the 1000 reads in each job,

the total communication from each cloud is on the order of 6.5GB.

460

Two-Cloud Shuffled BWT Proceedings on Privacy Enhancing Technologies 2023(2)

Table 1: Comparison to state-of-the-art aligners for template size of 1M from chromosome 11 and 1000K reads of length 150.
The alignment accuracies for Bowtie, BWA-MEM, Balaur are Q10% scores.

Read aligner Bowtie BWA-MEM Minimap2 Balaur Our algorithm

Preprocessing Times 7.37s 8.5s 0.7s 7.2s 1.5s

Client Communication NA NA NA 370MB 100MB

Alignment Runtimes 7.5s 0.5s 2s 10.0s 208s

Alignment Accuracy (1% error) 95.9% 96.8% 95.2% 96.0% 99.7%

Alignment Accuracy (2% error) 94.5% 96.8% 96.2% 94.4% 98.8%

Figure 5: Number of super-patterns for increasing number of bases of each read processed

Note that the amount of data transferred between the two clouds

reduces drastically during the course of our alignment algorithm.

Since communication between CloudF and CloudL is curtailed for

inexact alignments, our algorithm does not yield significant junk

alignments. We allowed up to one inexact alignment for each read

which results in spike in the number of indices transferred when

this step is triggered and is shown in Figure 4. Note that the num-

ber of lookups of the bases in the last column L and the number of

group encodings follow similar trends as in Figure 4. The number of

lookups in our algorithm increases only by a constant factor com-

pared to read alignment using the traditional FM-index structure.

Security Analysis: We use a sample reference template of size 4M
and 120 randomly sampled reads for our security analysis.We divide

the template into 10 equal chunks and align the 120 reads to only

the first template chunk. Figure 5 shows that the number of super-

patterns for each read increases exponentially with its number of

bases processed, as noted in Lemma 4. We check the conditions in

Lemma 7 to determine if any of the 24 possible bijections can be

eliminated for read group counts 2, 4, 6, 8, and 10. We were not

able to eliminate any bijections using Lemma 7 for the cases with

4, 6, 8, and 10 read groups when the last 10 bases of each read was

processed by our alignment algorithm. However, for group size 2,

we could rule out up to 20 bijections before the last 10 bases of each

read was processed. Note that our algorithm remains fully private

until all but one bijection is eliminated—in which case CloudF can

determine F uniquely. However, even in this case, CloudF cannot

determine the individual contents of the reads uniquely and can

only identify a list of candidate patterns for each read.

It gets harder to eliminate candidate bijections using Lemma 7

when the number of bases processed for each read increases. Firstly,

with increasing pattern lengths, the computational cost for CloudF

to perform pattern analysis increases. Secondly, patterns of larger

sizes occur with less frequency than patterns with smaller sizes.

Along with the fact that the number of partial alignments for each

read decreases significantly with increasing number of bases pro-

cessed, this ensures that it becomes harder to eliminate candidate

bijections when the iteration count of the alignment algorithm

increases. We also expect pattern analysis to be harder when the

template size and the number of template chunks increase.

8 CONCLUSION AND FUTUREWORK
Conventional security algorithms may be inadequate when there

is a need for secure read alignment due to privacy risks posed by

the valuable information a human genome can provide. This be-

comes a major concern for researchers and precludes them from

using public clouds resources. Many of the existing approaches for

private read alignment compromise correctness of the algorithm to

provide security. In this work, we present a workable approach to

the private read alignment problem using two non-colluding semi-

honest clouds. Our approach enables researchers to harness the

computation and storage capabilities of cloud computing platforms

without having to trade-off individuals’ privacy. Our algorithm

also produces read alignments with full accuracy akin to modern

alignment tools. As part of future work, we would like to investi-

gate approaches to optimize the way we store our index structures,

including our shuffled BWT data structure, to improve the mem-

ory footprints, speed and efficiency of our private read alignment

algorithm.

461

Proceedings on Privacy Enhancing Technologies 2023(2) Madabushi and Ramanathan

ACKNOWLEDGMENTS
This work was done in part with support from the University

of Wisconsin-Madison and from the National Science Founda-

tion Grant EFRI CEE 1933402. Initial computational experiments

were run using the compute resources and assistance of the UW-

Madison Center For High Throughput Computing (CHTC) in the

Department of Computer Sciences. The CHTC is supported by

UW-Madison, the Advanced Computing Initiative, the Wisconsin

Alumni Research Foundation, the Wisconsin Institutes for Discov-

ery, and the National Science Foundation, and is an active member

of the OSG Consortium, which is supported by the NSF and the U.S.

