
Save The Implicit Flow? Enabling Privacy-Preserving RP
Authentication in OpenID Connect

Maximilian Kroschewski

Hasso Plattner Institute, University of Potsdam

maximilian.kroschewski@hpi.de

Anja Lehmann

Hasso Plattner Institute, University of Potsdam

anja.lehmann@hpi.de

ABSTRACT
OpenID Connect (OIDC) is a Single Sign-On (SSO) protocol that

allows users to authenticate to various Relying Parties (RPs) via

an Identity Provider (IdP). The main drawback of SSO is its lack

of privacy, as the IdP learns the RP’s identity at each user’s login.

OIDC supports several protocol flows, of which only one, the Im-

plicit Flow, gives hope for any privacy, as it does not require direct

communication between the IdP and RP. This design was initially

intended for RPs with technical limitations that prevent them from

storing credentials and thus authenticating to the IdP. However, RP

authentication is crucial to ensure that users only access properly

registered RPs. As a result, the Implicit Flow is being discussed to

be excluded from the OAuth specification on which OIDC is based.

This paper demonstrates a privacy-preserving approach incorpo-

rating RP authentication into the Implicit Flow. The IdP can restrict

its service to authenticated RPs and tie each authentication token to

a specific user and RP without acquiring knowledge of which user

is accessing which RP. We formally define the desired security and

privacy properties of such an authenticated Implicit Flow, propose

a provably secure construction from generic building blocks, and

report on an implementation of our scheme.

KEYWORDS
single sign-on, openid connect, privacy, authentication

1 INTRODUCTION
Users authenticate to online applications still predominantly by

sending a username 𝑢𝑖𝑑 and password to the authenticating party.

It is well-known that this has severe limitations for security: users

are required to manage numerous access credentials, which likely

leads to password reuse or the usage of weak passwords [3, 25, 36].

It also requires the application to store large password databases

and verify them on authentication securely.

An approach that significantly improves security (and usabil-

ity) for both users and applications is Single Sign-On (SSO). This

approach adds a third party for authentication between the user

and the application: the Identity Provider (IdP). Instead of authenti-

cating directly to the application, users authenticate to an IdP, as

shown in Figure 1. The IdP then sends proof of the user’s identity

back to the application, also referred to as a Relying Party (RP). This

proof comes in the form of a token 𝜏𝑖𝑑 . It typically is a standard

signature under the IdP’s public key on the user’s identity and some

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(4), 96–116
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0100

User RP

IdP

(1) Login uid@IdP

(2) Auth. uid for rid
(5) Token 𝜏id

(3) Consent for rid

(4) Auth.

(6) Exchange 𝜏id for

(rid, authRP)
(7) Token 𝜏id

′

Registered

(uid)
Registered

(rid)

Figure 1:Authentication to anRP in theOIDCprotocol. The user/RP
must have previously registered with the IdP.

context information, binding the token to a particular session. The

most widely used SSO protocol on the Internet is OpenID Connect

(OIDC) [39, 41], which extends the OAuth 2.0 framework [26] to

provide user authentication. SSO services are becoming increas-

ingly prominent, particularly with large social media or consumer

device enterprises, such as Microsoft, Google, or Apple serving as

IdPs [17, 18, 32].

Security and privacy in SSO. In terms of security, users benefit

from SSO as they only have to remember the access credential for

the IdP, and RPs must not manage large password databases any-

more but instead fully rely on the IdP for authentication. However,

standard SSO also comes with risks, mainly because the IdP is a

single point of failure that needs to be fully trusted. A particular

drawback in SSO is its lack of user privacy, as the IdP learns every

authentication request and thus is aware which RPs the user ac-

cesses when and in what frequency. Thus, while users might choose

SSO for convenience, they pay by making all their online activi-

ties available to the IdP. Another slightly more subtle challenge is

basing all RPs authentication security on the security of a single

entity. If the IdP is corrupted, then the authentication towards all

dependent RPs is also compromised.

Several proposals aim to improve these privacy and security

limitations while preserving the convenience of SSO, such as [2, 19,

24] for hiding the users’ access patterns towards the IdP and [1, 5]

that provide better security by distributing the role of the IdP.

All these improved proposals have in common that they crucially

rely on a particular form of SSO that is user-centric: the so-called

Implicit Flow. This flow is necessary for achieving any form of

privacy and supporting distributed IdP settings.

Implicit Flow — User-centric SSO for privacy? OIDC offers two

main variants to provide a token to an RP, the Authorization Code
Flow and the Implicit Flow. A third variant is the Hybrid Flow, which
combines both. We detail these variants in Figure 2. In the Autho-

rization Code Flow, the IdP directly communicates with the RP that

96

https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0100

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

the user wishes to authenticate. In contrast, in the Implicit Flow, no

communication between the IdP and RP is necessary. That is, the

IdP sends a token to the user, who forwards the token to the RP.

Clearly, in the Authorization Code Flow, there is no hope for

achieving any user privacy in the sense of hiding the user’s access

patterns. However, interestingly the Implicit Flow does not allow

for such privacy by default either: While the Implicit Flow does not

require direct communication between the IdP and RP, the IdP is still

required to learn the RP’s identity, according to its specification. The

reason is that the token issued by the IdP is supposed to be bound

to the particular RP the user requests. Thus, the OIDC standard still

assumes the user to send this RP identifier 𝑟𝑖𝑑 to the IdP, such that

the IdP can sign the identifier as part of the token.

Resolving this problemwas one of the core contributions of Ham-

mann et al. [24] that propose a new Implicit Flow variant — which

they call Privacy OIDC, or POIDC in short — where the user only

sends a cryptographic commitment on 𝑟𝑖𝑑 to the IdP. This approach

allows hiding the 𝑟𝑖𝑑 towards the IdP, but by signing the commit-

ment, the IdP can still bind the token to the targeted RP.

RP authentication in OIDC. While the POIDC protocol by Ham-

mann et al. now allows for a truly privacy-friendly use of the Im-

plicit Flow, it amplifies another more fundamental problem of this

OIDC variant — the lack of RP authentication.

In OIDC, users and RPs must register with the IdP. During this

RP registration, the RP provides a set of metadata and operational

information, which allows the IdP to check that the RP is a legit-

imate service and, for example, indeed owns the web domains it

claims. Upon successful registration, the RP receives a unique iden-

tifier called 𝑟𝑖𝑑 . This identifier is associated with the registered

metadata and an authentication method that later allows the RP to

provide proof of registration to the IdP denoted by 𝑎𝑢𝑡ℎ𝑅𝑃 .

In the Authorization Code Flow, RP authentication is mandatory,

i.e., when a user initiates an authentication session to an RP, the

RP must properly authenticate to the IdP as 𝑟𝑖𝑑 via the registered

authentication method. However, RP authentication is not specified

in the Implicit Flow, i.e., the RP cannot provide proof to the IdP

that it initiated the request, making this variant much more prone

to phishing attacks. In fact, the Implicit Flow was initially mainly

aimed at RPs with no secrets. If ones assume RPs to have secrets, RP

authentication can easily be added to the Implicit Flow by letting the

RP send proof, via the user, that it initiated the user’s authentication

request. This proof can be a signature from the RP on the user’s

request. This is similar to the approach enabled by the Hybrid Flow.

While beneficial for security, this addition now destroys any

privacy again as the authentication of the RP reveals its identity

towards the IdP as part of the authentication, making all the user’s

interactions traceable by the IdP.

The need for a new Implicit Flow. Based on these contradicting

design decisions, the upcoming OAuth framework specification, on

which OIDC is based, omits the Implicit Flow and emphasizes the

exclusive use of the Authorization Code Flow [27, 30]. Abandoning

the Implicit Flow would clearly be detrimental to user privacy in

SSO, as the Authorization Code Flow rules out any hope for privacy

already on the communication level. This development leaves us

with the following urgent question:

How can we improve the Implicit Flow to allow for RP authentica-
tion while preserving the privacy benefits of this flow, i.e., without
revealing the identity of the RP to the IdP?

On a more practical level, adding such RP authentication is be-

coming much more important when offering user privacy: If users

are not paying with their data anymore, the IdP needs another

source of revenue. It would only be fair if users and RPs were pay-

ing for the service the IdP provides. However, this change requires

the IdP to limit its services to registered RPs only.

1.1 Contributions
We answer the previous question by proposing the Authenticated

Implicit Flow (AIF), a new Implicit Flow variant that supports ex-

plicit yet privacy-preserving RP authentication. In this new flow, all

communication is still routed through the user, but the IdP is able

to ensure that the user is authenticating to a registered RP and to

blindly bind the issued token to the requested RP without learning

its identity. We start by providing a formal game-based model for

all desired security and privacy properties. This model enables us to

formally analyze and compare the existing works (or rather slightly

extended versions thereof), i.e., OIDC’s Implicit Flow, POIDC [24],

and show that none achieves all properties simultaneously. We

then propose a new protocol, prove its security in our model, and

compare its efficiency to the aforementioned solutions.

Formal security model. Our work introduces and formally defines

a new OIDC variant, the Implicit Flow with RP authentication. The

first challenge is to formalize the multi-message protocol run by

three different entities in a generic syntax: the specified algorithms

must closely follow the OIDC’s communication model and be broad

enough to capture the two existing and our new protocol, all being

somewhat different in their cryptographic setup and achieved prop-

erties. At the same time, the system model and algorithms must

be specific enough to express meaningful and (hopefully) easily

digestible security properties. In the end, our model comprises 7

algorithms and 2 interactive protocols, running in 4 different phases

of the protocol.

The next challenge is to identify and formalize the desired se-

curity properties for our privacy-preserving AIF. The properties
must balance two seemingly conflicting needs: on the one hand,

RP authentication should be done blindly towards the IdP; on the

other hand, our system must still ensure proper authentication and

correct binding of the IdP’s blindly issued tokens. (Note that we do

not model or propose how the user authenticates towards the IdP

but assume that the IdP will only issue tokens for a 𝑢𝑖𝑑 when the

user has provided sufficient authentication.) We capture proper RP

authentication through the first two properties stated below and

privacy as RP Hiding:

RP Accountability: An IdP can verify that an authentication re-

quest was initiated by a registered RP.

RP Session Binding: A token is immutably bound to the context

in which it was issued, in particular to the RP authorized to make

the request.

RP Hiding: An IdP receiving an authentication request cannot

learn the RP’s identity.

97

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

While these properties might be rather clear on an intuitive level,

capturing them in a formal model is the core challenge of this work.

Our security model is given in a game-based form, where the ad-

versary needs to be given access to the multitude of algorithms and

interactive protocols (when run by honest parties) and also be able

to corrupt as many entities as possible. For both authentication-

related properties, this meant finding a good balance between al-

lowing corrupt behavior of RPs and still expressing strong security

properties that take the inherent security “loss” stemming from

blind authentication into account. This search for a good security

model also led to the decision to explicitly model epoch-based cre-

dential renewal as part of the system, as this allows to capture

corrupt RPs without losing all security: the security loss can then

be contained to only the epochs in which an RP is corrupt and still

legitimately registered. Thus, our system also implicitly includes a

form of revocation, further adding to the complexity of our model.

Constructions. Our formal model for OIDC with RP authentica-

tion now allows to analyze existing protocols and improve the state

of the art. Table 1 provides a comparison of the different schemes

and their properties. We start by phrasing the native Implicit Flow,

extended with simple signature-based RP Authentication (building

upon the OIDC specification), as an instantiation AIFSIG of our

generic model. When a user wants to authenticate towards a partic-

ular RP, this RP signs the user’s request and lets the user forward

the signature to the IdP.While trivially satisfying RP Accountability

and RP Session Binding, this approach clearly does not allow for

any privacy.

Next, we capture the POIDC protocol [24] by Hammann et al. as

AIFCOM in our model and provide the first formal security analysis

of this protocol. Recall that therein tokens get blindly issued for

a particular RP by letting the IdP only sign a commitment of the

RP’s identity 𝑟𝑖𝑑 . This protocol achieves the RP Hiding property

but does not provide RP Accountability and only partially satisfies

RP Session Binding.

We finally present our new protocol AIFZKP and prove that it

satisfies all three properties simultaneously. The new scheme builds

upon AIFCOM, i.e., the IdP again only signs a commitment of the 𝑟𝑖𝑑

in the token. To provide RP authentication, we introduce (epoch-

based) credentials containing the IdP’s signature on the RP’s 𝑟𝑖𝑑

and some epoch 𝑒𝑝 . When a user wishes to authenticate to an RP,

the user creates a commitment for 𝑟𝑖𝑑 and asks the RP to prove

that it owns a credential for that identity in the applicable epoch.

The user and RP both know the opening to the commitment, al-

lowing the user to check that the RP’s identity is indeed correct.

However, the IdP will only receive a zero-knowledge proof for the

committed identity and corresponding credential, i.e., it can verify

that a registered RP is requesting the authentication but not which.

Still, by signing the commitment, the IdP’s signature is bound to

the explicit 𝑟𝑖𝑑 again. We formally prove that AIFZKP achieves all

security and privacy properties under standard assumptions.

Implementation and comparison. We further provide an imple-

mentation of AIFZKP and compare its efficiency with the two exist-

ing protocols,AIFSIG andAIFCOM. Our implementation instantiates

the AIFZKP scheme with PS signatures [38] for the epoch-based

credentials and combines them with Pedersen commitments [37].

Our performance evaluation of AIFZKP on two reference devices

Protocol RP Acc. RP Sess. Bin. RP Hiding

AIFSIG ✓ ✓

AIFCOM (✓) ✓

AIFZKP ✓ ✓ ✓

Table 1: Comparison of (partially) satisfied security properties of
AIFSIG – Implicit Flow with standard signatures, AIFCOM – adapted
POIDC [24], and our AIFZKP protocol. See Section 5 for a security
analysis and Section 6 for a performance evaluation of all schemes.

for the different parties shows that it takes 9 milliseconds (ms) to

create an RP authentication request and only 19ms for the IdP to

verify it. The corresponding token finalization on the user device

takes at most 9ms.

1.2 Other Related Work
Enhancing privacy in SSO has been a lively research area, either

aiming to conceal the user’s access patterns from the IdP or hiding

user information from corrupt RPs. These efforts crucially rely on

a privacy-preserving communication pattern, such as the Implicit

Flow. However, none of these proposals detail how their novel

protocols would be incorporated into SSO or address the RP au-

thentication aspect. Nonetheless, we provide a brief overview of

all (somewhat) related works for completeness and to motivate our

pursuit to rescue the Implicit Flow.

The SPRESSO [19] system, inspired by Mozilla’s discontinued

service BrowserID [34], provides a new SSO-like protocol where

the IdP does not learn the RP’s identity during an authentication

session and also separates the communication between the RP and

IdP, similar to the Implicit Flow. However, SPRESSO developed an

entirely new protocol, whereas our goal is to be as OIDC-compliant

as possible. Furthermore, a dedicated design choice of SPRESSOwas

to be an open system, in the sense that the user can authenticate to

any RP without requiring any previous registration of the RP with

the IdP. This contrasts our work, which requires RP registration

(as demanded by OIDC) and focuses on privacy-preserving RP

authentication.

PRIMA [2] and EL PASSO [42] propose user-centric SSO variants

that combine classic SSO with (privacy-preserving) attribute-based

credentials. In both protocols, the IdP issues short-term credentials

to the user, which the user can independently show to RPs. This

clearly provides the desired RP Hiding (as the IdP is no longer

involved in the actual RP-specific authentication) but also makes

any RP authentication impossible. That is, the IdP cannot limit

its services to registered RPs. Moreover, both are entirely new

protocols and rather SSO hybrids but incompatible with the current

OIDC communication setting.

PseudoID [15] focuses on hiding the user’s unique identity (and

attributes) from the RP by having users obtain the IdP’s signature

on a blinded pseudonym and authenticate to an RP with the un-

blinded token. Neither RP authentication nor any binding of the

RP’s identity in an IdP’s token has been considered in this work,

i.e., it tackles an orthogonal aspect of privacy than our work, but

also relies on an SSO setting that does not require direct interaction

between the IdP and RP.

Other recent SSO security improvements utilize distributed IdP

roles, with protocols like PASTA [1] and PESTO [5] ensuring un-

forgeable tokens and secure user passwords as long as not all IdPs

98

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

are corrupted. These protocols do not address privacy concerns but

also require the Implicit Flow to function: the user-centric message

flow is needed as the user must interact with multiple IdPs and

combine their contributions into a standard authentication token

to be sent to the RP.

In conclusion, the only truly related works to our work on

privacy-preserving RP authentication are the actual Implicit Flow

with additional RP authentication as enabled in the OIDC specifi-

cation [41] and the POIDC protocol by Hammann et al. [24]. For

both, we provide an in-depth analysis: Section 5 formally analyzes

their security and privacy properties in our model, and Section 6

compares the efficiency of our new protocol with both previous

approaches.

2 BACKGROUND & BUILDING BLOCKS
In the first part of this section, we provide an overview of OIDC, fo-

cusing on RP registration and authentication. We discuss the token

structure, its authentication protocols, and how RP authentication

is handled in each variant. We then assess the native realization of

RP Accountability, RP Session Binding, and RP Hiding in each pro-

tocol. In the second part, we present the necessary cryptographic

building blocks needed in the studied protocols.

2.1 RP Authentication in OIDC
To enable RP authentication, eligible parties must first register with

the IdP. The RP registration ensures that all protocol configurations

and RP-related information (name, legal information, picture) are

stored with the IdP. This information is then linked to the unique

RP identifier 𝑟𝑖𝑑 . In the subsequent protocol, an RP must always

provide 𝑟𝑖𝑑 to enable the IdP to look up the stored information,

which is then, for example, used for the user consent dialog.

One aspect of the RP’s configuration is its authentication method.

In contrast to OAuth, which only specifies symmetric keys for RP

authentication, OIDC specifies standard signatures for this pur-

pose [40]. With that, an RP registers its signature public key 𝑟𝑝𝑘

with the IdP and provides a signature in its authentication request

𝑎𝑢𝑡ℎ𝑅𝑃 , which is generated with its private key 𝑟𝑠𝑘 .

Once the requested RP and the user have authenticated to the

IdP, a token is issued by the IdP to authenticate the user to the RP.

Before delving into the various RP authentication protocols, we

will briefly overview the exchanged token structure.

Identity token. The token that authenticates a user to an RP

is a signed and short-lived JSON Web Token (JWT) [28], called

an identity token. We denote this token by 𝜏𝑖𝑑 , which is the IdP’s

signature on the tuple (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑛, 𝑐𝑡𝑥) for a user 𝑢𝑖𝑑 , nonce 𝑛, and
context 𝑐𝑡𝑥 , holding a timestamp and requested user information.

This signature results from a standard signature scheme and can

be verified using the IdP’s public key 𝑖𝑝𝑘 . The successful signature

verification authenticates a user to the RP 𝑟𝑖𝑑 .

RP authentication protocols. OIDC extends three OAuth protocols:

the Implicit Flow (IF), Authorization Code Flow (ACF), and Hybrid
Flow (HF). The latter is a seamless fusion of the IF and ACF, enabling

an RP to directly obtain an identity token and request an additional

token later. Figure 2 illustrates the two main flows, IF and ACF.

The IF is designed for RPs that cannot store credentials, resulting

in 𝑎𝑢𝑡ℎ𝑅𝑃 being empty and an identity token being directly issued

via the front-channel, referring to communication through the user.

Conversely, in the ACF, RPs are assumed to safeguard their creden-

tials. Thus, they can authenticate their initial request with 𝑎𝑢𝑡ℎ𝑅𝑃
using standard signatures. This flow then grants a temporary autho-
rization code 𝜏𝑎𝑐 that is later exchanged for an identity token over

the back-channel, referring to direct communication between the

RP and IdP, with the RP authenticating to the IdP. By combining

both flows, the HF enables using the IF in conjunction with RP

authentication via standard signatures. We will leverage this as the

basis for our AIFSIG construction.

Note that we simplify the protocol description in two ways.

Firstly, we omit redirection information passed between the RP and

IdP in steps (2)-(3) and (7)-(8). We elaborate on this in Section 6.2.

Secondly, we do not introduce OAuth access token that allow RPs to

query further user information, as this conflicts with our privacy

objectives and sole focus on authentication via OIDC.

Security and privacy of native OIDC. We now examine the secu-

rity and privacy properties achieved by the IF and ACF in relation

to RP authentication. Our primary objectives are to ensure that the

IdP can verify that a valid RP initiated the authentication request

(RP Accountability), that an identity token is bound to the session

of an authorized RP (RP Session Binding), and that the IdP does not

learn the requested RP’s 𝑟𝑖𝑑 (RP Hiding).

RP Accountability: The IF does not provide any RP authentica-

tion, while ACF ensures accountability as an RP authenticates

with the IdP during the initial request or token exchange.

