
A Method for Securely Comparing Integers using Binary Trees
Anselme Tueno

SAP SE

Germany

anselme.tueno@sap.com

Jonas Janneck

Ruhr University Bochum

Germany

jonas.janneck@rub.de

David Boehm

SAP SE

Germany

david.boehm@sap.com

ABSTRACT
In this paper, we propose a new protocol for secure integer compar-

ison which consists of parties having each a private integer. The

goal of the computation is to compare both integers securely and

reveal to the parties a single bit that tells which integer is larger.

Nothing more should be revealed. To achieve a low communication

overhead, this can be done by using homomorphic encryption (HE).

Our protocol relies on binary decision trees that is a special case of

branching programs and can be implemented using HE. We assume

a client-server setting where each party holds one of the integers,

the client also holds the private key of a homomorphic encryption

scheme and the evaluation is done by the server. In this setting, our

protocol outperforms the original DGK protocol of Damgård et al.

and reduces the running time by at least 45%. In the case where

both inputs are encrypted, our scheme reduces the running time of

a variant of DGK by 63%.

KEYWORDS
homomorphic encryption, multi-party computation, integer com-

parison

1 INTRODUCTION
Multi-party computation (MPC) is a cryptographic technique that

allows several parties to compute a function on their private inputs

without revealing any information other than the function’s output

[5, 21, 27–29]. A classic example in the literature is the so-called

Yao’s Millionaire’s problem introduced in [53]. Two millionaires are

interested in knowing which of them is richer without revealing

their actual wealth. Formally, let there be two parties 𝑃1, 𝑃2 with

private input 𝑥,𝑦 respectively. The goal of the computation is to

compute and reveal 𝑏 = [𝑥 ≥ 𝑦] to the parties and nothing else.

This is illustrated in Figure 1.

Integer comparison is one of the basic arithmetic operations

in computer programming and algorithm design. Secure integer

comparison is therefore necessary in many privacy-preserving

computations. In machine learning, private integers must be com-

pared securely while evaluating classifiers such as decision trees

[42, 45, 46, 51] or neural networks. In secure enterprise bench-

marking [48], key performance indicators are securely compared to

determine how companies perform compared to their competitors.

In secure auction [8, 9], bids are privately compared to determine

the winner. Secure integer comparison has application in different

privacy-preserving analytics.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(3), 469–487
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0092

In the following, the party with input 𝑥 is the client and the

party with input 𝑦 is the server. The idea of our solution consists of

having the server construct a binary tree that represents 𝑦. Then,

the client encrypts 𝑥 using a homomorphic encryption scheme and

let the server evaluate on the tree representing 𝑦. Finally, the client

receives the result of the computation and decrypts it. Depending

on the use case, the client can send the result to the server or they

could both get a share of the final result. Furthermore, there are

two variants of the protocol. The first (basic) variant utilizes the

input of the server in plaintext, the second variant requires both

inputs to be encrypted. We compare our results of the first variant

to the original DGK protocol [18] and reduce the running time by

45%. Compared to an optimization of the DGK protocol proposed

by Veugen [49], we can reduce the running time by about 10% for

the first variant. However, for the second variant in which both

inputs are encrypted we achieve a reduction of more than 63%.

In total, our contributions are: We propose a new protocol for

secure integer comparison based on binary trees. We present two

instantiations of our protocol using FHE and AHE. We extend our

protocol to handle shared output bit, encrypted inputs and less

than comparison. We give a theoretical analysis including specifi-

cations for the two variants and their complexity implications. We

implement and evaluate both variants.

The remainder of the paper is structured as follows. We review

preliminaries in Section 2 and related work in Section 3. Section 4

defines correctness and security of the functionality. We describe

our protocol and its algorithms in Section 5 and present some exten-

sions in Section 6. Section 8 gives details about our implementation

and evaluation results.

2 PRELIMINARIES
Homomorphic encryption (HE) allows computations on ciphertexts

by generating an encrypted result whose decryption matches the

result of a function on the plaintexts [12, 25].

HE Algorithms. An HE scheme consists of the following algo-

rithms:

• pk, sk, ek← KGen(_): This probabilistic algorithm takes a

security parameter _ and outputs public, private, and evalu-

ation keys pk, sk, and ek.
• c← Enc(pk,m): This algorithm takes pk and a message m
and outputs a ciphertext c. We will use J𝑚K as a shorthand
notation for Enc(pk,m).
• c ← Eval(ek, 𝑓 , c1, . . . , c𝑛): This algorithm takes ek, an 𝑛-

ary function 𝑓 and 𝑛 ciphertexts c1, . . . c𝑛 and outputs a

ciphertext c.
• m′ ← Dec(sk, c): This deterministic algorithm takes sk and

a ciphertext c and outputs a message m′.
469

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0092

Proceedings on Privacy Enhancing Technologies 2023(3) Tueno et al.

We require IND-CPA security and the following correctness con-

ditions. Given any set of 𝑛 plaintexts m1, . . . ,m𝑛, it must hold for

any pk, sk, ek:

• Dec(sk, Enc(pk,m𝑖)) = Dec(sk, Jm𝑖K) = m𝑖 ,

• Dec(sk, Eval(ek, 𝑓 , Jm1K , . . . , Jm𝑛K))
= Dec(sk, J𝑓 (m1, . . . ,m𝑛)K).

In practice, a homomorphic encryption defines two basic op-

erations for addition and multiplication that can then be used to

compute larger functionalities.

FHE Operations. An FHE scheme defines both operations (addi-

tion and multiplication). For all plaintexts m1,m2, we define the

following operations and introduce shorthand notations:

• Addition: Add(Jm1K , Jm2K) = Jm1K ⊞ Jm2K = Jm1 +m2K,
• Constant Addition : AddCons(Jm1K ,m2) = Jm1K ⊞ m2 =

Jm1 +m2K,
• Multiplication:Mul(Jm1K , Jm2K) = Jm1K�Jm2K = Jm1 ·m2K,
• Constant Multiplication: MulCons(Jm1K ,m2) = Jm1K �
m2 = Jm1 ·m2K.

Additively HE. If the scheme supports only addition, then it is

called additively HE (AHE). Schemes such as Paillier [41] or Elliptic

Curve ElGamal [33] are additively homomorphic and have the fol-

lowing properties for all integer plaintextsm1,m2 and bit plaintexts

𝑎, 𝑏 ∈ {0, 1}:
• Addition: Add(Jm1K , Jm2K) = Jm1K ⊞ Jm2K = Jm1 +m2K,
• Constant Multiplication: MulCons(Jm1K ,m2) = Jm1K �
m2 = Jm1 ·m2K,
• Xor: Xor(J𝑎K , 𝑏) = J𝑎 ⊕ 𝑏K.

Note that we use the same shorthand notation for FHE and AHE.

The actual implementation depends on the underlying scheme.

Somewhat, Leveled and Fully HE. If the scheme supports ad-

dition and multiplication, but for a limited number of times, then

it is somewhat homomorphic (SHE). When arbitrary computation

can be performed on encrypted data, then the encryption scheme

is fully homomorphic (FHE). Because FHE requires the so-called

bootstrapping that is computationally expensive, it is sometime

useful to use leveled FHE for efficiency. Leveled FHE can evaluate

only computation up to a given circuit depth that is fixed by the

encryption keys. In the following, we will use only the term FHE

for fully homomorphic encryption and leveled fully homomorphic

encryption.

3 RELATEDWORK
In his seminal paper [53], Yao introduced the millionaires’ prob-

lem and the first protocol to securely compare two integers. Later,

different alternatives of securely comparing integers have been

proposed. In [35, 36] Kolesnikov et al. proposed schemes that use

garbled circuits. In [18], Damgård et al. proposed the so-called DGK

protocol, where the parties must evaluate 𝑧𝑖 = 𝑠 + 𝑥 [𝑖] − 𝑦 [𝑖] +
3

∑`

𝑗=𝑖+1 (𝑥 [𝑗] ⊕ 𝑦 [𝑗]) on the input bit encrypted with AHE. DGK

has been improved by Veugen [49] and Joye and Salehi [31]. Similar

protocols to the DGK, that rely on AHE, include Lin and Tzeng

[37, 48], Fischlin [22], Blake and Kolesnikov [6], Garay et. al. [24].

Other protocols [13, 17, 38, 40, 43] and most recent ones [4, 20, 39]

Client Server

FGT

x y

[x ≥ y] [x ≥ y]

Figure 1: The GT functionality

are based on the arithmetic black-box model which is a power-

ful tool commonly used in MPC frameworks such as MP-SPDZ

[32] or SCALE-MAMBA [1]. In [14, 15], Cheon et al. proposed a

scheme where the following circuit is evaluated using SHE/FHE:

𝑐𝑖 = ((1 ⊕ 𝑥 [𝑖]) · 𝑦 [𝑖]) ⊕ ((1 ⊕ 𝑥 [𝑖] ⊕ 𝑦 [𝑖]) · 𝑐𝑖−1), for 𝑖 > 1. In

summary, all these schemes require access to the bit representation

of the integers. Some schemes have a constant number of rounds

[6, 15, 18, 22, 35–37]. Other schemes have log-logarithmic number

of rounds [16, 24, 26]. In Section 8, we analyze the closely related

work in more detail and compare it to our approach. More recent

work include [11, 30] that reduce to comparison of small integers,

using a base 𝑝 > 2 representation instead of the binary representa-

tion. Bourse et al. [11] Use a specific AHE construction based on

Factoring and cannot support comparison of two encrypted input,

and sharing of the output bit. We do require any specific AHE, but

can implement our scheme using ECC ElGamal resulting in a faster

scheme with smaller communication. Iliashenko and Zucca [30]

use specific structure of BGV and BFV to design faster schemes. We

do not assume a specific FHE scheme, have a smaller circuit depth

and can compare more integers using SIMD.

4 DEFINITIONS
Setting. The protocol consists of a server holding an input 𝑦, and

a client holding an input 𝑥 . We assume that both inputs consist

of `−bit integers and ` is public. The ideal functionality FGT takes

𝑦 from the server and 𝑥 from the client. It computes and outputs

a bit 𝑏 = [𝑥 ≥ 𝑦] to the parties such that 𝑏 = 1 if 𝑥 ≥ 𝑦 and

𝑏 = 0 otherwise. The functionality is illustrated in Figure 1. In

the following, we build our protocol on the case where only the

client gets an output 𝑏 = [𝑥 ≥ 𝑦]. It can be easily extended to

a symmetric scenario if the server chooses a random 𝑏𝑠 ∈ {0, 1}
and homomorphically computes 𝑏𝑐 = 𝑏 ⊕ 𝑏𝑠 before sending the

result to the client. Then, the client decrypts the result and both

parties holding shares 𝑏𝑐 , 𝑏𝑠 respectively and can reconstruct the

result 𝑏 = 𝑏𝑐 ⊕ 𝑏𝑠 . In some larger settings, it might be required

to return only these shares of 𝑏 to the parties, preventing them to

learn intermediate result.

Security and Correctness. A protocol correctly implements the

GT functionality if after the computation the output is correct, i.e.,

𝑏 = 1 if 𝑥 ≥ 𝑦 and 𝑏 = 0 otherwise. Besides correctness parties must

learn only what they are allowed to. This is formalized using the

ideal/real world paradigm, where for each party there must exist a

simulator, that given only the input of that party and the output, can

generate a distribution that is computationally indistinguishable

to the party’s view [27]. To formalize this, we need the following

definition [27]. A function a : N → R is negligible if for every
470

A Method for Securely Comparing Integers using Binary Trees Proceedings on Privacy Enhancing Technologies 2023(3)

positive polynomial 𝑝 (·) there exists an Y such that for all 𝑛 ∈ N
with 𝑛 > Y: a (𝑛) < 1/𝑝 (𝑛). Two probability distribution ensem-

bles {𝑋𝑖 }𝑖∈{0,1}∗ , {𝑌𝑖 }𝑖∈{0,1}∗ are computational indistinguishable

(denoted by

𝑐≡) if for every probabilistic polynomial-time (PPT) al-

gorithm D, every positive polynomial 𝑝 (·) and all sufficiently long

𝑤 ∈ {0, 1}∗ it holds that |𝑃𝑟 [𝐷 (𝑋𝑤 ,𝑤) = 1] − 𝑃𝑟 [𝐷 (𝑌𝑤 ,𝑤) = 1] | <
1/𝑝 (|𝑤 |). In other words, there is no algorithm that can distinguish

between the distributions. In multi-party protocols the view of a

party consists of its input and the sequence of messages that it has

received during the protocol execution [27]. The protocol is said

to be secure if for each party, one can construct a simulator that,

given only the input of that party and the output, can generate a

distribution that is computationally indistinguishable to the party’s

view. We focus on the semi-honest security model in which parties

follow the protocol but may try to learn more information from

its execution. A protocol securely implements the GT functionality

FGT in the semi-honest model if each party learns only its output

and nothing else. In particular, there must exists simulators Simgt
C

and Simgt
S that simulate the client and the server given only their

input and output to the protocol.

Let ΠGT denote a protocol that securely implements FGT, and
let ViewΠGT

P (𝑥,𝑦) denote the view of party 𝑃 during the protocol,

then the following hold:

• there exists a PPT algorithm Simgt
S that simulates the server’s

view ViewΠGT
S given only 𝑦 and [𝑥 ≥ 𝑦] such that:

{Simgt
S (𝑦, [𝑥 ≥ 𝑦])}𝑥,𝑦∈{0,1}∗

𝑐≡ {ViewΠGT
S (𝑥,𝑦)}𝑥,𝑦∈{0,1}∗ ,

• there exists a PPT algorithm Simgt
C that simulates the client’s

view ViewΠGT
C given only 𝑥 and [𝑥 ≥ 𝑦] such that:

{Simgt
C (𝑥, [𝑥 ≥ 𝑦])}𝑥,𝑦∈{0,1}∗

𝑐≡ {ViewΠGT
C (𝑥,𝑦)}𝑥,𝑦∈{0,1}∗ .

5 OUR PROTOCOL
Our protocol relies on a branching program that is represented as

a binary tree. We therefore start by describing the intuition behind

our scheme and defining our data structure. Then, we describe how

our algorithms use this data structure to implement the functional-

ity.

5.1 Intuition
Our key observation is that the comparison problem can be seen

as a classification problem using a decision tree, where the tree

is built on the server input and evaluated using the client input.

That is, given a server’s input 𝑦, a client’s input 𝑥 classifies as 1 if

𝑥 ≥ 𝑦 or 0 otherwise. The tree edges are labelled with bits such

that the evaluation is done by traversing the tree along the path of

𝑥 . However, we do not know the path representing 𝑥 - since it is

encrypted - and therefore have to evaluate all paths and aggregate

the results.

