
Privacy-Preserving Outsourced Certificate Validation
Tarek Galal

Hasso-Plattner-Institute, University of Potsdam

mail@tgalal.com

Anja Lehmann

Hasso-Plattner-Institute, University of Potsdam

anja.lehmann@hpi.de

ABSTRACT
Digital Covid certificates are the first widely deployed end-user

cryptographic certificates. For service providers, such as airlines

or event ticket vendors, that needed to check that their (global)

customers satisfy certain health policies, the verification of such

Covid certificates was challenging though — not because of the

cryptography involved, but due to the multitude of issuers, different

certificate types and the evolving nature of country-specific policies

that had to be supported. As Covid certificates contain sensitive

health information, their (online) presentation to non-health related

entities also poses clear privacy risk. To address both challenges, the

EU proposed a specification for outsourcing the verification process

to a validator service, that executes the process and informs service

providers of the result. TheWHO announced to adapt this approach

for general vaccination credentials beyond Covid-19. While being

beneficial to improve security and privacy for service providers,

their solution requires strong trust assumption for the (central)

validation service that learns all health-related details of the users.

In ourwork, we propose and formallymodel a privacy-preserving

variant of such an outsourced validation service. Therein the val-

idator learns the attributes it is supposed to verify, but not the users

identity. Still, the validator’s assertion is blindly bound to the user’s

identity to ensure the desired user-binding. We analyze the EU

specification in our model and show that it only meets a subset

of those goals. Our analysis further shows that the EU protocol is

unnecessarily complex and can be significantly simplified while

maintaining the same (weak) level of security. Finally, we propose a

new construction for privacy-preserving certificate validation that

provably satisfies all desired goals.

KEYWORDS
digital certificates, authentication, privacy

1 INTRODUCTION
Digital certificates such as X.509 certificates are the backbone of

security in communication with servers over the internet. They

provide guarantees regarding the identity of servers as well as the

authenticity of transmitted data. Although applications for digital

certificates are not limited to server-side authentication, this is

by far the most prominent application, whereas user-controlled

certificates have hardly seen any adoption yet.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2023(4), 322–340
© 2023 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2023-0113

� �

±

1. Request flight ticket

2.
? Pro

of

3. £ Proof OK!

4. l Ticket

Figure 1: Outsourced Validation Example. An airline requires
passengers to prove vaccination status before it issues tickets.

Covid Certificates – the first major deployment of user certificates.
The first major roll-out of end-user digital certificates were the so-

called Covid-certificates, attesting users that they had been tested,

received a vaccination, or recovered from Covid-19. Up to date,

more than 1.7 billion [13] certificates have been issued world-wide,

and in several countries presenting these credentials even became

mandatory for participating in events or traveling [18, 25, 32].

A notable effort for realizing a federated infrastructure is the EU
Digital Covid Certificate by the European Commission [12]. It spec-

ifies a common certificate structure that had to be implemented by

the EU member states and requires interoperability of certificates

across countries [14]. These are typically simple RSA/ECDSA sig-

natures by one or several trusted issuance authorities per country

over a set of user-specific attributes that were encoded in form of

QR-codes to facilitate offline-presentation of such certificates.

The Challenge of Federation and Evolving Policies. Comparing the

handling of such Covid-certificates with the long-established X.509

server certificates reveals interesting differences: Server certificates

contain clear attributes, such as their public key, expiry date, URL

and name of organisation, that are verified against a set of prede-

fined and static rules (e.g., expiry date is in the future). In contrast,

despite the efforts for setting up a common certificate specification,

the exact country-specific instantiations varied greatly and different

countries had different policies, both for issuing these credentials as

well as what a correct “proof” meant. The latter refers to the ques-

tion of when a certificate is considered “valid”, which could depend

on the number (and/or time) of vaccinations a user had received,

or whether a recovery status (country-dependent) was sufficient as

well. In the case of Covid, these regulations also changed regularly,

reflecting the current nationwide efforts to contain the pandemic.

This presents a challenge for verifying parties that had to han-

dle a multitude of certificates from many countries and ensure

compliance with a continuously changing set of policies.

Privacy Challenges in Online Scenarios. Another challenge are the
privacy implications of such certificates, in particular when used

in online scenarios, e.g,. when booking flight or concert tickets,

or proving to an employer that certain public health policies were

322

https://orcid.org/1234-5678-9012
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0113

Privacy-Preserving Outsourced Certificate Validation Proceedings on Privacy Enhancing Technologies 2023(4)

satisfied in order to get access rights to office facilities or univer-

sities [33, 37]. As Covid-certificates are mainly plain ECDSA/RSA

signatures, this required sending the full certificate, containing all

attributes and sensitive medical data, to private companies for veri-

fication. This is clearly not desirable from a privacy perspective, as

information of how often (or not all) one is vaccinated, or whether

(and when) one had certain infections, is not information that air-

lines, employers or ticket vendors should process and store. It is

also a security risk: as these certificates are not bound to any user

keys, sending the original certificate enables misuse.

Outsourced Certificate Validation. To address these challenges

in the context of Digital Covid Certificates, an official proposal

was set out by the European Commission to enable secure and

privacy-friendly verification in online “booking” scenarios [15].

Their solution proposes to outsource the delicate verification to a

dedicated new party: the Validation Service. Instead of receiving and
verifying health certificates themselves, service providers delegate

the verification procedures to a trusted validation service which

checks the authenticity of certificates and that the contained at-

tributes fulfill a desired policy, and communicates the result back.

This offloads the complex management of the verification process

to an external party, that can offer its validation service to many

relying parties. It also addresses the privacy risk, as the validator

only reveals whether a certain user satisfied the policy, but not how.
While the validation service proposed by the EU certainly has

security and privacy benefits for relying parties, it also introduces

new risks: if only one or few validation services exist, then it intro-

duces a single-point of failure. For privacy in particular, the concept

of having a single (or few) central entities that collect sensitive

health data of millions of citizens is not a desirable prospect.

On the Importance of Validation Services. We stress that the com-

plex verification of user-certificates is not a problem specific to

Covid-certificates, but will be a challenge for all user-centric cer-

tificates of “soft” attributes that get issued (in a non-standard form)

by many issuers and gets validated against flexible policies. With

the inevitable rise of digital health services, and efforts such as e-

prescription, and general electronic vaccination passports [22, 38],

we believe that the verification problem and outsourced valida-

tion approach will become even more important. In fact, the WHO

already announced that it wants to offer such a vaccination vali-

dation service which is “intended to serve as a standard procedure

for other vaccinations such as polio or yellow fever after COVID-

19.” [40]. The company chosen to develop such a service, is the same

(and only one) that already announced to offer a service compliant

with the EU’s specification in Germany [39], which underpins our

concern that there will be only very few such providers.

1.1 Contributions
In this work, we introduce the new concept of privacy-friendly

validation services for outsourced verification. Their goal is to

offload the verification to an external (semi-trusted) entity, to check

whether a user owns a certificate that matches a certain policy

— but now without the validator learning the user’s identity. We

formally define this system, analyze the current EU proposal in our

model, and propose a new protocol that provides better security

and privacy.