RP Session Binding: In all flows, the signed identity token in-

cludes the RP’s 𝑟𝑖𝑑 , the user 𝑢𝑖𝑑 , a nonce 𝑛, additional user

context, and operational information. The IdP’s signature on

these values ensures its binding — particularly to the 𝑟𝑖𝑑 . The

fact that the IdP always receives the (authenticated) 𝑟𝑖𝑑 allows

for verifying that the RP is registered. But due to the absence of

any RP authentication in the IF, RP Session Binding only holds

if all users and all RPs are honest, i.e., the IdP can rely on the

correctness of the provided 𝑟𝑖𝑑 .

RP Hiding: None of the flows provide a mechanism for hiding

the RP identity from the IdP. The users’ access patterns become

evident to the IdP by simply recording the 𝑟𝑖𝑑 that all protocols
provide in their initial request.

In conclusion, the Implicit Flow offers a privacy advantage as

all messages are proxied through the user, which prevents direct

communication between the RP and IdP, limiting the amount of

information disclosed to the IdP. Throughout the rest of this paper,

we will leverage this variant and present a scheme that meets all

three security properties.

2.2 Building Blocks
This section introduces the building blocks necessary for all con-

sidered constructions. Let ^ ∈ N denote the security parameter. We

use ⊥ to indicate a failure, and an empty string is denoted by 𝜖 .

Commitment scheme. We denote COM := (Commit,Open) as
a commitment scheme as with message space SCom. Let (𝑜, 𝑐) ←
Commit(𝑚) denote a commitment 𝑐 and opener 𝑜 to message𝑚 ∈

99

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

RP User IdP

(1) Initiate protocol

(2) (rid, n, authRP)
(3) (rid, n, authRP)

(5) User consent

(6) User authentication

(7) 𝜏id
(8) 𝜏id

(12) Authenticated

(4) Vf. RP

(11) Vf. 𝜏id

Init. & RP auth.

Front-Channel

RP User IdP

(1) Initiate protocol

(2) (rid, n, authRP)
(3) (rid, n, authRP)

(5) User consent

(6) User authentication

(7) 𝜏ac
(8) 𝜏ac

(12) Authenticated

(4) Vf. RP

(11) Vf. 𝜏id

(9) (rid, authRP, 𝜏ac)
(10) 𝜏id

Init. & RP auth.

Front-Channel

Back-Channel

Figure 2: OIDC authentication protocols: Implicit Flow (IF) on the left, Authorization Code Flow (ACF) on the right.

SCom. The algorithm Open(𝑚,𝑐, 𝑜) returns 1 if the commitment is

valid and 0 otherwise. We require COM to be hiding and binding.
A simple instantiation of commitments is 𝑐 ← H(𝑜,𝑚), where

H is a hash function (modelled as random oracle) and 𝑜 a random

string. Such an instantiation will be sufficient for POIDC, resem-

bled as construction AIFCOM. Our new protocol AIFZKP requires a

commitment scheme with an algebraic structure, for which we will

use Pedersen commitments [37].

Zero-knowledge proofs. We denote generic non-interactive zero-
knowledge proofs of knowledge of a witness𝑤 , such that the state-

ment 𝑠 (𝑤) is true, as 𝜋 ← NIZK{(𝑤) : 𝑠 (𝑤)}(𝑐𝑡𝑥), where the proof
𝜋 is immutably bound to some context 𝑐𝑡𝑥 . We require these proofs

to be zero-knowledge and simulation-sound extractable [23]. The
latter states that even after the adversary has seen simulated proofs

on arbitrary statements in a security experiment, if it constructs

a new valid proof on any statement, then the environment of the

adversary can extract the proof witness using extractor Ext. Due to
the zero-knowledge property, there exists a simulator Sim that can

be used to create verifiable NIZKs without knowing their witness.
For concrete DL-based realizations of NIZKs, i.e., generalized

Schnorr-signature proofs [12], we will use the Fiat-Shamir heuris-

tic [20] to make them non-interactive, where 𝑐𝑡𝑥 is included in the

challenge hash. These proofs are well-known to satisfy the required

properties of zero-knowledge and simulation-sound extractability

in the random oracle model.

Standard signature scheme. A standard signature scheme is de-

fined as SIG := (KGen, Sign,Vf) consisting of the key genera-

tion algorithm (𝑠𝑘, 𝑝𝑘) ← KGen(1^), signing algorithm 𝜎 ←
Sign(𝑠𝑘,𝑚) for messages 𝑚 ∈ SSig, and verification algorithm

0/1← Vf (𝑝𝑘,𝑚, 𝜎). We will need SIG to satisfy the standard Exis-

tential Unforgeability under Chosen Message Attack (EUF-CMA)

security, the definition is given in App. A. In our instantiation, we

will use RSA signatures for compatibility with existing standards.

Multi-message signature scheme. This variant MMS := (Setup,
KGen, Sign,Vf) extends standard signatures to sign a message vec-

tor
⇀
𝑚 := (𝑚1, ...,𝑚ℓ) ∈ SℓMMS at once. It consists of Setup(1

^) that
outputs the public parameter 𝑝𝑝 . The key generation algorithm

KGen(𝑝𝑝, ℓ) takes 𝑝𝑝 , the message vector dimension ℓ , and returns

the key pair (𝑠𝑘, 𝑝𝑘). Sign(𝑠𝑘,⇀𝑚) now creates the signature 𝜎 on

the message vector
⇀
𝑚 , and 0/1← Vf (𝑝𝑘,⇀𝑚,𝜎) verifies them.

We needMMS to satisfy the MMS-EUF-CMA security definition

which is a straightforward extension of the standard unforgeability:

the adversary wins if it forges a valid signature 𝜎∗ on a fresh
⇀
𝑚∗,

which was not queried to the Sign-oracle before. For completeness,

the definition is given in App. A.We also require thatMMS supports
the creation of efficient NIZKs (defined next) that prove a valid

signature 𝜎 on
⇀
𝑚 := (𝑚0,𝑚1) w.r.t. 𝑝𝑘 while revealing only𝑚1 and

not revealing any information about the signature 𝜎 or message

𝑚0 : NIZK{(𝜎,𝑚0) : Vf(𝑝𝑘, (𝑚0,𝑚1), 𝜎) = 1}(𝑚1).

Multi-message signatures with committed identities. We will com-

bine multi-message signatures with commitments in our new con-

struction AIFZKP. For that, we extend the previous notation and de-

note aNIZK that proves knowledge of a signature 𝜎 ← Sign(𝑠𝑘,⇀𝑚)
on message vector

⇀
𝑚 := (𝑚0,𝑚1) and an opener 𝑜 for commitment

(𝑜, 𝑐) ← Commit(𝑚0) with

NIZK{(𝜎,𝑚0, 𝑜) : Vf (𝑝𝑘, (𝑚0,𝑚1), 𝜎) = Open(𝑚0, 𝑐, 𝑜) = 1}(𝑚1, 𝑐)

which proves knowledge of a signature 𝜎 on
⇀
𝑚 under 𝑝𝑘 and an

opener 𝑜 that successfully opens the commitment 𝑐 to the signed

message𝑚0. The proof thereby only reveals message𝑚1 and the

commitment 𝑐 .

The underlying idea is similar to anonymous credentials and

group signatures [6, 7, 14, 16], which also follow the sign-and-
encrypt-and-prove paradigm where users authenticate by proving

knowledge of a membership credential. While the core idea is the

same, there is a subtle but crucial difference: we require the au-

thentication or rather verification to be available “in parallel” in

two types. Anyone who only knows the proof and commitment

can verify that a valid group member created the signature. If a

verifier additionally receives the opening, it also learns the identity

of the signer. None of the existing group signatures or anonymous

credentials support this feature out of the box, i.e., we could not

use them as a building block but instead built this tailored variant

from scratch.

In our instantiation, we will use PS signatures [38] for theMMS
scheme, which supports all required features.

100

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

3 AUTHENTICATED IMPLICIT FLOW
This section formally defines our proposal for an Authenticated

Implicit Flow scheme AIF that supports privacy-preserving RP au-

thentication towards the IdP. That is, even without learning the

identity of the RP, the IdP can ensure that the user authenticates

to a valid RP while still being able to bind the RP’s identity to the

issued token.

A scheme enabling fully blind RP authentication cannot achieve

RP Accountability if a single RP is corrupt, unless revocation is also

used. We opted for a renewal-based approach to model such revoca-

tion, which we motivate first. We then outline our scheme’s general

procedures and formalize the security and privacy properties.

RP revocation via short-lived credentials. We want to define and

realize meaningful security properties for RP authentication, in-

cluding the possibility of corrupt RPs. In a fully privacy-preserving

scheme where RP authentication happens blindly, a single corrupt

RP can undermine the desired accountability — unless revocation is

used. Therefore, we need to include such revocation in our model.

To be compatible with blind authentication would require privacy-
preserving revocation in any concrete instantiation. Such solutions

exist [4, 8, 13, 35] but would incur significant efficiency penalties

for every (privacy-preserving) scheme. While acceptable from an

academic perspective, our goal is to provide a viable solution for

real-world deployment.

We thus opt to model revocation by making the credentials the

RPs receive short-lived and requiring them to be updated regularly.

We phrase this with epoch-based credentials and a dedicated renewal
process in our syntax, following previous works [10, 11, 29]. While

this makes the syntax and model more complex — we need to define

and capture this renewal process and epochs now— this later allows

for very simple and highly efficient realizations.

Roughly, the idea for using epoch-based credentials for revoca-

tion is as follows: The membership credentials, determining which

RP is allowed to use the IdP’s service, are now bound to an epoch
𝑒𝑝 and need to be renewed for every new epoch. The benefit of this

renewal process is that it is independent of a concrete user session,

i.e., there is no need for privacy here. The IdP learns the RP’s 𝑟𝑖𝑑 in

every renewal request and can determine whether this RP is eligible

for a new credential. In concrete deployment, the IdP will maintain

a black- or whitelist of 𝑟𝑖𝑑’s to determine which RPs are allowed to

use its service, e.g., depending on their paid membership status or

reports of misbehavior.

The revocation occurs as every RP authentication in a concrete

user session must provide proof of a valid credential for the current

epoch. That is, if an RP 𝑟𝑖𝑑 is recognized as malicious in some epoch

𝑒𝑝 and supposed to get revoked, the IdP will not issue the RP a new

credential in 𝑒𝑝+1 (or any subsequent epoch), and thus this RP loses
the capability to perform such proofs. It is desirable to make the

epochs relatively short for effective revocation, e.g., require updates

daily or weekly. Given that renewal does not require privacy, the

instantiations are very efficient and thus can easily be performed

in high frequency.

3.1 System Overview
In our AIF system, the IdP is the central entity to issue identity

tokens of user 𝑢𝑖𝑑 towards several RPs. For setup, the IdP runs

RP User IdP

((rsk,rpk),M′)←⟨Join,Reg⟩

(cred,M′)←⟨CredReq,CredIss⟩

(pubU,privU)←AInit(...)

authRP←AReqRP(...)

𝜏←AResIdP(...)

𝜏id←AFin(...)

0/1←Vf (...)

(pubU,privU,uid)

(n,pubU,authRP) (n,pubU,authRP)(n,pubU,authRP)
𝜏

𝜏id

0/1

Registration (required once)

Credential Issuance (required for each epoch)

Authentication & Verification

Figure 3: Overview of the different phases of an AIF protocol.

SetupIdP to generate a key pair ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) from the public pa-

rameters 𝑝𝑝 . All entities in the system receive 𝑖𝑝𝑘 , and the tokens

issued by the IdP will get verified against that public key.M de-

notes the state in which the issuer maintains the RP memberships.

The procedures that are required to enable our security and privacy

goals can be described along the following four phases, which are il-

lustrated in Figure 3. In the following, we give a high-level intuition

of these phases and present the detailed syntax in Section 3.2.

(1) Registration. Before an IdP can issue an identity token for an

RP, the RP must first register via the ⟨Join,Reg⟩ protocol. In this

process, an RP generates a key pair (𝑟𝑠𝑘, 𝑟𝑝𝑘) and provides the IdP

with the public key 𝑟𝑝𝑘 along with its identity 𝑟𝑖𝑑 . The IdP then

stores (𝑟𝑖𝑑, 𝑟𝑝𝑘) in the member stateM.

(2) Credential issuance and renewal. After registration, the RP
must receive an authentication credential 𝑐𝑟𝑒𝑑 for each epoch 𝑒𝑝

from the IdP. This issuance is handled via the ⟨CredReq,CredIss⟩
protocol. The authentication is based on the RP keys generated at

registration. We stress that there is no privacy need in this proce-

dure, and the IdP learns (and must learn) the RP’s identity 𝑟𝑖𝑑 in

this phase. To distinguish different sessions and ensure freshness in

each session, the protocol also gets a session identifier 𝑠𝑖𝑑 as input.

(3) Authentication. To authenticate to an RP, the user with 𝑢𝑖𝑑

executes AInitwith the corresponding 𝑟𝑖𝑑 , receiving (𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈).
The user sends these values and its 𝑢𝑖𝑑 to the RP, which creates

𝑎𝑢𝑡ℎ𝑅𝑃 for 𝑝𝑢𝑏𝑈 and 𝑐𝑟𝑒𝑑 to authenticate as the legitimate RP in

epoch 𝑒𝑝 . To ensure freshness, the RP provides a unique session

nonce 𝑛, assumed to be globally unique. The user forwards the

authentication request to the IdP.

When the IdP receives a request from a user𝑢𝑖𝑑 for a sessionwith

nonce 𝑛 and for an RP implicitly authenticated via (𝑝𝑢𝑏𝑈 , 𝑎𝑢𝑡ℎ𝑅𝑃),
it runs the algorithm AResIdP leading either to a token 𝜏 or ⊥
if the RP authentication fails. The token may include additional

information like timestamps and user attributes, denoted as 𝑐𝑡𝑥 .

We assume a out-of-band authentication between the user and IdP

so that AResIdP is only run for verified 𝑢𝑖𝑑 .

Note thatAResIdP does not receive 𝑟𝑖𝑑 as an explicit input, which
is necessary for achieving RP Hiding. However, 𝑟𝑖𝑑 is implicitly

contained in 𝑝𝑢𝑏𝑈 , authenticated through 𝑎𝑢𝑡ℎ𝑅𝑃 . To verify the

final token for a specific 𝑟𝑖𝑑 , we transform the token 𝜏 from the

101

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

IdP with the committed 𝑟𝑖𝑑 . The user accomplishes this using the

AFin algorithm with the private value 𝑝𝑟𝑖𝑣𝑈 generated during the

authentication request. The AFin algorithm takes all the received

information, including 𝑝𝑟𝑖𝑣𝑈 , as input and produces a final identity

token 𝜏𝑖𝑑 .

(4) Verification. The resulting token 𝜏𝑖𝑑 can be verified to ensure

its validity for the tuple (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑛, 𝑒𝑝) w.r.t. 𝑖𝑝𝑘 . This binds all
session information, user and RP identifiers explicitly together.

3.2 Syntax
An Authenticated Implicit Flow AIF is defined as a tuple of seven

algorithms and two (possibly) interactive protocols AIF := (Setup,
SetupIdP, ⟨Join,Reg⟩, ⟨CredReq,CredIss⟩,AInit,AReqRP,AResIdP,
AFin, Vf):

Setup(1^) → 𝑝𝑝 : Takes the security parameter ^ ∈ N and outputs

the public parameters 𝑝𝑝 , which are the implicit input for all

other algorithms.

SetupIdP(𝑝𝑝) → ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) : Returns the IdP’s keys, 𝑖𝑠𝑘 is

the secret key,M the membership state, and 𝑖𝑝𝑘 the public key.

⟨Join(𝑖𝑝𝑘, 𝑟𝑖𝑑),Reg(𝑟𝑖𝑑,M)⟩ → {((𝑟𝑠𝑘, 𝑟𝑝𝑘),M ′),⊥} : The RP

with 𝑟𝑖𝑑 executes the interactive protocol to register with the

IdP with 𝑖𝑝𝑘 . Upon success, the RP obtains its key pair (𝑟𝑠𝑘, 𝑟𝑝𝑘),
and the IdP outputs an updated member stateM ′. It returns ⊥
to indicate a failure.

⟨CredReq(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑟𝑠𝑘, 𝑠𝑖𝑑, 𝑒𝑝),CredIss(𝑟𝑖𝑑, 𝑖𝑠𝑘,M, 𝑠𝑖𝑑, 𝑒𝑝)⟩ → {(
𝑐𝑟𝑒𝑑,M ′),⊥} : The RP 𝑟𝑖𝑑 runs the interactive protocol with

the IdP with (𝑖𝑠𝑘, 𝑖𝑝𝑘) and a session nonce 𝑠𝑖𝑑 , unique for each

credential issuance. Upon success, the RP obtains its credential

𝑐𝑟𝑒𝑑 issued for epoch 𝑒𝑝 , and the IdP outputs its updated member

stateM ′. If the RP is not a valid member, it outputs ⊥.
AInit(𝑖𝑝𝑘, 𝑟𝑖𝑑) → (𝑝𝑟𝑖𝑣𝑈 , 𝑝𝑢𝑏𝑈) : Run by the user, returns the

public 𝑝𝑢𝑏𝑈 and private 𝑝𝑟𝑖𝑣𝑈 user output to initialize a token

request at 𝑟𝑖𝑑 to IdP with 𝑖𝑝𝑘 .

AReqRP(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑,𝑢𝑖𝑑, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝) → 𝑎𝑢𝑡ℎ𝑅𝑃 : Run

by the RP, creates an authentication request 𝑎𝑢𝑡ℎ𝑅𝑃 , requesting

a token in epoch 𝑒𝑝 from the IdP with 𝑖𝑝𝑘 for user 𝑢𝑖𝑑 and the

public 𝑝𝑢𝑏𝑈 and private 𝑝𝑟𝑖𝑣𝑈 user output, using its credential

𝑐𝑟𝑒𝑑 and a nonce 𝑛.

AResIdP(𝑖𝑠𝑘,M, 𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑎𝑢𝑡ℎ𝑅𝑃 , 𝑝𝑢𝑏𝑈 , 𝑛, 𝑒𝑝) → {𝜏,⊥} : Run by

the IdP, generates a token 𝜏 for user 𝑢𝑖𝑑 , nonce 𝑛, context 𝑐𝑡𝑥 ,

epoch 𝑒𝑝 , and public user output 𝑝𝑢𝑏𝑈 . The IdP can use 𝑎𝑢𝑡ℎ𝑅𝑃
and its member stateM to verify whether the request is intended

for a valid RP in epoch 𝑒𝑝 . If this verification fails, it returns ⊥.
AFin(𝑖𝑝𝑘, 𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝, 𝜏) → {𝜏𝑖𝑑 ,⊥} : Run by

the user, takes the 𝑟𝑖𝑑 and𝑢𝑖𝑑 , context 𝑐𝑡𝑥 , nonce 𝑛, public 𝑝𝑢𝑏𝑈
and private 𝑝𝑟𝑖𝑣𝑈 user output, epoch 𝑒𝑝 , and the token 𝜏 . It

outputs a final identity token 𝜏𝑖𝑑 or ⊥, indicating that the inputs
were not valid.

Vf (𝑖𝑝𝑘, (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑛, 𝑒𝑝), 𝜏𝑖𝑑) → 0/1 : Returns 1 if 𝜏𝑖𝑑 is valid

w.r.t. 𝑖𝑝𝑘 for the given 𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑛, 𝑒𝑝 , or 0 otherwise.

For a better overview, Figure 4 summarizes all previously intro-

duced abbreviations. Note that we denote the set of nonces asZ
and the set of epochs as T . The correctness of our scheme, utilizing

this notation, is given in App. B.

Abbreviations Description

𝑖𝑠𝑘, 𝑖𝑝𝑘,M IdP’s secret key 𝑖𝑠𝑘 , public key 𝑖𝑝𝑘 , member stateM
𝑟𝑖𝑑, 𝑟𝑠𝑘, 𝑟𝑝𝑘 RP’s identity 𝑟𝑖𝑑 , secret key 𝑟𝑠𝑘 , public key 𝑟𝑝𝑘

𝑢𝑖𝑑, 𝑐𝑡𝑥 User’s identity 𝑢𝑖𝑑 , context 𝑐𝑡𝑥 including user information

𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 Public and private user output in an authentication session

𝑠𝑖𝑑, 𝑛, 𝑒𝑝 Session nonces {𝑠𝑖𝑑, 𝑛} ∈ Z, epoch 𝑒𝑝 ∈ T
𝑐𝑟𝑒𝑑 Issued by the IdP to the RP and only valid for 𝑒𝑝

𝑎𝑢𝑡ℎ𝑅𝑃 Authentication data provided by an RP

𝜏 Token that is issued by the IdP

𝜏𝑖𝑑 Token finalized by the user and verified by the RP

Figure 4: Grouped abbreviation overview.