Evaluating a path on encrypted inputs means computing bit

equality between edge labels and the bits of 𝑥 and adding or mul-

tiplying the results along the path. For example, let 𝑦 = 3 whose

tree is illustrated in Figure 2. We have the following paths 𝑃0 =

(0, 0,−, 0), 𝑃1 = (0, 1, 0, 0), 𝑃2 = (0, 1, 1, 1), 𝑃3 = (1,−,−, 1), where
the last the element in each represents the leaf label and missing

edges in shorter paths are represented with the symbol ” − ” that

will be ignored. Let 𝑥 = 2, i.e., binary vector (0, 1, 0), we evalu-

ate as follows: ([0 = 0], [0 = 1],−, 0), ([0 = 0], [1 = 1], [0 =

0], 0), ([0 = 0], [1 = 1], [1 = 0], 1), ([1 = 0],−,−, 1) resulting in

(1, 0,−, 0), (1, 1, 1, 0), (1, 1, 0, 1), (0,−,−, 1). By multiplying the ele-

ments in each vector (1 · 0 · 0), (1 · 1 · 1 · 0), (1 · 1 · 0 · 1), (0 · 1),
we get 0, 0, 0, 0 which finally results to 0 after adding all four zeros.

Similarly for 𝑥 = 4, i.e., (1, 0, 0), we have (0 · 1 · 0) + (0 · 0 · 1 · 0) + (0 ·
0 ·0 ·1) + (1 ·1) = 1. Alternatively, we can instead label the leaves for

𝑥 ′ ≥ 𝑦 with 0, otherwise with 1, then compute bit inequality and

check if at most one path sums to 0. That is, for 𝑥 = 2, 𝑦 = 3 we have

0+1+1 = 2, 0+0+0+1 = 1, 0+0+1+0 = 1, 1+0 = 1; and for𝑥 = 4, 𝑦 = 3

we have, 1 + 0 + 1 = 2, 1 + 1 + 0 + 1 = 3, 1 + 1 + 1 + 0 = 3, 0 + 0 = 0.

In the tree, paths may have common prefixes which allows to

avoid considering each path separately and thus reducing the num-

ber of operations. Moreover, if 𝑦 is not encrypted, i.e., labels of tree

edge are not encrypted, and we aggregate the paths multiplicatively

(resp. additively) then it is enough to evaluate only paths that lead

to a classification 1 (resp. 0), reducing the computation even further.

This is because, if 𝑦 > 𝑥 exactly one of those paths will aggregate

to 1 (resp. 0), otherwise they will all aggregate to 0 (resp. non zero).

In our schemes, we compute the bit equality using XOR or XNOR.

This is possible with AHE only if one of the bits is not encrypted and

therefore requires the server to know 𝑦 in the clear. Previous work

solve this by adding a computation round which allows the parties

to reduce the problem to the comparison of two random inputs,

which preserve the order relation between the initial 𝑥 and 𝑦. If

𝑥,𝑦 are encrypted, we compute the bit equality using a subtraction,

without an extra round. This eventually introduces an error (0-1 =

-1) which we correct before aggregating the results on the path.

For (leveled) FHE, computing prefixes by simply multiplying

values is inefficient, as the multiplicative depth matters. Our scheme

keeps a logarithmic (instead of linear) multiplicative depth at the

cost of a low overhead on the number of multiplications. We do this

by pre-computing dependency lists for multiplication as in [45].

This pre-computation depends only on the bitlength (and not on

the inputs), and its result is unique for a given bitlength. It can be

computed once and offline and later used as a constant parameter

in the online protocol.

5.2 Data Structure
The data structure is a binary tree consisting of inner nodes and

terminal nodes. Each inner node has two child nodes and terminal

nodes have no child nodes. There is a node with no parent node

that is called root node. Let 𝑣 be a node in the tree. We define a

node data structure consisting of the following:

• 𝑣 .parent: a value representing the pointer to the parent node,
• 𝑣 .left: a value representing the pointer to the left child node,

• 𝑣 .right: a value representing the pointer to the right child

node,

• 𝑣 .lEdge: a bit representing the edge label to the left child

node,

• 𝑣 .rEdge: a bit representing the edge label to the right child

node,

• 𝑣 .cLabel: a value representing a node label,
471

Proceedings on Privacy Enhancing Technologies 2023(3) Tueno et al.

• 𝑣 .cost: an integer representing the cost on the path from the

root.

The pointer to the parent node 𝑣 .parent is initially null and points

to the respective parent node, when the child node is created.

This pointer remains null for the root node. The pointers to the

child nodes 𝑣 .left, 𝑣 .right are initially null, and point to the respec-

tive nodes if they are created. The edge labels to the child nodes

𝑣 .lEdge, 𝑣 .rEdge are 0 on the left and 1 on the right. The node label

𝑣 .cLabel is 0 or 1 for terminal nodes and undefined for inner nodes.

The cost attribute 𝑣 .cost is computed during evaluation of the tree.

5.3 Algorithms
Our scheme works for both AHE and FHE but must be implemented

differently. To simplify the description of our scheme, we therefore

introduce the symbol 𝛽 to differentiate between AHE and FHE.

Namely, if the encryption scheme is FHE then 𝛽 = 1 otherwise

𝛽 = 0. For an integer 𝑥 , we use 𝑥 = 𝑥 [1], . . . , 𝑥 [`] to denote the

corresponding bit representation, where 𝑥 [`] is the most signifi-

cant bit, and we use J𝑥K = J𝑥 [1]K , . . . , J𝑥 [`]K to denote the bitwise
encryption of 𝑥 .

Initialization. The Initialization consists of a one time key gen-

eration. The client generates an appropriate triple (pk, sk, ek) of
public, private and evaluation key for an HE scheme. Then, the

client sends (pk, ek) to the server. For each computation, the client

just encrypts its input and sends it to the server.

Creating the Binary Tree. Let 𝑦 be the server input with bit-

length `. The server starts by creating a binary tree representing

𝑦. The basic idea consists of creating a binary tree representing all

bit strings of length `. Then the leaf of the path that represents 𝑦

and the leaves of all paths right to the path of 𝑦 are labelled with

1 (i.e., 𝑣 .cLabel = 1). The leaves of the paths left to 𝑦 are labelled

with 0 (i.e., 𝑣 .cLabel = 0). Finally, we can prune all subtrees that are

labelled with the same bit. That is, if an inner node 𝑣 has two child

nodes labelled with the same bit 𝑏, we remove the child nodes of 𝑣

from the tree and transform 𝑣 into a leaf node labelled with 𝑏, (i.e.,

𝑣 .cLabel = 𝑏). However, we can avoid the pruning by traversing

the tree a single time with the bits of 𝑦. If 𝑦 [𝑖] = 1, we insert a leaf

node on the left with cLabel = 0, and a new node on the right, then

we traverse to the right. If 𝑦 [𝑖] = 0, we insert a leaf node on the

right with cLabel = 1 and a new node on the left, then we traverse

to the left. Note that inserting a leaf node is only required if we are

using FHE. For AHE, the traversal works similarly as above except

that no leaf node is inserted left from the traversed path. Therefore,

the created tree contains only paths, that can be evaluated to zero,

i.e., paths labelled with integers that are larger or equal to 𝑦. The

creation of the binary tree is illustrated in Algorithm 1. For example,

assume that ` = 3, then Figure 2 illustrates the binary trees of 2

and 5 if the scheme is for FHE and Figure 3 illustrates the binary

trees of 2, 3, and 5 if the scheme is for AHE.

Computing Decision Bits. Let 𝑥 be the input of the client. The

client sends 𝑥 bitwise encrypted. That is, the client computes the bit

representation 𝑥 = 𝑥 [1], . . . , 𝑥 [`] and then sends the correspond-

ing ciphertext J𝑥K = J𝑥 [1]K , . . . , J𝑥 [`]K to the server. The server

computes the decision bits at each inner node 𝑣 by comparing each

Algorithm 1 Creating the Binary Tree for Integer 𝑦.

1: let root be a new node

2: let curr be an empty node

3: let 𝑦 [1], . . . , 𝑦 [`] be the bit string of 𝑦

4: curr← root
5: for 𝑖 = ` downto 1 do
6: if 𝑦 [𝑖] = 1 then
7: let 𝑣 be a new node

8: curr.right← 𝑣

9: if 𝛽 = 1 then {Only FHE}

10: let 𝑣 be a new node

11: 𝑣 .cLabel← 1 − 𝛽
12: curr.left← 𝑣

13: end if
14: curr← curr.right
15: else
16: let 𝑣 be a new node

17: curr.right← 𝑣

18: if 𝛽 = 1 then {Only FHE}

19: 𝑣 .cLabel← 𝛽

20: end if
21: let 𝑣 be a new node

22: curr.left← 𝑣

23: curr← curr.left
24: end if
25: end for
26: if 𝛽 = 1 then {Only FHE}

27: curr.cLabel← 𝛽

28: end if
29: root.cost← J𝛽K
30:

31: return root

0

0

1

0

1

1

1

0

1

1

(a) FHE, 𝑦 = 2

0

0

0

0

1

1

1

0

1

1

(b) Tree for 𝑦 = 3

0

0

0

0

1

1

0

1

1

1

(c) FHE, 𝑦 = 5

Figure 2: Tree Creation for FHE (𝛽 = 1) and ` = 3

J𝑥 [𝑖]K against the edge labels of node 𝑣 . This is represented by a

comparison operation comp. For FHE, it is implemented as a bit

equality test that returns J1K if the two bits are equal and J0K other-
wise. For AHE, it is implemented as an inequality test that returns

J0K if the two bits are equal and J1K otherwise. The operation can

be computed by at least one Not gate. For example, consider the

FHE case in which we have to achieve an equality test. If the edge

label is 1, we just take the client’s input J𝑥 [𝑖]K as the comparison

result. If it is 0, we compute J¬𝑥 [𝑖]K. The computation of decision

472

A Method for Securely Comparing Integers using Binary Trees Proceedings on Privacy Enhancing Technologies 2023(3)

0 1

1

0 1

(a) Tree for 𝑦 = 2

1

1

0 1

(b) Tree for 𝑦 = 3

1

0 1

1

(c) Tree for 𝑦 = 5

Figure 3: Tree Creation for AHE (𝛽 = 0) and ` = 3

Algorithm 2 EvalNodes

Require: root, J𝑥K
1: parse J𝑥K to J𝑥 [1]K , . . . , J𝑥 [`]K
2: 𝑣 ← root
3: for 𝑖 = ` downto 1 do
4: if 𝑣 .left ≠ null then
5: J𝑣 .left.costK← comp(J𝑥 [𝑖]K , 𝑣 .lEdge)
6: end if
7: if 𝑣 .right ≠ null then
8: J𝑣 .right.costK← comp(J𝑥 [𝑖]K , 𝑣 .rEdge)
9: end if
10: if 𝑣 .right ≠ null and 𝑣 .right.IsLeaf () = false then
11: 𝑣 ← 𝑣 .right
12: else
13: 𝑣 ← 𝑣 .left
14: end if
15: end for

bits is illustrated in Algorithm 2.

Aggregating Decision Bits. For each leaf node 𝑣 , the server aggre-

gates the comparison bits along the path from the root to 𝑣 . For FHE

this is done using homomorphic multiplication of the decision bits.

For AHE, it is done using homomorphic addition of the decision bits.

To unify the depiction of our algorithms as much as possible, we

introduce a new notation for aggregating the decision bits: BitAgg.
It refers to the homomorphic multiplication in the FHE case and

to the homomorphic addition in the AHE case. The aggregated

result is then stored at the leaf node of the corresponding path. We

implement it using a queue and traversing the tree in BFS order

as illustrated in Algorithm 3. Note that this computation can be

improved using path prefixes, i.e. for two paths having the same

prefix, the prefix is evaluated once.

Evaluating leaves. The evaluation of the leaves depends on the

scheme as well. For FHE, after aggregating the decision bits along

the paths to the leaf nodes, each leaf node 𝑣 stores either J𝑣 .costK =
J0K or J𝑣 .costK = J1K. Moreover, there is a unique leaf with J𝑣 .costK =
J1K and all other leaves have J𝑣 .costK = J0K. Then, the server aggre-
gates the costs at the leaves by computing for each leaf 𝑣 the value

J𝑣 .costK� J𝑣 .cLabelK and summing all the results of all leaves. This

Algorithm 3 EvalPaths

Require: root
1: let 𝑄 be a queue

2: let leaves be a queue
3: 𝑄.enqueue(root)
4: while 𝑄.empty() = false do
5: 𝑣 ← 𝑄.dequeue()
6: if 𝑣 .left ≠ null then
7: J𝑣 .left.costK←

BitAgg(J𝑣 .left.costK , J𝑣 .costK),
8: if 𝑣 .left.IsLeaf () then
9: leaves.enqueue(𝑣 .left)
10: else
11: 𝑄.enqueue(𝑣 .left)
12: end if
13: end if
14: if 𝑣 .right ≠ null then
15: J𝑣 .right.costK←

BitAgg(J𝑣 .right.costK , J𝑣 .costK),
16: if 𝑣 .right.IsLeaf () then
17: leaves.enqueue(𝑣 .right)
18: else
19: 𝑄.enqueue(𝑣 .right)
20: end if
21: end if
22: end while
23:

24: return leaves

computation is illustrated in Algorithm 4. For AHE, after aggregat-

ing the decision bits along the paths to the leaves nodes, each leaf

node 𝑣 stores a cost which is either J𝑣 .costK = J0K or J𝑣 .costK = J𝑟K,
where 𝑟 is the number of 1s on a path. Moreover, there is at most

one leaf with J𝑣 .costK = J0K and all other leaves have J𝑣 .costK = J𝑟K,
for an unknown 𝑟 ∈ {1, . . . , `}. Note that for 𝑦 ≠ 0 the number

of paths is smaller or equal to ` (See Figure 3a, 3c). The server

randomizes the encrypted costs at the leaves, chooses other ran-

dom ciphertexts not encrypting zero, permutes the list and sends it

to the client. These operations are implemented to guarantee the

server’s privacy. Randomization and permutation of ciphertexts

prevents leakage of any information about 𝑦 that is not intended.

The generation of additional ciphertexts prevents leakage of the

tree structure and therefore, potential information about 𝑦 as well.

Note that we exclude the case of randomly generating a ciphertext

which decrypts to zero. The computation is illustrated in Algorithm

5.