Department of Energy’s Office of Science.

REFERENCES
[1] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. 2004. Replac-

ing suffix trees with enhanced suffix arrays. Journal of Discrete Algorithms 2, 1
(2004), 53–86.

[2] Md Momin Al Aziz, Dima Alhadidi, and Noman Mohammed. 2017. Secure

approximation of edit distance on genomic data. BMC Medical Genomics 10, 2
(2017), 55–67.

[3] Stephen F Altschul, Warren Gish, Webb Miller, Eugene W Myers, and David J

Lipman. 1990. Basic local alignment search tool. Journal of Molecular Biology
215, 3 (1990), 403–410.

[4] Stephen F Altschul, Thomas L Madden, Alejandro A Schäffer, Jinghui Zhang,

Zheng Zhang, Webb Miller, and David J Lipman. 1997. Gapped BLAST and

PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Research 25, 17 (1997), 3389–3402.

[5] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with com-

pressed queries and amortized query processing. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 962–979.

[6] Sebastian Angel and Srinath Setty. 2016. Unobservable communication over fully

untrusted infrastructure. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). 551–569.

[7] Mikhail J Atallah, Florian Kerschbaum, and Wenliang Du. 2003. Secure and

private sequence comparisons. In Proceedings of the 2003 ACM Workshop on
Privacy in the Electronic Society. 39–44.

[8] Mikhail J Atallah and Jiangtao Li. 2005. Secure outsourcing of sequence compar-

isons. International Journal of Information Security 4, 4 (2005), 277–287.

[9] Erman Ayday, Jean Louis Raisaro, and Jean-Pierre Hubaux. 2013. Personal use of

the genomic data: Privacy vs. storage cost. In 2013 IEEE Global Communications
Conference (GLOBECOM). IEEE, 2723–2729.

[10] Joshua Baron, Karim El Defrawy, Kirill Minkovich, Rafail Ostrovsky, and Eric

Tressler. 2013. 5PM: Secure pattern matching. Journal of Computer Security 21, 5

(2013), 601–625.

[11] M Bhuyan, V Deka, and S Bordoloi. 2013. Burrows Wheeler Based Data Compres-

sion and Secure Transmission. International Journal of Research in Engineering
and Technology 2, 2 (2013).

[12] Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, Kurt Rohloff, and Vinod Vaikun-

tanathan. 2020. Optimized homomorphic encryption solution for secure genome-

wide association studies. BMC Medical Genomics 13, 7 (2020), 1–13.
[13] Michael Burrows and David Wheeler. 1994. A block-sorting lossless data com-

pression algorithm. In Digital SRC Research Report. Citeseer.
[14] Barbara Cheifet. 2019. Where is genomics going next? Genome Biology 20, 1

(2019), 1–8.

[15] Yangyi Chen, Bo Peng, XiaoFeng Wang, and Haixu Tang. 2012. Large-Scale

Privacy-Preserving Mapping of Human Genomic Sequences on Hybrid Clouds.

In Network and Distributed System Security (NDSS) Symposium. 1–18.

[16] Vinicius V Cogo, Alysson Bessani, Francisco M Couto, and Paulo Verissimo. 2015.

A high-throughput method to detect privacy-sensitive human genomic data.

In Proceedings of the 14th ACM Workshop on Privacy in the Electronic Society.
101–110.

[17] Anthony J Cox, Markus J Bauer, Tobias Jakobi, and Giovanna Rosone. 2012. Large-

scale compression of genomic sequence databases with the Burrows–Wheeler

transform. Bioinformatics 28, 11 (2012), 1415–1419.
[18] Wei Dai, Yarkın Doröz, and Berk Sunar. 2015. Accelerating SWHE based PIRs

using GPUs. In International Conference on Financial Cryptography and Data
Security. Springer, 160–171.

[19] Emiliano De Cristofaro, Sky Faber, and Gene Tsudik. 2013. Secure genomic testing

with size-and position-hiding private substring matching. In Proceedings of the
12th ACM workshop on Workshop on privacy in the electronic society. 107–118.

[20] C Peter Devadoss and B Sankaragomathi. 2019. Near lossless medical image

compression using block BWT–MTF and hybrid fractal compression techniques.

Cluster Computing 22, 5 (2019), 12929–12937.

[21] Changyu Dong and Liqun Chen. 2014. A fast single server private information

retrieval protocol with low communication cost. In European Symposium on
Research in Computer Security. Springer, 380–399.