4 SECURITY MODEL
This section formally defines the security and privacy properties

expected from an AIF system, excluding user authentication from

our model and focusing solely on RP authentication. In summary,

we aim to ensure the following properties:

RP Accountability: An IdP can ensure that a valid RP initiates

an authentication request. AResIdP returns ⊥ if the request does

not originate from an RP that is properly registered (in the epoch

of the request).

RP Session Binding: Even though the IdP should not learn the

RP’s identity 𝑟𝑖𝑑 when responding to its authentication request,

the finalized identity token 𝜏𝑖𝑑 must be bound to the session in

which it was requested. In particular, this session includes the

RP’s 𝑟𝑖𝑑 authorized to make the request in epoch 𝑒𝑝 .

RP Hiding: Despite being able to verify that an RP authentication

request is intended for a valid RP, the IdP when performing

AResIdP, learns nothing about the RP identity 𝑟𝑖𝑑 .

4.1 Oracles
We now formalize the desired security properties in a game-based

manner, where an adversary A runs an experiment with a chal-

lenger. The challenger is in charge of all honest entities and main-

tains their private states, provided in Figure 5. The adversary can

interact with honest entities through the oracles, defined in Figure 6

and summarized below. All sets are initialized with ∅ and variables

with 1 when starting the game. We assume the session nonce 𝑠𝑖𝑑

an RP uses to re-authenticate to the IdP to be globally unique.

Register with an honest IdP. The following oracles model an ad-

versary’s ability to register honest and corrupt RPs with an honest

IdP. They will be available in the authentication-related properties

expressed by RP Accountability and Session Binding.

Join-Reg : Registers an honest RP by running ⟨Join,Reg⟩, storing
𝑟𝑠𝑘 in HRID[𝑟𝑖𝑑], and returning 𝑟𝑝𝑘 . It allows A to initialize

honest RPs and later request their authentication sessions.

Reg : Registers a corrupt RP by running Join with A, storing 𝑟𝑖𝑑

in CRID. It models an active attack on the registration with the

honest IdP, allowing A (as corrupt RP) to fully deviate from the

protocol and control all of the RP’s secret state.

CredReq-CredIss : Issues a credential 𝑐𝑟𝑒𝑑 for an honest 𝑟𝑖𝑑 in

the current epoch 𝑐𝑒𝑝 . It picks a session nonce 𝑠𝑖𝑑 , runs ⟨CredReq,
CredIss⟩ for 𝑟𝑖𝑑 , and stores 𝑐𝑟𝑒𝑑 in HRID[𝑟𝑖𝑑, 𝑐𝑒𝑝]. This oracle
allows A to steer the behavior of honest RPs and keep them

active in progressing epochs. A does not know any of the RPs

secret states unless it corrupts them via the CrptRP oracle.

102

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

CredIss : Issues a credential 𝑐𝑟𝑒𝑑 in the current epoch 𝑐𝑒𝑝 for a

corrupt RP. It picks a session nonce 𝑠𝑖𝑑 and runsCredIsswith the
adversary, who is free to deviate from the protocol and fully con-

trols the RP. If RP is properly registered, it puts 𝑟𝑖𝑑 inCRID[𝑐𝑒𝑝].
This will mark corresponding epochs and authentications therein

as trivial. Note that the oracle does not add 𝑟𝑖𝑑 to CRID[𝑐𝑒𝑝]
if the corrupt 𝑟𝑖𝑑 was not registered or the credential issuance

failed. This oracle models that an illegitimate acquisition of cre-

dentials through the renewal process is a valid attack strategy

in our authentication-related security games.

Register with a corrupt IdP. The following oracles model the

adversary’s ability – in the role of a corrupt IdP– to register honest

RPs and keep them active in progressing epochs. These oracles

are only available in our privacy-related RP Hiding game. The

adversary fully controls the IdP here and can arbitrarily deviate

from its protocol.

Join : Registers an honest RP by running the RP’s part of the Join
protocol with A. It stores 𝑟𝑠𝑘 in HRID[𝑟𝑖𝑑] and returns 𝑟𝑝𝑘 .

CredReq : Requests a credential 𝑐𝑟𝑒𝑑 for an honest RP in epoch

𝑐𝑒𝑝 . It runs the honest CredReq protocol with A and upon suc-

cess stores 𝑐𝑟𝑒𝑑 in HRID[𝑟𝑖𝑑, 𝑐𝑒𝑝].

Authentication with an honest party. The subsequent oracles

model the adversary’s ability to engage with an honest party for an

authentication session. The first two oracles modelA’s interaction

with an honest user or honest RP (possibly towards a corrupt IdP).

The latter two allow the adversary to engage with an honest IdP.

AInit : Initializes the authentication protocol for an honest user to-

wards a (possibly corrupt) RP. It generates and returns (𝑠𝑒𝑠, 𝑝𝑢𝑏𝑈 ,
𝑝𝑟𝑖𝑣𝑈) and internally stores a session record SES[𝑠𝑒𝑠]. This ses-
sion can later be finalized through the AResIdP-AFin oracle.

AReqRP : Returns an honest RP’s authentication request 𝑎𝑢𝑡ℎ𝑅𝑃
for adversarially provided user input, which it stores in REQ .

AResIdP : Returns the IdP’s token 𝜏 for adversarial input. It models

that an honest IdP will react to any authentication request. The

input can be fully adversarially generated or fully/partially stem

from the oracles above. For RP Session Binding, this oracle is

only available for corrupt users.

AResIdP-AFin : Generates a token 𝜏 for an adversarial 𝑎𝑢𝑡ℎ𝑅𝑃 ,

which an honest user finalizes to 𝜏𝑖𝑑 . This oracle completes the

session SES[𝑠𝑒𝑠] initiated by the adversary through the AInit
oracle and returns 𝜏𝑖𝑑 . The oracle is only available in RP Session

Binding, prioritizing security from the perspective of honest

users. It models the interaction between an honest user and

an honest IdP, ensuring that A cannot intercept or modify ex-

changed messages. However,A can influence the token through

the adversarial RP authentication input.

Corruption of RPs and epochs. The last two oracles allow the ad-

versary to corrupt initially honest RPs adaptively and move epochs.

CrptRP : Exposes the secret key 𝑟𝑠𝑘 and the credential 𝑐𝑟𝑒𝑑 of the

current epoch 𝑐𝑒𝑝 of an honest RP. It removes 𝑟𝑖𝑑 from HRID
and marks it as corrupt in 𝑐𝑒𝑝 by adding 𝑟𝑖𝑑 to CRID[𝑐𝑒𝑝].

SetEP : AllowsA to increase the current epoch 𝑐𝑒𝑝 , which is then

used by all honest entities. If A updates the epoch, it must also

renew the credentials (via the appropriate oracles) of all RPs that

should remain authorized in that new epoch.

Variable Description

𝑐𝑒𝑝 Represents the current epoch 𝑐𝑒𝑝 ∈ T
HRID,CRID Stores 𝑟𝑖𝑑s of honest/corrupt RPs registered at the IdP

HRID[𝑟𝑖𝑑] Secret key 𝑟𝑠𝑘 of honest RP 𝑟𝑖𝑑

CRID[𝑐𝑒𝑝] Corrupt 𝑟𝑖𝑑s of RPs with a credential in epoch 𝑐𝑒𝑝

HRID[𝑟𝑖𝑑, 𝑐𝑒𝑝] Credential 𝑐𝑟𝑒𝑑 of honest RP 𝑟𝑖𝑑 in epoch 𝑐𝑒𝑝

HUID,CUID Stores 𝑢𝑖𝑑s of honest/corrupt users registered at the IdP

SES[𝑠𝑒𝑠] Stores (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈) for each session 𝑠𝑒𝑠 ∈ N
REQ Stores (𝑢𝑖𝑑,𝑛, 𝑝𝑢𝑏𝑈 , 𝑐𝑒𝑝) for each RP auth. request

RES Stores (𝑟𝑖𝑑,𝑢𝑖𝑑,𝑛, 𝑐𝑡𝑥, 𝑐𝑒𝑝) for each issued identity token

Figure 5: Keys and states maintained by challenger.

4.2 RP Accountability
This property captures the security guarantees that an honest IdP

has in the presence of corrupt RPs and corrupt users. Despite the

IdP now performing its part of the authentication blindly — when

it comes to the RP’s identity — we still want to ensure that the IdP

only returns a token 𝜏 ≠ ⊥ when the request stems from an RP that

is properly authenticated. Recall that legitimation of RPs happens in

two stages: they first need to register with the IdP and then obtain

a credential for each new epoch. Thus, “properly authenticated”

means that if an honest IdP receives a request (𝑎𝑢𝑡ℎ𝑅𝑃 , 𝑝𝑢𝑏𝑈) for
a session (𝑢𝑖𝑑, 𝑛, 𝑐𝑡𝑥, 𝑒𝑝), where AResIdP does not output ⊥, this
request must originate from an RP that has been registered and
owns a valid credential for epoch 𝑒𝑝 .

While formal security properties guarantee the absence of any
successful attack in a pre-defined model, it might also be helpful to

look at concrete attacks that are captured:

• An attacker (posing as corrupt RP and/or user) cannot re-use the

authentication request created by an honest RP in any context

other than what the honest RP wanted.

• A corrupt RP, being registered and having valid credentials for

(some) epochs 𝐸 but not for 𝑒𝑝 ∉ 𝐸, cannot re-use any of its old

authentication credentials to create a valid session in epoch 𝑒𝑝 .

We translate this intuition into a unforgeability-type of game,

where the adversary — after interacting with a number of honest

RPs and the honest IdP — wins if it can output a forgery (𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗,
𝑝𝑢𝑏𝑈

∗, 𝑛∗, 𝑎𝑢𝑡ℎ𝑅𝑃 ∗, 𝑐𝑒𝑝) such that (1) the honest IdP ”accepts” the

RP authentication, i.e., AResIdP for 𝑖𝑝𝑘 does not output ⊥, and (2)

the forgery is not trivial.

Non-trivial means that no honest RP created a request for such

a session, and no corrupt RP has a valid credential for the cur-

rent epoch 𝑐𝑒𝑝 . Note that the latter is unavoidable in our privacy-

preserving setting: the 𝑟𝑖𝑑 of the requested RP should be entirely

hidden from the IdP, and authentication merely requires a valid

proof of membership — which an adversary with a credential for

that epoch can trivially do. (However, we are able to define stronger

security for corrupt RPs through the next RP Session Binding prop-

erty, as this relates to the final token that contains the RP’s identity

again.)

The RP Accountability game considers both honest and corrupt

RPs (with the restriction just mentioned) as follows: An adversary

can register honest RPs through O .Join-Reg, let them retrieve cre-

dentials via O .CredReq-CredIss, make them issue authentication

requests through the O .AReqRP oracle, and receive tokens from the

IdP via the O .AResIdP oracle. It can also use O .CrptRP to corrupt

honest RPs, manipulate the current epoch with O .SetEP, register
103

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

Join-Reg(rid)RP Accountability — Honest IdP, honest RP

If (rid ∈ HRID ∪ CRID) return ⊥
HRID := HRID ∪ {rid}
Run ⟨Join(ipk, rid),Reg(rid,M)⟩
Upon output ((rsk, rpk),M′)
HRID[rid] := rsk; Return rpk

If the protocol fails, return ⊥
Join(ipk, rid)RP Hiding — Corrupt IdP, honest RP

If (rid ∈ HRID ∪ CRID) return ⊥
HRID := HRID ∪ {rid}
Run Join(ipk, rid) with A (being the corrupt IdP)

Upon output (rsk, rpk)
HRID[rid] := rsk; Return rpk

If the protocol fails, return ⊥
Reg(rid)RP Accountability, RP Session Binding — Honest IdP, corrupt RP

If (rid ∈ HRID ∪ CRID) return ⊥
Run Reg(rid,M) with A (being a corrupt RP)

Upon outputM′
M := M′;CRID := CRID ∪ {rid}
Return 1

If the protocol fails, return ⊥
CredReq-CredIss(rid)RP Accountability — Honest IdP, honest RP

If (rid ∉ HRID) return ⊥
sid←R Z
Run ⟨CredReq(ipk, rid,HRID[rid], sid, cep),CredIss(rid, isk,M, sid, cep) ⟩
Upon output (cred,M′)
HRID[rid, cep] := cred; Return 1

If the protocol fails, return ⊥
CredReq(rid)RP Hiding — Corrupt IdP, honest RP

If (rid ∉ HRID) return ⊥
sid←R Z
Run CredReq(ipk, rid,HRID[rid], sid, cep) with A (being a corrupt IdP)

Upon output cred
HRID[rid, cep] := cred; Return 1

If the protocol fails, return ⊥
SetEPRP Accountability, RP Session Binding

cep := cep + 1

CredIss(rid)RP Accountability, RP Session Binding — Honest IdP, corrupt RP

sid←R Z
Run CredIss(rid, isk,M, sid, cep) with A (in the role of the RP)

Upon outputM′
M := M′
If (rid ∈ CRID) set CRID[cep] := CRID[cep] ∪ {rid}
Return 1

If the protocol fails, return ⊥

CrptRP(rid)RP Accountability

If (rid ∉ HRID) return ⊥
CRID := CRID ∪ {rid}
rsk := HRID[rid]; cred := HRID[rid, cep]
If (cred ≠ 𝜖) set CRID[cep] := CRID[cep] ∪ {rid}
HRID := HRID \ {rid} // Removes all entries of rid in HRID[𝑟𝑖𝑑]
Return (rsk, cred)

AInit(rid, uid)RP Session Binding — Honest IdP, honest user

If (uid ∈ CUID) return ⊥
HUID := HUID ∪ {uid}
ses := ses + 1; (pubU, privU) ← AInit(ipk, rid)
SES[ses] := (rid, uid, pubU, privU)
Return (ses, pubU, privU)

AReqRP(rid, uid, n, pubU, privU)RP Accountability, RP Hiding — Honest RP

If (rid ∉ HRID ∨ HRID[rid, cep] = 𝜖) return ⊥
REQ := REQ ∪ {(uid, n, pubU, ep) }
Return authRP ← AReqRP(ipk,HRID[rid, cep], uid, pubU, privU, n, cep)

AResIdP(uid, n, ctx, authRP, pubU)RP Accountability, RP Session Binding — Honest IdP, corrupt user

If (uid ∈ HUID) return ⊥
CUID := CUID ∪ {uid}
Return 𝜏 ← AResIdP(isk,M, uid, ctx, authRP, pubU, n, cep)

AResIdP-AFin(ses, n, ctx, authRP)RP Session Binding — Honest IdP, honest user

If (SES[ses] = 𝜖) return ⊥
Parse SES[ses] as (rid, uid, pubU, privU)
RES := RES ∪ {(rid, uid, n, ctx, cep) }
𝜏 ← AResIdP(isk,M, uid, ctx, authRP, pubU, n, cep)
Return 𝜏id ← AFin(ipk, rid, uid, ctx, pubU, privU, n, cep, 𝜏)

Figure 6: Oracles for RP Accountability, RP Session Binding, and RP Hiding provided to adversaries in the experiments of Figure 7.

corrupt RPs via O .Reg, and initialize the credential issuance for any
RP with the IdP through O .CredIss.

Definition 4.1 (RP Accountability). An AIF scheme provides RP

Accountability if for all PPT adversariesA in the experiment stated

in Figure 7, Pr[ExpRPAccountabilityA,AIF (^) = 1] is negligible in ^.

4.3 RP Session Binding
This property again considers security in a setting where the IdP is

honest, but RPs are corrupt and aim to exploit the blind authentica-

tion to trick the IdP (and honest user) into wrongly authenticating

for an unintended or even invalid RP. Whereas RP Accountabil-

ity expressed the security guarantees for the RP’s authentication

𝑎𝑢𝑡ℎ𝑅𝑃 towards the IdP, this notion is now for the final token 𝜏𝑖𝑑
and from the perspective of an honest user (and honest IdP).

This different perspective allows us to provide stronger security

and complement RP Accountability. As users are always aware of

the RP they want to authenticate to and, in particular, generate

the finalized “unblinded” token 𝜏𝑖𝑑 , we can use that knowledge to

express the exact context for which an authentication token was

generated. We then require that each token 𝜏𝑖𝑑 is immutably bound

to the same session intended for by the honest user, particularly

to the 𝑟𝑖𝑑 of the designated — and legitimately authenticated —

RP. This captures the following attacks, noting that security in our

model guarantees the absence of any attack:

• An honest user wants to authenticate to a corrupt RP 𝑟𝑖𝑑1, which

does not own the necessary credentials (either at all or in the

current epoch) but tries to collude with another corrupt RP 𝑟𝑖𝑑2
that has the required credentials and wants to share them. It

must be infeasible for 𝑟𝑖𝑑1 and 𝑟𝑖𝑑2 to get the IdP to issue a token

for 𝑟𝑖𝑑1. This prevents credential pooling, which is particularly

important when an IdP wants to offer its authentication as a

paid service for RPs: blind authentication should not enable to

bypass registration and allow a corrupt RP to operate as a proxy

to other (corrupt) RPs.

• An honest user intends to authenticate to a corrupt RP 𝑟𝑖𝑑1,

which possesses the required credentials but plans to misuse

the issued token 𝜏𝑖𝑑 to impersonate the user with another RP

𝑟𝑖𝑑2. This scenario can be seen as a phishing attack, which must

be prevented, despite the IdP not learning the RP’s identity to

which it binds its token.

Both attacks exploit that a corrupt RP has valid credentials for

the epoch of the forgery, which was not allowed in the RP Ac-

countability game. In fact, here we assume all RPs to be corrupt

104

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

Experiment: ExpRPAccountabilityA,AIF (^) :
𝑝𝑝 ← Setup(1^) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← SetupIdP(𝑝𝑝)
O := {Join-Reg,Reg,CredReq-CredIss,CredIss,CrptRP, SetEP,AReqRP,AResIdP}
(𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑝𝑢𝑏𝑈 ∗, 𝑛∗, 𝑎𝑢𝑡ℎ𝑅𝑃 ∗) ← AO (𝑖𝑝𝑘)
Return 1 if

AResIdP(𝑖𝑠𝑘,M,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑎𝑢𝑡ℎ𝑅𝑃
∗, 𝑝𝑢𝑏𝑈

∗, 𝑛∗, 𝑐𝑒𝑝) ≠ ⊥ ∧
(𝑢𝑖𝑑∗, 𝑛∗, 𝑝𝑢𝑏𝑈 ∗, 𝑐𝑒𝑝) ∉ REQ ∧ |CRID[𝑐𝑒𝑝] | = 0

Experiment: ExpRPSession Binding
A,AIF (^) :

𝑝𝑝 ← Setup(1^) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← SetupIdP(𝑝𝑝)
O := {Reg,CredIss,AInit, SetEP,AResIdP,AResIdP-AFin}
(𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝜏𝑖𝑑 ∗) ← AO (𝑖𝑝𝑘)
Return 1 if Vf (𝑖𝑝𝑘, (𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝), 𝜏𝑖𝑑 ∗) = 1 ∧𝑢𝑖𝑑∗ ∉ CUID

// and one of the two conditions is satisfied:

(a) (𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑛∗, 𝑐𝑡𝑥∗, 𝑐𝑒𝑝) ∉ RES // fresh session
(b) (𝑟𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑛∗, 𝑐𝑡𝑥∗, 𝑐𝑒𝑝) ∈ RES ∧ 𝑟𝑖𝑑∗ ∉ CRID[𝑐𝑒𝑝] // invalid RP

Experiment: ExpRPHiding−bA,AIF (^) :
𝑝𝑝 ← Setup(1^) ; ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← SetupIdP(𝑝𝑝)
O := {Join,CredReq,AReqRP}
(𝑟𝑖𝑑0, 𝑟𝑖𝑑1,𝑢𝑖𝑑,𝑛, st) ← AO (𝑖𝑠𝑘, 𝑖𝑝𝑘,M)
For 𝑑 ∈ {0, 1}: If (𝑟𝑖𝑑𝑑 ∉ HRID ∨ HRID[𝑟𝑖𝑑𝑑 , 𝑐𝑒𝑝] = 𝜖) abort
(𝑝𝑟𝑖𝑣𝑈 , 𝑝𝑢𝑏𝑈) ← AInit(𝑖𝑝𝑘, 𝑟𝑖𝑑𝑏)
𝑎𝑢𝑡ℎ𝑅𝑃 ← AReqRP(𝑖𝑝𝑘,HRID[𝑟𝑖𝑑𝑏 , 𝑐𝑒𝑝],𝑢𝑖𝑑, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑐𝑒𝑝)
Return 𝑏∗ ← AO (st, 𝑎𝑢𝑡ℎ𝑅𝑃 , 𝑝𝑢𝑏𝑈)

Figure 7: Experiments to define our AIF security properties.

for the sake of simplicity: honest RPs cannot give the adversary

any advantage in winning the game and thus are omitted. This

additional power of the adversary is possible as we capture the RP

Session Binding property for honest users, allowing us to express
the intended sessions.