Decrypting the Result. The client decrypts the result of the eval-
uation. For FHE, it is a single encrypted bit indicating the compari-

son result. For AHE, the evaluation result consists of ` ciphertexts

among which at most one encrypts 0 and the remaining ones en-

crypt random plaintexts. The comparison result is true iff there

is an encryption of 0. The client uses Algorithm 6 to decrypt and

learn the final result.

473

Proceedings on Privacy Enhancing Technologies 2023(3) Tueno et al.

Algorithm 4 EvalLeaves (FHE)

Require: leaves
1: J𝑏K← J0K
2: for all 𝑣 ∈ leaves do
3: J𝑏K← J𝑏K ⊞ (J𝑣 .costK � J𝑣 .cLabelK)
4: end for
5:

6: return J𝑏K

Algorithm 5 EvalLeaves (AHE)

Require: leaves
1: let c be an array of ciphertexts

2: for 𝑖 = 1 to leaves.size() do
3: c[𝑖] ← randomize(leaves.get(𝑖) .cost) [Randomize the ci-

phertext]

4: end for
5: for 𝑖 = leaves.size() to ` do
6: c[𝑖] ← genRandCtxt() [Generate a random ciphertext]

7: end for
8:

9: return permute(c)

Algorithm 6 Decrypting

Require: result
1: if 𝛽 = 1 then {FHE case}

2: parse result to J𝑏K
3: 𝑏 ← Dec(J𝑏K)
4:

5: return 𝑏

6: else {AHE case}

7: parse result to c[1], . . . , c[`]
8: for 𝑖 = 1 to ` do
9: m← Dec(c[𝑖])
10: if m = 0 then
11:

12: return 1

13: end if
14: end for
15:

16: return 0

17: end if

Putting It All Together. As illustrated in Protocol 4, the whole

computation is performed by the server. The server first creates

a tree representation of its input 𝑦 as illustrated in Algorithm 1.

Then, the client sends the encrypted bit representation J𝑥K of its
input 𝑥 and the server sequentially runs the Algorithms 2, 3 and

4/5 described above. The server sends an encrypted result, which

the client can decrypt to learn the final comparison bit 𝑏 = [𝑥 ≥ 𝑦].

Lemma 5.1. Let 𝑦 and 𝑥 be integers of length `. If the encryption
scheme is correct, then the comparison protocol is correct.

Proof. In the tree of 𝑦, there is a single path that is labeled with

a prefix of 𝑥 . Evaluating the nodes on this path and aggregating

Client Server

Input: x Input: y

Output: b = [x ≥ y] Output: b = [x ≥ y]

let x[1], . . . , x[µ] be the bits of x root← CreateTree(y)

let Jx̄K = Jx[1]K , . . . , Jx[µ]K
Jx̄K

EvalNodes(root, Jx̄K)
leaves← EvalPaths(root)

result← EvalLeaves(leaves)

result

Decrypt(result)

Protocol 4: The Basic Protocol

the results produces a bit 1 (if FHE), resp. 0 (if AHE). On all other

paths, at least one edge is labelled with a bit that is different to the

bit of 𝑥 at the same position such that the evaluation of the path

produces a bit 0 (if FHE), resp. an integer 𝑟 ≠ 0 (if AHE). □

Theorem 5.2. Let 𝑦 and 𝑥 be integers of length `. If the encryption
scheme is IND-CPA secure, then the comparison protocol is secure in
the semi-honest model.

Proof (sketch). The client only encrypts its own input and

decrypts the final result which for FHE is a single bit, and for AHE

a randomly ordered list of ` ciphertexts among which at most

one encrypts 0 and the remaining ones encrypt each a random

plaintext. The server, on the other hand, computes on IND-CPA

ciphertexts. Constructing the simulators therefore consists of on

simply generating corresponding random strings for each protocol

message except for the actual results (Appendix A). □

6 EXTENSION
In the previous section, we discuss the basic idea of our scheme.

Now we want to discuss how the basic scheme can be extended to

different use cases.

6.1 Handling Comparison to Zero for AHE in
the Constant Case

Recall that if the encryption is AHE, then Algorithm 1 creates a

tree containing only paths, that can be evaluated to zero, i.e., paths

labeled with integers that are larger or equal to 𝑦. If 𝑦 = 0 then the

created tree has ` + 1 leaves, since everything is larger or equal to

zero. But the server is supposed to send back ` ciphertexts to the

client. That is, we still want the parties to perform the computation

such that nothing more than the comparison bit is revealed. We

notice that for all values smaller than 2
`−1

(i.e., the most significant

bit is 0), 𝑥 traverses the tree of 𝑦 = 0 to the left. To handle the case

𝑦 = 0, the server, therefore, replaces the first encrypted bit of 𝑥 by

a ciphertext of 0 and omits the rightmost path of the tree in the

evaluation.

474

A Method for Securely Comparing Integers using Binary Trees Proceedings on Privacy Enhancing Technologies 2023(3)

6.2 Shared Output Bit
In 2-party comparison like DGK [18], it is usual to share the com-

parison bit between the client and server. That is, if 𝑏 is the com-

parison bit, then the server gets 𝑏𝑠 and the client gets 𝑏𝑐 such that

𝑏 = 𝑏𝑐 ⊕𝑏𝑠 . In our scheme, the server can randomly choose between

computing GT (e.g., [𝑥 ≥ 𝑦]) or LT (e.g., [𝑥 ≤ 𝑦]) functionality.
The server, therefore, chooses a bit 𝑏𝑠 and computes GT if 𝑏𝑠 = 0,

otherwise it computes LT (See Section 6.5). Note that in both cases

(GT vs. LT) the tree of 𝑦 has the same structure, such that the

server performs the same computation which is independent of

[𝑥 ≥ 𝑦] and [𝑥 ≤ 𝑦] and hence does not leak which operation was

evaluated. After this computation, the server returns ` ciphertexts

to the client, among which at most one encrypts 0 (due to sum

of zeros on the corresponding path). The remaining ciphertexts

encrypt each a random plaintext (since there is at least a 1 on the

corresponding path). The client can then extract its share 𝑏𝑐 of

the comparison bit. For further computation, the client can send

back the ciphertext J𝑏𝑐K, from which the server can easily get the

ciphertext J𝑏K = Xor(J𝑏𝑐K , 𝑏𝑠) of the actual comparison bit. Note

that this is not specific to our scheme, but it also works with other

AHE-based comparison protocols.

6.3 Handling Encrypted Inputs
So far we assume that only 𝑥 is encrypted. In this section, we

consider the case where both inputs are encrypted. In this scenario,

the server has to run the comparison of two encrypted inputs with

the help of the client (or another server) which has the decryption

key. It is assumed that the inputs 𝑥 and𝑦 do not belong to any party

and must remain private. After the computation, the server learns

the encrypted comparison bit. If the encryption is FHE, the server

can perform the computation on its own. However, in the AHE

case, the client must help the server to learn the encrypted result.

To guarantee the privacy of both inputs, the protocol has to be

evaluated on ciphertexts only. However, the tree structure reveals a

lot of information about 𝑦 why we have to use a general represen-

tation of the tree to avoid any leakage. We start with a few formal

definitions.

Definition 6.1 (Comparison Tree). A comparison tree or cmp-

tree for an integer𝑦 is a binary tree where edges and leaves are labelled
with 0 or 1 such that for every integer 𝑥 , traversing the tree along a
path labelled with the bits of 𝑥 (starting with the most significant bit
of 𝑥) reaches a leaf labelled with 1 if 𝑥 ≥ 𝑦 and 0 otherwise.

Note that for secure comparison the bits are encrypted such

that we do not actually traverse the tree 𝑦, but evaluate it on 𝑥

as explained in the previous section. Therefore, when we say 𝑥

traverses the tree of 𝑦, we mean that there is a single path where

𝑥 evaluates to 1 (if FHE), resp. 0 (if AHE), and on all other paths 𝑥

evaluates to 0 (if FHE), resp. to an 𝑟 ≠ 0 (if AHE).

While Definition 6.1 describes a cmp-tree, it can be built as

follows. Let ` be the input bit-length of 𝑦. First build a binary tree

representing all bit strings of length `, i.e. left edges are labelled

with 0 and right edges are labelled with 1. Then, there is a path 𝑝

representing 𝑦, label the leaf of 𝑝 and the leaves of all paths right

to 𝑝 with 1. Finally, label the leaves of all paths left of 𝑝 with 0.

Such a tree construction is illustrated in Figure 5 for 𝑦 = 2. Note

0

0

0

1

0

1

0

1

1

1

0

1

0

1

1

0

1

0

1

1

1

1

(a) Tree for 𝑦 = 2

0

0

0

1

0

0

0

0

1

1

0

0

0

1

1

0

1

0

1

1

1

1

(b) Tree for 𝑦 = 5

Figure 5: Comparison Tree for input bit-length ` = 3

that the tree from Figure 5 is unnecessarily large as there are inner

nodes whose child nodes are both leaves labelled with the same

value. Such resulting sub-trees can be pruned without changing the

semantic of the cmp-tree. We next formally define pruned cmp-tree.

We first recall the depth of a binary tree.

Definition 6.2 (Depth of a Tree). For a binary tree, we define
the depth of the tree as the length (i.e., number of edges) of the longest
path. The depth of a node is the number of edges between this node
and the root node. Let 𝑑 be the depth of the binary tree, a deepest

inner node is a node whose child nodes are both leaves with depth 𝑑 .

Definition 6.3 (Pruned Cmp-tree). A comparison tree for an
integer 𝑦 is full-pruned if there is no inner node whose children are
both leaves with the same label. A cmp-tree for an integer 𝑦 is half-
pruned if its depth is the bit-length of 𝑦 and for each non deepest
inner node exactly one child node is a leaf.

Note that a half-pruned cmp-tree is not necessarily full-pruned.

For example if the bit-length is ` = 3, then half-pruned tree of 4 is

not full-pruned. In this case, the full-pruned tree is only the root

with 2 leaves. In the following, we will rather consider half-pruned

tree since the structure is similar for every input. The half-pruned

tree for integer 𝑦 can be built as follows. Traverse the non-pruned

cmp-tree from Definition 6.1 along the path of 𝑦. At each level,

replace the non-traversed subtree by a leaf node. Let 𝑝 be the path

representing 𝑦. Label the leaf of 𝑝 and the leaves of all paths right

to 𝑝 with 1. Label the leaves of all path left to 𝑝 with 0. By using

Algorithm 1 with 𝛽 = 1, this can be done without first generating

the full cmp-tree.

Now, we want to introduce a structure of the tree based on the

input size but independent of the actual inputs. We first define fur-

ther notation. Recall that we use the symbol 𝛽 = 1 if the encryption

scheme is FHE and 𝛽 = 0 if the encryption scheme is AHE. For a

bit 𝑏 ∈ {0, 1}, we now define the function 𝐹𝛽 (𝑏) = 𝛽 + (−1)𝛽 · 𝑏.
Note that the function 𝐹𝛽 does not have to be evaluated homo-

morphically, as its only purpose is to simplify the notation. For an

encrypted bit J𝑏K, we have 𝐹𝛽 (J𝑏K) = J𝑏K if the encryption is AHE

and 𝐹𝛽 (J𝑏K) = J1 − 𝑏K if the encryption is FHE with arithmetic

encoding or 𝐹𝛽 (J𝑏K) = J1 + 𝑏K for binary encoding, as the addition

is modulo two.

Definition 6.4 (Normal Cmp-Tree). Let𝑦 be an integer of length
`. A normal Cmp-tree of 𝑦 is a binary tree with the following struc-
ture:
• there is a leftmost path 𝑝 of length ` which is labelled with the
bits of 𝑦,

475

Proceedings on Privacy Enhancing Technologies 2023(3) Tueno et al.

• the deepest inner node of path 𝑝 has a left leaf node labelled
with 𝛽 ,
• each inner node of path 𝑝 has a right child leaf node,
• for each inner node, let 𝑏 be the label on the left edge, then the
label on the right edge is 1 − 𝑏 and the label on the right child
leaf node is 𝐹𝛽 (𝑏).

While Algorithm 1 generates a half-pruned cmp-tree for 𝑦 as-

suming the bits are given in plaintext, the normal cmp-tree can

be built even if the input bits are homomorphically encrypted. For

each encrypted bit 𝑏 of the input string, one can homomorphically

compute the encrypted inverse bit 1 − 𝑏 and build the cmp-tree.

The generation of the normal cmp-tree is described in Algorithm 7.

Note that in contrast to Algorithm 1, left and right edges are not

per default labeled with 0 and 1, but they are assigned according

to the definition of the normal cmp-tree. This makes the normal

cmp-tree a general structure which is independent of the actual

input 𝑦. The input only influences the labels of the edges but not

the tree structure itself.

Although both algorithms have the same complexity, Algorithm

7 is shorter and simpler. An example of normal cmp-trees is illus-

trated in Figure 6. Before using the normal form defined above,

we need to prove that it is indeed a cmp-tree, by showing that the

normal cmp-tree has the same number of nodes (inner nodes and

leaves) as the half-pruned cmp-tree and that they can be transferred

into each other.

Lemma 6.5. Let 𝑦 be an integer of length `. The half-pruned tree
of 𝑦 has ` + 1 leaves and ` inner nodes.

Note that among the ` + 1 leaves, at most ` leaves are labelled

with 1 (if FHE), resp. 0 (if AHE). For the AHE case, if 𝑛 is the number

of these leaves, then exactly the paths corresponding to them are

created in Algorithm 1, evaluated and sent back (with ` −𝑛 random

ciphertexts) to the client.

Definition 6.6. Two cmp-trees are equivalent if they represent
the same value, have the same depth and the same number of leaf
nodes and inner nodes.

Lemma 6.7. The normal cmp-tree of 𝑦 and a half-pruned cmp-tree
of 𝑦 are equivalent.

Theorem 6.8. Let 𝑦 and 𝑥 be integers of length `. If the encryption
scheme is correct, then the comparison protocol is correct.

With the normal cmp-tree we have a structure independent of

the actual tree which allows the server to compute on ciphertexts

without learning anything of input 𝑥 . This structure is also equiv-

alent to the structure we used for our basic protocol and yields

correct results such that we can apply nearly the same routines.

The only difference is in the computation of decision bits since the

server does not know the edge labels in plaintext. Therefore, we

have to apply an inequality/equality test on ciphertexts. For FHE

we need an inequality test which can be implemented using an FHE

Xnor gate. For AHE we must perform an equality test which can

be implemented using an AHE Xor gate.