Formal Security Model. We start by formally defining such Cer-

tificates with Outsourced Validation system (COV) and the desired

security and privacy guarantees. Our system model is inspired by

the EU specification [15], and includes four entities: issuers, users,

relying parties RP and validation services VS. To express the

different information that relying parties and validators are inter-

ested in, we consider the issuers’ certificates to contain two type

of values: user identifying values 𝑢𝑖𝑑 (such as full name and date

of birth), and additional attributes 𝑎𝑡𝑡𝑟 (which could be the type

of vaccination). The validator should only learn the attributes 𝑎𝑡𝑡𝑟

and assert whether they satisfy a (public) policy 𝑓 , whereas the

relying party must learn 𝑢𝑖𝑑 and whether this user satisfies the

policy (by relying on the result of the validator). In terms of privacy,

we consequently want to achieve the following two properties:

VS-Privacy: The validator only learns 𝑎𝑡𝑡𝑟 and whether the user

owns a valid certificate on it, but does not learn 𝑢𝑖𝑑 or even

whether two verification requests belong to the same user.

RP-Privacy: The relying party only learns whether 𝑢𝑖𝑑 satisfies

the desired policy, but nothing beyond 𝑓 (𝑎𝑡𝑡𝑟) about the
user attributes 𝑎𝑡𝑡𝑟 .

While formalizing these properties is rather simple, the challenge

is in capturing the desired unforgeability properties despite the

blindness imposed by our two privacy guarantees. That is, despite

validation being performed in a partially-blind way, we still want

the validation result to be (blindly) bound to the underlying user

𝑢𝑖𝑑 and allow a non-blind verification by the relying party:

Unforgeability: It is infeasible to forge a validation result. If the

RP outsources the certificate validation of a user 𝑢𝑖𝑑 to a

trustedVS, and receives positive notification fromVS, it
is ensured that the user indeed owns a certificate 𝑐𝑒𝑟𝑡 on

(𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) with 𝑓 (𝑎𝑡𝑡𝑟) = 1, and this user also initiated the

verification request. This property must also hold in the

presence of other corrupt validators, which an honest user

might have used before.

Without VS- or RP-privacy, formulating and achieving unforge-

ability is trivial, the challenge is guaranteeing all three properties

at the same time.

Analysis of the EU Proposal. We then present the EU proposal

for such validation services in our framework and analyze its se-

curity. We show that the protocol neither achieves VS-Privacy nor

Unforgeability. The former is not surprising, as such privacy was

not intended. The lack of (strong) unforgeability stems from the

fact that users send their full certificate to theVS, i.e., a corrupt
VS can collect and misuse certificates of honest users (which is

considered an attack in our system). We prove that a weaker form

of unforgeability, assuming all validators to be honest, is achieved,

and so is RP-privacy. Our analysis reveals that the EU proposal

is overly complicated though, and requires several message flows

and cryptographic building blocks that can be omitted without

impacting the security of the protocol. Most notably, it lets the

user encrypt her certificate and sign the ciphertext under a freshly

generated signature key pair for “maximum data privacy” [15]. But

the only party ever seeing the ciphertext also knows the decryption

323

Proceedings on Privacy Enhancing Technologies 2023(4) Tarek Galal and Anja Lehmann

key, and the pseudonymously signed ciphertext contains the users’

identifying data – thus neither have an effect in our model.

Privacy-preserving Protocol (PP-COV). Finally, we present a new
protocol that provides outsourced validation and provably achieves

all three properties. Our protocol follows the common approach of

privacy-preserving authentication and relies for its certificates on a

signature scheme that allows selective disclosure of attributes and

(non-interactive) proving of ownership of a signature on partially

hidden attributes. We stress that these signatures are only used

for the issuers’ certificates that get validated through theVS. The
validators return their result in form of standard signatures, i.e.,

the relying party will only have to consume standard signatures

from theVS it trusts. The desired unforgeability and user-binding

are established by combining such a signature with a commitment

scheme, where the commitment (on 𝑢𝑖𝑑) remains closed toward

theVS, but the RP can open and verify that theVS’s validation
result belong to the same user that RP is communicating with.

1.2 Related Work
Outsourcing cryptographic computations to external helpers is not

a new idea, and has been extensively studied e.g., in [20, 24, 28].

However, therein the goal is to shift demanding tasks from resource-

restricted devices to a more powerful, but potentially malicious

entity. While we do outsource signature verification, this is only

because we want to outsource the (logical) complexities of policy

validation, rather than due to resource constraints.

A closer line of work are Attribute-Based Signatures (ABS) [23,

27, 29], for which outsourced verification has been proposed in [11,

41]. In ABS, a signer owning a set of certified attributes from an

attribute authority, can sign a message with a predicate that is

satisfied by her attributes, such that the signature only reveals if

the predicate is satisfied, but not how. The work on outsourced

ABS verification again focuses on shifting the computation-heavy

parts to an untrusted helper, but not on splitting the verification

over two entities that are supposed to verify different parts of the

signature/certificate – which is what our work aims at.

Our privacy-preserving protocol PP-COV shares similarities

with protocols known as anonymous or privacy-enhancing cre-

dentials [2, 3, 6–10, 19, 34]. Both utilize attribute-based signatures

that the user receives from an issuer, which allow for unlinkable

presentations of selectively disclosed attributes. Recent works have

extended anonymous credentials with an outsourced computation

capability [21, 26], albeit for the user’s part and not verification,

which is our primary focus.

In anonymous credentials, the verifier receives a user’s presenta-

tion of certified attributes for verification against the issuer’s public

key. In PP-COV, on the other hand, verification is split among two

parties: RP and VS, each verifying a different subset of the at-

tributes, and the verification performed by RP mostly relies on

the outsourced validation result, which needs to be blindly bound

to the underlying user identity (𝑢𝑖𝑑) that the RP receives directly.

Our main challenge is to formally capture the security and privacy

properties of such two-party verification.

In fact, our PP-COV protocol can be seen as an indirect exten-

sion of anonymous credentials with an outsourced verification

capability. By demonstrating how the verification process can be

outsourced in a secure and privacy-friendly manner, we believe

that our approach can contribute to a wider adoption of anony-

mous credentials. However, we stress that our main motivation

is to model and analyse the validation system proposed by the

EU [15] and supported by the WHO [40], with PP-COV serving as

a privacy-enhancing alternative to the existing solution.

2 SYSTEM AND SECURITY MODEL
In this section we introduce our formal model for a Certificates

with Outsourced Validation system (COV). Our system model is

inspired by the EU specification that introduced such an outsourced

validation service for the verification process of Digital COVID Cer-

tificates [15]. We start by defining the generic syntax and intended

functional behaviour of the system, and then formalize the desired

security guarantees through game-based definitions.