The honest user(s) are modeled via the O .AInit oracle that lets
the adversary start a session for a 𝑢𝑖𝑑 towards an adversarially con-

trolled 𝑟𝑖𝑑 . After a session is started, the adversary can contribute

the RP authentication data 𝑎𝑢𝑡ℎ𝑅𝑃 and let the honest user finalize

the session by using O .AResIdP-AFin. Both oracles use common

session information (that model the state an honest user keeps),

referenced by a session identifier 𝑠𝑒𝑠 . This modeling of honest users

allows us to keep track of the user’s intended sessions, in partic-

ular the 𝑟𝑖𝑑 , which otherwise would be blinded in all values the

honest IdP receives. The adversary can, of course, also request

tokens for corrupt users via the O .AResIdP oracle. However, we

must ensure that the 𝑢𝑖𝑑s passed to O .AResIdP never appear in

any query to O .AInit nor O .AResIdP-AFin. This is done by keeping
track of honest/corrupt users in HUID/CUID, enabling queries to
the O .AResIdP oracle only for users in CUID.

Overall, security is again captured in the form of a unforgeability

challenge, but here the task of the adversary is to output a valid

token 𝜏𝑖𝑑
∗
for a session (𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝) that verifies under

the IdP’s 𝑖𝑝𝑘 . The forgery must be for an honest user 𝑢𝑖𝑑∗ and be

non-trivial. Non-trivial either means that the token is used in a

different context than what the honest user wanted and the IdP cer-

tified (winning condition (a) in the game in Figure 7, capturing the

phishing attacks described above). Another possible win strategy

is to get the user and IdP to generate a token for an 𝑟𝑖𝑑 that did

not have valid credentials for the requested epoch. This attack is

captured via our game’s second winning condition (b) and reflects

the credential pooling attack from above.

Definition 4.2 (RP Session Binding). An AIF scheme is RP Ses-

sion Binding if for all PPT adversaries A in the experiment stated

in Figure 7, Pr[ExpRP Session BindingA,AIF (^) = 1] is negligible in ^.

4.4 RP Hiding
The privacy guarantees provided by an AIF system, which made

formalizing the two RP authentication properties challenging, are

now captured in our final property that considers a corrupt IdP.

This property requires that, despite the RP being properly authen-

ticated towards the IdP, its identity 𝑟𝑖𝑑 remains hidden (secrecy). In
fact, to prevent re-identification through access patterns or correla-

tion attacks, the corrupt IdP must not even tell if a user repeatedly

authenticates to the same (unknown) RP or to different ones, cap-

turing unlinkability. This ensures that while the user wants to rely

on the IdP for its authentication service, it does not want to expose

its online behavior to the IdP.

This privacy guarantee is expressed in the standard indistin-

guishability style: the adversary knows the IdP’s secret key 𝑖𝑠𝑘

and can trigger honest RPs to register via the O .Join oracle and

obtain authentication requests from such registered RPs for session

information (mimicking honest users) of its choice. Eventually, A
outputs two identities 𝑟𝑖𝑑0, 𝑟𝑖𝑑1 of honest RPs and common ses-

sion information (𝑢𝑖𝑑, 𝑛) and receives an authentication request —

comprising of (𝑎𝑢𝑡ℎ𝑅𝑃 , 𝑝𝑢𝑏𝑈) — generated for 𝑟𝑖𝑑𝑏 , where 𝑏 is a

randomly chosen bit. The task of the adversary is to determine 𝑏

better than by guessing.

Definition 4.3 (RP Hiding). An AIF scheme is RP Hiding if for

all PPT adversaries A and for the experiment stated in Figure 7,

| Pr[ExpRPHiding−1A,AIF (^) = 1] − Pr[ExpRPHiding−0A,AIF (^) = 1] | is negligi-
ble in ^.

5 CONSTRUCTIONS & ANALYSIS
This section first analyzes the two existing approaches, represented

by AIFSIG and AIFCOM, and argues why neither satisfies the full

set of security and privacy properties defined in the previous sec-

tion. Both methods depend on standard signatures from the IdP

to (partially) fulfill RP Session Binding. AIFSIG successfully attains

RP Accountability and Session Binding through standard signature

authentication but lacks RP Hiding. In contrast, AIFCOM employs

commitments to achieve RP Hiding by blindly binding the token

to the RP’s identity, but it falls short of providing any form of au-

thentication. Our new construction, AIFZKP, fully implements our

AIF model, leveraging multi-message signatures and commitments,

and accomplishes all three AIF security properties.

5.1 Analysis of Existing Approaches
Our formal analysismust first translate theOIDC’s Implicit Flow [41]

and POIDC [24] to our syntax and algorithms. In the body of the

paper, we focus on the core ideas and refer to the detailed mapping

and analysis to App. C. In particular, for the sake of accessibility,

we omit the part about epoch-based membership renewal in the fol-

lowing discussion summary, as realizing this renewal is technically

simple but adds much complexity.

105

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

AIFSIG – full accountability, but no privacy. AIFSIG, our adaption
of OIDC’s Implicit Flow, utilizes standard signatures for RP au-

thentication to model the authenticated variant of OIDC’s Implicit

Flow [41], as outlined in Section 2.1. Figure 8 provides a simplified

summary of this construction.

When an RP with 𝑟𝑖𝑑 registers, it creates a key pair (𝑟𝑠𝑘, 𝑟𝑝𝑘) of
a standard signature scheme, and the IdP stores the pair (𝑟𝑖𝑑, 𝑟𝑝𝑘).
To authenticate, the RP signs the corresponding session with its

𝑟𝑠𝑘 and sends the signature, along with its 𝑟𝑖𝑑 , to the IdP. The IdP

verifies the signature by looking up the corresponding 𝑟𝑝𝑘 for 𝑟𝑖𝑑 .

If the verification is successful, the IdP generates an identity token

by signing the 𝑟𝑖𝑑 , user, and session context. This protocol does not

require any cryptographic operations from the user.

It is easy to see that the presence of strong signature-based RP

authentication and the IdP’s signature on the verified 𝑟𝑖𝑑 guarantees

both authentication-related properties, as proven in App. C.1.

Theorem 5.1. AIFSIG achieves RP Accountability and RP Session
Binding if SIG (used by the RP and IdP) is SIG-EUF-CMA secure.

However, this construction cannot achieve RP Hiding, as each

RP is identified by its 𝑟𝑖𝑑 and associated signature/public key.

AIFCOM – full privacy, but no accountability. AIFCOM represents

POIDC [24] in our syntax and contains no RP registration or au-

thentication. The simplified overview is depicted in Figure 9. The

protocol uses a commitment scheme COM to hide the RP’s 𝑟𝑖𝑑 in

a commitment 𝑐 towards the IdP while uniquely binding the IdP’s

token to 𝑟𝑖𝑑 by allowing the IdP to sign the committed value 𝑐 . The

user is privy to the opening of the commitment and can ensure that

𝑐 contains the correct 𝑟𝑖𝑑 .

Due to the absence of any RP authentication, all the IdP learns

about the RP is the commitment (but not the opening) of 𝑟𝑖𝑑 . Thus,

RP Hiding follows trivially from the hiding property of COM.

AIFCOM also partially satisfies our notion of session-binding (if

COM is binding and SIG unforgeable): the IdP’s tokens are im-

mutably bound to the session, which encompasses the 𝑟𝑖𝑑 intended

by an honest user, thus meeting the first condition (a) of RP Session

Binding. However, due to the absence of any RP authentication,

AIFCOM cannot satisfy the second condition (b) of the session-

binding property, which guarantees that the request stems from a

legitimate RP. We call this weaker notion Partial RP Session Binding
and provide the simple proof of the following theorem in App. C.2.

Theorem 5.2. AIFCOM is partially RP Session Binding if COM is
binding and SIG is SIG-EUF-CMA; and RP Hiding if COM is hiding.

The strong privacy offered by AIFCOM comes with the drawback

of sacrificing RP Accountability and full RP Session Binding. During
the registration phase, only the 𝑟𝑖𝑑 is stored without any associated

authentication, and the IdP blindly signs arbitrary 𝑟𝑖𝑑s without

verification. An immediate idea to fix this lack of authentication is to

let RP register a public key of a signature scheme, similar to AIFSIG,
and to let the RP sign the commitment for authentication. While

this would ensure RP Accountability, it would give up any privacy

again. Furthermore, this modification would not be sufficient to

attain full RP Session Binding, as the committed value must be

strictly bound to the RP’s identity – a feature that is not feasible

with basic building blocks but is precisely what our new AIFZKP
protocol achieves through the use of advanced primitives.

Setup & Registration

IdP : (𝑖𝑠𝑘, 𝑖𝑝𝑘) ← SIG.KGen(1^) ; RP : (𝑟𝑠𝑘, 𝑟𝑝𝑘) ← SIG.KGen(1^)
IdP : Registers RP as (𝑟𝑖𝑑, 𝑟𝑝𝑘) inM

User Init. & RP Authentication

AInit : Return (𝑝𝑢𝑏𝑈 := 𝜖, 𝑝𝑟𝑖𝑣𝑈 := 𝜖) // User does no cryptographic operations

AReqRP : Generate 𝜎 ← SIG.Sign(𝑟𝑠𝑘, (𝑢𝑖𝑑 | |𝑛)) ; output 𝑎𝑢𝑡ℎ𝑅𝑃 := (𝑟𝑖𝑑, 𝜎)

Token Issuance, Finalization, Verification

AResIdP : Verify (𝑟𝑖𝑑, 𝑟𝑝𝑘) ∈ M and SIG.Vf (𝑟𝑝𝑘, (𝑢𝑖𝑑 | |𝑛), 𝜎) = 1

Output 𝜏 ← SIG.Sign(𝑖𝑠𝑘, (𝑟𝑖𝑑 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛))
AFin : Output 𝜏𝑖𝑑 := 𝜏

Vf : Return SIG.Vf (𝑖𝑝𝑘, (𝑟𝑖𝑑 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛), 𝜏𝑖𝑑) = 1

Figure 8: Simplified AIFSIG based on OIDC’s Implicit Flow [41]. The
detailed construction incl. credential renewal is given in App. C.1.

Setup & Registration

IdP : (𝑖𝑠𝑘, 𝑖𝑝𝑘) ← SIG.KGen(1^) ; Register RP with 𝑟𝑖𝑑 inM

User Init. & RP Authentication

AInit : Create (𝑜, 𝑐) ← COM.Commit(𝑟𝑖𝑑) ; output (𝑝𝑢𝑏𝑈 := 𝑐, 𝑝𝑟𝑖𝑣𝑈 := 𝑜)
AReqRP : Output 𝑎𝑢𝑡ℎ𝑅𝑃 := 𝜖 // No RP authentication

Token Issuance, Finalization, Verification

AResIdP : Output 𝜏 ← SIG.Sign(𝑖𝑠𝑘, (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛))
AFin : Verify COM.Open(𝑟𝑖𝑑, 𝑐, 𝑜) = 1; output 𝜏𝑖𝑑 := (𝜏, 𝑐, 𝑜)
Vf : Return SIG.Vf (𝑖𝑝𝑘, (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛), 𝜏) = 1 and COM.Open(𝑟𝑖𝑑, 𝑐, 𝑜) = 1

Figure 9: SimplifiedAIFCOM that translates POIDC [24] to our syntax.
Full description is in App. C.2.

5.2 Our Fully Secure Scheme: AIF-ZKP
WenowpresentAIFZKP, our new construction that builds onAIFCOM
and adds RP Accountability and Session Binding, becoming the first

scheme to meet all properties outlined in Section 4. Our approach

is rather simple: The RP registers with the public key of a standard

signature scheme with the IdP, which it uses in every epoch 𝑒𝑝

to authenticate towards the IdP and obtain a new credential. The

IdP-issued credential for epoch 𝑒𝑝 is a signature 𝜎𝐼𝑑𝑃 on (𝑟𝑖𝑑, 𝑒𝑝),
generated via the multi-message signature scheme MMS, which
later allows the privacy-preserving authentication. If an RP is sup-

posed to get revoked or has not renewed its membership, the IdP

will not issue a new credential, allowing us to tolerate corrupt RPs

and ensure RP Accountability and Session Binding.

To obtain an identity token for a specific RP, a user creates a

commitment (𝑐, 𝑜) on the RP’s 𝑟𝑖𝑑 and lets the RP generate an au-

thentication request, which proves knowledge of the IdP’s MMS
signature 𝜎𝐼𝑑𝑃 on (𝑟𝑖𝑑, 𝑒𝑝). The proof thereby reveals 𝑒𝑝 but hides

𝑟𝑖𝑑 . To achieve the desired RP Session Binding, we must ensure

that the commitment 𝑐 contains the same 𝑟𝑖𝑑 that is signed in 𝜎𝐼𝑑𝑃 ,

which we let the RP prove in 𝑎𝑢𝑡ℎ𝑅𝑃 too. The IdP receives the

commitment 𝑐 on 𝑟𝑖𝑑 and the proof, allowing it to verify that the

request originates from an RP with a valid credential in epoch 𝑒𝑝

without learning its identity — and most importantly, being sure

that the blindly verified 𝑟𝑖𝑑 is strictly committed to in 𝑐 . If the veri-

fication succeeds, the IdP generates a token 𝜏 , which is a signature

on (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝) using the standard signature scheme SIG.
The user finalizes the token 𝜏 by verifying the IdP’s signature and

using the opening 𝑜 to confirm that the commitment 𝑐 opens to the

intended 𝑟𝑖𝑑 . Upon success, the user adds the opening to 𝜏 , which

uniquely binds the IdP’s signature to a specific RP. The detailed

protocol is presented in Figure 10.

106

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

SetupIdP(𝑝𝑝) → ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘)
(𝑠𝑘, 𝑝𝑘) ← SIG.KGen(1^) ; (𝑚𝑠𝑘,𝑚𝑝𝑘) ← MMS.KGen(𝑝𝑝, ℓ := 2)
Return ((𝑖𝑠𝑘 := (𝑠𝑘,𝑚𝑠𝑘),M := ∅), 𝑖𝑝𝑘 := (𝑝𝑘,𝑚𝑝𝑘))

⟨Join(𝑖𝑝𝑘, 𝑟𝑖𝑑),Reg(𝑟𝑖𝑑,M)⟩ → {((𝑟𝑠𝑘, 𝑟𝑝𝑘),M′),⊥}
RP : (𝑟𝑠𝑘, 𝑟𝑝𝑘) ← SIG.KGen(1^) ; Send (𝑟𝑖𝑑, 𝑟𝑝𝑘)
IdP : If (𝑟𝑖𝑑 ∈ M ∨ 𝑟𝑝𝑘 ∈ M) return ⊥

Else returnM′ := M[𝑟𝑖𝑑] := 𝑟𝑝𝑘

RP : Return (𝑟𝑠𝑘, 𝑟𝑝𝑘)

⟨CredReq(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑟𝑠𝑘, 𝑠𝑖𝑑, 𝑒𝑝),
CredIss(𝑟𝑖𝑑, 𝑖𝑠𝑘,M, 𝑠𝑖𝑑, 𝑒𝑝) ⟩ → {(𝑐𝑟𝑒𝑑,M′),⊥}
RP : Send (𝑟𝑖𝑑, 𝜎𝑅𝑃 ← SIG.Sign(𝑟𝑠𝑘, 𝑠𝑖𝑑))
IdP : ParseM[𝑟𝑖𝑑] as 𝑟𝑝𝑘, 𝑖𝑠𝑘 as (·,𝑚𝑠𝑘)

If (𝑟𝑖𝑑 ∉ M ∨ SIG.Vf (𝑟𝑝𝑘, 𝑠𝑖𝑑, 𝜎𝑅𝑃) ≠ 1) return ⊥
Send 𝜎𝐼𝑑𝑃 ← MMS.Sign(𝑚𝑠𝑘, (𝑟𝑖𝑑, 𝑒𝑝)) ; ReturnM′ := M

RP : Return 𝑐𝑟𝑒𝑑 := (𝜎𝐼𝑑𝑃 , 𝑒𝑝)

AInit(𝑖𝑝𝑘, 𝑟𝑖𝑑) → (𝑝𝑟𝑖𝑣𝑈 , 𝑝𝑢𝑏𝑈)
(𝑐, 𝑜) ← COM.Commit(𝑟𝑖𝑑) ; Return (𝑝𝑢𝑏𝑈 := 𝑐, 𝑝𝑟𝑖𝑣𝑈 := 𝑜)

AReqRP(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑,𝑢𝑖𝑑, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝) → 𝑎𝑢𝑡ℎ𝑅𝑃

Parse 𝑐𝑟𝑒𝑑 as (𝜎𝐼𝑑𝑃 , 𝑒𝑝′), 𝑖𝑝𝑘 as (·,𝑚𝑝𝑘), 𝑝𝑢𝑏𝑈 as 𝑐, 𝑝𝑟𝑖𝑣𝑈 as 𝑜

If (𝑒𝑝 ≠ 𝑒𝑝′ ∨ COM.Open(𝑟𝑖𝑑, 𝑐, 𝑜) ≠ 1) abort
Else return 𝑎𝑢𝑡ℎ𝑅𝑃 := 𝜋 ← NIZK{(𝜎𝐼𝑑𝑃 , 𝑟𝑖𝑑, 𝑜) : COM.Open(𝑟𝑖𝑑, 𝑐, 𝑜)
∧MMS.Vf (𝑚𝑝𝑘, (𝑟𝑖𝑑, 𝑒𝑝), 𝜎𝐼𝑑𝑃) }(𝑢𝑖𝑑,𝑛, 𝑐, 𝑒𝑝)

AResIdP(𝑖𝑠𝑘,M,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑎𝑢𝑡ℎ𝑅𝑃 , 𝑝𝑢𝑏𝑈 , 𝑛, 𝑒𝑝) → {𝜏,⊥}
Parse 𝑖𝑝𝑘 as (·,𝑚𝑝𝑘) , 𝑖𝑠𝑘 as (𝑠𝑘, ·), 𝑎𝑢𝑡ℎ𝑅𝑃 as 𝜋 , 𝑝𝑢𝑏𝑈 as 𝑐

If (𝜋 is not correct w.r.t. (𝑚𝑝𝑘, 𝑐,𝑢𝑖𝑑,𝑛, 𝑒𝑝)) return ⊥
Else return 𝜏 ← SIG.Sign(𝑠𝑘, (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝))

AFin(𝑖𝑝𝑘, 𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝, 𝜏) → {𝜏𝑖𝑑 ,⊥}
Parse 𝑖𝑝𝑘 as (𝑝𝑘, ·), 𝑝𝑢𝑏𝑈 as 𝑐 , 𝑝𝑟𝑖𝑣𝑈 as 𝑜

If (SIG.Vf (𝑝𝑘, (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝), 𝜏) ≠ 1 ∨ COM.Open(𝑟𝑖𝑑, 𝑐, 𝑜) ≠ 1)
Return ⊥ else return 𝜏𝑖𝑑 := (𝜏, 𝑐, 𝑜)

Vf (𝑖𝑝𝑘, (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑛, 𝑒𝑝), 𝜏𝑖𝑑) → 0/1
Parse 𝑖𝑝𝑘 as (𝑝𝑘, ·), 𝜏𝑖𝑑 as (𝜏, 𝑐, 𝑜)
Return (SIG.Vf (𝑝𝑘, (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝), 𝜏) = COM.Open(𝑟𝑖𝑑, 𝑐, 𝑜) = 1)

Figure 10: AIFZKP – Our new construction.

The scheme is initialized via 𝑝𝑝 ← MMS.Setup(1^), returning
the public parameters 𝑝𝑝 that are an implicit input to all algorithms

and also contain the security parameter 1
^
. In the concrete instan-

tiation, this will contain the public groups and generators used by

both the MMS signature and commitment scheme.

We now state and sketch the achieved security guarantees of

our construction and refer for the full proofs to App. D.

Theorem 5.3. AIFZKP achieves RP Accountability if SIG (used by
the RP) is SIG-EUF-CMA, MMS is MMS-EUF-CMA secure, and the
NIZK is zero-knowledge as well as simulation-sound extractable.

Proof Sketch. The adversary wins the accountability game

if it outputs an authentication request 𝑎𝑢𝑡ℎ𝑅𝑃
∗
for a fresh tuple

(𝑢𝑖𝑑∗, 𝑛∗, 𝑝𝑢𝑏𝑈 ∗, 𝑐𝑒𝑝) that is accepted by the IdP, while there are no
corrupt RPs with a credential in epoch 𝑐𝑒𝑝 . In this construction, the

authentication request 𝑎𝑢𝑡ℎ𝑅𝑃
∗
:= 𝜋 is a NIZK proving knowledge

of a credential 𝑐𝑟𝑒𝑑 := (𝜎𝐼𝑑𝑃 , 𝑐𝑒𝑝), where the signature 𝜎𝐼𝑑𝑃 of

such a credential is an IdP’s MMS signature on (𝑟𝑖𝑑, 𝑐𝑒𝑝).
There are two attack strategies for the adversary, which we both

prove to be impossible based on the made assumption: First, A ob-

tained a valid credential for 𝑐𝑒𝑝 by impersonating an honest RP 𝑟𝑖𝑑

towards the IdP during credential renewal. As the renewal requires

A to authenticate via the honest RP’s previously registered public

key and standard signature for a fresh nonce, this is impossible

based on the unforgeability of the underlying signature scheme SIG.
The second strategy is that the adversary, without having obtained

a validMMS credential from IdP, manages to produce a convincing

NIZK proof of such a credential. However, this either requires to

forge the NIZK statement (which we assume to be infeasible) or

forge the underlyingMMS, which contradicts its unforgeability.