6.4 Handling Encrypted Inputs under AHE
The handling of encrypted inputs described above works only for

FHE. The reason is that the Xor-operation for AHE encrypted bits

1

0

1

1

1

0

0

0

1

1

(a) Tree for 𝑦 = 2

1

1

0

0

1

0

0

0

1

1

(b) Tree for 𝑦 = 3

1

1

0

0

0

1

1

1

0

0

(c) Tree for 𝑦 = 5

Figure 6: Normal Cmp-Tree for input bit-length ` = 3 and
𝛽 = 1

Algorithm 7 Creating Normal Cmp-Tree for 𝑦.

1: let root be a new node

2: parse J𝑦K to J𝑦 [1]K , . . . , J𝑦 [`]K
3: curr← root
4: for 𝑖 = ` downto 1 do
5: curr.rEdge← Not(J𝑦 [𝑖]K)
6: let 𝑣𝑟 be a new node

7: 𝑣𝑟 .cLabel← 𝐹𝛽 (J𝑦 [𝑖]K)
8: curr.right← 𝑣𝑟

9: curr.lEdge← J𝑦 [𝑖]K
10: let 𝑣𝑙 be a new node

11: curr.left← 𝑣𝑙

12: curr← curr.left
13: end for
14: curr.cLabel← J𝛽K
15:

16: return root

requires one bit to be in the clear. In this section, we describe how to

extend the previous section to handle the case for AHE. We assume

the client sends two encrypted inputs J𝑥K and J𝑦K to the server.

The server creates the normal cmp-tree of J𝑦K using Algorithm

7, evaluates the encrypted input J𝑥K on the tree and sends back

a result that only the client can decrypt. However, the encrypted

result is not an encrypted bit, but a set of ` ciphertexts.

The computation needs two basic bit-operations, namelyNot and

Xor, that have to be simulated under AHE. Let J𝑎K and J𝑏K be

two encrypted bits. We compute the Not-operation as J¬𝑏K =

J1 − 𝑏K = Add(J1K ,MulCons(J𝑏K ,−1)). Then, we compute the

Xor-operation as J𝑎 ⊕ 𝑏K = J𝑎 − 𝑏K. While the Not-operation is

correct, this is not always the case for the Xor-operation, namely

we have J0 ⊕ 1K = J−1K. We will handle this before aggregating the

paths.

Recall that we have encrypted bits of 𝑥 and 𝑦 and we want to

compute a comparison bit. First, using the encrypted input J𝑦K, we
can build the normal cmp-tree as explained in Algorithm 7. This

requires only the Not-operation. Then we can evaluate the bits

of J𝑥K on the built tree. For that, we first have to apply the Xor-

operations on the bits of J𝑥K along the paths of the tree and then

sum the result along the paths. Our goal is that, if 𝑥 ≥ 𝑦, then

exactly one path will have all Xor-results equal 0 such that the sum

476

A Method for Securely Comparing Integers using Binary Trees Proceedings on Privacy Enhancing Technologies 2023(3)

along the path is also 0. The remaining paths will have at least one

Xor-result that is different to 0 resulting in a sum different to 0.

Now we have the following problem: If the Xor-results of a

path contain J1K and J−1K then this path too may sum to 0. To

get rid of the problem, we multiply the Xor-result at level 𝑖 (i.e.,

edges starting at a node with depth 𝑖) by 2
𝑖
before aggregating the

results along the paths. Since 2
𝑖
is constant, the multiplication can

be applied on an AHE ciphertext. The following lemma ensures

that the sum on such a path is then always different to 0.

Lemma 6.9. Let (𝑏0, · · · , 𝑏𝑙) ∈ {−1, 0, 1}𝑙+1 such that there exist
at least one 𝑏𝑖 ≠ 0 then it holds

∑𝑙
𝑖=0

𝑏𝑖 · 2𝑖 = 𝑏0 · 20 + · · · +𝑏𝑙 · 2𝑙 ≠ 0.

For example, let 𝑦 = 2, 𝑥 = 1 and ` = 3. Since we are evaluating

[𝑥 ≥ 𝑦] under AHE, no path should evaluate to 0. First note that

the paths are as follows (from left to right): (0, 1, 0, 0), (0, 1, 1, 0),
(0, 0,−, 1), (1,−,−, 0), where the last element in each vector is the

leaf label.Without Lemma 6.9, the evaluation of the leftmost path on

(0, 0, 1) would result in (0−0)+(0−1)+(1−0)+0 = 0. Bymultiplying

with powers of 2 as explained above, we have (0−0) ·20+(0−1) ·21+
(1− 0) · 22 + 0 = 0− 2+ 4+ 0 = 2, which is different to 0 as expected.

For the other paths (0, 1, 1, 0), (0, 0,−, 1), (1,−,−, 0) we will have

respectively: (0−0) ·20+(0−1) ·21+(1−1) ·22+0 = 0−2+0+0 = −2,

(0−0)·20+(0−0)·21+1 = 0+0+1 = 1, (0−1)·20+0 = −1+0 = −1. That

is, on encrypted input we get (J2K , J−2K , J1K , J−1K). The server

will then homomorphically randomize the plaintexts and send a

permuted vector, from which the client can deduce the comparison

bit 𝑏 = 0, since no ciphertext decrypts to zero.

6.5 Less Than (LT) Comparison
The computation of the Less-Than (LT) function is similar by using

the following definition that is the inverse of the normal cmp-tree.

Definition 6.10 (Inverse Normal Cmp-Tree). Let 𝑦 be an in-
teger of length `. An inverse normal Cmp-tree of 𝑦 is a binary tree
with the following structure:
• there is a rightmost path 𝑝 of length ` which is labelled with
the bits of 𝑦,
• the deepest inner node of path 𝑝 has a left leaf node labelled
with 𝛽 ,
• each inner node of path 𝑝 has a left child leaf node,
• for each inner node, let 𝑏 be the label on the right edge, then
the label on the left edge is 1 − 𝑏 and the label on the left child
leaf node is 1 − 𝐹𝛽 (𝑏).

While the inverse normal cmp-tree is defined with a right ori-

ented structure (contrary to the left oriented structure of Definition

6.4), the inverse normal cmp-tree can be represented with a left ori-

ented structure as well. The only difference is that all leaves except

the leftmost one must be labelled with 1 − 𝐹𝛽 (𝑏) as in Definition

6.10 instead of 𝐹𝛽 (𝑏) as in Definition 6.4.

7 ANALYSIS
In the sections above, we proved already that the computation

correctly returns 1 if 𝑥 ≥ 𝑦 and 0 otherwise. The computation

is also secure as the server evaluates input encrypted under the

client’s public key. In this section, we therefore focus on the com-

plexity analysis and count the number of homomorphic operations

(addition and multiplication).

Hom. Add. Hom. Mult.

Binary

Node Eval. 2` -

Circuit

Path Eval. - 2` − 1 + ` log `

2

Leaves Aggr. ` -

Ours (total) 3𝝁 2𝝁 − 1 + 𝝁 log𝝁
2

Cheon et al. 2𝝁 − 2 2𝝁 − 3 + (𝝁−1) log(𝝁−1)
2

Arithmetic

Node Eval. 2` `

Circuit

Path Eval. - 2` − 1 + ` log `

2

Leaves Aggr. ` -

Ours (total) 3𝝁 3𝝁 − 1 + 𝝁 log𝝁
2

Cheon et al. 2𝝁 − 2 3𝝁 − 4 + (𝝁−1) log(𝝁−1)
2

Table 1: Overview Number of Operations in FHE (Encrypted
Case). “-” indicates that there is no such operation in this
step.

7.1 Number of Operations
We start by counting the number of operations depending on the

main steps of the algorithm, namely: node evaluation, path evalua-

tion, leaves aggregation. In the following, we use A1, A2, A3 (resp.

M1,M2,M3) to denote the number of addition (resp. multiplication)

operation in node evaluation, path evaluation, leaves aggregation

and A𝑇 (resp. M𝑇) for the total.

Node Evaluation. For node evaluation at each inner node, the

algorithm performs exactly oneNot gate due to the fact that the left

and right edges of an inner node are always labelled with opposite

bits. For the encrypted case (Section 6.3), we need one Not and one

Xor. Hence, we have in total ` Not-operations.

Path Evaluation. For path aggregation, the algorithm performs

` − 1 multiplications on the leftmost path and 2 multiplications

on each right path except the rightmost path that requires only 1

multiplication. This result in total of ` − 1 + 2 · (` − 1) + 1 = 3` − 2.

Leaves Aggregation. In the case of FHE, the algorithm finally

aggregates the ` + 1 paths requiring ` additions.

7.2 Complexity for FHE
For FHE, we need to distinguish between binary and arithmetic

circuit or encoding. An overview can be found in Table 1.

FHE Binary Circuit. For binary encoding, all operations are done

modulo 2 such that Xor and Not operations are implemented

as an addition. As a result, we have A1 = ` additions in node

evaluations, no addition in path evaluation (i.e., A2 = 0) and A3 = `

additions during leaves aggregation resulting in a total of A𝑇 =

`+0+` = 2` additions. For the encrypted case, we need an additional

Xor at each node resulting in A1 = 2` additions and in a total of

A𝑇 = 3` additions. Only path aggregation requires M2 = 3` − 2

multiplications (M1 = M3 = 0), such that M𝑇 = 0 + (3` − 2) + 0 =

3` − 2.

For some FHE schemes, it might come with performance im-

provements if we reduce the multiplicative depth. In our scheme,

this only affects the path evaluation. The previous approach yields

477

Proceedings on Privacy Enhancing Technologies 2023(3) Tueno et al.

a depth of ` but we can reduce the depth to log ` by using an

optimized implementation. For implementation details, we refer

to Section 8 and Appendix B. The reduction of the multiplicative

depth comes with an increasing number of multiplications. For the

leftmost path, we need a multiplication for every pair, for every

quadruple and so on. By the geometric sum formula, this is ` − 1

multiplications. The splitting of the leftmost path creates a structure

that divides the path into sections of powers of two. Therefore, the

connection of right children of one section needs one additional

multiplication for every child in that section. This results in a total

number of multiplications of ` + ` log `
2

for right children nodes. We

provide a more detailed analysis in Appendix C.

FHE Arithmetic Circuit. For arithmetic encoding, the Xor oper-

ation 𝑎 ⊕ 𝑏 is homomorphically computed as (𝑎 − 𝑏)2, such that

each Xor operation requires 1 addition and 1 multiplication. The

Not operation ¬𝑏 is computed as 1 − 𝑏. As a result, the node evalu-
ation requires A1 = ` additions. For the encrypted case, we need

A1 = 2` additions and M1 = ` multiplications. For path and leaves

evaluation, we have A2 = 0, M2 = 3` − 2, A3 = `, M3 = 0. The

evaluation of the tree, therefore, requires A𝑇 = ` + 0 + ` = 2`

additions and M𝑇 = 0 + (3` − 2) + 0 = 3` − 2 multiplications. In

the encrypted case, the total is A𝑇 = 3` additions and M𝑇 = 4` − 2

multiplications.

Comparison to PreviousWork. Cheon et al. [15] also use a compar-

ison protocol based on FHE and present a variant with logarithmic

multiplicative depth. Their critical part is the iterative computation

of a product with depth `−1, i.e., given integers 𝑥1, . . . , 𝑥𝑛 , we want

to compute products 𝑃𝑖 =
∏𝑖

𝑗=1
𝑥 𝑗 , for 𝑖 = 2, . . . , 𝑛 while keeping

the multiplicative depth logarithmic. They propose to compute the

products using a recursive algorithm that builds a binary tree of

products yielding sub products for positions which are power of 2.

In the next step, they compute the missing products, i.e., for posi-

tions that are not power 2, based on a multiplication of the results

for the power of two cases. We implemented this computation using

an iterative algorithm described in Appendix D. For more details,

we refer to the original work [15]. In total, the scheme of Cheon et

al. requires 2` − 2 additions and 2` − 3 + (`−1)𝑙𝑜𝑔 (`−1)
2

multiplica-

tions using binary encoding. Using arithmetic encoding, the 2` − 2

additions require an additional ` − 1 homomorphic multiplications.

As a result, the total number of multiplications in their scheme is

3`−4+ (`−1)𝑙𝑜𝑔 (`−1)
2

. As our approach, they also achieve a logarith-

mic depth but need less additions and slightly less multiplications.

However, our optimized implementation uses a precomputation

which is an advantage for the actual running time of the protocol,

see further in Section 8.

7.3 Complexity for AHE
For AHE, we need to distinguish between the encrypted case where

both inputs are encrypted and the the constant case where only one

input is encrypted. An overview can be found in Table 2. In both

cases, Xor and Not operations are realized using homomorphic

addition. As a result, there are A1 = ` homomorphic operations

for node evaluation. In the encrypted case, we have A1 = 2` homo-

morphic operations.

Hom. Add. Const. Mult.

Constant

Node Eval. ` -

Path Eval. 2` − 2 -

Case Leaves Aggr. - -

Ours (total) 3𝝁 − 2 -

Veugen 4𝝁 -

Encrypted

Node Eval. 2` -

Path Eval. 3` − 1 2`

Case Leaves Aggr. - -

Ours (total) 5𝝁 − 1 2𝝁

Veugen ≥ 5𝝁 + 3 ≥ 2/3𝝁2 + 3𝝁 + 2/3𝝁

Table 2: Overview Number of Operations in AHE. “-” indi-
cates that there is no such operation in this step.

Constant Case. Recall that in this case, we can omit the leaves

(See Algorithm 1 and Figure 3). This results in A2 = 2` − 2 opera-

tions for paths evaluations, i.e., ` − 1 operations for evaluating the

leftmost path and one operation for each of the ` − 1 deepest right

oriented paths. In total, our scheme requiresA𝑇 = `+2`−2 = 3`−2

operations. As a comparison, in [18], the DGK scheme performs 5`

additions, ` constant multiplications which is equivalent to 2` ad-

ditions. In total, DGK has 7` additions plus additional ` encryption

operation and ` modular inverse operations. Veugen [49] improved

the DGK scheme by requiring only 4` operations.

Encrypted Case. We now have A1 = 2` homomorphic operations

for node evaluation, butA2 = 3`−1 operations for paths evaluation,

as we have to consider the leaves. Additionally, we need 2` constant

multiplications to prevent the problem explained in Section 6.4.

A constant multiplication JmK � 𝑛 requires in worst case 2 log𝑛

homomorphic additions. For each level 𝑖 , we perform in Section 6.4

two multiplications by 2
𝑖
resulting in 2

∑`−1

𝑖=2
𝑖 = O

(
`2

)
operations

which dominates the number of operations for nodes and paths

evaluation.