[22] Maria Fernandes, Jérémie Decouchant, Marcus Völp, Francisco M Couto, and

Paulo Esteves-Verissimo. 2019. DNA-SeAl: sensitivity levels to optimize the

performance of privacy-preserving DNA alignment. IEEE Journal of Biomedical
and Health Informatics 24, 3 (2019), 907–915.

[23] Paolo Ferragina and Giovanni Manzini. 2000. Opportunistic data structures

with applications. In Proceedings of the 41st Annual Symposium on Foundations of
Computer Science. IEEE, 390–398.

[24] Joseph Yossi Gil and David Allen Scott. 2012. A bijective string sorting transform.

arXiv preprint arXiv:1201.3077 (2012).

[25] Alan E Guttmacher and Francis S Collins. 2003. Welcome to the genomic era.

New England Journal of Medicine 349, 10 (2003), 996–998.
[26] Melissa Gymrek, Amy L McGuire, David Golan, Eran Halperin, and Yaniv Erlich.

2013. Identifying personal genomes by surname inference. Science 339, 6117
(2013), 321–324.

[27] Steve Hoffmann, Christian Otto, Stefan Kurtz, Cynthia M Sharma, Philipp

Khaitovich, Jörg Vogel, Peter F Stadler, and Jörg Hackermüller. 2009. Fast map-

ping of short sequences with mismatches, insertions and deletions using index

structures. PLoS Computational Biology 5, 9 (2009), e1000502.

[28] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. 2008. Towards practical privacy

for genomic computation. In 2008 IEEE Symposium on Security and Privacy (SP).
IEEE, 216–230.

[29] Hui Jiang and Wing Hung Wong. 2008. SeqMap: mapping massive amount of

oligonucleotides to the genome. Bioinformatics 24, 20 (2008), 2395–2396.
[30] W James Kent. 2002. BLAT—the BLAST-like alignment tool. Genome Research 12,

4 (2002), 656–664.

[31] Miran Kim and Kristin Lauter. 2015. Private genome analysis through homo-

morphic encryption. In BMC Medical Informatics and Decision Making, Vol. 15.
BioMed Central, 1–12.

[32] Miran Kim, Yongsoo Song, Xiaoqian Jiang, and Arif Harmanci. 2021. SHiM-

Mer: Privacy-Aware Alignment of Genomic Sequences with Secure and Efficient

Hidden Markov Model Evaluation. Research Square (2021).
[33] Manfred Kufleitner. 2009. On bijective variants of the Burrows-Wheeler transform.

arXiv preprint arXiv:0908.0239 (2009).
[34] M Oğuzhan Külekci. 2012. On scrambling the Burrows–Wheeler transform to

provide privacy in lossless compression. Computers & Security 31, 1 (2012), 26–32.
[35] Stefan Kurtz, Adam Phillippy, Arthur L Delcher, Michael Smoot, Martin Shumway,

Corina Antonescu, and Steven L Salzberg. 2004. Versatile and open software for

comparing large genomes. Genome Biology 5, 2 (2004), 1–9.

[36] Tak Wah Lam, Wing-Kin Sung, Siu-Lung Tam, Chi-Kwong Wong, and Siu-Ming

Yiu. 2008. Compressed indexing and local alignment of DNA. Bioinformatics 24,
6 (2008), 791–797.

[37] Christoph Lambert, Maria Fernandes, Jérémie Decouchant, and Paulo Esteves-

Verissimo. 2018. MaskAl: Privacy Preserving Masked Reads Alignment using

Intel SGX. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS).
113–122. https://doi.org/10.1109/SRDS.2018.00022

[38] Ben Langmead. 2010. Aligning short sequencing reads with Bowtie. Current
Protocols in Bioinformatics 32, 1 (2010), 11–7.

[39] Ben Langmead and Steven L Salzberg. 2012. Fast gapped-read alignment with

Bowtie 2. Nature Methods 9, 4 (2012), 357–359.
[40] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. 2009. Ultrafast

and memory-efficient alignment of short DNA sequences to the human genome.

Genome Biology 10, 3 (2009), 1–10.

[41] Kristin Lauter, Adriana López-Alt, and Michael Naehrig. 2014. Private computa-

tion on encrypted genomic data. In International Conference on Cryptology and
Information Security in Latin America. Springer, 3–27.

[42] Heng Li. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioin-
formatics 34, 18 (2018), 3094–3100.