□

Note that Theorem 5.3 is independent of the binding property

of COM. Therefore, an adversary who breaks the binding property

and produces a commitment that opens to a different 𝑟𝑖𝑑 ′ would
still satisfy RP Accountability. However, such an adversary cannot

satisfy RP Session Binding, which captures such stronger security

for the final token.

Theorem 5.4. AIFZKP is RP Session Binding if SIG (used by the
IdP) is SIG-EUF-CMA secure, COM is binding, MMS is MMS-EUF-
CMA secure, and the NIZK is special sound.

Proof Sketch. An adversary who succeeds in the RP Session

Binding experiment outputs a finalized token 𝜏𝑖𝑑
∗
that is valid for

an honest user session (𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝). This session either

has (a) to be fresh, i.e., it was never queried to O .AResIdP-AFin, or
(b) this session was intended by an honest user, but then 𝑟𝑖𝑑∗ must

belong to some RP that does not own a credential in epoch 𝑐𝑒𝑝 .

Recall that the finalized token 𝜏𝑖𝑑
∗
:= (𝜏, 𝑐, 𝑜) must contain an IdP’s

SIG signature 𝜏 on (𝑐 | |𝑢𝑖𝑑∗ | |𝑐𝑡𝑥∗ | |𝑛∗ | |𝑐𝑒𝑝) and a correct opening 𝑜

for the commitment 𝑐 to 𝑟𝑖𝑑∗.
There are two cases in which A can win under condition (a):

either the “public” session part (𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝) is fresh and A
forges an IdP’s signature, or that session part is not fresh, which in

turn means that 𝑟𝑖𝑑∗ must be different than in the honest query to

the O .AInit oracle, which breaks the binding property of COM.

To succeed under the second winning condition (b), i.e., the

honest user session existed, but 𝑟𝑖𝑑∗ did not belong to an RP with

a credential for epoch 𝑐𝑒𝑝 , A must have either forged the NIZK
proof or forged theMMS credential. □

Theorem 5.5. AIFZKP is RP Hiding if COM is hiding and the
NIZK is zero-knowledge.

Proof Sketch. The authentication request 𝑎𝑢𝑡ℎ𝑅𝑃 := 𝜋 proves

knowledge of a signature on the committed identity 𝑟𝑖𝑑𝑏 in a com-

mitment 𝑐 . RP Hiding follows from the zero-knowledge property

of 𝜋 and the hiding property of COM since A never learns 𝑜𝑏 . □

6 EFFICIENCY & DISCUSSION
This section details the implementation of our AIFZKP protocol

and compares its efficiency with the two existing protocols. We

conclude with a discussion of some deployment challenges when

using a privacy-preserving AIF protocol such as AIFZKP or AIFCOM.

6.1 Implementation
We provide a JavaScript (JS) implementation of our AIFZKP scheme

on GitHub [22]. For cryptographic operations, we rely on the MCL

library [33] that we used to implement COM,MMS, and the NIZK.
107

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

Ref. Env. Low-Power Device Server

Entity User RP IdP

IF\Alg. AInit AFin AReqRP Vf CredIss AResIdP

AIFSIG 0.00 7.15 1.23 0.04 0.05 1.39

AIFCOM 6.04 9.74 0.00 0.44 0.00 1.27

AIFZKP 6.56 9.28 8.92 0.87 2.79 18.98

Table 2: The mean of one hundred executions in milliseconds.

Eff.\Alg. AInit★• AFin★• AReqRP• Vf★• CredIss• AResIdP•

Size 2G1 2G1 6G1+1G𝑇 2G1 2G1 -

Cost 2EG
1

2EG
1

7EG
1
+2EG

2
2EG

1
5EG

1
5EG

1
+ 3EG

2

+ 1P + 3P

Table 3: Sizes/costs of AIFCOM★ and AIFZKP• – EG𝑖 refers to the cost
of an exponentiation in G𝑖 (𝑖 ∈ {1, 2}) and P to the cost of a pairing.

Cryptographic instantiations. For SIG, we used a standard imple-

mentation of RSA [21] with 2048 bit to conform to current industry

standards. ForMMS, we implemented PS signatures [38] and Peder-

sen commitments [37] for COM. App. E details the concrete NIZK
instantiation of the signatures with committed messages, favoring

exponentiations in G1 and G2 to minimize the number of pairings

for efficiency. As an elliptic curve, we used BLS12 − 381 [9], which
provides ^ := 128 bit security. Thus, the public parameters 𝑝𝑝

encompass the bilinear group description (𝑝,G1,G2,G𝑇 , 𝑔1, 𝑔2, 𝑒),
also detailed in App. E, and the fixed generators (𝑔, ℎ) ∈ G2

1
.

Performance evaluation. We seek to examine the overhead of all

the repetitive operations involved in authenticating a user to an

RP via the IdP. To this end, we exclude the protocol setup and RP

registration (Setup, SetupIdP, ⟨Join,Reg⟩) from our analysis. Addi-

tionally, we do not consider the RP-side in the renewal protocol

⟨CredReq,CredIss⟩ as it only involves one RSA signature towards

the IdP. However, we include the CredIss algorithm, reflecting the

cost of the IdP renewing aMMS-based credential.

We evaluated the execution times of the cryptographic opera-

tions on two reference devices: a server, which is a virtual machine
1
,

and a Raspberry Pi 3
2
, which represents a low-power device. We

run the IdP/RP operations on the server and the user operations

on the low-power device. Table 2 summarizes our results, showing

the mean of one hundred executions in milliseconds (ms) for each

selected algorithm. Table 3 presents the group elements and their

computational costs in the executed algorithms. We note that an

element in (Z𝑝 ,G1,G2,G𝑇) requires (32, 48, 92, 576) bytes. Thus,
the proof generated in AReqRP requires only 816 bytes.

Clearly, our new protocol AIFZKP is the most expensive of the

three, but it is also the only one that achieves the desired security

and privacy properties simultaneously. Overall, all its operations

are still efficient enough for real-world deployment, with at most

10ms on the low-power device and 19ms on the server for proof

verification, which took only 9ms to generate. Our evaluation of

AIFCOM (POIDC) must be taken with the same grain of salt though:

for simplicity, we implemented AIFCOM and AIFZKP with the same

algebraic commitment. This is necessary for our protocol but not

for AIFCOM, which could simply use a cryptographic hash function

for COM, as originally proposed [24].

1
CPU: AMD 4x2.6 GHz, RAM: 8 GB

2
CPU: ARM 4x1.2 GHz, RAM: 1 GB

6.2 Deployment Considerations
Privacy-preserving RP authentication prevents the IdP from sharing

RP-related information, including names and legal details that may

be provided to the user during the protocol. Note that this also

eliminates the implicit authentication of such information once it

is no longer served by the IdP.

User interaction and redirections. The RP information is required

in the consent dialog with the user and for operational purposes,

such as redirecting the user back from the IdP to the RP to provide

the issued token. To maintain privacy, such information should

be available in the IdP’s context without being disclosed again. In

our approach, the RP can directly provide this information to the

user by including it in the URL fragment [31] of the initial request,

allowing access in the IdP’s context without disclosure.

RP information authenticity. To ensure authenticity of opera-

tional information passed directly to the user by the RP, a hash of

the information along with the IdP’s signature must be included

in the 𝑟𝑖𝑑 . The user must re-hash the RP information and verify it

against the 𝑟𝑖𝑑 and IdP’s signature before finalizing a token, thereby

ensuring that the RP information corresponds to the requested RP.

IdP services. An IdP might want to learn the 𝑟𝑖𝑑 to offer certain

commercial services for it, such as orchestrating additional com-

putational resources to ensure better availability. To provide such

tailored services in our privacy-preserving setting, an IdP could

create dedicated MMS public keys for each service class, or add an

additional attribute to the MMS credential that must be revealed

during authentication. As a result, an RP can prove to the IdP that

it is has a membership for a certain service class, while the rest of

our security and privacy properties remain.

Pairwise pseudonymous identifier. A challenge is the support

of OIDC’s protocol feature of Pairwise Pseudonymous Identifier

(PPID). This privacy feature allows the IdP to replace the static 𝑢𝑖𝑑

with an RP-specific pseudonym to prevent RPs from correlating

users. This is no longer possible with our protocol and, in fact,

an advantage of the work by Hammann et al. [24]. While POIDC
does not support this feature either, Hammann et al. also propose

a protocol extension — Pairwise POIDC — that lets the user and

IdP blindly derive such pseudonyms. Their approach requires the

user to provide a zero-knowledge proof of a blindly computed

pseudonym of the form H(𝑢𝑖𝑑, 𝑟𝑖𝑑) to the IdP for attestation. This

extension again does not consider any RP authentication and thus

does not provide RP Accountability and Session Binding.

Their extension uses a hash function that is not immediately

compatible with the algebraic construction of our protocol, and the

challenge would again be to incorporate RP authentication, which

we leave as an interesting open problem. We did not include it as it

would significantly complicate our model and analysis. Our work

focuses solely on RP authentication. Considering also RP-specific

pseudonyms would require including user authentication in the

security model. Given our model’s complexity, we decided to focus

on the main problem and show how the OIDC core functionality

can be realized while overcoming the reason for deprecation.

108

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback

throughout the review process. This research was partially funded

by the HPI Research School on Data Science and Engineering.

REFERENCES
[1] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee.

2018. PASTA: PASsword-based Threshold Authentication. In ACM CCS 2018,
David Lie, MohammadMannan, Michael Backes, and XiaoFengWang (Eds.). ACM

Press, Toronto, ON, Canada, 2042–2059. https://doi.org/10.1145/3243734.3243839

[2] Muhammad Rizwan Asghar, Michael Backes, and Milivoj Simeonovski. 2018.

PRIMA: Privacy-Preserving Identity and Access Management at Internet-Scale.

In 2018 IEEE International Conference on Communications (ICC). IEEE, Kansas,
USA, 1–6. https://doi.org/10.1109/ICC.2018.8422732

[3] Ramakrishna Ayyagari. 2012. An exploratory analysis of data breaches from

2005-2011: Trends and insights. Journal of Information Privacy and Security 8, 2

(2012), 33–56.

[4] Niko Bari and Birgit Pfitzmann. 1997. Collision-Free Accumulators and Fail-

Stop Signature Schemes Without Trees. In EUROCRYPT’97 (LNCS, Vol. 1233),
Walter Fumy (Ed.). Springer, Heidelberg, Germany, Konstanz, Germany, 480–494.

https://doi.org/10.1007/3-540-69053-0_33

[5] Carsten Baum, Tore Frederiksen, Julia Hesse, Anja Lehmann, and Avishay Yanai.

2020. PESTO: Proactively Secure Distributed Single Sign-On, or How to Trust

a Hacked Server. In 2020 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, Virtual, 587–606. https://doi.org/10.1109/EuroSP48549.2020.

00044

[6] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. 2008.

P-signatures and Noninteractive Anonymous Credentials. In TCC 2008 (LNCS,
Vol. 4948), Ran Canetti (Ed.). Springer, Heidelberg, Germany, San Francisco, CA,

USA, 356–374. https://doi.org/10.1007/978-3-540-78524-8_20

[7] Mihir Bellare, Haixia Shi, and Chong Zhang. 2005. Foundations of Group Signa-

tures: The Case of Dynamic Groups. In CT-RSA 2005 (LNCS, Vol. 3376), Alfred
Menezes (Ed.). Springer, Heidelberg, Germany, San Francisco, CA, USA, 136–153.

https://doi.org/10.1007/978-3-540-30574-3_11

[8] Josh Cohen Benaloh and Michael de Mare. 1994. One-Way Accumulators: A

Decentralized Alternative to Digital Sinatures (Extended Abstract). In EURO-
CRYPT’93 (LNCS, Vol. 765), Tor Helleseth (Ed.). Springer, Heidelberg, Germany,

Lofthus, Norway, 274–285. https://doi.org/10.1007/3-540-48285-7_24

[9] Sean Bowe. 2017. BLS12-381: New zk-SNARK elliptic curve construction. Electric
Coin. https://electriccoin.co/blog/new-snark-curve/

[10] Jan Camenisch, Manu Drijvers, and Jan Hajny. 2016. Scalable Revocation Scheme

for Anonymous Credentials Based on N-Times Unlinkable Proofs. In Proceedings
of the 2016 ACM on Workshop on Privacy in the Electronic Society (Vienna, Austria)

(WPES ’16). Association for Computing Machinery, New York, NY, USA, 123–133.

https://doi.org/10.1145/2994620.2994625

[11] Jan Camenisch, Manu Drijvers, Anja Lehmann, Gregory Neven, and Patrick Towa.

2020. Zone Encryptionwith Anonymous Authentication for V2VCommunication.

In 2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Genoa,
Italy, 405–424. https://doi.org/10.1109/EuroSP48549.2020.00033

[12] Jan Camenisch, Aggelos Kiayias, and Moti Yung. 2009. On the Portability of

Generalized Schnorr Proofs. In EUROCRYPT 2009 (LNCS, Vol. 5479), Antoine
Joux (Ed.). Springer, Heidelberg, Germany, Cologne, Germany, 425–442. https:

//doi.org/10.1007/978-3-642-01001-9_25

[13] Jan Camenisch and Anna Lysyanskaya. 2002. Dynamic Accumulators and Ap-

plication to Efficient Revocation of Anonymous Credentials. In CRYPTO 2002
(LNCS, Vol. 2442), Moti Yung (Ed.). Springer, Heidelberg, Germany, Santa Barbara,

CA, USA, 61–76. https://doi.org/10.1007/3-540-45708-9_5

[14] Melissa Chase and Anna Lysyanskaya. 2006. On Signatures of Knowledge.

In CRYPTO 2006 (LNCS, Vol. 4117), Cynthia Dwork (Ed.). Springer, Heidelberg,

Germany, Santa Barbara, CA, USA, 78–96. https://doi.org/10.1007/11818175_5

[15] Arkajit Dey and Stephen Weis. 2010. PseudoID: Enhancing Privacy in Federated

Login. In Hot Topics in Privacy Enhancing Technologies. Sciendo, Berlin, Germany,

95–107.

[16] Jesus Diaz and Anja Lehmann. 2021. Group Signatures with User-Controlled and

Sequential Linkability. In PKC 2021, Part I (LNCS, Vol. 12710), Juan Garay (Ed.).

Springer, Heidelberg, Germany, Virtual Event, 360–388. https://doi.org/10.1007/

978-3-030-75245-3_14

[17] Developer Documentation. 2020. Transferring Your Apps and Users to Another
Team. Apple. https://developer.apple.com/documentation/sign_in_with_apple/

transferring_your_apps_and_users_to_another_team

[18] Facebook. 2021. OpenID Connect. Facebook. https://developers.facebook.com/

docs/facebook-login

[19] Daniel Fett, Ralf Küsters, and Guido Schmitz. 2015. SPRESSO: A Secure, Privacy-

Respecting Single Sign-On System for the Web. In ACM CCS 2015, Indrajit Ray,

Ninghui Li, and Christopher Kruegel (Eds.). ACM Press, Denver, CO, USA, 1358–

1369. https://doi.org/10.1145/2810103.2813726

[20] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), Andrew M.

Odlyzko (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 186–194.

https://doi.org/10.1007/3-540-47721-7_12

[21] GitHub. 2020. Node-RSA. GitHub. https://github.com/rzcoder/node-rsa

[22] GitHub. 2023. Authenticated Implicit Flow. GitHub. https://github.com/hpicrypto/

aif

[23] Jens Groth. 2006. Simulation-Sound NIZK Proofs for a Practical Language and

Constant Size Group Signatures. In ASIACRYPT 2006 (LNCS, Vol. 4284), Xuejia Lai
and Kefei Chen (Eds.). Springer, Heidelberg, Germany, Shanghai, China, 444–459.

https://doi.org/10.1007/11935230_29

[24] Sven Hammann, Ralf Sasse, and David A. Basin. 2020. Privacy-Preserving OpenID

Connect. In ASIACCS 20, Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu, and

Giuseppe Ateniese (Eds.). ACM Press, Taipei, Taiwan, 277–289. https://doi.org/

10.1145/3320269.3384724

[25] S.M. Taiabul Haque, Matthew Wright, and Shannon Scielzo. 2013. A Study of

User Password Strategy for Multiple Accounts. In Proceedings of the Third ACM
Conference on Data and Application Security and Privacy (San Antonio, Texas,

USA) (CODASPY ’13). Association for Computing Machinery, New York, NY, USA,

173–176. https://doi.org/10.1145/2435349.2435373

[26] Dick Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. RFC Editor.

http://www.rfc-editor.org/rfc/rfc6749.txt

[27] Dick Hardt, Aaron Parecki, and Torsten Lodderstedt. 2023. The OAuth 2.1 Au-
thorization Framework. Internet-Draft draft-ietf-oauth-v2-1. IETF Secretariat.

https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/

[28] Michael Jones, John Bradley, and Nat Sakimura. 2015. JSON Web Token (JWT).
RFC 7519. RFC Editor. http://www.rfc-editor.org/rfc/rfc7519.txt

[29] Jorn Lapon, Markulf Kohlweiss, Bart De Decker, and Vincent Naessens. 2011.

Analysis of Revocation Strategies for Anonymous Idemix Credentials. In Commu-
nications and Multimedia Security, Bart De Decker, Jorn Lapon, Vincent Naessens,

and Andreas Uhl (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 3–17.

[30] Torsten Lodderstedt, John Bradley, Andrey Labunets, and Daniel Fett. 2023. OAuth
2.0 Security Best Current Practice. Internet-Draft draft-ietf-oauth-security-topics.
IETF Secretariat. https://datatracker.ietf.org/doc/draft-ietf-oauth-security-

topics/

[31] Larry Masinter, Tim Berners-Lee, and Roy T Fielding. 2005. Uniform Resource
Identifier (URI): Generic Syntax. STD 66. RFC Editor. http://www.rfc-editor.org/

rfc/rfc3986.txt

[32] Microsoft. 2021. Microsoft identity platform and OpenID Connect protocol. Mi-

crosoft. https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-

protocols-oidc

[33] Shigeo Mitsunari. 2023. A portable and fast pairing-based cryptography library.
GitHub. https://github.com/herumi/mcl

[34] Mozilla. 2023. Persona. GitHub. https://github.com/mozilla/persona

[35] Lan Nguyen. 2005. Accumulators from Bilinear Pairings and Applications. In CT-
RSA 2005 (LNCS, Vol. 3376), Alfred Menezes (Ed.). Springer, Heidelberg, Germany,

San Francisco, CA, USA, 275–292. https://doi.org/10.1007/978-3-540-30574-3_19

[36] Sarah Pearman, Jeremy Thomas, Pardis Emami Naeini, Hana Habib, Lujo Bauer,

Nicolas Christin, Lorrie Faith Cranor, Serge Egelman, and Alain Forget. 2017.

Let’s Go in for a Closer Look: Observing Passwords in Their Natural Habitat.

In ACM CCS 2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and

Dongyan Xu (Eds.). ACM Press, Dallas, TX, USA, 295–310. https://doi.org/10.

1145/3133956.3133973

[37] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In CRYPTO’91 (LNCS, Vol. 576), Joan Feigenbaum (Ed.).

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 129–140. https://doi.

org/10.1007/3-540-46766-1_9

[38] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures. In

CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, Germany,

San Francisco, CA, USA, 111–126. https://doi.org/10.1007/978-3-319-29485-8_7

[39] David Recordon and Drummond Reed. 2006. OpenID 2.0: A Platform for User-

Centric Identity Management. In Proceedings of the Second ACM Workshop on
Digital Identity Management (Alexandria, Virginia, USA) (DIM ’06). Association
for Computing Machinery, New York, NY, USA, 11–16. https://doi.org/10.1145/

1179529.1179532

[40] Nat Sakimura, John Bradley, andMichael Jones. 2023. The OAuth 2.0 Authorization
Framework: JWT-Secured Authorization Request (JAR). RFC 9101. IETF.

[41] Nat Sakimura, John Bradley, Michael Jones, B. de Medeirosk, and C. Mortimore.

2014. OpenID Connect Core 1.0. OpenID Foundation. https://openid.net/specs/

openid-connect-core-1_0.html

[42] Zhiyi Zhang, Michał Król, Alberto Sonnino, Lixia Zhang, and Etienne Rivière.