Comparison to Previous Work. As a comparison Veugen also

proposed two extensions of the DGK scheme in the encrypted

case: a statistical and perfect secure scheme. Both have 2 rounds,

i.e., 4 moves between the parties (while our scheme still has one

round as the initial DGK). Both schemes require efficient decryp-

tion of a random plaintext and cannot be efficiently implemented

using ECC ElGamal (see section on ElGamal). The scheme works

as follows. The server holds J𝑥K and J𝑦K encrypted under Pail-

lier with modulus 𝑁 = 𝑝𝑞, where 𝑝 and 𝑞 are large primes. The

server chooses a random number 𝑟 , such 0 ≤ 𝑟 < 𝑁 , computes

J𝑧K← J𝑥 − 𝑦 + 2
` + 𝑟K = J𝑥K · J𝑦K−1 · J2

` + 𝑟K mod 𝑁 2
and sends

it to client, which the client decrypts to get 𝑧. For the statistical

security case, the server with 𝛼 = 𝑟 mod 2
`
and the client with

𝛽 = 𝑧 mod 2
`
run a “modified” DGK protocol resulting in the

parties learning shares 𝛿𝑆 and 𝛿𝐶 of the comparison bit [𝛽 < 𝛼].
The client then encrypts and sends J𝑧/2`K and J𝛿𝐶K. The server
finally computes the encrypted comparison bit for [𝛽 < 𝛼] as
J[𝛽 < 𝛼]K =

r
1 + (−1)𝛿𝑆 + (−1)1−𝛿𝑆𝛿𝐶

z
and the final comparison

478

A Method for Securely Comparing Integers using Binary Trees Proceedings on Privacy Enhancing Technologies 2023(3)

bit as J[𝑥 < 𝑦]K = J𝑧/2`K · (J𝑟/2`K · J[𝛽 < 𝛼]K)−1
mod 𝑁 2

. All the

operations described above are done under Paillier encryption.

For the perfect security case, Veugen proposed a modified DGK

protocol that is very complex and requires two times the same con-

stant multiplication by 2
𝑖
as our scheme and additional operations,

such as encryption, decryption and modular inversion, to get the

final result. Since the scheme is very complex and the number of

operations depends on the actual values, we use a complexity lower

bound for a comparison with our scheme. Table 2 shows that our

scheme is a significant improvement even to the lower bound of

the optimized DGK protocol. As in [49], we assume a homomorphic

multiplicative inversion to need
2

3
𝑒 multiplications where 𝑒 is the

bit-length of the number which is a ciphertext in this case. For the

inversions used by the modified DGK protocol, this is on average

`
3
multiplications.

Another optimization of the DGK protocol has been published

by Joye and Salehi [31]. Their scheme achieves about the same

overhead as Veugen but prevents timing attacks. To this end, they

use the hamming weight of one input and can furthermore half the

number of ciphertexts being sent. However, to keep the security,

they introduce another round to mask the input. Our protocol only

needs one round but still transmits ` instead of `/2 ciphertexts.

8 EVALUATION AND IMPLEMENTATION
In this section, we describe some implementation details and report

on the experimental results of our implementations.

8.1 Optimized Implementation
Instead of implementing our scheme using a binary tree, we can

rely on a simpler data structure by using a two dimensional array

𝑎[(1, . . . , ` + 1), (1, 2, 3)] with ` + 1 rows and three columns. The

idea is illustrated in Figure 7 for 𝑥 = 1, 𝑦 = 3, ` = 3, 𝛽 = 1. The array

is initialized with the cmp-tree of 𝑦 = 3, where the first column

stores the labels on the leftmost path. Column 2 and 3 store the

right oriented paths from the first row to the last one. That is, the

last row and the last column store leaf labels, where on the last row,

only the first cell is filled.

The evaluation itself is illustrated in Algorithm 8 and Figure 7.

On each row, we store 𝑥 [𝑖] == 𝑦 [𝑖] in cell 1, its negation in cell

2, and 𝐹𝛽 (𝑦 [𝑖]) in cell 3. This corresponds to the computation of

decision bits(cell 1 and 2) and the leaf node labels (cell 3). In Figure

7, the arrows illustrate paths evaluation, where 𝑎𝑖 → 𝑎 𝑗 means that

cells 𝑎𝑖 and 𝑎 𝑗 are aggregated and the result is stored in cell 𝑎 𝑗 .

For the FHE case, the multiplicative depth of the procedure is of

relevance if the encryption scheme is leveled FHE. This is because a

leveled FHE has a fixed parameter 𝐿 such that circuits with depth at

most 𝐿 can be evaluated without bootstrapping. Therefore, we first

evaluate the inner nodes as before by evaluating Xor operations,

but use the multiplication with a direct acyclic graph described

in [45]. This is illustrated in Figure 8 and consists of first comput-

ing a dependency list (DL) table for each element of the matrix

(the middle table in Figure 8). The DL is a queue, represented as

[) with back [and front) that contains cells’ numbers along a

multiplication path, i.e., the set of cells that must be multiplied

together. In Figure 8, we have the following multiplication paths:

(1, 4, 7, 10), (1, 4, 8, 9), (1, 5, 6), (2, 3). For each path, we start with a

Algorithm 8 Efficient implementation

1: parse J𝑥K to J𝑥 [1]K , . . . , J𝑥 [`]K
2: parse J𝑦K to J𝑦 [1]K , . . . , J𝑦 [`]K
3: let 𝑎[(1, . . . , ` + 1), (1, . . . , 3)] matrix

4: for 𝑖 = 1 to ` do
5: 𝑥𝑖 ← J𝑥 [` + 1 − 𝑖]K
6: 𝑦𝑖 ← J𝑦 [` + 1 − 𝑖]K
7: 𝑎[𝑖, 1] ← comp(𝑥𝑖,𝑦𝑖)
8: 𝑎[𝑖, 2] ← Not(𝑎[𝑖, 1])
9: if 𝛽 = 0 then {AHE Section 6.4}

10: 𝑎[𝑖, 1] ← MulCons(𝑎[𝑖, 1], 2𝑖−1)
11: 𝑎[𝑖, 2] ← MulCons(𝑎[𝑖, 2], 2𝑖−1)
12: end if
13: 𝑎[𝑖, 3] ← 𝐹𝛽 (J𝑦 [` + 1 − 𝑖]K)
14: if 𝑖 = 1 then
15: 𝑎[𝑖, 3] ← BitAgg(𝑎[𝑖, 3], 𝑎[𝑖, 2])
16: else
17: 𝑎[𝑖, 1] ← BitAgg(𝑎[𝑖, 1], 𝑎[𝑖 − 1, 1])
18: 𝑧1← BitAgg(𝑎[𝑖, 2], 𝑎[𝑖 − 1, 1])
19: 𝑎[𝑖, 3] ← BitAgg(𝑎[𝑖, 3], 𝑧1)
20: end if
21: end for
22: 𝑎[` + 1, 3] ← 𝑎[`, 1]
23: if 𝛽 = 1 then {Only FHE}

24:

25: return
∑`+1
𝑖=1

𝑎[𝑖, 3]
26: else
27: let c[1, . . . , ` + 1] be an array

28: for 𝑖 = 1 to ` + 1 do
29: c[𝑖] ← randomize(𝑎[𝑖, 3])
30: end for
31:

32: return permute(c)
33: end if

list of nodes. First, we group the elements by pairs and add the first

element to the second elements’ DL. Then, we reduce the list by all

elements that occur in any DL and repeat the procedure until there

is only one element left. If a multiplication path consists of nodes

𝑎, 𝑏, 𝑐, 𝑑 in this order, then the DLs are as follows: [), [𝑎), [), [𝑏, 𝑐).
Note that the computation of the DL table does not depend on the

input but only on the tree structure. In fact, it can be computed once

and given as input to the algorithm. While multiplying, we move

from top to bottom and from left to right in the matrix and compute

the aggregated result of each cell using its DL. For example, using

the DLs [), [𝑎), [), [𝑏, 𝑐), there is nothing to do for nodes 𝑎 and 𝑐

since their DLs are empty. For node 𝑏, we compute 𝑏 ← 𝑎 · 𝑏. For
node 𝑑 , we first compute 𝑑 ← 𝑐 · 𝑑 and then 𝑑 ← 𝑏 · 𝑑 . For a path
of length 𝑘 , this reduces the multiplicative depth from 𝑘 to log𝑘 .

8.2 Setup Environment
For AHE, we implemented DGK [18], the optimized DGK by Veu-

gen [49], the scheme of Joye and Salehi [31] and our scheme in

Java. We instantiated AHE with ElGamal on elliptic curve as de-

scribed in Appendix E using curve secp256r1. We implemented

479

Proceedings on Privacy Enhancing Technologies 2023(3) Tueno et al.

yi ¬yi

0 1 1

1 0 0

1 0 0

1

xi⊕̄yi xi ⊕ yi

0⊕̄0 = 1 0 1

0⊕̄1 = 0 1 0

1⊕̄1 = 1 0 0

1 1

Figure 7: Illustration of the optimized implementation for 𝑥 = 1, 𝑦 = 3, ` =

3, 𝛽 = 1. The left table is an array representation of the cmp-tree of 𝑦 = 3. The
right table illustrates the evaluation of the cmp-tree of 𝑦 = 3 on input 𝑥 = 1.

1 2 3

4 5 6

7 8 9

10

[) [) [2)

[1) [1) [5)

[) [) [4, 8)

[4, 7)

1 2 3

4 5 6

7 8 9

10

Figure 8: Optimized implementation for ` = 3 and leveled FHE. Left is
the representation of 𝑦 = 3, where xor-results are omitted, and cells are
numbered. The middle table illustrates dependency lists (DL). Right is the
paths evaluation.

our scheme in three variants: the naive implementation using tree

representation (Section 5), the optimized implementation using

array representation (Algorithm 8) and the encrypted case (Section

6). For the scheme of Joye and Salehi, we only implemented the

basic comparison protocol without the additional masking round

which would be required to achieve full security. We note that Veu-

gen [49] also proposed a protocol for the encrypted case, which is

computationally more complex and no longer one round. For this

reason, we did not implement it as it no longer fits with our basic

protocol (Protocol 4) and our encrypted case is already theoretically

better. It is one round and requires only a constant multiplication

(by 2
𝑖
as explained above) per bit.

For FHE, we compared our protocol with Cheon et al. [15]. The

implementation uses the BGV scheme [12] from HElib [3].

We evaluated our implementation according to our basic protocol

which is a one round protocol. That is, the client encrypts its input

and sends it to the server. The server evaluates and sends back

encrypted result to the client. The client finally decrypts to learn

the result. The evaluation of the AHE implementations is done on

a single Laptop with a 6-core Intel(R) Xeon(R) E-2176M CPU @

2.70GHz and 32GB of RAM running Windows 10 Enterprise. Due to

the higher running time and memory requirements of FHE schemes,

the evaluation of FHE implementations is done on an AWS instance

with a 24-core Intel(R) Xeon(R) Scalable processor (Skylake 8151)

with up to 4.0 GHz and 192GB of RAM running Ubuntu 20.04 LTS.

8.3 Results
We present the result of our evaluation and compare our scheme to

the related work. Since there are several schemes in the literature,

we focus on schemes closely related to ours and discuss some recent

work in Appendix F. That is the comparison uses the binary decom-

position, performs computation on homomorphically encrypted

inputs but does not assume a specific AHE or FHE scheme.

AHE. For DGK, Veugen constant case and our scheme, the com-

munication is the same, i.e., number of ciphertexts (` ciphertexts

from client and ` ciphertexts from server) sent times the length of

a ciphertext. However, for the encrypted case, Veugen additionally

requires Paillier encryption to encrypt large randomized plaintexts.

This cannot be done with additive ElGamal, as decryption requires

computing the discrete logarithm over a large domain. Veugen’s

scheme additionally sends few Paillier ciphertexts and requires

two rounds instead of one in the encrypted case. Joye and Salehi

have different communication because the server sends only half

the number of ciphertexts as the other schemes. For the encrypted

case, one might apply the same procedure as Veugen resulting in

more expensive Paillier operations as well. The above is also true

for the client computation effort. In DGK, constant case Veugen

and our scheme, the client encrypts ` plaintext bits and decrypts

` ciphertexts. In Joye and Salehi, the decryption of the client is

reduced by factor 2. Nevertheless, we focus our evaluation on the

server computation but compare only to the basic scheme of Joye

and Salehi without the additional round.

To evaluate the running time, we generated random inputs 𝑥

and 𝑦 and compare them using each protocols at security level 128.

We repeated the experiment 100 times and computed the average

running time which is illustrated in Table 3, for input bit-length

` = 8, 16, 32, 64, 96, 128. While Veugen scheme and Joye and Salehi

scheme clearly perform better than the original DGK scheme, Joye

and Salehi performs slightly better for small bit-lengths (` ≤ 32),

while Veugen performs better for large bit-lengths (` ≥ 64). Our

naive implementation is only better than the both for large bit-

lengths (` ≥ 64) and our optimized implementation is always

better. Although our encrypted case requires additional constant

multiplications per bits, it still performs better than the original

DGK scheme. In the encrypted case of Veugen’s scheme and Joye

and Salehi’s scheme client and server both require additional Paillier

ciphertext operations.

We implemented and evaluated the Paillier operations in Veu-

gen’s scheme at security level 128 (i.e., bit-length of the modulus 𝑁

is 3072) on a single laptop as described above. These extra Paillier

operations require on average 600 milliseconds which almost dou-

ble our running time for ` = 128. Note that the network cost for

the extra protocol round is not included.

` = 8 ` = 16 ` = 32 ` = 64 ` = 96 ` = 128

DGK [18] 34.12 67.43 109.91 189.16 273.18 354.22

Veugen Constant 20.05 39.79 66.86 121.68 169.98 222.25

[49] Encrypted ≥ 600

Joye [31] 19.13 36.39 63.53 123.14 178.92 249.46

Naive 21.68 40.10 67.01 117.04 167.13 201.47

Ours Optimized 18.55 35.44 63.18 115.56 164.99 202.88

Encrypted 24.23 45.41 81.90 151.21 230.54 296.27

Table 3: Comparison of Running Time in milliseconds for the AHE Implementation

FHE. To evaluate the running time of Cheon et al.’s protocol and

our protocol, we use bit-lengths ` = 8, 16, 32, 64, 128 and compute

the average over 100 runs. The results are depicted in Table 4. The

running time of Cheon et al. is slightly better which matches the

theoretical considerations. However, we have two other advantages.