High-Level Description. There are four types of entities in a COV
system: issuers I, usersU, relying parties RP and validation ser-

vices VS. A user U can receive a certificate 𝑐𝑒𝑟𝑡 from an issuer

I on some unique user identifying information 𝑢𝑖𝑑 and a set of

attributes 𝑎𝑡𝑡𝑟 . Later,U can access a service from a relying party

RP that needs to ensure its users satisfy a certain (public) pol-

icy 𝑓 , i.e., the user identified via 𝑢𝑖𝑑 owns a certificate 𝑐𝑒𝑟𝑡 from

a trusted issuer 𝑖𝑝𝑘 on attributes 𝑎𝑡𝑡𝑟 such that 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) = 1.

The RP does not want to verify the certificate itself, but relies on

a validation service VS to learn whether 𝑎𝑡𝑡𝑟 belonging to 𝑢𝑖𝑑

satisfies the policy or not. The VS ensures the user has a valid

certificate, runs 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) on behalf of RP, and communicates

the result to it. Note that the result of the policy verification de-

pends on the combination of the certified attributes 𝑎𝑡𝑡𝑟 and who

certified them (𝑖𝑝𝑘). This allows us to express that the same at-

tribute can have different meanings depending on the issuer, e.g.,

an attribute booster = 1 might have different meanings in different

countries/issuer domains.

Having different parties (RP,VS) interested in different types

of information contained in 𝑐𝑒𝑟𝑡 is what motivates the explicit

separation of 𝑢𝑖𝑑 and 𝑎𝑡𝑡𝑟 : RP wants to know 𝑢𝑖𝑑 and the result

of 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘), whereasVS only needs to know 𝑎𝑡𝑡𝑟 such that it

can assert if the policy is satisfied, but does not need to know 𝑢𝑖𝑑 .

To correctly capture real-world usage, our system supports mul-

tiple issuers and multiple validation services. In terms of trust rela-

tions, aVS trusts a certain subset of issuers, denoted as 𝑃𝐾 , and

we assume that trust relation to be publicly known. For simplicity

we use the slightly overloaded notation 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 1 to

express that theVS does not only check that the combination of

(𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) satisfies the policy 𝑓 , but also that 𝑖𝑝𝑘 is in its (publicly

known) set of trusted issuers 𝑃𝐾 .

2.1 Syntax
We now define the generic syntax of a COV system. We start by

informally describing the algorithms and their use, and then provide

the formal definition.

Setup & Policy. Our system is initialized by the Setup algorithm

that generates public parameters 𝑝𝑝 for a security parameter 1
_
that

will be considered as implicit input to all algorithms. Both, issuers

324

Privacy-Preserving Outsourced Certificate Validation Proceedings on Privacy Enhancing Technologies 2023(4)

U RP

VS

1. 𝑠𝑖𝑑,𝑛𝑦𝑚,𝑢𝑖𝑑, 𝜋RP

2.
𝑠𝑖𝑑,

𝑖𝑝𝑘,
𝑛𝑦𝑚

,𝑎𝑡𝑡
𝑟, 𝜋VS

3. 𝑠𝑖𝑑, 𝜏

4. {0, 1}

Figure 2: Flow of messages in a joint validation session 𝑠𝑖𝑑 of
a user proving ownership of 𝑐𝑒𝑟𝑡 on (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) by issuer 𝑖𝑝𝑘 .

and validators have dedicated key pairs, generated via IKGen as

(𝑖𝑝𝑘, 𝑖𝑠𝑘) and via VKGen as (𝑣𝑝𝑘, 𝑣𝑠𝑘) respectively.
We assume that each validator is publicly known to handle a

specific policy 𝑓 and trusts a set of issuers without making that

explicit. That is, we assume that each validator public key 𝑣𝑝𝑘 is

implicitly bound to particular policy 𝑓 and a set of trusted issuers’

public keys 𝑃𝐾 that are known to all parties involved. In a real

deployment, VS’s public keys are managed over a PKI, and the

certificates on these keys would most likely also include these

information.

Certificates. An issuer generates a certificate over a particular

(𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) belonging to some user by running CertIssue with their

𝑖𝑠𝑘 , and passes 𝑐𝑒𝑟𝑡 to the user who can verify its correctness using

CertVerify. We assume 𝑢𝑖𝑑 to be globally unique.

Outsourced Validation Process. Users in possession of a certificate

can then prove to some RP that they have attributes certified by a

trusted issuer I with 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 1, using a validatorVS
identified through 𝑣𝑝𝑘 (that is known to verify 𝑓 for trusted issuer

public keys 𝑃𝐾) for the policy check. As the user might request

several of these showings from the VS, we use a unique session
identifier 𝑠𝑖𝑑 in all algorithms of this process to distinguish different

sessions. More precisely, we assume the session id to be of the form

𝑠𝑖𝑑 = (VS,RP, 𝑠𝑖𝑑 ′) whereVS,RP identify the involved parties

and 𝑠𝑖𝑑 ′ is a fresh and unique string for each session.

The validation process is initiated by a userU who chooses a

VS and runs CertPresent on her certificate and the public keys of

thatVS and the certificate’s issuer, obtaining three output values:

𝑛𝑦𝑚, 𝜋VS, 𝜋RP. The value 𝑛𝑦𝑚 can be seen as a pseudonym that

is given to both the RP and VS and (blindly) binds the session

to U, whereas 𝜋VS is a presentation token for the VS and 𝜋RP is

RP-specific verification information.

U passes the produced presentation token 𝜋VS, pseudonym 𝑛𝑦𝑚

and her attributes 𝑎𝑡𝑡𝑟 to VS. The VS processes the received

input via ValTokGen𝑓 ,𝑃𝐾 , which internally checks if 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈
𝑃𝐾) = 1. Depending on the result of its check, it returns a validation
token 𝜏 , and sends it along with 𝑠𝑖𝑑 to RP. Finally, RP can combine

this token with the information (𝑢𝑖𝑑, 𝑛𝑦𝑚, 𝜋RP) it received fromU
for 𝑠𝑖𝑑 . It runs ValTokVerify to verify whether the user uniquely

identified by𝑢𝑖𝑑 , and in this session 𝑠𝑖𝑑 associated with pseudonym

𝑛𝑦𝑚, has been attested by the validator to own a certificate that

satisfies the desired policy 𝑓 (implicitly defined via 𝑣𝑝𝑘). Figure 2

visualizes the exchanged messages during a validation session.

Formally, a COV scheme for(_, 𝑠𝑖𝑑) ∈ Z2
and attribute space D

consists of the following algorithms:

Setup(1_): On input of security parameter 1
_
outputs public pa-

rameters 𝑝𝑝 , implicitly made available to all algorithms.

IKGen(𝑝𝑝) → (𝑖𝑝𝑘, 𝑖𝑠𝑘): Outputs issuer’s public key 𝑖𝑝𝑘 and se-

cret key 𝑖𝑠𝑘 .

VKGen(𝑝𝑝) → (𝑣𝑝𝑘, 𝑣𝑠𝑘): OutputVS’s key pair. We assume ev-

eryVS key pair implicitly defines a policy verification func-

tion 𝑓 and a set of trusted issuers’ public keys 𝑃𝐾 .