2021. EL PASSO: Efficient and Lightweight Privacy-preserving Single Sign On.

Proceedings on Privacy Enhancing Technologies 2021, 2 (2021), 70–87.

109

https://doi.org/10.1145/3243734.3243839
https://doi.org/10.1109/ICC.2018.8422732
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1109/EuroSP48549.2020.00044
https://doi.org/10.1109/EuroSP48549.2020.00044
https://doi.org/10.1007/978-3-540-78524-8_20
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/3-540-48285-7_24
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1145/2994620.2994625
https://doi.org/10.1109/EuroSP48549.2020.00033
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-030-75245-3_14
https://doi.org/10.1007/978-3-030-75245-3_14
https://developer.apple.com/documentation/sign_in_with_apple/transferring_your_apps_and_users_to_another_team
https://developer.apple.com/documentation/sign_in_with_apple/transferring_your_apps_and_users_to_another_team
https://developers.facebook.com/docs/facebook-login
https://developers.facebook.com/docs/facebook-login
https://doi.org/10.1145/2810103.2813726
https://doi.org/10.1007/3-540-47721-7_12
https://github.com/rzcoder/node-rsa
https://github.com/hpicrypto/aif
https://github.com/hpicrypto/aif
https://doi.org/10.1007/11935230_29
https://doi.org/10.1145/3320269.3384724
https://doi.org/10.1145/3320269.3384724
https://doi.org/10.1145/2435349.2435373
http://www.rfc-editor.org/rfc/rfc6749.txt
https://datatracker.ietf.org/doc/draft-ietf-oauth-v2-1/
http://www.rfc-editor.org/rfc/rfc7519.txt
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/
https://datatracker.ietf.org/doc/draft-ietf-oauth-security-topics/
http://www.rfc-editor.org/rfc/rfc3986.txt
http://www.rfc-editor.org/rfc/rfc3986.txt
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-protocols-oidc
https://github.com/herumi/mcl
https://github.com/mozilla/persona
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1145/3133956.3133973
https://doi.org/10.1145/3133956.3133973
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1145/1179529.1179532
https://doi.org/10.1145/1179529.1179532
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

A UNFORGEABILITY DEFINITIONS
This section provides the game-based Existential Unforgeability

under Chosen Message Attack (EUF-CMA) definitions for a stan-

dard signature scheme SIG and a multi-message signature scheme

MMS.

Standard signature scheme. An adversary A attacking SIG wins

the experiment in Figure 11 if it creates a valid signature 𝜎∗ w.r.t.
𝑝𝑘 on a fresh message𝑚∗, which was not queried to the Sign-oracle
before. SIG is secure if no efficient adversary can succeed in the

SIG-EUF-CMA experiment with non-negligible probability.

Definition A.1. A signature scheme SIG := (KGen, Sign,Vf) is
existentially unforgeable under an adaptive chosen-message attack

if for all probabilistic polynomial-time adversaries A, there is a

negligible function negl such that:

Pr[ExpSIG−EUF−CMA
A,SIG (^) = 1] ≤ negl(^)

Experiment: ExpSIG−EUF−CMA
A,SIG (^)

(𝑠𝑘, 𝑝𝑘) ← SIG.KGen(1^)
(𝑚∗, 𝜎∗) ← ASIG.Sign(𝑠𝑘,·) (𝑝𝑘)
Return 1 iff

SIG.Vf (𝑝𝑘,𝑚∗, 𝜎∗) = 1 ∧ A did not query𝑚∗ to SIG.Sign

Figure 11: The SIG-EUF-CMA experiment

Multi-message signature scheme. The next experiment in Fig-

ure 12 is almost equivalent to the previous but introduces the mes-

sage vector dimension ℓ ∈ N required by the scheme. An adversary

A with non-negligible advantage can forge a valid signature 𝜎∗

on a fresh message vector
⇀
𝑚∗ w.r.t. 𝑝𝑘 , which was not queried to

the Sign-oracle before. MMS is secure if no efficient adversary can

succeed in the MMS-EUF-CMA experiment with non-negligible

probability.

Definition A.2. A multi-message signature scheme MMS := (
Setup,KGen, Sign,Vf) is existentially unforgeable under an adap-

tive chosen-message attack if for all probabilistic polynomial-time

adversaries A, there is a negligible function negl such that:

Pr[ExpMMS−EUF−CMA
A,MMS,ℓ (^) = 1] ≤ negl(^)

Experiment: ExpMMS−EUF−CMA
A,MMS,ℓ (^) :

𝑝𝑝 ← MMS.Setup(1^)
(𝑠𝑘, 𝑝𝑘) ← MMS.KGen(𝑝𝑝, ℓ)
(⇀𝑚∗, 𝜎∗) ← AMMS.Sign(𝑠𝑘,·) (𝑝𝑘)
Return 1 iff

MMS.Vf (𝑝𝑘,⇀𝑚∗, 𝜎∗) = 1 ∧ A did not query
⇀
𝑚
∗
toMMS.Sign

Figure 12: The MMS-EUF-CMA experiment.

B AIF CORRECTNESS
We define the set of registered users as U and the set of RPs as

R before presenting the correctness of our Authenticated Implicit

Flow scheme AIF. Recall that T represents the set of epochs andZ
the set of nonces.

For AIF to be considered correct, it must hold for all ^ ∈ N, 𝑝𝑝 ←
Setup(1^), ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘) ← SetupIdP(𝑝𝑝), 𝑟𝑖𝑑 ∈ R, 𝑢𝑖𝑑 ∈ U,

{𝑠𝑖𝑑, 𝑛} ∈ Z, and context 𝑐𝑡𝑥 in epoch 𝑒𝑝 ∈ T :
((𝑟𝑝𝑘, 𝑟𝑠𝑘),M ′) ← ⟨Join(𝑖𝑝𝑘, 𝑟𝑖𝑑),Reg(𝑟𝑖𝑑,M)⟩

(𝑐𝑟𝑒𝑑,M ′) ← ⟨CredReq(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑟𝑠𝑘, 𝑠𝑖𝑑, 𝑒𝑝),
CredIss(𝑟𝑖𝑑, 𝑖𝑠𝑘,M, 𝑠𝑖𝑑, 𝑒𝑝)⟩

(𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈) ← AInit(𝑖𝑝𝑘, 𝑟𝑖𝑑)
𝑎𝑢𝑡ℎ𝑅𝑃 ← AReqRP(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑,𝑢𝑖𝑑, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝)

𝜏 ← AResIdP(𝑖𝑠𝑘,M, 𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑎𝑢𝑡ℎ𝑅𝑃 , 𝑝𝑢𝑏𝑈 , 𝑛, 𝑒𝑝)
𝜏𝑖𝑑 ← AFin(𝑖𝑝𝑘, 𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝, 𝜏)

Vf (𝑖𝑝𝑘, (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑛, 𝑒𝑝), 𝜏𝑖𝑑) = 1.

C CONSTRUCTION & ANALYSIS: AIF-SIG/COM
This section analyzes two constructions that implement our AIF
model: AIFSIG and AIFCOM. These constructions are adapted from

existing proposals to suit our AIF setting and are designed to en-

hance the native Implicit Flow.

C.1 Achieving RP Authentication: AIF-SIG
As previously stated,AIFSIG is based on the authenticated version of

OIDC’s Implicit Flow [41], which incorporates standard signatures

for RP authentication, as described in Section 2.1. Figure 13 details

this construction.

To register, the RP with 𝑟𝑖𝑑 generates a key pair (𝑟𝑝𝑘, 𝑟𝑠𝑘), the
IdP adds (𝑟𝑖𝑑, 𝑟𝑝𝑘) to its member stateM, and the RP keeps 𝑟𝑠𝑘 . As

our system models epoch-based membership credentials, we must

also realize this. The simplest way is to let the RP authenticate with

𝑟𝑠𝑘 to the IdP in each new epoch 𝑒𝑝 by signing a fresh nonce. If

the authentication is successful, and the RP is supposed to remain

a valid member in epoch 𝑒𝑝 , the IdP updates its member state for

𝑟𝑖𝑑, 𝑟𝑝𝑘 to contain 𝑒𝑝 .

During RP authentication, the user does not perform any cryp-

tographic operation. The RP signs the 𝑢𝑖𝑑 , the session nonce 𝑛,

and (empty) public user output 𝑝𝑢𝑏𝑈 using 𝑟𝑠𝑘 . The signature and

RP identity 𝑟𝑖𝑑 are sent via the user to the IdP, which accepts the

request if the signature is valid and the 𝑟𝑝𝑘 is contained in M
for 𝑟𝑖𝑑 in epoch 𝑒𝑝 . The provided token is the IdP’s signature on

(𝑟𝑖𝑑 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝). As we let the RP use the same signing key

𝑟𝑠𝑘 for two different purposes, we ensure domain separation of the

signed content by prefixing messages with “0” during credential

renewal and “1” for authentication requests.

This construction easily satisfies both authentication-related

properties, as stated in Theorem 5.1. The theorem establishes that

AIFSIG fulfills RP Accountability and RP Session Binding if SIG is

unforgeable.

We start with RP Accountability which relies on the unforge-

ability of the RP’s signature scheme and the fact that the IdP only

accepts authentication requests of RPs that have previously prop-

erly authenticated (through “credential renewal”) in epoch 𝑐𝑒𝑝 .

Theorem C.1. AIFSIG achieves RP Accountability if SIG (used by
the RP) is SIG-EUF-CMA secure.

Proof Sketch. The task of the adversary is to produce a forgery

𝑎𝑢𝑡ℎ𝑅𝑃
∗
for a session (𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑝𝑢𝑏𝑈 ∗, 𝑛∗, 𝑐𝑒𝑝) that is non-trivial

110

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

SetupIdP(𝑝𝑝) → ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘)
(𝑠𝑘, 𝑝𝑘) ← SIG.KGen(1^) ; 𝑖𝑠𝑘 := 𝑠𝑘 ; 𝑖𝑝𝑘 := 𝑝𝑘

Return ((𝑖𝑠𝑘,M := ∅), 𝑖𝑝𝑘)

⟨Join(𝑖𝑝𝑘, 𝑟𝑖𝑑),Reg(𝑟𝑖𝑑,M)⟩ → {((𝑟𝑠𝑘, 𝑟𝑝𝑘),M′),⊥}
RP : (𝑟𝑠𝑘, 𝑟𝑝𝑘) ← SIG.KGen(1^) ; Send (𝑟𝑖𝑑, 𝑟𝑝𝑘)
IdP : If (𝑟𝑖𝑑 ∈ M ∨ 𝑟𝑝𝑘 ∈ M) return ⊥

Else returnM′ := M[𝑟𝑖𝑑] := 𝑟𝑝𝑘

RP : Return (𝑟𝑠𝑘, 𝑟𝑝𝑘)

⟨CredReq(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑟𝑠𝑘, 𝑠𝑖𝑑, 𝑒𝑝),
CredIss(𝑟𝑖𝑑, 𝑖𝑠𝑘,M, 𝑠𝑖𝑑, 𝑒𝑝) ⟩ → {(𝑐𝑟𝑒𝑑,M′),⊥}
RP : 𝜎0 ← SIG.Sign(𝑟𝑠𝑘, (0 | |𝑠𝑖𝑑) ; Send (𝑟𝑖𝑑, 𝜎0)
IdP : ParseM[𝑟𝑖𝑑] as (𝑟𝑝𝑘, ·) , abort if 𝑟𝑖𝑑 ∉ M

If (SIG.Vf (𝑟𝑝𝑘, (0 | |𝑠𝑖𝑑), 𝜎0) ≠ 1) return ⊥
Else returnM′ := M[𝑟𝑖𝑑] := (𝑟𝑝𝑘, 𝑒𝑝)

RP : Return 𝑐𝑟𝑒𝑑 := (𝑟𝑠𝑘, 𝑒𝑝)

AInit(𝑖𝑝𝑘, 𝑟𝑖𝑑) → (𝑝𝑟𝑖𝑣𝑈 , 𝑝𝑢𝑏𝑈)
Return (𝑝𝑢𝑏𝑈 := 𝜖, 𝑝𝑟𝑖𝑣𝑈 := 𝜖)

AReqRP(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑,𝑢𝑖𝑑, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝) → 𝑎𝑢𝑡ℎ𝑅𝑃

Parse 𝑐𝑟𝑒𝑑 as (𝑟𝑠𝑘, 𝑒𝑝′)
If (𝑒𝑝 ≠ 𝑒𝑝′ ∨ 𝑝𝑢𝑏𝑈 ≠ 𝜖) abort
𝜎1 ← SIG.Sign(𝑟𝑠𝑘, (1 | |𝑢𝑖𝑑 | |𝑛 | |𝑝𝑢𝑏𝑈 | |𝑒𝑝))
Return 𝑎𝑢𝑡ℎ𝑅𝑃 := (𝑟𝑖𝑑, 𝜎1)

AResIdP(𝑖𝑠𝑘,M,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑎𝑢𝑡ℎ𝑅𝑃 , 𝑝𝑢𝑏𝑈 , 𝑛, 𝑒𝑝) → {𝜏,⊥}
Parse 𝑎𝑢𝑡ℎ𝑅𝑃 as (𝑟𝑖𝑑, 𝜎1) ,M[𝑟𝑖𝑑] as (𝑟𝑝𝑘, 𝑒𝑝′)
If (SIG.Vf (𝑟𝑝𝑘, (1 | |𝑢𝑖𝑑 | |𝑛 | |𝑝𝑢𝑏𝑈 | |𝑒𝑝), 𝜎1) ≠ 1 ∨ 𝑒𝑝 ≠ 𝑒𝑝′) return ⊥
Else return 𝜏 ← SIG.Sign(𝑖𝑠𝑘, (𝑟𝑖𝑑 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝))

AFin(𝑖𝑝𝑘, 𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝, 𝜏) → {𝜏𝑖𝑑 ,⊥}
If (SIG.Vf (𝑖𝑝𝑘, (𝑟𝑖𝑑 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝), 𝜏) ≠ 1) return ⊥
Else return 𝜏𝑖𝑑 := 𝜏

Vf (𝑖𝑝𝑘, (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥,𝑛, 𝑒𝑝), 𝜏𝑖𝑑) → 0/1
Return SIG.Vf (𝑖𝑝𝑘, (𝑟𝑖𝑑 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝), 𝜏𝑖𝑑)

Figure 13: AIFSIG – OIDC Implicit Flow [41] with standard signa-
tures.

and valid, i.e,. where AResIdP does not respond with ⊥. Non-trivial
means that no honest RP created an authentication request for that

session (𝑢𝑖𝑑∗, 𝑛∗, 𝑝𝑢𝑏𝑈 ∗, 𝑐𝑒𝑝) ∉ REQ and that no RP is corrupt and
a valid member in the current epoch, i.e., CRID[𝑐𝑒𝑝] = ∅.

Recall that in AIFSIG, the authentication request of an RP con-

sists of 𝜎1 ← O .SIG.Sign(𝑟𝑠𝑘, (1| |𝑢𝑖𝑑 | |𝑛 | |𝑝𝑢𝑏𝑈 | |𝑒𝑝)) and the 𝑟𝑖𝑑

to which the 𝑟𝑠𝑘 allegedly corresponds to. When the IdP receives

(𝑟𝑖𝑑, 𝜎1) for a session for user 𝑢𝑖𝑑 and session nonce 𝑛 in an epoch

𝑒𝑝 , it first looks up the 𝑟𝑝𝑘 enlisted with 𝑟𝑖𝑑, 𝑒𝑝 and then checks

whether the signature is valid under 𝑟𝑝𝑘 . It responds with ⊥ if (at

least) one of the checks fails.

We will branch the proof depending on two exclusive cases:

(1) The adversary made a query to O .CredIss for an honest 𝑟𝑖𝑑 ∈
HRID (at the moment of the query), which led to a successful

membership renewal, i.e., the CredIss protocol returnedM ′,
indicating completion of the protocol.

(2) The adversary made no impersonation query as in Case (1).

Case (1): Impersonating an honest RP in credential renewal. In the

first case, the adversary successfully impersonated an honest 𝑟𝑖𝑑

towards the IdP in some epoch 𝑒𝑝 . This might look like a benign

attack, as the RPs do not receive any actual membership credentials

in this protocol. However, in combination with the adaptive cor-

ruption, this would lead to a valid attack against RP Accountability

as follows:

• A queries O .Join-Reg for a fresh 𝑟𝑖𝑑 to register 𝑟𝑖𝑑 with the

honest IdP. In the AIFSIG protocol, the IdP’s membership state

M now contains an entry (𝑟𝑖𝑑, 𝑟𝑝𝑘) for the honestly generated

public key 𝑟𝑝𝑘 .

• A makes a successful impersonation query to O .CredIss for
𝑟𝑖𝑑 ∈ HRID in some epoch 𝑒𝑝 , upon which the oracle returns 1.

In the AIFSIG protocol, this means that the honest IdP’s updated

membership stateM ′ now contains an entry for (𝑟𝑖𝑑, 𝑟𝑝𝑘, 𝑒𝑝)
and from now on will accept any authentication requests for 𝑟𝑝𝑘

in that epoch. Note that this query does neither add (𝑟𝑖𝑑, 𝑒𝑝) to
CRID (because 𝑟𝑖𝑑 is not corrupt), nor does it add (𝑟𝑖𝑑, 𝑒𝑝, 𝑐𝑟𝑒𝑑)
toHRID (because the honest RP did not request this membership,

it was the adversary).

• A makes a query O .CrptRP in that epoch for the same 𝑟𝑖𝑑 , upon

it will learn the RP’s secret key 𝑟𝑠𝑘 . Note that this will only add

𝑟𝑖𝑑 to CRID, but not (𝑟𝑖𝑑, 𝑒𝑝) (because the honest RP did not

request a membership credential in 𝑒𝑝).

• Trivial “forgery”: Since 𝑎𝑢𝑡ℎ𝑅𝑃
∗
is a signature under 𝑟𝑠𝑘 and its

corresponding context, A can exploit knowledge of the sign-

ing key to generate valid authentication requests for any de-

sired (𝑢𝑖𝑑∗, 𝑛∗, 𝑝𝑢𝑏𝑈 ∗) in the current epoch 𝑐𝑒𝑝 = 𝑒𝑝 . When

AResIdP receives these requests, it will respond with 𝜏 ≠ ⊥ since

(𝑟𝑖𝑑, 𝑟𝑝𝑘, 𝑒𝑝) is registered as valid inM. Given that 𝑒𝑝 ∉ CRID,
this constitutes a valid forgery within our RP Accountability

game.

This attack strategy reveals that A does not need to forge any

signatures as part of the final 𝑎𝑢𝑡ℎ𝑅𝑃
∗
output, as the actual security

breach already happened through the impersonation in a mem-

bership renewal request. This is what we will use in the proof of

this first case. That is, here we do not wait for A’s final output

but already use the forgery the adversary makes in the O .CredIss
query to break the underlying signature scheme.

Let B be the adversary against the EUF-CMA security of the

standard signature scheme, receiving a public key 𝑝𝑘 as input and

having access to a Sign-oracle O .SIG.Sign for 𝑠𝑘 . B then guesses

which honest RP 𝑟𝑖𝑑𝑖 the adversary in the RP Accountability game

will impersonate, and returns 𝑝𝑘 as honest public key of 𝑟𝑖𝑑𝑖 . All

other RPs and the honest IdP are handled exactly as in the AIFSIG
protocol. In summary, B provides the following oracles to A:

O .Join-Reg : Runs the standard Join for all 𝑟𝑖𝑑 𝑗 ≠ 𝑟𝑖𝑑𝑖 . For 𝑟𝑖𝑑𝑖 it

uses 𝑝𝑘 instead of an internally generated key pair. Reg is always
run normally.

O .Reg : Executes the oracle with standard Reg.
O .CredReq-CredIss : Executes standard protocol, except for 𝑟𝑖𝑑𝑖 .

Here it does not generate any signature 𝜎0. This change is en-

tirely internal to the oracle, i.e., not noticeable by A.

O .CredIss : Executes the oracle with standard CredIss.
O .CrptRP : Returns the current (𝑟𝑠𝑘 𝑗 , 𝑐𝑟𝑒𝑑 𝑗) of the requested 𝑟𝑖𝑑 𝑗

≠ 𝑟𝑖𝑑𝑖 . Abort if request is for 𝑟𝑖𝑑𝑖 .

O .SetEP : Increases epoch.

111

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

O .AReqRP : For all 𝑟𝑖𝑑 𝑗 ≠ 𝑟𝑖𝑑𝑖 , its runs AReqRP normally, for 𝑟𝑖𝑑𝑖
it gets 𝜎1 ← O .SIG.Sign(1| |𝑢𝑖𝑑 | |𝑛 | |𝑝𝑢𝑏𝑈 | |𝑒𝑝).

O .AResIdP : Executes the oracle with standard AResIdP.