480

A Method for Securely Comparing Integers using Binary Trees Proceedings on Privacy Enhancing Technologies 2023(3)

First, our optimized implementation only needs memory for the

two-dimensional array, i.e. 3` ciphertexts, since the multiplication

procedure is based on a pre-computed plan and applied within the

array. Cheon et al. also need 3 times ` ciphertexts but additional

memory to compute ` products [15]. Second, the implementation

of our protocol (Algorithm 8) by another party is much easier since

the construction of the multiplication plan does not have to be

implemented but the pre-computed results can be taken from a

public source. Our FHE evaluation in Algorithm 12 is given as

parameter the dependency list precomputed by Algorithm 11.

Cheon et al. and our scheme have three main steps. In the first

step, we fill the array as explained in Figure 7 and Cheon et al.

compute three arrays 𝑎𝑖 = 𝑥𝑖 + 1, 𝑑𝑖 = 𝑎𝑖 · 𝑦𝑖 , 𝑧𝑖 = 𝑎𝑖 + 𝑦𝑖 , 1 ≤ 𝑖 ≤ `.

In the second step, we aggregate the array elements as in Figure 8

using a precomputed dependency list and Cheon et al. compute

products 𝑝𝑖 =
∏`

𝑗=𝑖+1 𝑧 𝑗 efficiently (i.e., reusing prefix results) while

keeping the multiplicative depth logarithmic. This computation is

illustrated in Appendix D and Algorithm 13. In the last step, we

sum up all results in the third column and Cheon et al. compute

𝑑𝑖 = 𝑑𝑖 · 𝑝𝑖 and finally

∑`

𝑖=1
𝑑𝑖 .

In both cases the second step is the most complicated. However,

the pre-computation of the dependency list makes our second step

easy to implement and to evaluate, as it is done once and offline,

such that for the online computation it is enough to implement

and evaluate Algorithm 12. The product computation (Algorithm

13) in Cheon et al.’s scheme requires constructing a binary tree of

product and process it recursively. This cannot be precomputed,

must be implemented with the entire algorithm itself and requires

extra memory for storing ` log ` ciphertexts during evaluation.

` = 8 ` = 16 ` = 32 ` = 64 ` = 128

Plaintext

Cheon et al. [15] 0.0340 0.0569 0.0900 0.2000 1.2097

Ours 0.0270 0.0431 0.0460 0.1080 0.2522

Encrypted

Cheon et al. [15] 4.9480 11.348 26.041 56.866 122.36

Ours 5.1241 11.660 26.504 59.681 129.16

Memory

Cheon et al. [15] 235.33 356.51 595.99 1064.12 1993.18

Ours 217.35 320.03 523.57 929.41 1728.05

Table 4: Comparison of Running Time for Plaintext (in ms) and Ciphertext (in s)
Implementation, and the Memory (in MB)

9 APPLICATIONS
Integer comparison is a fundamental building block in many MPC

protocols. In this section, we describe few applications where our

scheme can improve the performance. We estimate this improve-

ment to be proportional to the number of comparison operations

required in the respective application. The following is of course

not exhaustive and gives only an overview of applications.

Machine Learning (ML).ML classifiers are valuable tools in many

areas such as healthcare, finance, spam filtering, intrusion detec-

tion, remote diagnosis, etc [50]. They usually require access to

privacy-sensitive user’s data such as medical records, financial sit-

uation, location information, etc. On the one hand, the model itself

may contain sensitive data. On the other hand, it may have been

built on sensitive data. White-box and sometimes even black-box

access to an ML model allows so-called model inversion attacks
[23, 44, 52], which can compromise the privacy of the training data.

Privacy-preserving techniques are therefore critically needed to

protect the privacy of the model and user’s data. Many applica-

tions in ML require integer comparison. For example, a decision

tree (DT) is a common and very popular classifier that requires

integer comparison to classify inputs. Some private DT schemes

rely on DGK [42, 51] or on FHE [45]. In Appendix G, we evalu-

ate the private DT scheme of Tai et al. [42] using our scheme and

compared it to [18, 49]. In [46], Tueno et al. proposed an applica-

tion for range queries that uses search tree structure to implement

order-preserving encryption (OPE). They overcame the limitation

of private-key OPE by using garbled circuit or DGK comparison to

traverse the search tree.

Benchmarking and Auction. In this case, the goal is to securely com-

pute the 𝑘th-ranked element in a distributed setting. That is, given

𝑛 parties each holding a private integer, the problem is to securely

compute the element ranked 𝑘 (for a given 𝑘 such that 1 ≤ 𝑘 ≤ 𝑛)

among these 𝑛 integers. The computation should reveal to the par-

ties only the 𝑘th-ranked element (or the index of party holding it)

and nothing else. The computation of the 𝑘th-ranked element has

applications in benchmarking, where a company is interested in

knowing how well it is doing compared to others, or in auctions

where bidders are interested in knowing the highest bid. In fact, the

DGK protocol were proposed with online auction as application

[18]. Privacy-preserving online auction was the world’s first large

scale application and commercial use of MPC. A team around the

DGK authors developed, in 2008, a double auction solution for the

Danish industry, which allowed farmers (sugar beets producers)

and Danisco (the only sugar beets processor) to compute a so-called

market clearing price (price per unit of the commodity that is traded)

in a privacy-preserving way [2, 10]. The main building block in this

solution was integer comparison. Other work, including [9], [8],

[48], have proposed protocols for computing the 𝑘th-ranked ele-

ment using the DGK comparison protocol. In [48], Tueno et al. also

proposed a variant of their protocol based on SHE/FHE and using

the comparison scheme of Cheon et al. [15].

Biometrics. Biometrics are used to authenticate or identify users.

In an enrollment phase, biometric features are scanned and stored.

During the authentication or identification phase, the same features

are scanned again and compared with the stored ones. On the one

hand, biometric images are never perfect, and therefore a match is

determined by computing a proximity to the stored images. This im-

plies that threshold comparisons are required in biometric systems

[35]. On the other hand, biometric information is highly sensitive

and subject to privacy issues due to to possible misuse, lost or theft

of biometric data. This gives rise to privacy-preserving biometric

matching, that compute on biometric data without revealing sensi-

tive information. Blanton and Gasti [7] proposed such a protocol

for iris and fingerprint identification using the DGK protocol.

10 CONCLUSION
We proposed a new protocol for secure integer comparison of two

parties using the evaluation of binary trees. Our approach is based

on HE and is a non-interactive solution which can be used for a

broad range of applications or as a subroutine for larger protocols.

We theoretically presented an FHE and an AHE mode with several

extensions and optimizations and implemented both variants us-

ing improved data representations and evaluations to reduce the

computational overhead.

481

Proceedings on Privacy Enhancing Technologies 2023(3) Tueno et al.

ACKNOWLEDGMENTS
We thank the anonymous PoPETs reviewers for their constructive

feedback on this paper. This research work was supported by the

German Federal Ministry for Economic Affairs and Climate Action

(BMWK) in the project Trade-EVs II, FKZ:01MV20006A.

REFERENCES
[1] Scale and mamba, November 2022. https://github.com/KULeuven-COSIC/SCALE-

MAMBA.

[2] Secure multiparty computation goes live, November 2022.

https://partisia.com/better-market-solutions/mpc-goes-live/.

[3] Helib, October 2021. https://github.com/homenc/HElib.

[4] A. Aly, K. Nawaz, E. Salazar, and V. Sucasas. Through the looking-glass: Bench-

marking secure multi-party computation comparisons for relu ’s. In Cryptology
and Network Security - 21st International Conference, CANS 2022, Dubai, United
Arab Emirates, November 13-16, 2022, Proceedings, pages 44–67, 2022.

[5] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-

cryptographic fault-tolerant distributed computation. In STOC, pages 1–10, New
York, NY, USA, 1988. ACM.

[6] I. F. Blake and V. Kolesnikov. Strong conditional oblivious transfer and computing

on intervals. In ASIACRYPT, volume 3329 of Lecture Notes in Computer Science,
pages 515–529. Springer, 2004.

[7] M. Blanton and P. Gasti. Secure and efficient protocols for iris and fingerprint

identification. In Computer Security - ESORICS 2011 - 16th European Symposium on
Research in Computer Security, Leuven, Belgium, September 12-14, 2011. Proceedings,
pages 190–209, 2011.

[8] E. Blass and F. Kerschbaum. BOREALIS: building block for sealed bid auctions

on blockchains. In H. Sun, S. Shieh, G. Gu, and G. Ateniese, editors, ASIA CCS
’20, pages 558–571. ACM.

[9] E. Blass and F. Kerschbaum. Secure computation of the k
th
-ranked integer on

blockchains. IACR Cryptology ePrint Archive, 2019:276, 2019.
[10] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. P. Jakobsen, M. Krøigaard,

J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft.

Secure multiparty computation goes live. In Financial Cryptography and Data
Security, 13th International Conference, FC 2009, Accra Beach, Barbados, February
23-26, 2009. Revised Selected Papers, pages 325–343, 2009.

[11] F. Bourse, O. Sanders, and J. Traoré. Improved secure integer comparison via

homomorphic encryption. In Topics in Cryptology - CT-RSA 2020 - The Cryptogra-
phers’ Track at the RSA Conference 2020, San Francisco, CA, USA, February 24-28,
2020, Proceedings, pages 391–416, 2020.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption

without bootstrapping. ECCC, 18:111, 2011.
[13] O. Catrina and S. De Hoogh. Improved primitives for secure multiparty integer

computation. In SCN’10, pages 182–199. Springer-Verlag, 2010.
[14] J. H. Cheon, M. Kim, and M. Kim. Search-and-compute on encrypted data. In FC,

pages 142–159, 2015.

[15] J. H. Cheon, M. Kim, and K. E. Lauter. Homomorphic computation of edit distance.

In FC, pages 194–212, 2015.
[16] G. Couteau. New protocols for secure equality test and comparison. In ACNS,

volume 10892 of Lecture Notes in Computer Science, pages 303–320. Springer, 2018.
[17] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen, and T. Toft. Unconditionally secure

constant-rounds multi-party computation for equality, comparison, bits and

exponentiation. In TCC 2006, pages 285–304, 2006.
[18] I. Damgård, M. Geisler, and M. Krøigaard. Efficient and secure comparison for

on-line auctions. In ACISP, pages 416–430, 2007.
[19] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In CRYPTO, pages 10–18. Springer-Verlag, 1985.
[20] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl. Improved primitives

for MPC over mixed arithmetic-binary circuits. In Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II, pages 823–852,
2020.

[21] D. Evans, V. Kolesnikov, and M. Rosulek. A pragmatic introduction to secure

multi-party computation. Foundations and Trends in Privacy and Security, 2(2-
3):70–246, 2018.

[22] M. Fischlin. A cost-effective pay-per-multiplication comparison method for

millionaires. In CT-RSA, pages 457–472, 2001.
[23] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion attacks that exploit

confidence information and basic countermeasures. In CCS, pages 1322–1333,
2015.

[24] J. Garay, B. Schoenmakers, and J. Villegas. Practical and secure solutions for

integer comparison. In PKC’07, pages 330–342. Springer-Verlag, 2007.
[25] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages

169–178, New York, NY, USA, 2009. ACM.

[26] C. Gentry, S. Halevi, C. S. Jutla, and M. Raykova. Private database access with

he-over-oram architecture. In ACNS, volume 9092 of Lecture Notes in Computer
Science, pages 172–191. Springer, 2015.

[27] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-

bridge University Press, New York, NY, USA, 2004.

[28] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In

STOC, pages 218–229, New York, NY, USA, 1987. ACM.

[29] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and
Constructions. Springer-Verlag New York, Inc., New York, NY, USA, 1st edition,

2010.

[30] I. Iliashenko and V. Zucca. Faster homomorphic comparison operations for BGV

and BFV. Proc. Priv. Enhancing Technol., 2021(3):246–264, 2021.
[31] M. Joye and F. Salehi. Private yet efficient decision tree evaluation. In BDSec,

pages 243–259. Springer, 2018.

[32] M. Keller. MP-SPDZ: A versatile framework for multi-party computation. In CCS
’20: 2020 ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020, pages 1575–1590, 2020.

[33] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, Jan. 1987.

[34] N. Koblitz, A. Menezes, and S. A. Vanstone. The state of elliptic curve cryptogra-

phy. Des. Codes Cryptography, 19(2/3):173–193, 2000.
[35] V. Kolesnikov, A. Sadeghi, and T. Schneider. Improved garbled circuit building

blocks and applications to auctions and computing minima. In CANS, pages 1–20,
2009.

[36] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and

applications. In ICALP, pages 486–498, 2008.
[37] H. Lin and W. Tzeng. An efficient solution to the millionaires’ problem based on

homomorphic encryption. In ACNS, pages 456–466, 2005.
[38] H. Lipmaa and T. Toft. Secure equality and greater-than tests with sublinear

online complexity. In ICALP’13, pages 645–656, 2013.
[39] E. Makri, D. Rotaru, F. Vercauteren, and S. Wagh. Rabbit: Efficient comparison

for secure multi-party computation. In Financial Cryptography and Data Security
- 25th International Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised
Selected Papers, Part I, pages 249–270, 2021.

[40] T. Nishide and K. Ohta. Multiparty computation for interval, equality, and

comparison without bit-decomposition protocol. In PKC’07, pages 343–360, 2007.
[41] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In EUROCRYPT’99, pages 223–238. Springer-Verlag, 1999.
[42] R. K. H. Tai, J. P. K. Ma, Y. Zhao, and S. S. M. Chow. Privacy-preserving decision

trees evaluation via linear functions. In ESORICS, pages 494–512, 2017.
[43] T. Toft. Sub-linear, secure comparison with two non-colluding parties. In Public

Key Cryptography, volume 6571, pages 174–191. Springer, 2011.

[44] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Stealing machine

learning models via prediction apis. In USENIX, pages 601–618, 2016.
[45] A. Tueno, Y. Boev, and F. Kerschbaum. Non-interactive private decision tree

evaluation. In DBSec, pages 174–194, 2020.
[46] A. Tueno and F. Kerschbaum. Efficient secure computation of order-preserving

encryption. In Proceedings of the 2020 on Asia Conference on Computer and
Communications Security, ASIACCS ’20, 2020.

[47] A. Tueno, F. Kerschbaum, and S. Katzenbeisser. Private evaluation of decision

trees using sublinear cost. PoPETs, 2019(1):266–286, 2019.
[48] A. Tueno, F. Kerschbaum, S. Katzenbeisser, Y. Boev, and M. Qureshi. Secure

computation of the kth-ranked element in a star network. In FC, 2020.
[49] T. Veugen. Improving the DGK comparison protocol. InWIFS, pages 49–54, 2012.
[50] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

3rd edition, 2011.