CertIssue(𝑖𝑠𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) → 𝑐𝑒𝑟𝑡 : Run by I to generate a 𝑐𝑒𝑟𝑡 for

the given 𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟 .

CertVerify(𝑖𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡) → {0, 1}: Run byU to verify a 𝑐𝑒𝑟𝑡

relative to the given 𝑖𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟 .

CertPresent(𝑖𝑝𝑘, 𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡) → (𝜋VS, 𝜋RP, 𝑛𝑦𝑚):
Run by U, outputs a pseudonym 𝑛𝑦𝑚 for the given 𝑢𝑖𝑑 ,

pseudonym verification info 𝜋RP, and a presentation token

𝜋VS for the given 𝑖𝑝𝑘, 𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, and 𝑛𝑦𝑚.

ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS) → {𝜏,⊥}: This is run
byVS to verify 𝜋VS w.r.t. the given 𝑖𝑝𝑘 , 𝑎𝑡𝑡𝑟 , 𝑠𝑖𝑑 , 𝑛𝑦𝑚 and

outputs a validation token 𝜏 or ⊥. 𝑓 and 𝑃𝐾 denote the (non-

cryptographic) policy that is implicitly defined via 𝑣𝑝𝑘 and

asserted through a token 𝜏 .

ValTokVerify(𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋RP, 𝜏) → {0, 1}: Run by RP, out-
puts 1 if 𝜏 is valid w.r.t. to 𝑣𝑝𝑘 for the given 𝑢𝑖𝑑 , 𝑠𝑖𝑑 , 𝑛𝑦𝑚,

𝜋RP, or 0 otherwise.

2.2 Security Model
In this section we formally define our three security goals: VS-

Privacy (a corrupt VS learns nothing about 𝑢𝑖𝑑), RP-Privacy (a

corrupt RP learns nothing about 𝑎𝑡𝑡𝑟), and Unforgeability.

We model the security goals as games where an adversary A
interacts with a challenger in control of the honest parties in every

game. In the following, we give an intuition for each goal and then

argue how this is captured in our formal model.

Notation & Conventions. We use the shortcut (𝑘𝑒𝑦,−) ∈ 𝑄 and

𝑘𝑒𝑦 ∈ 𝑄 synonymously to check if any tuple in the set 𝑄 contains

a given value 𝑘𝑒𝑦. Similarly, we write (𝑘𝑒𝑦, 𝑣𝑎𝑙) ∈ 𝑄 for a given

input 𝑘𝑒𝑦 to look up the corresponding values 𝑣𝑎𝑙 stored for this

key, which implicitly also checks that 𝑘𝑒𝑦 ∈ 𝑄 .
Further, all our games require multi-stage adversariesA, and we

assume A keeps state across all stages without making it explicit.

Finally, recall that we identify all session through unique 𝑠𝑖𝑑 =

(VS,RP, 𝑠𝑖𝑑 ′) where the first part identifies the involvedVS and

RP and 𝑠𝑖𝑑 ′ must be unique (for that combination of parties). In

practice, 𝑠𝑖𝑑 ′ will simply be a concatenation of nonces provided by

both parties. For simplicity, we assume in our model (and construc-

tion), that all 𝑠𝑖𝑑’s are well-formed and unique without making that

explicit in all oracles and algorithms.

2.2.1 Unforgeability. This is the core property of our scheme, and

it guarantees unforgeable validation tokens if the RP relies on

an honest validator that in turn trusts only honest issuers. Note

that both trust assumptions are inherent requirements for any

meaningful unforgeability guarantee, as a corrupt validator could

generate any tokens it wants, and an honest validator relying on

corrupt issuers could also be fed arbitrary information that it would

validate.

325

Proceedings on Privacy Enhancing Technologies 2023(4) Tarek Galal and Anja Lehmann

We stress that while the exact validator the RP relies on must

be honest, our security model also captures corrupt users and val-

idators. It models that corrupt users get certificates from honest

issuers, and honest users present certificates to corrupts validators,

and ensures security in the presence of these corrupt entities.

Roughly, unforgeability guarantees that RP accepts the final val-

idation token 𝜏 for a user 𝑢𝑖𝑑 only if the user legitimately obtained

a certificate from an honest issuer with policy-passing 𝑎𝑡𝑡𝑟 and

intended to have a session identified through (𝑠𝑖𝑑, 𝑛𝑦𝑚) with an

honestVS who trusts that issuer. Thus, this property is expressed

for the final verification where the input from the user and VS
are used together in ValTokVerify(𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋RP, 𝜏). This
combination of distributedly and partially blindly derived infor-

mation is what makes defining unforgeability challenging. In fact,

unforgeability encapsulates several security aspects of our system:

(1) infeasibility to create a valid 𝜏 for a session identified by

(𝑠𝑖𝑑, 𝑛𝑦𝑚) that was never approved by the honestVS (direct
unforgeability),

(2) infeasibility to get the honestVS to create 𝜏 for user𝑢𝑖𝑑 who

does not possess the necessary certificate with policy passing

attributes from a trusted issuer (indirect unforgeability),
(3) if theVS in a session (𝑠𝑖𝑑, 𝑛𝑦𝑚) with RP has checked cer-

tain attributes (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) (that satisfy the policy) and gen-

erated a token 𝜏 , then only a user 𝑢𝑖𝑑 owning a certificate

for 𝑎𝑡𝑡𝑟 from 𝑖𝑝𝑘 can use 𝜏 for (𝑠𝑖𝑑, 𝑛𝑦𝑚) towards RP (user
binding),

Note that user binding is stronger than the indirect forgery re-

quirement: it guarantees that when aVS has validated (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘)
in a session for (𝑠𝑖𝑑, 𝑛𝑦𝑚), then the RP is ensured that the 𝑢𝑖𝑑

it interacts with in the same session indeed owns a valid certifi-

cate. More precisely, the following attack is captured through user-

binding and prevented in any scheme satisfying our unforgeability

notion: let 𝑢𝑖𝑑1 and 𝑢𝑖𝑑2 be two corrupt users where only 𝑢𝑖𝑑1

has a policy-compliant certificate. Then it is impossible that 𝑢𝑖𝑑1

shows her certificate (blindly) toVS in a session (𝑠𝑖𝑑, 𝑛𝑦𝑚), but
the returned validation token 𝜏 verifies correctly for 𝑢𝑖𝑑2.

For honest users 𝑢𝑖𝑑 we want even stronger guarantees, that

ensure that any final validation token 𝜏 for 𝑠𝑖𝑑, 𝑛𝑦𝑚 and 𝑢𝑖𝑑 does

indeed stem from a validation session initiated by that particular

user. This comprises the following two aspects, where the second

captures security in the presence of corruptVS’s.
(4) if an honest user 𝑢𝑖𝑑 and honest VS engage in session

(𝑠𝑖𝑑, 𝑛𝑦𝑚), where 𝑢𝑖𝑑 has a correct certificate for (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘)
and the validator generates a token 𝜏 , then only this exact

user 𝑢𝑖𝑑 can use 𝜏 for (𝑠𝑖𝑑, 𝑛𝑦𝑚) (strict user binding),
(5) an adversary (being a corruptVS) receiving presentation

tokens from an honest user for session (𝑠𝑖𝑑, 𝑛𝑦𝑚), cannot re-
use that information to impersonate the honest user towards

an honestVS (impersonation resistance).