[43] Heng Li and Richard Durbin. 2009. Fast and accurate short read alignment with

Burrows–Wheeler transform. Bioinformatics 25, 14 (2009), 1754–1760.
[44] Heng Li and Richard Durbin. 2010. Fast and accurate long-read alignment with

Burrows–Wheeler transform. Bioinformatics 26, 5 (2010), 589–595.
[45] Heng Li and Nils Homer. 2010. A survey of sequence alignment algorithms for

next-generation sequencing. Briefings in bioinformatics 11, 5 (2010), 473–483.
[46] Heng Li, J Ruan, and R Durbin. 2008. MAQ:Mapping and Assembly with Qualities.

Version 0.6 3 (2008), 508.
[47] Ruiqiang Li, Yingrui Li, Karsten Kristiansen, and Jun Wang. 2008. SOAP: short

oligonucleotide alignment program. Bioinformatics 24, 5 (2008), 713–714.
[48] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu, Karsten Kris-

tiansen, and Jun Wang. 2009. SOAP2: an improved ultrafast tool for short read

alignment. Bioinformatics 25, 15 (2009), 1966–1967.
[49] Tobias P Loka, SimonHTausch, PiotrWDabrowski, Aleksandar Radonić, Andreas

Nitsche, and Bernhard Y Renard. 2018. PriLive: privacy-preserving real-time

filtering for next-generation sequencing. Bioinformatics 34, 14 (2018), 2376–2383.

462

https://doi.org/10.1109/SRDS.2018.00022

Two-Cloud Shuffled BWT Proceedings on Privacy Enhancing Technologies 2023(2)

[50] Bradley Malin and Latanya Sweeney. 2000. Determining the identifiability of

DNA database entries. In Proceedings of the AMIA Symposium. American Medical

Informatics Association, 537.

[51] Bradley Malin and Latanya Sweeney. 2001. Re-identification of DNA through an

automated linkage process. In Proceedings of the AMIA Symposium. American

Medical Informatics Association, 423.

[52] Giovanni Manzini. 1999. The Burrows-Wheeler transform: theory and practice.

In International Symposium on Mathematical Foundations of Computer Science.
Springer, 34–47.

[53] Guillaume Marçais, Arthur L Delcher, AdamM Phillippy, Rachel Coston, Steven L

Salzberg, and Aleksey Zimin. 2018. MUMmer4: A fast and versatile genome

alignment system. PLoS Computational Biology 14, 1 (2018), e1005944.

[54] Colin Meek, Jignesh M Patel, and Shruti Kasetty. 2003. Oasis: An online and

accurate technique for local-alignment searches on biological sequences. In

Proceedings of the 2003 VLDB Conference. Elsevier, 910–921.
[55] Michael L Metzker. 2010. Sequencing technologies—the next generation. Nature

Reviews Genetics 11, 1 (2010), 31–46.
[56] Muhammad Naveed, Erman Ayday, Ellen W Clayton, Jacques Fellay, Carl A

Gunter, Jean-Pierre Hubaux, Bradley A Malin, and XiaoFeng Wang. 2015. Privacy

in the genomic era. ACM Computing Surveys (CSUR) 48, 1 (2015), 1–44.
[57] Saul B Needleman and Christian D Wunsch. 1970. A general method applicable

to the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology 48, 3 (1970), 443–453.

[58] Zemin Ning, Anthony J Cox, and James C Mullikin. 2001. SSAHA: a fast search

method for large DNA databases. Genome Research 11, 10 (2001), 1725–1729.

[59] Dale R Nyholt, Chang-En Yu, and Peter M Visscher. 2009. On JimWatson’s APOE

status: genetic information is hard to hide. European Journal of Human Genetics
17, 2 (2009), 147–149.

[60] Victoria Popic and Serafim Batzoglou. 2017. A hybrid cloud read aligner based

on MinHash and kmer voting that preserves privacy. Nature Communications 8,
1 (2017), 1–7.

[61] Collin Preston, Ziya Arnavut, and Basar Koc. 2015. Lossless compression of

medical images using Burrows-Wheeler transformation with inversion coder.

In 37th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). IEEE, 2956–2959.

[62] Gianluca Reali, Mauro Femminella, Emilia Nunzi, and Dario Valocchi. 2018.

Genomics as a service: A joint computing and networking perspective. Computer
Networks 145 (2018), 27–51.