[51] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter. Privately evaluating decision trees

and random forests. PoPETs, 2016(4):335–355, 2016.
[52] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton. A methodology for formalizing

model-inversion attacks. In CSF, pages 355–370, 2016.
[53] A. C. Yao. Protocols for secure computations. In SFCS ’82, SFCS ’82, pages

160–164, Washington, DC, USA, 1982. IEEE Computer Society.

A POSTPONED PROOFS
This section provides missing proofs for theorems and lemmas.

Theorem 5.2. Let𝑦 and 𝑥 be integers of length `. If the encryption

scheme is IND-CPA secure, then the comparison protocol is secure

in the semi-honest model.

Proof. For our scheme, we can consider settings where the

comparison result is either revealed only to the client, or to both

client and server, or secret-shared to both. Additionally, the server

482

A Method for Securely Comparing Integers using Binary Trees Proceedings on Privacy Enhancing Technologies 2023(3)

can see its own input𝑦 or it can be encrypted as well. For simplicity,

we consider the setting where the comparison result is revealed

only to the client and the server input is not encrypted. In this

case, security means that the client learns only the comparison

bit and the server learns nothing. We then construct simulators

Simgt
C (𝑥, 𝑏 = [𝑥 ≥ 𝑦]), Simgt

S (𝑦, ∅), for the client and the server. The
goal of the simulator is to generate a view that is indistinguishable

from the party’s view in the real protocol. That is, for each message

𝑚 that a party sees, the simulator should be able to generate an

indistinguishable message𝑚′ using only the information available

to that party, e.g., input, output, public and private key.

Client Simulator FHE: In the real protocol, the client sees en-

cryptions of its input bits 𝑥 = 𝑥 [1], . . . , 𝑥 [`] and encryption of the

comparison bit. The simulator Simgt
C (𝑥, 𝑏 = [𝑥 ≥ 𝑦]) has access

to input and output of the client and knows the public key. The

simulation is trivial.

Server Simulator FHE: In the real protocol, the server sees en-

cryptions of the client input bits 𝑥 = 𝑥 [1], . . . , 𝑥 [`] and cipher-

texts generated during the evaluation of the tree. The simulator

Simgt
S (𝑦, ∅) has access to the server input and knows the public key,

but not the private key. Hence, it can encrypt its own input bits.

By assumption, the encryption scheme is IND-CPA secure, which

means that each ciphertext is indistinguishable from a random value

with the same length as the ciphertext. For all ciphertexts (either

received from the client or resulting from the tree evaluation), the

simulator just chooses a random element in the ciphertext space,

i.e., encryption of a random plaintext.

Client Simulator AHE: The difference to the FHE case is that

the client does not get an encrypted bit from the server, but a set

of ciphertexts c[1], . . . , c[`] where either all ciphertexts encrypt
random plaintexts, or exactly one (at a random position) encrypts

0 while the remaining ones encrypt random plaintexts. That is, the

simulation of the encrypted client bits 𝑥 = 𝑥 [1], . . . , 𝑥 [`] is also
trivial as before. Given the output 𝑏 to the client, the simulator

simulates the ciphertexts c[1], . . . , c[`] as follows. Choose random
elements c′[1], . . . , c′[`] in the ciphertext space. If 𝑏 = 1, choose a

random position 𝑖 between 1 and ` and replace c′[𝑖] by a ciphertext
of 0.

Server Simulator AHE: The simulation is similar to the FHE

case. □

Lemma 6.5. Let 𝑦 be an integer of length `. The half-pruned tree

of 𝑦 has ` + 1 leaves and ` inner nodes.

Proof. The depth of the tree is obviously `. A complete tree with

depth ` has 2
` + 2

` − 1 nodes. While constructing the half-pruned

cmp-tree as explained above, we start from the root with depth 0

and stop at a node with depth `−2, since node with depth `−1 have

only leaves as child nodes. In each step at depth ℎ ∈ {0, . . . , ` − 2},
we replace a subtree, that has 2

`−ℎ − 1 nodes, with a leaf. That is,

at depth ℎ ∈ {0, . . . , ` − 2}, we remove 2
`−ℎ − 2 nodes. Then the

numbers of nodes remaining in the tree is:

𝑆 = 2
` + 2

` − 1−
`−2∑︁
ℎ=0

(2`−ℎ − 2) = 2
` + 2

` − 1−
(
`−2∑︁
ℎ=0

2
`−ℎ −

`−2∑︁
ℎ=0

2

)
.

Now we have:

`−2∑︁
ℎ=0

2
`−ℎ =

∑̀︁
ℎ=0

2
`−ℎ − (21 + 2

0) = 2
`

(∑̀︁
ℎ=0

2
−ℎ

)
− 3

= 2
` (

2 − 2
−`) − 3 = 2

`+1 − 4.

We also have

∑`−2

ℎ=0
2 = 2(`−1) = 2`−2. Therefore we can compute

𝑆 = 2
` + 2

` − 1 − (2`+1 − 4 − 2` + 2) = −1 + 2 + 2` = 2` + 1. By

construction, there are ` inner nodes and hence ` + 1 leaves. □

Lemma 6.7. The normal cmp-tree of𝑦 and a half-pruned cmp-tree

of 𝑦 are equivalent.

Proof. Given an arbitrary 𝑦 of length `. By construction, the

normal cmp-tree has depth ` since the leftmost path is the longest

one. The same holds for the definition of a half-pruned cmp-tree.

For the normal cmp-tree, there are ` inner nodes on the leftmost

path (including the root node). Since every node’s right child is a

leaf node, there are exactly ` inner nodes. Moreover, we have ` + 1

leaf nodes because every inner node has exactly one child leaf node

(the right child) except the deepest inner node where both children

are leaf nodes.

Lemma 6.5 shows that a half-pruned tree has the same number

of nodes and therefore they are equivalent. □

Theorem 6.8. Let𝑦 and 𝑥 be integers of length `. If the encryption

scheme is correct, then the comparison protocol is correct.

Proof. By Lemma 6.7, we already know that the normal-cmp

tree and a half-pruned cmp-tree are equivalent. Moreover, we can

transfer one representation into another without changing the

result.

By definition, a normal cmp-tree is half-pruned. It remains to

show that it is also a cmp-tree. We assume that the encryption

scheme is FHE. The case for AHE is similar. If 𝑥 and 𝑦 are equal,

then 𝑥 traverses the normal cmp-tree of 𝑦 on the path as 𝑦 itself.

Otherwise, 𝑥 and 𝑦 have a common prefix that labels a path from

the root to a node 𝑣 with depthℎ such that𝑦 traverses the tree to the

left of 𝑣 while 𝑥 traverses to the right of 𝑣 . By construction of the

normal cmp-tree, the left edge from 𝑣 is labelled with the bit 𝑦 [ℎ],
while the right edge is labelled with the bit 1 − 𝑦 [ℎ]. Moreover, the

right child node of 𝑣 is a leaf 𝑣𝑟 labelled with 1 − 𝑦 [ℎ]. If 𝑦 [ℎ] = 0

(resp. 𝑦 [ℎ] = 1), then 𝑣𝑟 is labelled with 1 (resp. 0) and the path to

𝑣𝑟 evaluates to 1 (resp. 0). On all other paths at least one edge label

differs from the bit of 𝑥 at the same position such that the path

evaluates to 0. This is sufficient to conclude whether 𝑥 ≥ 𝑦 or not.

For the other direction, we have to transfer a half-pruned cmp-

tree into a normal cmp-tree. We start at the root node. If the left

child node is not a leaf, we proceed with the left child. If not, we

switch the below sub-trees and proceed with the left child which

is now a leaf node. We repeat this procedure until we reach the

tree’s depth. The resulting structure fulfills all the requirements of

a normal cmp-tree and still represents the same value 𝑦. □

Lemma 6.9. Let (𝑏0, · · · , 𝑏𝑙) ∈ {−1, 0, 1}𝑙+1 such that there exist

at least one 𝑏𝑖 ≠ 0 then it holds

∑𝑙
𝑖=0

𝑏𝑖 ·2𝑖 = 𝑏0 ·20 + · · · +𝑏𝑙 ·2𝑙 ≠ 0.

483

Proceedings on Privacy Enhancing Technologies 2023(3) Tueno et al.

Algorithm 9 ComputePaths

Require: `

1: let paths be a matrix of [0, · · · , `] [1, · · · , ` + 1] integers
2: for 𝑖 = 0 to ` do
3: paths[0] [𝑖] ← 𝑖 · 3 + 1 {leftmost path}

4: end for
5: for 𝑝 = 1 to ` − 1 do
6: for 𝑖 = 0 to ` − (𝑝 + 1) do
7: paths[𝑝] [𝑖] ← 𝑖 · 3 + 1 {common prefixes with leftmost

path}

8: end for
9: paths[𝑝] [` − 𝑝 + 1] ← (` − 𝑝) · 3 + 2 {second column}

10: paths[𝑝] [` − 𝑝 + 2] ← (` − 𝑝) · 3 + 3 {third column}

11: end for
12: paths[`] [2] ← 2 {rightmost path}

13: paths[`] [3] ← 3

14:

15: return paths

Proof. W.l.o.g, we assume 𝑏𝑙 ≠ 0 otherwise we can set 𝑙 = 𝑙 − 1.

Nowwe compare𝑋 =

���∑𝑙−1

𝑖=0
𝑏𝑖2

𝑖
��� and𝑌 = |𝑏𝑙2𝑙 | = 2

𝑙
. Since |𝑏𝑖 | ≤ 1,

we obtain

𝑋 ≤
𝑙−1∑︁
𝑖=0

2
𝑖 = 2

𝑙 − 1 < 𝑌 .

This concludes that 𝑌 strictly dominates𝑋 and therefore, the whole

sum can never be 0. □

B ALGORITHMS FOR FHE INSTANTIATION
In this section, we describe in detail our leveled FHE instantiation

that uses the pre-computation of the dependency lists for the mul-

tiplication to keep a logarithmic multiplicative depth. We recall

that this pre-computation depends only on the input length ` and

can be computed a single time and stored for future evaluations of

integer comparison. The pre-computation consists of the following

three basic steps:

• Computation of the paths. Using the Illustration in Figure 8,

we use a table representation of the tree as explained above

and compute the paths: (1, 4, 7, 10), (1, 4, 8, 9), (1, 5, 6), (2, 3).

This computation is illustrated in Algorithm 9.

• Computation of the dependency lists for each single path.We

compute the dependency lists for each path using Algorithm

10.

• Computation of the dependency lists for the whole tree. This

is done using Algorithm 11.

To evaluate the integer comparison of two encrypted inputs, we

use Algorithm 12. A detailed analysis of the number of multiplica-

tions needed is provided in the next section.

C ANALYSIS NUMBER OF MULTIPLICATIONS
In this section, we analyse in detailed the number of multiplications

for our leveled FHE Instantiation. To ease the understanding of the

derivation of the number of multiplications, we present an example

of bit-length 8 and apply the optimized implementation described

Algorithm 10 ComputeDL

Require: path, up, low, dlist
1: if up ≥ low then
2:

3: return
4: end if
5: [← low − up
6: mid← 2

|[|−1 − 1 + up
7: ComputeDL(path, up,mid, dlist)
8: ComputeDL(path,mid + 1, low, dlist)
9: 𝑥 ← path[mid]
10: if dlist[low] .contain(𝑥) = false then
11: dlist[low] .enqueue(𝑥)
12: end if

Algorithm 11 ComputeAllDL

Require: `

1: let dlmatrix be a matrix of [1, · · · , ` + 1] [1, · · · , 3] queues
2: paths← ComputePaths(`)
3: for 𝑝 = 0 to ` do
4: let dlist be an array of queues

5: ComputeDL(paths[𝑝], 0, paths[𝑝] .size() − 1, dlist)
6: if 𝑝 = 0 then
7: for 𝑖 = 0 to paths[𝑝] .size() − 1 do
8: 𝑥 ← paths[𝑝] [𝑖]
9: 𝑟 ← (𝑥 ÷ 3) + 1

10: 𝑐 ← ((𝑥 − 1) mod 3) + 1

11: dlmatrix[𝑟] [𝑐] ← dlist[𝑖]
12: end for
13: else
14: 𝑙 ← paths[𝑝] .size()
15: if 𝑝 < ` then
16: 𝑥 ← paths[𝑝] [𝑙 − 2]
17: 𝑟 ← (𝑥 ÷ 3) + 1

18: 𝑐 ← ((𝑥 − 1) mod 3) + 1

19: dlmatrix[𝑟] [𝑐] ← dlist[𝑙 − 2] {second column}

20: end if
21: 𝑥 ← paths[𝑝] [𝑙 − 1]
22: 𝑟 ← (𝑥 ÷ 3) + 1

23: 𝑐 ← ((𝑥 − 1) mod 3) + 1

24: dlmatrix[𝑟] [𝑐] ← dlist[𝑙 − 1] {third column}

25: end if
26: end for
27:

28: return dlmatrix

in Section 8. The starting point is the array representation depicted

in Figure 9.

Leftmost Path. The number of multiplications on the leftmost

path are illustrated in Figure 10a. Our algorithm divides each path

at half and repeats this procedure with the sub-paths until every

node is connected. Going the other way around, this leads to one

multiplication for each pair (In the example: 1 to 4, 7 to 10, 13 to 16

and 19 to 22), one multiplication for each quadruple (In the example:

484

A Method for Securely Comparing Integers using Binary Trees Proceedings on Privacy Enhancing Technologies 2023(3)

Algorithm 12 FHE Evaluation with DL

Require: J𝑥K, J𝑦K, `, dlmatrix
1: parse J𝑥K to J𝑥 [1]K , . . . , J𝑥 [`]K
2: parse J𝑦K to J𝑦 [1]K , . . . , J𝑦 [`]K
3: let 𝑎[(1, . . . , ` + 1), (1, . . . , 3)] be a (` + 1) × 3-matrix

4: for 𝑖 = ` downto 1 do
5: 𝑎[𝑖, 1] ← comp(J𝑥 [𝑖]K , J𝑦 [𝑖]K)
6: 𝑎[𝑖, 2] ← Not(𝑎[𝑖, 1])
7: 𝑎[𝑖, 3] ← Not(J𝑦 [𝑖]K)
8: end for
9: for 𝑖 = ` downto 1 do
10: for 𝑗 = 1 to 3 do
11: while dlmatrix[𝑖] [𝑗] .empty() = false do
12: 𝑥 ← dlmatrix[𝑖] [𝑗] .dequeue()
13: 𝑟 ← 𝑥 ÷ 3

14: 𝑐 ← 𝑥 mod 3

15: 𝑎[𝑖] [𝑗] ← 𝑎[𝑖] [𝑗] · 𝑎[𝑟] [𝑐]
16: end while
17: end for
18: end for
19: 𝑎[` + 1, 3] ← 𝑎[`, 1]
20:

21: return
∑`+1
𝑖=1

𝑎[𝑖, 3]

4 to 10 and 16 to 22) and to one multiplication for each 8-tuple (In

the example: 10 to 22) and so on.