User Binding vs. Strict User Binding. One might wonder why

there is a difference for honest and corrupt users regarding the

binding guarantees, and why we have only a weaker form for

corrupt users. This is in fact an inherent limitation that stems

from certificate validation being done partially-blindly via theVS.
When a corrupt user presents her certificate towards the honest

VS, our algorithms (and oracles) do not reveal any information

about who that user is. All we know are the (𝑠𝑖𝑑, 𝑛𝑦𝑚) she used in

that session and her information 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 to be verified. Thus, due

to the blindness of that process we simply cannot express who the

exact user is. This is similar to the situation of blind signatures, that

cannot achieve standard unforgeability, but only the weaker form,

one-more-unforgeability. The unforgeability we ensure for corrupt

users is significantly stronger than classic one-more-unforgeability

though, and leverages the fact that during both, issuance and final

verification, the user 𝑢𝑖𝑑 is known again. More precisely, we know

(𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) from the presentation towardsVS, we know
what information (𝑎𝑡𝑡𝑟 ′, 𝑖𝑝𝑘 ′) for 𝑢𝑖𝑑 got certified from an honest

issuer, and in the final verification run by RP we know the user

identity 𝑢𝑖𝑑 again, and we require all information to be consistent.

We already explained above that this prevents corrupt users𝑢𝑖𝑑1

and 𝑢𝑖𝑑2 to “pool” their certificates, i.e., a corrupt user 𝑢𝑖𝑑2 not

having the required certificate cannot exploit the blind validation

to falsely present a certificate from 𝑢𝑖𝑑1 toVS. What is not con-

sidered an attack though, is that two corrupt users 𝑢𝑖𝑑1 and 𝑢𝑖𝑑2

both owning valid certificates on the same policy-compliant values

(𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) can mix their sessions. That is,𝑢𝑖𝑑1 shows her certificate

toVS, but the returned validation token is used by 𝑢𝑖𝑑2 towards

RP. As 𝑢𝑖𝑑2 has the same certificate that would have also passed

the validation, we consider this a benign attack and avoid the use of

extractors or constrained adversaries to exclude them in the model.

The reason why we can ensure stronger security for honest users

is that they are controlled by the challenger in the security model,

i.e., we know exactly which user has engaged in which session and

can express that only this user can present the validation token, i.e.,

even users with the same certificates cannot “hijack” their sessions.

Oracles. We model corrupt users via OCU that the adversary can

use to receive certificates from an honest issuer 𝑖𝑝𝑘𝑖 over 𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟

of its choosing. The adversary can request issuance of honest user

certificates using OHU which stores the generated certificate inter-

nally, and allows subsequent use of them in form of presentation

tokens. These two oracles ensure global 𝑢𝑖𝑑 uniqueness by not

issuing more than one certificate per 𝑢𝑖𝑑 .

To interact with the honest “challenger”VS (with 𝑣𝑝𝑘), there

are two different oracles depending on whetherA usesVS directly

as a corrupt user (via O𝜏) or requests a token for an honest user (via

O𝜋,𝜏). In the latter case, this internally runs the honest presentation

token generation and verification, and returns the validation token

𝜏 as well as 𝑛𝑦𝑚, 𝜋RP to the adversary (posing as corrupt RP).
Finally, we use O𝜋 to model malicious validators in the system

and capture the desired impersonation resistance. That is, this oracle

can be used to ask honest users (generated via OHU) to create

presentation tokens for validator keys 𝑣𝑝𝑘 𝑗 ≠ 𝑣𝑝𝑘 of A’s choice.

Unforgeability Game. Our formal unforgeability game assumes

a maximal number ℓ of honest issuers, and starts by generating key

pairs for all of them (defined as 𝐿ℎ𝑜𝑛𝑒𝑠𝑡), as well as a key pair for

the honestVS. The adversary gets all public issuer keys and oracle
access to trigger certificate issuance (via OCU and OHU). For honest
users, he can already request presentation tokens for malicious

validators of his choice (via O𝜋).
To start the challenge phase, we allow the adversary to choose

any subset 𝑃𝐾 ⊆ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡 of issuers that will be considered trusted,

326

Privacy-Preserving Outsourced Certificate Validation Proceedings on Privacy Enhancing Technologies 2023(4)

OCU (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖)
// Corrupt U - Honest I

abort if 𝑢𝑖𝑑 ∈ 𝑄CU ∪𝑄HU

∨ (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ∉ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡
𝑐𝑒𝑟𝑡 ← CertIssue(𝑖𝑠𝑘𝑖 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)
𝑄CU := 𝑄CU ∪ (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖)
return 𝑐𝑒𝑟𝑡

O𝜏 (𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)
// Corrupt U - Honest VS

𝜏 ← ValTokGen𝑓 ,𝑃𝐾 (
𝑣𝑠𝑘, 𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)

𝑄𝜏 := 𝑄𝜏 ∪ (𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟)
return 𝜏

OHU (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖)
// Honest U - Honest I

abort if 𝑢𝑖𝑑 ∈ 𝑄CU ∪𝑄HU

∨ (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ∉ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡
𝑐𝑒𝑟𝑡 ← CertIssue(𝑖𝑠𝑘𝑖 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)
𝑄HU := 𝑄HU ∪ (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖 , 𝑐𝑒𝑟𝑡)

O𝜋 (𝑣𝑝𝑘 𝑗 , 𝑢𝑖𝑑, 𝑠𝑖𝑑)
// Honest U, Corrupt VS

abort if 𝑣𝑝𝑘 𝑗 = 𝑣𝑝𝑘
if (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘, 𝑐𝑒𝑟𝑡) ∈ 𝑄HU

(𝜋VS, 𝜋RP, 𝑛𝑦𝑚) ← CertPresent(
𝑖𝑝𝑘, 𝑣𝑝𝑘 𝑗 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡)

return (𝜋VS, 𝜋RP, 𝑛𝑦𝑚)

O𝜋,𝜏 (𝑢𝑖𝑑, 𝑠𝑖𝑑) // Honest U - Honest VS

if (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘, 𝑐𝑒𝑟𝑡) ∈ 𝑄HU :

(𝜋VS, 𝜋RP, 𝑛𝑦𝑚) ← CertPresent(𝑖𝑝𝑘, 𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡)
𝜏 ← ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)
𝑄𝜋,𝜏 := 𝑄𝜋,𝜏 ∪ (𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟,𝑢𝑖𝑑)
return

(
𝑛𝑦𝑚, 𝜋RP, 𝜏

)
Figure 3: Oracles for our security definitions. If an oracle re-
ceives input 𝑢𝑖𝑑 , the line (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡, 𝑖𝑝𝑘𝑖) ∈ 𝑄HU expresses
thatwe retrieve (𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡, 𝑖𝑝𝑘𝑖) for that𝑢𝑖𝑑 from𝑄HU, or abort
if no such entry is found.

as well as a policy 𝑓 . We now implicitly bind the honest validator’s

key pair to 𝑃𝐾 and 𝑓 , by giving A additional oracle access to the

honest validator (viaO𝜏 andO𝜋,𝜏) that internally runs 𝑓 for 𝑃𝐾 . The
task of the adversary is to output (𝑠𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP) together
with a token 𝜏∗ that verifies correctly under 𝑣𝑝𝑘 but is a non-trivial

forgery. What non-trivial means is captured through four winning

conditions out of which at least one must be satisfied.