Note that all oracles are either identical to the original game, or

simulated in a perfect way (in the case of O .CredReq-CredIss and
O .AReqRP). There is one exception: the O .CrptRP oracle which

aborts upon query 𝑟𝑖𝑑𝑖 . This can happen if B guessed 𝑟𝑖𝑑𝑖 incor-

rectly, i.e., we loose a factor of 𝑞 here where 𝑞 denotes the maximal

number of RPs that would register. If 𝑟𝑖𝑑𝑖 was correctly guessed

and will be the target of the impersonation attempt, we will end our

reduction before the adversary can make a corruption query for

𝑟𝑖𝑑𝑖 , i.e., the fact that we do not know 𝑟𝑠𝑘𝑖 does not matter then.

As soon as A makes an O .CredIss query for the chosen target

𝑟𝑖𝑑𝑖 and provides a valid signature 𝜎0 for the random 𝑠𝑖𝑑 (chosen

by B in the execution of the oracle), B aborts the game with A
and returns (𝑚∗ := (0| |𝑠𝑖𝑑), 𝜎0) as its forgery in the SIG-EUF-CMA

game. Due to the domain separation of the signature purposes, and

the fact that we never made a single query for any message of the

form (0| |𝑚) to the O .SIG.Sign oracle, it is obvious that (𝑚∗, 𝜎0) is
a fresh and valid forgery in the SIG-EUF-CMA game.

Case (2): Forging the authentication request 𝑎𝑢𝑡ℎ𝑅𝑃 ∗. In the sec-

ond case, we know that the adversary never made a successful

impersonation attempt in the credential renewal. Consequently, in

the epoch of the forgery 𝑐𝑒𝑝 all members must be honest RPs which
properly gained membership through the O .CredReq-CredIss ora-
cle, i.e., all public keys inM for 𝑐𝑒𝑝 belong to honest RPs.

That is, the adversary must output a forgery 𝑎𝑢𝑡ℎ𝑅𝑃
∗
:= (𝑟𝑖𝑑∗,

𝜎∗
1
), where SIG.Vf (𝑟𝑝𝑘, (1| |𝑢𝑖𝑑∗ | |𝑛∗ | |𝑝𝑢𝑏𝑈 ∗ | |𝑐𝑒𝑝), 𝜎∗1) = 1 for an

honest RP’s public key 𝑟𝑝𝑘 asM must contain (𝑟𝑖𝑑∗, 𝑟𝑝𝑘, 𝑐𝑒𝑝).
Thus, here we can do a straightforward reduction to the security

of SIG. We let B again guess the target RP 𝑟𝑖𝑑𝑖 and embed B’s
challenge public key 𝑝𝑘 as 𝑟𝑝𝑘𝑖 .

The simulation of oracles is the same as in Case (1) described

above, but here we let A play the RP Accountability game until

the end and use its final output as forgery in the SIG-EUF-CMA

game. We again loose a factor of 𝑞 through guessing the targeted

RP for the final forgery. As A only wins if it outputs a forgery for

a fresh tuple (𝑢𝑖𝑑∗, 𝑛∗, 𝑝𝑢𝑏𝑈 ∗, 𝑐𝑒𝑝) ∉ REQ , B can immediately use

(𝑚∗ := (1| |𝑢𝑖𝑑∗ | |𝑛∗ | |𝑝𝑢𝑏𝑈 ∗ | |𝑐𝑒𝑝), 𝜎∗1) as a fresh forgery against 𝑝𝑘 .

□

The proof of RP Session Binding is significantly simpler since

we no longer need to handle adaptive RP corruptions, as all RPs

are corrupt from the beginning. The RP Session Binding property

depends solely on the unforgeability of the IdP’s signature and the

fact that the IdP maintains immutable records of valid (𝑟𝑖𝑑, 𝑟𝑝𝑘, 𝑒𝑝)
combinations inM.

Theorem C.2. AIFSIG achieves RP Session Binding if SIG (used
by the IdP) is SIG-EUF-CMA secure.

Proof Sketch. In the RP Session Binding experiment, the ad-

versary A outputs a finalized token 𝜏𝑖𝑑
∗
that must be valid for the

honest user session (𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝), where 𝑐𝑒𝑝 represents

the current epoch. To succeed, the adversary must comply with at

least one condition: (a) ensuring that (𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝) is a
fresh session, meaning it was never queried to O .AResIdP-AFin, or

(b) targeting a session intended by an honest user, but 𝑟𝑖𝑑∗ does
not possess a credential in epoch 𝑐𝑒𝑝 .

Forgery under condition (a). To fulfill condition (a), the adver-

sary must output a valid signature 𝜏 under the IdP’s key 𝑖𝑝𝑘 . This

signature is the same as 𝜏𝑖𝑑
∗
, which must be a SIG signature on

the session (𝑟𝑖𝑑∗ | |𝑢𝑖𝑑∗ | |𝑐𝑡𝑥∗ | |𝑛∗ | |𝑐𝑒𝑝). Since condition (a) requires

the session to be fresh, this can be immediately turned into a fresh

valid forgery of the IdP’s signature. We omit the straightforward

reduction.

Forgery under condition (b). Assume the adversaryA wins under

condition (b). This implies that the honest IdP has properly signed

the session, including 𝑟𝑖𝑑∗ and epoch 𝑐𝑒𝑝 , yet 𝑟𝑖𝑑∗ was not a valid
member in 𝑐𝑒𝑝 . The IdP only outputs its signature 𝜏 when it receives

a request 𝑎𝑢𝑡ℎ𝑅𝑃 for 𝑟𝑖𝑑∗ and 𝑐𝑒𝑝 that verifies under 𝑟𝑝𝑘 where

(𝑟𝑖𝑑∗, 𝑟𝑝𝑘, 𝑐𝑒𝑝) ∈ M. This ensures that the IdP will never return

(or even compute) a valid signature for an 𝑟𝑖𝑑∗ that is not a valid
member in 𝑐𝑒𝑝 . Thus, even under this condition, A must have

forged the IdP’s signature.

What remains to be shown is that 𝑟𝑖𝑑∗ ∉ CRID[𝑐𝑒𝑝] implies

that (𝑟𝑖𝑑∗, 𝑟𝑝𝑘, 𝑐𝑒𝑝) ∉M. A combination of (𝑟𝑖𝑑, 𝑒𝑝) gets added to

CRID in the O .CredIss oracle when it handled a valid membership

request for a corrupt 𝑟𝑖𝑑 (i.e., where 𝑟𝑖𝑑 ∈ CRID). Thus, the only gap
an adversary could try to exploit here is if it manages to successfully

enroll an RP with 𝑟𝑖𝑑 ∉ CRID. This is impossible in the AIFSIG
construction, as CredIss only enrolls an RP as valid for an epoch

𝑒𝑝 if 𝑟𝑖𝑑 ∈ M. Moreover, 𝑟𝑖𝑑 ∈ M implies that 𝑟𝑖𝑑 was properly

registered and thus must also be in CRID.
In summary, if the adversary A wins under condition (b), it

must have again forged the IdP’s signature – as it will never see

and receive a signature for such an illegitimate query. The reduction

is again straightforward.

□

No support of RP Hiding. AIFSIG cannot achieve RP Hiding as

each RP is uniquely identified towards the IdP through its 𝑟𝑖𝑑 and

associated signature/public key.

C.2 Achieving RP Hiding: AIF-COM
AIFCOM translates POIDC [24] into our AIF syntax. It uses a com-

mitment scheme COM to hide RP’s identity 𝑟𝑖𝑑 in a commitment 𝑐

towards the IdP while uniquely binding the IdP’s token to 𝑟𝑖𝑑 by

allowing the IdP to sign the committed value in (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝).
The user can ensure that 𝑐 contains the correct 𝑟𝑖𝑑 by sitting be-

tween the RP and IdP and is privy to the opening of the commitment.

AIFCOM does not foresee or easily allow any proper RP registration

or authentication, and thus the related algorithms are merely empty

shells. The full construction is given in Figure 14.

Theorem C.3. AIFCOM is RP Hiding if COM is hiding.

Proof Sketch. In this construction, the IdP only receives (and

signs) the commitment of 𝑟𝑖𝑑 , but does not learn the opening or any

other RP-specific information. Thus, RP Hiding follows trivially

from the hiding property of COM. □

112

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

SetupIdP(𝑝𝑝) → ((𝑖𝑠𝑘,M), 𝑖𝑝𝑘)
(𝑠𝑘, 𝑝𝑘) ← SIG.KGen(1^) ; 𝑖𝑠𝑘 := 𝑠𝑘 ; 𝑖𝑝𝑘 := 𝑝𝑘

Return ((𝑖𝑠𝑘,M := ∅), 𝑖𝑝𝑘)

⟨Join(𝑖𝑝𝑘, 𝑟𝑖𝑑),Reg(𝑟𝑖𝑑,M)⟩ → {((𝑟𝑠𝑘, 𝑟𝑝𝑘),M′),⊥}
RP : Send (𝑟𝑖𝑑)
IdP : If (𝑟𝑖𝑑 ∈ M) Return ⊥ else returnM′ := M[𝑟𝑖𝑑] := 𝜖

RP : Return (𝑟𝑠𝑘 := 𝜖, 𝑟𝑝𝑘 := 𝜖)

⟨CredReq(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑟𝑠𝑘, 𝑠𝑖𝑑, 𝑒𝑝),
CredIss(𝑟𝑖𝑑, 𝑖𝑠𝑘,M, 𝑠𝑖𝑑, 𝑒𝑝) ⟩ → {(𝑐𝑟𝑒𝑑,M′),⊥}
IdP : ReturnM′ := M; RP : Return 𝑐𝑟𝑒𝑑 := 𝜖

AInit(𝑖𝑝𝑘, 𝑟𝑖𝑑) → (𝑝𝑟𝑖𝑣𝑈 , 𝑝𝑢𝑏𝑈)
(𝑐, 𝑜) ← COM.Commit(𝑟𝑖𝑑)
Return (𝑝𝑢𝑏𝑈 := 𝑐, 𝑝𝑟𝑖𝑣𝑈 := 𝑜)

AReqRP(𝑖𝑝𝑘, 𝑟𝑖𝑑, 𝑐𝑟𝑒𝑑,𝑢𝑖𝑑, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝) → 𝑎𝑢𝑡ℎ𝑅𝑃

Return 𝑎𝑢𝑡ℎ𝑅𝑃 := 𝜖

AResIdP(𝑖𝑠𝑘,M,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑎𝑢𝑡ℎ𝑅𝑃 , 𝑝𝑢𝑏𝑈 , 𝑛, 𝑒𝑝) → {𝜏,⊥}
Parse 𝑝𝑢𝑏𝑈 as 𝑐

Return 𝜏 ← SIG.Sign(𝑖𝑠𝑘, (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝))

AFin(𝑖𝑝𝑘, 𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥, 𝑝𝑢𝑏𝑈 , 𝑝𝑟𝑖𝑣𝑈 , 𝑛, 𝑒𝑝, 𝜏) → {𝜏𝑖𝑑 ,⊥}
Parse 𝑝𝑢𝑏𝑈 as 𝑐 , 𝑝𝑟𝑖𝑣𝑈 as 𝑜

If (SIG.Vf (𝑖𝑝𝑘, (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝), 𝜏) ≠ 1 ∨
COM.Open(𝑟𝑖𝑑, 𝑐, 𝑜) ≠ 1) return ⊥

Else return 𝜏𝑖𝑑 := (𝜏, 𝑐, 𝑜)

Vf (𝑖𝑝𝑘, (𝑟𝑖𝑑,𝑢𝑖𝑑, 𝑐𝑡𝑥,𝑛, 𝑒𝑝), 𝜏𝑖𝑑) → 0/1
Parse 𝜏𝑖𝑑 as (𝜏, 𝑐, 𝑜)
Return 1 if

(SIG.Vf (𝑖𝑝𝑘, (𝑐 | |𝑢𝑖𝑑 | |𝑐𝑡𝑥 | |𝑛 | |𝑒𝑝), 𝜏) = COM.Open(𝑟𝑖𝑑, 𝑐, 𝑜) = 1)

Figure 14: AIFCOM – Translates POIDC [24] to our AIF setting.

No support of RP Accountability. The privacy provided by the

AIFCOM construction comes for the cost of having no RP Account-

ability. During registration, only the 𝑟𝑖𝑑 is stored, but no authen-

tication is associated with it and the IdP blindly signs arbitrary

𝑟𝑖𝑑s in its identity tokens. We could also let an RP register a pub-

lic key of a signature scheme, like in AIFSIG, and let it sign the

commitment during authentication. This would be sufficient for

achieving RP Accountability, but immediately destroy the privacy

of this construction. Such an addition would also not be sufficient

for RP Session Binding, as this must ensure that the commitment

contains the identity of the signer — this is not possible with basic

building blocks (but exactly what our new AIFZKP protocol does

by relying on more advanced primitives).

Partial support of RP Session Binding. Let us define Partial RP
Session Binding as the RP Session Binding Experiment in Figure 7

without the inclusion of the second condition (b), which ensures

that the request originates from a legitimate RP. Since there is no
RP authentication involved, AIFCOM cannot fulfill this condition.

Theorem C.4. AIFCOM is partially RP Session Binding if COM
is binding and SIG is SIG-EUF-CMA.

Proof Sketch. An adversary who breaks Partial RP Session

Binding of AIFCOM outputs a valid identity token 𝜏𝑖𝑑
∗
:= (𝜏, 𝑐, 𝑜)

which consist of a valid signature 𝜏 on (𝑐 | |𝑢𝑖𝑑∗ | |𝑐𝑡𝑥∗ | |𝑛∗ | |𝑐𝑒𝑝) un-
der 𝑝𝑘 and a valid opening 𝑜 such that COM.Open(𝑟𝑖𝑑∗, 𝑐, 𝑜) = 1.

To meet the winning condition, 𝑢𝑖𝑑∗ must correspond to an honest

user. However, no honest session consisting of (𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗,
𝑐𝑒𝑝) exists. In this scenario, we can differentiate between two mu-

tually exclusive cases: (1) the sub-tuple (𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝) is fresh,
meaning it has never appeared in a query to O .AResIdP-AFin, or
(2) if the sub-tuple is not fresh, then 𝑟𝑖𝑑∗ must be fresh.

The first case immediately yields a valid forgery for the is-

suer’s standard signature scheme SIG. The second case allows

the adversary to re-use an honestly obtained IdP signature on

(𝑐 | |𝑢𝑖𝑑∗ | |𝑐𝑡𝑥∗ | |𝑛∗ | |𝑐𝑒𝑝), but then A must have been able to open 𝑐

to some 𝑟𝑖𝑑∗ that is different than in the honest query to O .AInit,
which breaks the binding property of COM. □

D SECURITY PROOFS: AIF-ZKP
This section presents the proofs of Theorem 5.3 and Theorem 5.4,

which states RP Accountability and RP Session Binding of AIFZKP.

D.1 RP Accountability
Before proving the following Theorem D.1, let us recall the im-

portant parts of our protocol. An RP uses a standard signature

scheme SIG for authentication in the credential-issuance protocol

with the IdP. In this phase, the IdP learns the 𝑟𝑖𝑑 . Upon successful

authentication in an epoch 𝑒𝑝 , the IdP then uses a multi-message

signature scheme MMS to sign the 𝑟𝑖𝑑 and epoch 𝑒𝑝 as current

membership credential. Finally, for blind RP authentication, the

RP proves knowledge of such a credential via a NIZK where it re-

veals the epoch and proves that it also contains an 𝑟𝑖𝑑 that is the

same as in the user provided commitment (the commitment part is

irrelevant for the RP Accountability though).

We now want to prove that AIFZKP satisfies RP Accountability.

As most parts are straight-forward, we omit the concrete reductions

and simply sketch each of them.

Theorem D.1. AIFZKP achieves RP Accountability if SIG (used
by the RP) is SIG-EUF-CMA,MMS is MMS-EUF-CMA secure, and the
NIZK is zero-knowledge as well as simulation-sound extractable.

Proof. In the RP Accountability experiment of AIFZKP, an ad-

versary A wins if it outputs an authentication request 𝑎𝑢𝑡ℎ𝑅𝑃
∗

for a fresh tuple (𝑢𝑖𝑑∗, 𝑛∗, 𝑝𝑢𝑏𝑈 ∗, 𝑐𝑒𝑝) that is accepted by the IdP,

while there are no corrupt RPs with a credential in epoch 𝑐𝑒𝑝 . Fresh

refers to the requirement that (𝑢𝑖𝑑∗, 𝑛∗, 𝑝𝑢𝑏𝑈 ∗, 𝑐𝑒𝑝) must not have

been queried to an honest RP via O .AReqRP.
As the game strictly requires that no corrupt RP owns a mem-

bership credential for 𝑐𝑒𝑝 (as otherwise producing correct authen-

tication requests is trivial), we can split the proof in two exclusive

cases, similar to the RP Accountability proof of AIFSIG.

(1) The adversary made a query to O .CredIss for an honest 𝑟𝑖𝑑 ∈
HRID (at the moment of the query), which led to a successful

membership renewal, i.e., the CredIss protocol returnedM ′,
indicating completion of the protocol.

(2) The adversary made no impersonation query as in Case (1).

In Case (1),𝑎𝑢𝑡ℎ𝑅𝑃
∗
can be constructed using a validmembership

credential that was legitimately issued by the IdP but provided to

113

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

the adversary posing as an honest RP. In contrast, in Case (2), the

resulting 𝑎𝑢𝑡ℎ𝑅𝑃
∗
is a direct forgery.

Case (1): Impersonating an honest RP in credential renewal. In the

first case, we know that the IdP has correctly issued a membership

credential for a specific epoch 𝑒𝑝 to the adversary, who is imper-

sonating an honest RP. This issuance is confirmed through a query

to O .CredIss. However, no honest RP has ever generated a mem-

bership request in that epoch. Consequently, A gains knowledge

of the honest RP’s membership credential for that epoch, enabling

them to easily create valid 𝑎𝑢𝑡ℎ𝑅𝑃
∗
for the same epoch.

In our protocol, the credential issuance is protected through

a standard signature scheme SIG for which each RP creates its

individual key pair and initially registers its public key 𝑟𝑝𝑘 with

the IdP. To obtain a new membership credential requires to send

a valid signature 𝜎𝑅𝑃 on a fresh session nonce 𝑠𝑖𝑑 that verifies

under the 𝑟𝑝𝑘 registered for 𝑟𝑖𝑑 . Thus, the adversary must be able

to forge a signature on 𝑠𝑖𝑑 that is chosen at random when invoking

O .CredIss. This is clearly infeasible if the signature scheme SIG is

existentially unforgeable. Note that the corresponding 𝑟𝑠𝑘 is never

used outside of that credential request protocol, and even when

used within the request, the adversary never learns honest RP’s

signatures: we assume communication among two honest parties

to be secured, e.g., through a TLS channel. Thus, we could rely on

a very weak unforgeability property, where the adversary has no

access to a Sign-oracle. We opted for the classic EUF-CMA security

for the sake of convenience.

The proof in this case is almost identical to AIFSIG. Let B be an

adversary targeting the SIG-EUF-CMA security of SIG. B receives a

public key 𝑝𝑘 as input and has access to a signing oracle O .SIG.Sign
for 𝑠𝑘 . B guesses the honest RP 𝑟𝑖𝑑𝑖 that the adversary in the RP

accountability game will impersonate and returns 𝑝𝑘 as the honest

public key. All other RPs and the honest IdP are handled in the

same way as in the AIFZKP protocol. In summary, B provides the

following oracles to A:

O .Join-Reg : Runs the standard Join for all 𝑟𝑖𝑑 𝑗 ≠ 𝑟𝑖𝑑𝑖 . For 𝑟𝑖𝑑𝑖 it

uses 𝑝𝑘 instead of an internally generated key pair. Reg is always
executed normally.

O .Reg : Executes the oracle with standard Reg.
O .CredReq-CredIss : Executes the standard protocol, except for

𝑟𝑖𝑑𝑖 , where no signature 𝜎𝑅𝑃 is generated. This change is internal

and not noticeable by A.

O .CredIss : Executes the oracle with standard CredIss.
O .CrptRP : Returns the current (𝑟𝑠𝑘 𝑗 , 𝑐𝑟𝑒𝑑 𝑗) of the requested 𝑟𝑖𝑑 𝑗

≠ 𝑟𝑖𝑑𝑖 . Aborts if request is for 𝑟𝑖𝑑𝑖 .

O .SetEP : Increases epoch.

O .AReqRP : Executes the oracle with standard AReqRP (note that

𝑟𝑠𝑘𝑖 is not needed here).

O .AResIdP : Executes the oracle with standard AResIdP.