In general, we have
`

2
𝑖 times a 2

𝑖
-tuple and the maximal number

of such a tuple is log ` where log is the logarithm to base 2. Summing

up all the multiplications, we obtain

log∑︁
𝑖=1

`

2
𝑖
=

log(`)−1∑︁
𝑖=0

2
𝑖 = ` − 1

by applying the geometric sum formula.

Right Children. For the representation of the multiplications on

the paths to the right leaves, we refer to Figure 10b. Note that we

removed some of the numbers and arrows to ease the understanding

of the analysis. We split the analysis for the right children into two

parts.

For each row we have exactly one edge connecting the second

with third column, that is ` multiplications.

The multiplications from the first with the third column are more

complicated. To analyze their total number, we consider the labels

on the leftmost path and make use of the following observation. A

label has at least one arrow to the right because it is on the paths to

right leaves which have their last edge label in the second column

and their leaf label in the third column. If it is multiplied with the

following label on the leftmost path (first column), we do not have

to consider it further since it is in the multiplication chain for any

right child (third column) below. Therefore, such a label has only

one multiplication with right children, for example 1, 7 or 19 in

the example (marked with solid arrows). Based on the analysis

of the leftmost path, there are `/2 such labels. For every second

label, we have at least two multiplications to the right because its

information is lost in the following row since we do not multiply

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

[) [) [2)

[1) [) [1, 5)

[) [) [4, 8)

[4, 7) [) [4, 7, 11)

[) [) [10, 14)

[13) [) [10, 13, 17)

[) [) [10, 16, 20)

[10, 16, 19) [) [10, 16, 19, 23)

Figure 9: OptimizedArray Representation for bit-length ` = 8

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

(a) Multiplications on leftmost
Path

1 2 3

4 5 6

7 8 9

10 11 12

14 15

17 18

19 20 21

22 23 24

(b) All Multiplications

Figure 10: Illustration of Multiplications for bit-length ` = 8

with it. In the example, it holds for 4 and is marked with a dashed

line. The next step is 10 which is needed for the following 4 rows

and marked with a dash-dotted arrow.

Following this procedure, we need 2
𝑖−1

multiplications of a label

with “order” 𝑖 . Order refers to the procedure of 2
𝑖
-tuples from the

leftmost path. Now, we can count the number of multiplications

analogously to the leftmost path and obtain

log∑︁
𝑖=1

2
𝑖−1

`

2
𝑖
=

` log `

2

.

Adding themultiplications from second to third column, this amounts

to

` + ` log `

2

.

485

Proceedings on Privacy Enhancing Technologies 2023(3) Tueno et al.

D ITERATIVE PRODUCTS COMPUTATION
In this section, we describe our implementation of the product com-

putation for Cheon et al.’s scheme. We start by recalling the task to

be computed. Given integers 𝑧1, . . . , 𝑧𝑛 , we want to compute prod-

ucts 𝑃𝑖 =
∏𝑖

𝑗=1
𝑧 𝑗 , for 𝑖 = 2, . . . , 𝑛 with logarithmic multiplicative

depth. Cheon et al. [15] propose to compute the products using a

recursive algorithm that builds a binary tree of products. That is, we

start with 𝑧1, . . . , 𝑧𝑛 , compute products 𝑧′
1
= 𝑧1 · 𝑧2, 𝑧

′
2
= 𝑧3 · 𝑧4, . . .

for the first level and continue this recursively until there is a single

element left in the last level. At each level, if the number of elements

is odd, then the last element is left alone. This yields products for

positions which are a power of 2. In the next step, we compute

the missing products, i.e., for positions 𝑖 that are not a power of 2,

based on a multiplication of the results for the power of two cases

and the power of 2 decomposition of 𝑖 .

Our implementation described in Algorithm 13 stores the binary

tree of products in a matrix 𝑎[] [] with log(𝑛) − 1 rows and 𝑛/2
columns, where row 𝑖 contains 𝑛/2𝑖 non null elements, for 𝑖 =

1, . . . , log(𝑛) − 1. Then, the first column contains the products 𝑃𝑖
for 𝑖 a power of 2.

For the remaining positions 𝑖 not a power of 2, we decompose

𝑖 in its power of 2: 𝑠1, . . . , 𝑠𝑘 such that 𝑠 𝑗 = 2
𝑒 𝑗 , 𝑖 = 𝑠1 + . . . + 𝑠𝑘

and 𝑠1 > . . . > 𝑠𝑘 . Then, we use each 𝑠 𝑗 to select a corresponding

product 𝑄 𝑗 from the matrix computed above. We observe that if

𝑠 𝑗 = 1 then 𝑄 𝑗 = 𝑥 [𝑖]. Otherwise, we compute the row 𝑟 and

column 𝑐 of the product corresponding to 𝑄 𝑗 , i.e., 𝑄 𝑗 = 𝑎[𝑟] [𝑐] as
follows:

• we remark that if 𝑠 𝑗 = 2
𝑒
, then the corresponding product

lies in the row 𝑟 = 𝑒 of the matrix.

• for the column, if 𝑗 = 1, then it is the first column, i.e., 𝑐 = 1

otherwise we compute the column as 𝑐 = ⌈𝑡/𝑠 𝑗 ⌉ − 1 where

𝑡 = 𝑠1 + . . . + 𝑠 𝑗 .
Finally, we collect all the products (𝑄1, . . . , 𝑄𝑘) and apply again

a multiplication with logarithmic depth to compute 𝑄1 · . . . · 𝑄𝑘

using the binary tree of products as above.

E CHOICE OF AHE SCHEME
For AHE, we choose ElGamal encryption [19] that we implement

as elliptic curve ElGamal (ECE) [33, 34]. We briefly describe it in

the following and refer to the literature for more details. Let G be

an elliptic curve group over F(𝑝𝑛) generated by a point 𝑃 of prime

order 𝑝 . ECE consists of the following algorithms:

• Key Generation pk, sk ← KGen(_): This algorithm ran-

domly chooses 𝑠 ∈ Z𝑝 and outputs sk = 𝑠 and pk = 𝑠 · 𝑃 as

private and public key.

• Encryption c← Enc(pk,m): This algorithm takes pk and a

message m, then it chooses a random 𝑟 ∈ Z𝑝 and outputs

the ciphertext c = (𝑟 · 𝑃,m · 𝑃 + 𝑟 · pk).
• Decryption m ← Dec(sk, c): This algorithm takes sk and

a ciphertext c = (𝑄1, 𝑄2), compute 𝑄 = 𝑄2 − 𝑄1 · sk and

returns the discrete logarithm of 𝑄 on G.

The above scheme is indeed AHE. If c1 = (𝑟1 · 𝑃,m1 · 𝑃 + 𝑟1 · pk)
and c2 = (𝑟2 ·𝑃,m2 ·𝑃 +𝑟2 ·pk) are ciphertexts of two plaintextsm1

and m2 then c1 + c2 = ((𝑟1 + 𝑟2) · 𝑃, (m1 +m2) · 𝑃 + (𝑟1 + 𝑟2) · pk))
is a ciphertext of m1 +m2.

Algorithm 13 Iterative Products Computation

Require: array 𝑧 = 𝑧1, . . . , 𝑧𝑛
1: let 𝑃 be an array of 𝑛 − 1 elements

2: let 𝑎[(1, . . . , log(𝑛) − 1), (1, . . . , 𝑛/2)] be a matrix

3: for 𝑖 = 1 to log(𝑛) do
4: for 𝑗 = 1 to 𝑛/2𝑖 ; 𝑗 = 𝑗 + 2 do
5: if 𝑗 + 1 < 𝑛 then
6: 𝑟 ← 𝑖

7: 𝑐 ← 𝑗/2
8: if 𝑖 = 1 then
9: 𝑎[𝑟] [𝑐] ← 𝑧 [𝑗] · 𝑧 [𝑗 + 1]
10: else
11: 𝑎[𝑟] [𝑐] ← 𝑎[𝑖 − 1] [𝑗] · 𝑎[𝑖 − 1] [𝑗 + 1]
12: end if
13: end if
14: end for
15: end for
16: for 𝑖 = 2 to 𝑛 do
17: if 𝑖 = 2

𝑒 then
18: 𝑃 [𝑖] ← 𝑎[𝑒] [0]
19: else
20: let 𝑖 = 𝑠1 + . . . + 𝑠𝑘 such that 𝑠 𝑗 = 2

𝑒 𝑗 , and 𝑠1 > . . . > 𝑠𝑘
21: let 𝑄 be an array of [1, . . . , 𝑘] of integers
22: for 𝑗 = 1 to 𝑘 do
23: if 𝑠 𝑗 = 1 then
24: 𝑄 [𝑗] ← 𝑧 [𝑖]
25: else
26: 𝑟 ← log(𝑠 𝑗)
27: if 𝑗 = 1 then
28: 𝑐 ← 1

29: else
30: 𝑐 ← ⌈𝑡/𝑠 𝑗 ⌉ − 1

31: end if
32: 𝑄 [𝑗] ← 𝑎[𝑟] [𝑐]
33: end if
34: end for
35: 𝑃 [𝑖] ← 𝑄1 · . . . ·𝑄𝑘

36: end if
37: end for
38:

39: return 𝑃

While the decryption requires the computation of the discrete

logarithm, we stress that in our comparison protocol, computing

the discrete logarithm is not necessary since we are looking for a

ciphertext of zero. A ciphertext of zero has the form c = (𝑟 ·𝑃, 𝑟 ·pk).
Hence, checking if the random ciphertext c = (𝑄1, 𝑄2) is encrypting
0, is efficiently done by computing 𝑄 = 𝑄2 − 𝑄1 · sk and then

checking if 𝑄 is the neutral element of G that for an elliptic curve

is the point at infinity.

F MOST RECENTWORK
Most recent work include protocols [4, 20, 39] based on the arith-

metic black-box (ABB) model. The ABB model allows addition

486

A Method for Securely Comparing Integers using Binary Trees Proceedings on Privacy Enhancing Technologies 2023(3)

on encrypted inputs and constant multiplication. It can be imple-

mented using secret sharing or AHE. Some ABB-based protocols

([17] and the improved version [39]) have some resemblance with

our scheme as they rely on the bit decomposition of the inputs,

and compute equality of bits and aggregate them. Other schemes

rely on the extraction of the most significant bit of the difference

of both inputs [4, 20].

When implemented with secret sharing, ABB-schemes have a

very fast local computation and allow unconditional security. They

support several parties (more than 2), where parties have symmetric

role in the protocol, i.e. each party perform the same computation

on secret-shared inputs. However, they also require an offline phase

to generate so-called Beaver triples; they require secure channel

to avoid share reconstruction by an eavesdropper; they usually

run in asymptotically multiple rounds, which can affect the overall

performance.

Our scheme is secure as long as the underlying encryption

scheme is secure. We support only 2 parties, where each has a

specific role: one party (server or evaluator) evaluates the tree and

the other one (client or decryptor) decrypts the result. We do not

need an offline phase, but only a one-time setup phase, where the

decryptor generates a pair of private and public key and publishes

the public key. We do not require a secure channel as each message

is already encrypted. We have exactly a single round, where the

client sends its encrypted input to the server and gets an encrypted

result. An overview comparison is summarized in Table 5.

[4, 20, 39] Ours

Primitive ABB HE

Security unconditional computational

of Parties multiple two

Role of Parties symmetric asymmetric

Offline Phase yes no

Secure Channel yes no

Rounds multiple 1

Crypto symmetric asymmetric

Table 5: Summary of Comparison to ABB-based Schemes

G EVALUATION OF DECISION TREES
A decision tree (DT) is a common and very popular classifier that

consists of decision nodes, each marked with a test condition, and

leaf nodes, each marked with a classification label. Each test condi-

tion is actually a GT or LT comparison between a threshold value

and an attribute of the input to be classified. In a private DT setting,

a server holds a private tree model and a client holds a private

attribute or feature vector. The goal is to classify the client’s input

using the server’s model such that the result of the classification is

revealed only to the client and nothing else is revealed neither to

the client nor the server. Wu et al. [51] and Tai et al. [42] proposed

a private DT protocol, that uses the DGK comparison and AHE.

We implemented the private decision tree protocol of Tai et al.

[42] in Java. Our implementation is not optimized and focuses on

the main computation (GT comparison of features and thresholds,

and paths aggregation), i.e., we ignored e.g. zero-knowledge proof,

compression of elliptic curve points or network communication.

We then evaluated the decision tree protocol instantiating the GT

comparison with DGK [18], Veugen [49] and our scheme and ob-

served a performance result comparable to Table 3. Basically, one

can expect an improvement proportional to the number of com-

parisons. The result averaged over 100 runs is shown in Table 6

for a decision tree with depth 𝑑 = 17, number of decision nodes

𝑚 = 58 and number of features 𝑛 = 57, which corresponds to the

parameters of the Spambase dataset as in [42, 45, 47, 51]. We used

bitlength ` = 8, 16, 32, 64, 128 for the features and thresholds.

` = 8 ` = 16 ` = 32 ` = 64 ` = 128

DGK [18] 3084.70 4234.50 7218.10 11981.80 27707.70

Veugen [49] 1994.00 2557.90 4525.40 8100.80 20254.50

Ours 1875.90 2472.00 4052.30 7512.80 17663.60

Table 6: Performance Comparison of Running Time (in ms) for PDTE

487

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Definitions
	5 Our Protocol
	5.1 Intuition
	5.2 Data Structure
	5.3 Algorithms

	6 Extension
	6.1 Handling Comparison to Zero for AHE in the Constant Case
	6.2 Shared Output Bit
	6.3 Handling Encrypted Inputs
	6.4 Handling Encrypted Inputs under AHE
	6.5 Less Than (LT) Comparison

	7 Analysis
	7.1 Number of Operations
	7.2 Complexity for FHE
	7.3 Complexity for AHE

	8 Evaluation and Implementation
	8.1 Optimized Implementation
	8.2 Setup Environment
	8.3 Results

	9 Applications
	10 Conclusion
	References
	A Postponed Proofs
	B Algorithms for FHE Instantiation
	C Analysis Number of Multiplications
	D Iterative Products Computation
	E Choice of AHE Scheme
	F Most Recent Work
	G Evaluation of Decision Trees