Case 1: The forgery is for a user 𝑢𝑖𝑑∗ that has never received any

certificate from any honest issuer. This can happen either

through a direct or indirect forgery.

Case 2: Here the forgery is for a corrupt user𝑢𝑖𝑑∗ that has a certifi-
cate for (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘), but there is no recorded validation ses-

sion via the honestVS for (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟). This could
either mean that there was no query for (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) at all
(direct forgery), or there was a validated session (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗,
𝑎𝑡𝑡𝑟 ′, 𝑖𝑝𝑘 ′) but for (𝑎𝑡𝑡𝑟 ′, 𝑖𝑝𝑘 ′) ≠ (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) (user binding).

Case 3: Now the forgery is for an honest user 𝑢𝑖𝑑∗ that has a cer-
tificate for (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘), but there is no recorded validation

session via the honest VS for (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟,𝑢𝑖𝑑∗)
(note the extra 𝑢𝑖𝑑∗ in the tuple). This could again mean that

there was no query for (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) at all (direct forgery), or
there was a validated session (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘 ′, 𝑎𝑡𝑡𝑟 ′, 𝑢𝑖𝑑 ′)
but for (𝑎𝑡𝑡𝑟 ′, 𝑖𝑝𝑘 ′, 𝑢𝑖𝑑 ′) ≠ (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘,𝑢𝑖𝑑∗) (strict user bind-
ing). Note that we do not require any conditions on O𝜋 here,

i.e., if (𝑠𝑖𝑑∗, 𝑢𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP) are from a presentation of the

honest user towards a corrupt validator, this is a valid forgery

too (impersonation resistance).

Case 4: This is for a user 𝑢𝑖𝑑∗ (honest or corrupt) that owns a
certificate on (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) which does not satisfy the policy.

This can again happen through direct or indirect forgery.

Definition 2.1 (Unforgeability). COV is unforgeable if for all PPT

adversaries A, Pr[𝐸𝑥𝑝UFA,COV (_) = 1] ≤ negl(_).

𝐸𝑥𝑝UFA,COV (_) → {0, 1} // For max. number of honest issuers ℓ

(𝑝𝑝) ← Setup(1_) ; (𝑣𝑝𝑘, 𝑣𝑠𝑘) ← VKGen(𝑝𝑝)
for 𝑖 := 1, ..., ℓ : (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ← IKGen(𝑝𝑝), 𝐿ℎ𝑜𝑛𝑒𝑠𝑡 := {𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖 }ℓ1
𝑃𝐾, 𝑓 ← AOCU,OHU,O𝜋 (𝑝𝑝, 𝑖𝑝𝑘1, ..., 𝑖𝑝𝑘ℓ)
abort if 𝑃𝐾 ⊈ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡 , initialize O𝜋,𝜏 , O𝜏 with 𝑃𝐾, 𝑓

(𝑠𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏∗) ← AOCU,OHU,O𝜋 ,O𝜋,𝜏 ,O𝜏 (𝑣𝑝𝑘)
return 1 if ValTokVerify(𝑣𝑝𝑘,𝑢𝑖𝑑∗, 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏∗) = 1

and at least one the following holds:

Case 1 : (𝑢𝑖𝑑∗,−,−) ∉ 𝑄CU ∪𝑄HU

Case 2 : (𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) ∈ 𝑄CU ∧ (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟) ∉ 𝑄𝜏
Case 3 : (𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘,−) ∈ 𝑄HU ∧ (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟,𝑢𝑖𝑑∗) ∉ 𝑄𝜋VS,𝜏

Case 4 : (𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘,−) ∈ 𝑄CU ∪𝑄HU ∧ 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 0

Weak Unforgeability. For the EU specification, we will only be

able to show a weaker form of unforgeability in which re-using pre-

sentation tokens received by a corrupt validator is not considered a

forgery, i.e., impersonation resistance is no longer guaranteed. This

is what we denote as weak unforgeability, and can be easily derived

from the definition above, by simply forbidding the adversary to

receive presentations from honest users for maliciousVS’s. We

denote 𝐸𝑥𝑝weakUFA,COV to be the game that is equivalent to 𝐸𝑥𝑝UFA,COV
except that A therein is not getting access to the O𝜋 oracle.

2.2.2 VS-Privacy. This property captures the privacy guarantees to-
wards a corruptVS: a corruptVS receiving (𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑛𝑦𝑚, 𝜋VS)
only learns whether 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 1, indicating that the user

owns a certificate 𝑐𝑒𝑟𝑡 from 𝑖𝑝𝑘 on policy-compliant attributes 𝑎𝑡𝑡𝑟 ,

but does not learn 𝑢𝑖𝑑 (also contained in 𝑐𝑒𝑟𝑡).

In this game, both the validator and issuer(s) can be corrupt,

but the users for which we want to ensure privacy are honest as

well as the RP she authenticates to. Recall that theVS must learn

(𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) to perform its policy check, but shouldn’t learn anything

about 𝑢𝑖𝑑 or the concrete certificate 𝑐𝑒𝑟𝑡 the user owns. The latter

might be a bit surprising, given that we want the validator to check

that the user owns an appropriate certificate. However, requiring

𝑐𝑒𝑟𝑡 to remain secret is necessary, as the certificate would otherwise

serve as a unique identifier each user has, which would immediately

ruin any hope for privacy (when bothVS and I can be corrupt).

The game 𝐸𝑥𝑝PRIV-VSA,COV follows a classic indistinguishability ex-

periment where A outputs two pairs (𝑢𝑖𝑑𝑖 , 𝑐𝑒𝑟𝑡𝑖)𝑖∈{0,1} and the

common values (𝑖𝑝𝑘, 𝑣𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑), then receives the presentation

(𝜋VS, 𝑛𝑦𝑚) for either of the tuples, and must tell the origin.

The requirement that our game does not allow A to specify dif-

ferent (𝑖𝑝𝑘, 𝑣𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑) for each user is necessary, as these values

are required inputs for the validator’s algorithm ValTokGen𝑓 ,𝑃𝐾 ,
and thus user-specific values would immediately allowA to distin-

guish the users. Note that this game captures the aforementioned

unlinkability even though we don’t provide any user oracle: A
knows the certificates of both users and can generate presentations

for the concrete users himself.