All oracles are identical to the original game, except the cre-

dential issuance protocol O .CredReq-CredIss, which is perfectly

simulated. The only exception is the O .CrptRP oracle, which aborts

when queried with 𝑟𝑖𝑑𝑖 . This occurs if B incorrectly guessed 𝑟𝑖𝑑𝑖 ,

resulting in a factor loss of𝑞, where𝑞 represents the maximum num-

ber of RPs that would be registered. If 𝑟𝑖𝑑𝑖 was correctly guessed

and will be the target of the impersonation attempt, we will ter-

minate our reduction before the adversary can make a corruption

query for 𝑟𝑖𝑑𝑖 . Therefore, not knowing 𝑟𝑠𝑘𝑖 becomes irrelevant in

this case.

Upon A making an O .CredIss query for the selected target 𝑟𝑖𝑑𝑖
and providing a valid signature 𝜎𝑅𝑃 for B’s randomly chosen 𝑠𝑖𝑑 , B
immediately aborts the game with A and returns (𝑚∗ := 𝑠𝑖𝑑, 𝜎𝑅𝑃)
as its forgery in the SIG-EUF-CMA game. Since we never query the

O .SIG.Sign oracle for any message, it is evident that (𝑚∗, 𝜎𝑅𝑃) is a
fresh and valid forgery in the SIG-EUF-CMA game.

Case (2): Forging the authentication request 𝑎𝑢𝑡ℎ𝑅𝑃 ∗. We are in

the second case, when no such impersonation attack happened.

That is, all honestly generated membership credentials are only

known to the corresponding honest RPs, yet no honest RP ever

made an authentication request, as (𝑢𝑖𝑑∗, 𝑛∗, 𝑝𝑢𝑏𝑈 ∗, 𝑐𝑒𝑝) ∉ REQ
must hold.

The adversary can thus only win if it still knows a valid mem-

bership credential (then producing the NIZK is trivial), or it does

not know a suitable membership credential but forged the proof

𝜋 directly. The latter is clearly infeasible based on the soundness

of the NIZK proof system. Thus, what remains to be shown is how

we can reduce a correct proof 𝜋 of a valid membership credential

to a forgery of the underlyingMMS scheme.

In the reduction to the unforgeability ofMMS, we leverage the
knowledge extractor of the proof system to obtain 𝑟𝑖𝑑 and 𝜎𝐼𝑑𝑃
from A ′𝑠 output 𝑎𝑢𝑡ℎ𝑅𝑃 ∗ := 𝜋 in epoch 𝑐𝑒𝑝 and will use (⇀𝑚∗:=
(𝑟𝑖𝑑, 𝑐𝑒𝑝), 𝜎𝐼𝑑𝑃) asMMS forgery. Note that 𝑟𝑖𝑑 is entirely hidden in

the proof, i.e., the adversary could choose to put an honest RP’s 𝑟𝑖𝑑
in there. Consequently, we need to take care that we never request

a MMS signature on an (𝑟𝑖𝑑, 𝑒𝑝) combination that the adversary

might use for its forgery, as this would invalidate the freshness

requirement in the unforgeability game of theMMS scheme.

Ensuring such freshness is achieved by relying on the properties

of the NIZK: When honest RPs request a membership credential in

some epoch 𝑒𝑝 through O .CredReq-CredIss, we do not create the

MMS signature, but simply keep a record that the membership was

granted. For subsequent legitimate calls to O .AReqRP that would

normally create a NIZK from the honestly issuedMMS signature,

we merely simulate the proof 𝜋 .

There is one caveat in the simulation here: Recall that our game

allows adaptive corruption of honest RPs, upon which we must

return the 𝑟𝑠𝑘 and current membership credential 𝑐𝑟𝑒𝑑 , contain-

ing the IdP’s MMS signature 𝜎𝐼𝑑𝑃 . If such a corruption happens,

our reduction calls the signing oracle O .MMS.Sign on the proper

(𝑟𝑖𝑑𝑖 , 𝑒𝑝) in the MMS-EUF-CMA game and returns theMMS signa-
ture. This does not harm our reduction though, as the epoch 𝑒𝑝 in

which that happens immediately becomes invalid for any forgery.

So already the epoch 𝑐𝑒𝑝 ofA’s finally forgery (which is also signed

with the MMS signature) must be different to any epoch where

A could have made such a corruption (or requested a member-

ship credential for a corrupt RP), which implies that the extracted

𝑟𝑖𝑑 in combination with the fresh 𝑐𝑒𝑝 has never been queried to

O .MMS.Sign. We also note that we do not rely on any properties

of the standard signature here (this was handled separately in Case

(1) above), and thus, we can simply generate standard signature

keys for all honest RPs and output them upon corruption.

In summary, we let an adversary B aiming to break the un-

forgeability of MMS by simulating the RP Accountability game

114

Save The Implicit Flow? Enabling Privacy-Preserving RP Authentication in OpenID Connect Proceedings on Privacy Enhancing Technologies 2023(4)

towardsA as follows: B first sets 𝑖𝑝𝑘 as the𝑚𝑝𝑘 received from the

MMS-EUF-CMA game and then uses its access to the O .MMS.Sign
oracle as well as the fact that proofs 𝜋 can be perfectly simulated

to mimic the parts that would require knowledge of𝑚𝑠𝑘 (or cre-

dentials thereof).

O .Join-Reg : Runs the standard Join-Reg protocol. Note that here
𝑚𝑠𝑘 (which is now unknown) is not needed.

O .Reg : Executes the oracle with standard Reg. Note that here𝑚𝑠𝑘

(which is now unknown) is not needed.

O .CredReq-CredIss : Does not issue any membership credential

to the honest RP, but merely keeps track that RP 𝑟𝑖𝑑𝑖 is a valid

member in 𝑒𝑝 . This change is internal to the oracle, and thus not

noticeable by A.

O .CredIss : Executes the oracle with the help of the O .MMS.Sign
oracle to which it sends (𝑟𝑖𝑑𝑖 , 𝑒𝑝) and uses the response as

(𝜎𝐼𝑑𝑃 , 𝑒𝑝). As we are in Case (2), we know that all requests

are for corrupt 𝑟𝑖𝑑𝑖 ’s, i.e., the epoch 𝑒𝑝 immediately becomes

invalid for any forgery for A.

O .CrptRP : Returns the requested 𝑟𝑠𝑘𝑖 of the honest RP. If the hon-

est RP was also a valid member in the current epoch, B requests

the membership credential 𝜎𝐼𝑑𝑃 ← O .MMS.Sign(𝑟𝑖𝑑𝑖 , 𝑒𝑝) and
returns (𝜎𝐼𝑑𝑃 , 𝑒𝑝). If this happens, the epoch 𝑒𝑝 becomes invalid

for any forgery for A.

O .SetEP : Increases epoch.

O .AReqRP : If 𝑟𝑖𝑑𝑖 was registered as a valid member in that epoch,

B simulates the NIZK 𝜋 .

O .AResIdP : Executes the oracle with standard AResIdP. Note that
here only the secret key of the standard signature SIG is needed

not the𝑚𝑠𝑘 (which is unknown in the reduction).

The oracles in the game are either executed identically to the

original game or perfectly simulated. Specifically, O .CredIss and
O .CrptRP return the same credentials with the assistance of the

O .MMS.Sign oracle from the MMS game. Since both credentials

also sign an epoch 𝑒𝑝 , which cannot be utilized for a forgery, this

does not compromise the freshness requirement of the final forgery.

The simulation of O .AReqRP is indistinguishable by the zero-

knowledge property of the NIZK system. As we bind the proofs

𝜋 to (𝑢𝑖𝑑, 𝑛, 𝑝𝑢𝑏𝑈 , 𝑒𝑝), we ensure that the proof cannot be used in

a different context. Most importantly, any proof returned by the

O .AReqRP oracle can never be used as forgery (by the winning

condition of the RP Accountability game). Thus, no simulated proof

can be used as forgery, which is important to ensure the desired

extractability.

A eventually outputs its forgery𝑎𝑢𝑡ℎ𝑅𝑃
∗
for fresh tuple (𝑢𝑖𝑑∗, 𝑛∗

, 𝑝𝑢𝑏𝑈
∗, 𝑐𝑒𝑝) that is accepted by the IdP, while there are no corrupt

RPs with a credential in epoch 𝑐𝑒𝑝 . Fresh refers to the requirement

that (𝑢𝑖𝑑∗, 𝑛∗, 𝑝𝑢𝑏𝑈 ∗, 𝑐𝑒𝑝) must not have been queried to an honest

RP via O .AReqRP. We then use the knowledge extractor of the

proof system to obtain 𝑟𝑖𝑑 and 𝜎𝐼𝑑𝑃 from 𝜋 := 𝑎𝑢𝑡ℎ𝑅𝑃
∗
in epoch

𝑐𝑒𝑝 and will use (⇀𝑚∗:= (𝑟𝑖𝑑, 𝑐𝑒𝑝), 𝜎𝐼𝑑𝑃) as MMS forgery. It is easy

to see that (𝑟𝑖𝑑, 𝑐𝑒𝑝) is fresh and thus valid in theMMS game.

In conclusion, this shows that a forgery in Case (2) is infea-

sible, based on the unforgeability of the MMS scheme and the

zero-knowledge property as well as simulation soundness of the

NIZK.
□

D.2 RP Session Binding
Before proving the following Theorem D.2, let us recap the rele-

vant part of the construction: the IdP employs a standard signature

scheme SIG to issue identity tokens, while a user utilizes a commit-

ment scheme COM to commit to the 𝑟𝑖𝑑 she wants to authenticate

to. The IdP signs the commitment, together with the other user and

context information, if it received a valid NIZK that proofs that the

request stems from a properly authenticated RP. The latter relies on

the MMS signature the RP must own on its 𝑟𝑖𝑑 and current epoch.

Session Binding holds, if the IdP’s standard signature scheme

andMMS signature are secure, the commitment scheme COM is

binding, and the NIZK proof system used is special sound.

In the RP Session Binding game, all RPs are assumed to be cor-

rupt from the beginning, which leads to a simpler proof than RP

Accountability, as we do not have to handle adaptive corruptions

of initially honest RPs.

Theorem D.2. AIFZKP is RP Session Binding if SIG (used by the
IdP) is SIG-EUF-CMA secure, COM is binding, MMS is MMS-EUF-
CMA secure, and the NIZK is special sound.

Proof. An adversary in the RP Session Binding experimentmust

output a finalized token 𝜏𝑖𝑑
∗
that is valid for an honest user session

(𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝). By the winning condition of the game,

the adversary wins if the session either

(a) is fresh, i.e., (𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝) was never used by O .
AResIdP-AFin

(b) or this session was intended by an honest user, but then 𝑟𝑖𝑑∗

must belong to some RP that does not own a credential in epoch

𝑐𝑒𝑝 .

Forgery under condition (a). Recall that the finalized token 𝜏𝑖𝑑 ∗ :=
(𝜏, 𝑐, 𝑜) contains an IdP’s SIG signature 𝜏 on the combined message

(𝑐 | |𝑢𝑖𝑑∗ | |𝑐𝑡𝑥∗ | |𝑛∗ | |𝑐𝑒𝑝) and a correct opening 𝑜 for the commitment

𝑐 to 𝑟𝑖𝑑∗.
As we know that (𝑟𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝) must be fresh, there

are two sub-cases in which A can win under condition (a): either

the “public” session part (𝑢𝑖𝑑∗, 𝑐𝑡𝑥∗, 𝑛∗, 𝑐𝑒𝑝) is fresh and A forged

an IdP’s signature, or that session part is not fresh, which in turn

means that 𝑟𝑖𝑑∗ must be different than in the honest query to

O .AInit. The latter breaks the binding property of COM. The first

sub-case immediately yields a valid forgery for the IdP’s (standard)

signature scheme SIG.

Forgery under condition (b). To succeed under the second win-

ning condition of the RP Session Binding game, the adversary pro-

vided an honest user session in which 𝑟𝑖𝑑∗ does not belong to a

corrupt RP with a credential for epoch 𝑐𝑒𝑝 . Recall that in this game

all RPs are corrupt. Therefore, the adversary must have provided

an RP authentication request 𝑎𝑢𝑡ℎ𝑅𝑃 := 𝜋 accepted by the IdP

or it re-used a credential 𝑐𝑟𝑒𝑑 of another RP 𝑟𝑖𝑑 ≠ 𝑟𝑖𝑑∗ of epoch
𝑒𝑝 ≠ 𝑐𝑒𝑝 and used it to authenticate 𝑟𝑖𝑑∗ of the honest user session
to the IdP in epoch 𝑐𝑒𝑝 . In the first case, it must have forged 𝜋 ,

which contradicts the soundness of the proof system. In the second

case, it must have forged the signature 𝜎 contained in the credential

𝑐𝑟𝑒𝑑 := (𝜎, 𝑒𝑝), which is the IdP’sMMS signature on (𝑟𝑖𝑑, 𝑒𝑝).
The reduction to the unforgeability to MMS is straightforward,

as we simply use the O .MMS.Sign oracle to answer any oracle call

115

Proceedings on Privacy Enhancing Technologies 2023(4) Maximilian Kroschewski and Anja Lehmann

that request membership credentials for 𝑟𝑖𝑑 in epoch 𝑒𝑝 . A’s final

output contains the NIZK 𝜋 from which we then extract the MMS
signature 𝜎 , for the fresh (𝑟𝑖𝑑∗, 𝑐𝑒𝑝) combination. The freshness of

(𝑟𝑖𝑑∗, 𝑐𝑒𝑝) immediately follows from the winning condition (b).

□

E NIZK
In this section, we describe the concrete AIFZKP NIZK instantiation,

which corresponds to our implementation [22].

E.1 Building Blocks, Setup, and Instantiation
In the context of our NIZK instantiation in AIFZKP (see Figure

16), let us first recap the setting. An issued credential by an IdP

is represented by aMMS signature 𝜎 on (𝑟𝑖𝑑, 𝑒𝑝). When the user

initiates the protocol, it generates a commitment/opener (𝑐, 𝑜) for
the desired 𝑟𝑖𝑑 authentication. In the subsequent protocol, the RP

proves, in zero-knowledge, its possession of a credential in epoch

𝑒𝑝 and knowledge of the commitment opening:

NIZK{(𝜎, 𝑟𝑖𝑑, 𝑜) : Vf (𝑝𝑘, (𝑟𝑖𝑑, 𝑒𝑝), 𝜎) = Open(𝑟𝑖𝑑, 𝑐, 𝑜) = 1}(𝑒𝑝, 𝑐) .

This proof validates the possession of a valid MMS signature 𝜎

on (𝑟𝑖𝑑, 𝑒𝑝) with respect to 𝑝𝑘 , along with knowledge of a valid

opening 𝑜 for the commitment to 𝑟𝑖𝑑 , without revealing (𝜎, 𝑟𝑖𝑑, 𝑜).

Constructions, pairings, and hashing. We use Pedersen commit-

ments [37] for the COM scheme, instantiated as 𝑐 ← 𝑔𝑚ℎ𝑜 , where

𝑜 ←
R
Z𝑝 and (𝑔, ℎ) ∈ G2

1
with the discrete logarithm log𝑔 ℎ being

unknown. The opening is verified by checking 𝑔𝑚ℎ𝑜 = 𝑐 . For the

MMS scheme, we utilize PS signatures [38], summarized in Fig-

ure 15, which rely on asymmetric pairings. Note that both schemes

have the same message space, denoted as SCom = SMMS = Z𝑝 . The
construction setup is outlined in the next paragraph.

To define asymmetric pairings, we consider the cyclic groups

G1,G2,GT of order 𝑝 with the respective generators𝑔1, 𝑔2, 𝑔T. More-

over, let 𝑒 : G1 × G2 ↦→ GT be an efficiently computable non-

degenerate function such that ∀𝑎, 𝑏 ∈ Z𝑝 : 𝑒 (𝑔𝑎
1
, 𝑔𝑏

2
) := 𝑔𝑎𝑏

T
. Then 𝑒

is called an asymmetric pairing. It must hold that G1 ≠ G2 and that
no efficient homomorphism 𝜙 : G2 ↦→ G1 exists, which is a type-3

pairing. This asymmetric pairing is instantiated using the elliptic

curve BLS12 − 381 [9].

Public parameters. The AIF public parameters 𝑝𝑝 include fixed

generators (𝑔, ℎ) ∈ G2
1
for Pedersen commitments, where the dis-

crete logarithm log𝑔 ℎ remains unknown and also provide the bilin-

ear group description (𝑝,G1,G2,G𝑇 , 𝑒) for PS signatures.

Setup(1^) → 𝑝𝑝

Return 𝑝𝑝 := (𝑝,G1,G2,G𝑇 , 𝑒)

KGen(𝑝𝑝, ℓ) → (𝑠𝑘, 𝑝𝑘)
(𝑥, 𝑦1, ..., 𝑦ℓ) ←R

Zℓ+1𝑝 ;𝑔←
R
G2

(𝑋,𝑌1, ...𝑌ℓ) ← (𝑔𝑥 , 𝑔𝑦1 , ..., 𝑔𝑦ℓ)
𝑠𝑘 := (𝑥, 𝑦1, ..., 𝑦ℓ) ;𝑝𝑘 := (𝑔,𝑋,𝑌1, ...𝑌ℓ)
Return (𝑠𝑘, 𝑝𝑘)

Sign(𝑠𝑘,⇀𝑚) → 𝜎

Parse 𝑠𝑘 as (𝑥, 𝑦1, ..., 𝑦 𝑗),⇀𝑚 as (𝑚1, ...,𝑚 𝑗)
ℎ ←

R
G1 \ {1G1 };𝜎 ← (ℎ,ℎ

𝑥+Σ𝑦 𝑗 ·𝑚 𝑗)
Return 𝜎

Vf (𝑝𝑘,⇀𝑚,𝜎) → 0/1
Parse 𝑝𝑘 as (𝑋,𝑌1, ...𝑌𝑗),⇀𝑚 as (𝑚1, ...,𝑚 𝑗), 𝜎 as (𝜎1, 𝜎2)
If (𝜎1 = 1G1) abort
Return 𝑒 (𝜎1, 𝑋 ·

∏
𝑌
𝑚 𝑗

𝑗
) = 𝑒 (𝜎2, 𝑔)

Figure 15: Construction of PS signatures [38].

Prover

Inputs: 𝑖𝑝𝑘, 𝑐,𝑢𝑖𝑑,𝑛, 𝑒𝑝, 𝑐𝑟𝑒𝑑, 𝑟𝑖𝑑, 𝑜

Parse 𝑖𝑝𝑘 as (·,𝑚𝑝𝑘) ,𝑚𝑝𝑘 as (𝑔,𝑋,𝑌1, 𝑌2)
Parse 𝑐𝑟𝑒𝑑 as (𝜎1, 𝜎2)
If (𝑐 ≠ 𝑔𝑟𝑖𝑑ℎ𝑜) abort
(𝑟, 𝑡) ←

R
Z2𝑝 ;𝜎

′ ← (𝜎𝑟
1
, (𝜎2 · 𝜎𝑡

1
)𝑟)

𝜋 ← NIZK{(𝑟𝑖𝑑, 𝑜, 𝑡) :
𝑐 = 𝑔𝑟𝑖𝑑ℎ𝑜∧
𝑒 (𝜎′

1
, 𝑌1)𝑟𝑖𝑑 · 𝑒 (𝜎′

1
, 𝑔)𝑡 =

𝑒 (𝜎′
2
, 𝑔) · 𝑒 (𝜎′

1
, 𝑋 · 𝑌𝑒𝑝

2
)−1 }

(𝑢𝑖𝑑,𝑛, 𝑐, 𝑒𝑝)
Return (𝜎′, 𝜋)

Verifier

Inputs: 𝑖𝑝𝑘,𝑢𝑖𝑑,𝑛, 𝑒𝑝, 𝑐, 𝜎′, 𝜋

Parse 𝜎′ as (𝜎′
1
, 𝜎′

2
)

If (𝜎′
1
= 1G1) abort

Return 1 if (𝜋 verifies w.r.t. (𝑢𝑖𝑑,𝑛, 𝑐, 𝑒𝑝))

Figure 16: The NIZK in AIFZKP.

116

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Other Related Work

	2 Background & Building Blocks
	2.1 RP Authentication in OIDC
	2.2 Building Blocks

	3 Authenticated Implicit Flow
	3.1 System Overview
	3.2 Syntax

	4 Security Model
	4.1 Oracles
	4.2 RP Accountability
	4.3 RP Session Binding
	4.4 RP Hiding

	5 Constructions & Analysis
	5.1 Analysis of Existing Approaches
	5.2 Our Fully Secure Scheme: AIF-ZKP

	6 Efficiency & Discussion
	6.1 Implementation
	6.2 Deployment Considerations

	Acknowledgments
	References
	A Unforgeability Definitions
	B AIF Correctness
	C Construction & Analysis: AIF-SIG/COM
	C.1 Achieving RP Authentication: AIF-SIG
	C.2 Achieving RP Hiding: AIF-COM

	D Security Proofs: AIF-ZKP
	D.1 RP Accountability
	D.2 RP Session Binding

	E NIZK
	E.1 Building Blocks, Setup, and Instantiation