[63] Somak Roy, Christopher Coldren, Arivarasan Karunamurthy, Nefize S Kip, Eric W

Klee, Stephen E Lincoln, Annette Leon, Mrudula Pullambhatla, Robyn L Temple-

Smolkin, Karl V Voelkerding, et al. 2018. Standards and guidelines for validating

next-generation sequencing bioinformatics pipelines: a joint recommendation of

the Association for Molecular Pathology and the College of American Patholo-

gists. The Journal of Molecular Diagnostics 20, 1 (2018), 4–27.
[64] Stephen M Rumble, Phil Lacroute, Adrian V Dalca, Marc Fiume, Arend Sidow,

and Michael Brudno. 2009. SHRiMP: accurate mapping of short color-space reads.

PLoS Computational Biology 5, 5 (2009), e1000386.

[65] Mikael Salson, Thierry Lecroq, Martine Léonard, and Laurent Mouchard. 2009.

A four-stage algorithm for updating a Burrows–Wheeler transform. Theoretical
Computer Science 410, 43 (2009), 4350–4359.

[66] Frederick Sanger, Steven Nicklen, and Alan R Coulson. 1977. DNA sequencing

with chain-terminating inhibitors. Proceedings of the National Academy of Sciences
74, 12 (1977), 5463–5467.

[67] Valerie A. Schneider, Tina Graves-Lindsay, Kerstin Howe, Nathan Bouk, Hsiu-

Chuan Chen, Paul A. Kitts, Terence D. Murphy, Kim D. Pruitt, Françoise Thibaud-

Nissen, Derek Albracht, Robert S. Fulton, Milinn Kremitzki, Vince Magrini,

Chris Markovic, Sean McGrath, Karyn Meltz Steinberg, Kate Auger, Will Chow,

Joanna Collins, Glenn Harden, Tim Hubbard, Sarah Pelan, Jared T. Simpson,

Glen Threadgold, James Torrance, Jonathan Wood, Laura Clarke, Sergey Koren,

Matthew Boitano, Heng Li, Chen-Shan Chin, Adam M. Phillippy, Richard Durbin,

Richard K. Wilson, Paul Flicek, and Deanna M. Church. 2016. Evaluation of

GRCh38 and de novo haploid genome assemblies demonstrates the enduring

quality of the reference assembly. bioRxiv (2016). https://doi.org/10.1101/072116

arXiv:https://www.biorxiv.org/content/early/2016/08/30/072116.full.pdf

[68] Suyash S Shringarpure and Carlos D Bustamante. 2015. Privacy risks from

genomic data-sharing beacons. The American Journal of Human Genetics 97, 5
(2015), 631–646.

[69] Temple F Smith and Michael S Waterman. 1981. Identification of common

molecular subsequences. Journal of Molecular Biology 147, 1 (1981), 195–197.

[70] Bianca K Stöcker, Johannes Köster, and Sven Rahmann. 2016. SimLoRD: simula-

tion of long read data. Bioinformatics 32, 17 (2016), 2704–2706.
[71] Doug Szajda, Michael Pohl, Jason Owen, Barry G Lawson, and Virginia Richmond.

2006. Toward a Practical Data Privacy Scheme for a Distributed Implementation

of the Smith-Waterman Genome Sequence Comparison Algorithm. In Network
and Distributed System Security (NDSS) Symposium.

[72] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and

Diyue Bu. 2015. Efficient genome-wide, privacy-preserving similar patient query

based on private edit distance. In Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security. 492–503.
[73] Chathura Widanage, Weijie Liu, Jiayu Li, Hongbo Chen, XiaoFeng Wang, Haixu

Tang, and Judy Fox. 2021. HySec-Flow: Privacy-Preserving Genomic Computing

with SGX-based Big-Data Analytics Framework. In 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD). IEEE, 733–743.

[74] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162–167.

[75] Yongan Zhao, Xiaofeng Wang, and Haixu Tang. 2018. A secure alignment al-

gorithm for mapping short reads to human genome. Journal of Computational
Biology 25, 6 (2018), 529–540.

463

https://doi.org/10.1101/072116
https://arxiv.org/abs/https://www.biorxiv.org/content/early/2016/08/30/072116.full.pdf

	Abstract
	1 Introduction
	1.1 Existing Alignment Algorithms
	1.2 Related Work
	1.3 Outline of the Paper

	2 The Burrows-Wheeler Transform (BWT) algorithm
	3 Problem Setup
	3.1 Notation

	4 Two-Cloud Shuffled BWT Algorithm
	5 Discussion of the Proposed Approach
	6 Correctness and Privacy Guarantees
	6.1 Proof of Correctness
	6.2 Security Analysis

	7 Empirical Results
	7.1 Setup of Computational Experiments
	7.2 Discussion of Results

	8 Conclusion and Future Work
	Acknowledgments
	References