327

Proceedings on Privacy Enhancing Technologies 2023(4) Tarek Galal and Anja Lehmann

Definition 2.2 (VS-Privacy). COV satisfies VS-Privacy if for all

PPT adversaries A: Pr[𝐸𝑥𝑝PRIV-VSA,COV (_) = 1] − 1

2
≤ negl(_).

𝐸𝑥𝑝PRIV-VSA,COV (_) → {0, 1}

𝑝𝑝 ← Setup(1_) ; 𝑏 ←𝑅 {0, 1}
(𝑖𝑝𝑘, 𝑣𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, (𝑢𝑖𝑑𝑖 , 𝑐𝑒𝑟𝑡𝑖)𝑖∈0,1) ← A(𝑝𝑝)
return 0 if CertVerify(𝑖𝑝𝑘,𝑢𝑖𝑑0, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡0) = 0 ∨

CertVerify(𝑖𝑝𝑘,𝑢𝑖𝑑1, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡1) = 0

(𝜋VS, 𝜋RP, 𝑛𝑦𝑚) ← CertPresent(𝑖𝑝𝑘, 𝑣𝑝𝑘,𝑢𝑖𝑑𝑏 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡𝑏)
𝑏∗ ← A(𝜋VS, 𝑛𝑦𝑚)
return 1 if 𝑏 = 𝑏∗ else 0

2.2.3 RP-Privacy. Our second privacy property captures the pri-

vacy of honest users towards a corrupt RP. We again allow the

issuer to be corrupt, but now the validator must be honest (as there

is no privacy when all central entities are corrupt and collude).

RP-Privacy requires that none of the values the RP receives,

reveal any information about 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 (beyond 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) =
1) of the user’s underlying certificate. As the RP receives (𝑣𝑝𝑘,𝑢𝑖𝑑,
𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋RP, 𝜏) where 𝜋RP, 𝑛𝑦𝑚 and 𝜏 stem from algorithms that

received the (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) (or even the user’s certificate) as input, we

formulate the indistinguishability challenge for them.

The game initializes the adversary with an honest VS’s pub-
lic key and gives it access to O𝜏 (as defined in Fig.3). The adver-

sary outputs common values (𝑢𝑖𝑑, 𝑠𝑖𝑑), and two pairs (𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟𝑖 ,
𝑐𝑒𝑟𝑡𝑖)𝑖∈{0,1} , again modelling the corrupt issuer. The challenger

picks one of the tuples randomly, first generates a presentation

token (𝜋VS, 𝜋RP, 𝑛𝑦𝑚), and then also derives a validation token 𝜏

for 𝑣𝑠𝑘 and the user’s token. To prevent trivial wins, we require

that both pairs output by A must either pass the validators policy

check, or not, but cannot lead to different responses. The adversary

in the role of the corrupt RP receives (𝜋RP, 𝑛𝑦𝑚, 𝜏), and wins if it

correctly determines the used tuple.

Note that here the 𝑢𝑖𝑑 must be the same for both challenge re-

quests, whereas the issuer can be different. This reflects the different

setting when compared with 𝐸𝑥𝑝PRIV-VSA,COV : here the RP learns 𝑢𝑖𝑑

(and thus there is no privacy for the user’s identity), but must not

learn anything about the user’s concrete credential (which includes

the identity of the issuer – which was required information inVS’s
operation though).

Definition 2.3 (RP-Privacy). COV satisfies RP-Privacy if for all

PPT adversaries A: Pr[𝐸𝑥𝑝PRIV-RPA,COV (_) = 1] − 1

2
≤ negl(_).

𝐸𝑥𝑝PRIV-RPA,COV (_) → {0, 1}

(𝑣𝑝𝑘, 𝑣𝑠𝑘) ← VKGen(𝑝𝑝), 𝑝𝑝 ← Setup(1_) ; 𝑏 ←𝑅 {0, 1}

(𝑢𝑖𝑑, 𝑠𝑖𝑑, (𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟𝑖 , 𝑐𝑒𝑟𝑡𝑖)𝑖∈0,1) ← AO𝜏 (𝑝𝑝, 𝑣𝑝𝑘)
return 0 if 𝑓 (𝑎𝑡𝑡𝑟0, 𝑖𝑝𝑘0 ∈ 𝑃𝐾) ≠ 𝑓 (𝑎𝑡𝑡𝑟1, 𝑖𝑝𝑘1 ∈ 𝑃𝐾) ∨

CertVerify(𝑖𝑝𝑘0,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟0, 𝑐𝑒𝑟𝑡0) = 0 ∨
CertVerify(𝑖𝑝𝑘1,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟1, 𝑐𝑒𝑟𝑡1) = 0

(𝜋VS, 𝜋RP, 𝑛𝑦𝑚) ← CertPresent(𝑖𝑝𝑘𝑏 , 𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟𝑏 , 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡𝑏)
𝜏 ← ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘𝑏 , 𝑎𝑡𝑡𝑟𝑏 , 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)

𝑏′ ← AO𝜏 (𝜋RP, 𝑛𝑦𝑚,𝜏)
return 1 if 𝑏 = 𝑏′ else 0

3 SECURITY ANALYSIS OF EU-COV
In this section we present EU-COV, which is the EU specification

for outsourced validation (EU-Spec, [15]), adapted to our syntax

and overall systemmodel.We analyze EU-COV in our model, which

shows that it satisfies RP-Privacy but not VS-Privacy and only a

weaker form of unforgeability (assuming all validators to be honest).

At the end of this section, we also explain where EU-COV deviates

from the actual specification EU-Spec, and argue what our results

mean for EU-Spec. Our analysis reveals that several cryptographic
building blocks have no impact on security, and allow to simplify

the EU-COV protocol without harming security or privacy.

3.1 Standard Building Blocks
Before describing the EU-COV construction we briefly introduce

the generic building blocks it is based on. For consistency with

our new protocol we state both building blocks of signatures and

encryption to be instantiated for public parameters 𝑝𝑝 instead of a

security parameter 1
_
, but in the rest of this section this can simply

be understood as 𝑝𝑝 = 1
_
.

Signature Schemes. The construction uses standard signature

schemes S = (KGen, Sign,Verify) with key generation (𝑝𝑘, 𝑠𝑘) ←
KGen(𝑝𝑝), sign algorithm 𝜎 ← Sign(𝑠𝑘,𝑚), and verify function

𝑑 ← Verify(𝑝𝑘,𝑚, 𝜎). The standard security property for signa-

tures is existential unforgeability under chosen message attacks (EUF-
CMA). It requires that an adversary, knowing 𝑝𝑘 and after seeing

several signatures for messages of his choice, is not able to create a

valid signature for a message that was never signed by 𝑠𝑘’s owner.

Public-key Encryption. The second building block is a public-

key encryption scheme E = (KGen, Enc,Dec), comprising of key

generation (𝑒𝑝𝑘, 𝑒𝑠𝑘) ← KGen(𝑝𝑝), an encryption algorithm

𝑐 ← Enc(𝑒𝑝𝑘,𝑚), and𝑚 ← Dec(𝑒𝑠𝑘, 𝑐) for decryption. The typical
security properties of encryption schemes are either IND-CPA or

IND-CCA security, but we omit their definitions as our security

analysis will not require any property from E beyond correctness.

3.2 EU-COV Construction
We now present the EU-COV construction adapted to our syn-

tax, the full protocol is shown in Figure 4 which uses Setup(1_)
that simply sets 𝑝𝑝 := 1

_
. It uses an encryption scheme E =

(KGen, Enc,Dec), and three signature schemes, which we make

explicit by denoting them SI, SVS and SU.

Key Generation and Certificate Issuance. The issuer’s key simply

consists of a key pair of the signature scheme SI. Consequently,
certificates are standard signatures on the given (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) under
the issuer’s secret key. The validator’s key consists of two parts: a

signing key pair from SVS and an encryption key pair from E.

Outsourced Validation. When a user wants to present her cer-

tificate 𝑐𝑒𝑟𝑡 towards a validator, she encrypts her certificate and

𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟 under the public key of the targetedVS. In addition, she

generates a fresh and ephemeral key pair of the signature scheme

SU and signs the ciphertext and session id 𝑠𝑖𝑑 with her ephemeral

secret key. The public key serves as her pseudonym 𝑛𝑦𝑚 as well as

RP-specific authenticator 𝜋RP. The presentation token 𝜋VS for the

VS consists of the ciphertext and her signature on it.

328

Privacy-Preserving Outsourced Certificate Validation Proceedings on Privacy Enhancing Technologies 2023(4)

IKGen(𝑝𝑝)

(𝑝𝑘I, 𝑠𝑘I) ← SI .KGen(𝑝𝑝)
return (𝑖𝑝𝑘 := 𝑝𝑘I, 𝑖𝑠𝑘 := 𝑠𝑘I)

CertIssue(𝑖𝑠𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)

𝜎I ← SI .Sign(𝑖𝑠𝑘,𝑢𝑖𝑑 ∥𝑎𝑡𝑡𝑟)
return 𝑐𝑒𝑟𝑡 := 𝜎I

VKGen(𝑝𝑝) → (𝑣𝑝𝑘, 𝑣𝑠𝑘)

(𝑝𝑘VS, 𝑠𝑘VS) ← SVS .KGen(𝑝𝑝)
(𝑒𝑝𝑘, 𝑒𝑠𝑘) ← E.KGen(𝑝𝑝)
return (𝑣𝑝𝑘 := (𝑝𝑘VS, 𝑒𝑝𝑘), 𝑣𝑠𝑘 := (𝑠𝑘VS, 𝑒𝑠𝑘))

CertVerify(𝑖𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡)

return SI .Verify(𝑖𝑝𝑘,𝑢𝑖𝑑 ∥𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡)

CertPresent(𝑖𝑝𝑘, 𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡)

(𝑝𝑘U, 𝑠𝑘U) ← SU .KGen(𝑝𝑝) ; (·, 𝑒𝑝𝑘) := 𝑣𝑝𝑘

𝑐 ← Enc(𝑒𝑝𝑘,𝑢𝑖𝑑 ∥𝑎𝑡𝑡𝑟 ∥𝑐𝑒𝑟𝑡) ; 𝜎U ← SU .Sign(𝑠𝑘U, 𝑠𝑖𝑑 ∥𝑐)
return (𝑛𝑦𝑚 := 𝑝𝑘U, 𝜋VS := (𝜎U, 𝑐), 𝜋RP := 𝑝𝑘U)

ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)

(𝑠𝑘VS, 𝑒𝑠𝑘) := 𝑣𝑠𝑘 ; (𝜎U, 𝑐) := 𝜋VS ; (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡) ← Dec(𝑒𝑠𝑘, 𝑐)
if SU .Verify(𝑝𝑘U := 𝑛𝑦𝑚, 𝑠𝑖𝑑 ∥𝑐, 𝜎U) = 0 ∨ SI .Verify(𝑖𝑝𝑘,𝑢𝑖𝑑 ∥𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡) = 0

return ⊥ else return 𝜏 := SVS .Sign(𝑠𝑘VS, 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) ∥𝑛𝑦𝑚 ∥𝑢𝑖𝑑 ∥𝑠𝑖𝑑)

ValTokVerify(𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋RP, 𝜏)

(𝑝𝑘VS, _) := 𝑣𝑝𝑘

return 1 if 𝑛𝑦𝑚 = 𝜋RP ∧ SVS .Verify(𝑝𝑘VS, 1∥𝑛𝑦𝑚 ∥𝑢𝑖𝑑 ∥𝑠𝑖𝑑, 𝜏) = 1 else 0

Figure 4: Generic Construction for EU-COV. We assume that
every VS key pair implicitly defines a policy verification
function 𝑓 and a set of trusted issuers’ public keys 𝑃𝐾 .

The validator (knowing to assert the policy 𝑓 for trusted issuers

𝑃𝐾) takes the presentation 𝜋VS = (𝜎U, 𝑐), and first verifies the user’s
signature under the provided (pseudonym) key 𝑛𝑦𝑚 = 𝑝𝑘U. It then

decrypts the ciphertext to obtain 𝑐𝑒𝑟𝑡 and 𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟 and verifies that

𝑐𝑒𝑟𝑡 is a valid signature on (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) under the issuer’s public key.
If both signatures passed, theVS then computes 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾)
and signs the result (“1” if the policy is satisfied, and “0” otherwise)

along with 𝑝𝑘U, 𝑢𝑖𝑑, 𝑠𝑖𝑑 .

Finally, ValTokVerify simply verifies the VS signature 𝜏 w.r.t.

(1∥𝑝𝑘U∥𝑢𝑖𝑑 ∥𝑠𝑖𝑑) (where 1 denotes that the policy was satisfied).

3.3 Security Analysis
In this section we analyze EU-COV w.r.t. to the security goals we

defined in Section 2.2. We show that it neither achieves VS-Privacy

nor Unforgeability, but RP-Privacy as well as a weaker form of

unforgeability. Full proofs are available in Appendix C.

Unforgeability. EU-COV does not satisfy our Unforgeability no-

tion as it does not guarantee the desired impersonation resistance.
Recall that the adversary A in our game can request honest users

to send presentation tokens to malicious validators (via O𝜋), and
A wins if it can re-use such a presentation towards the honest

VS. This attack is covered in Case 3 of 𝐸𝑥𝑝UFA,COV, which A can

trivially win for the EU-COV construction, as the user sends her

original certificate and all attributes to the malicious validator. Thus,

after having received one presentation from an honest user 𝑢𝑖𝑑 , the

adversary can now fully impersonate her towards the honestVS.
The user signature might have had the intention to prevent such

attack, but as the user’s signature is done via a fresh ephemeral key,

there is nothing that binds her key pair to her certificate.

3.3.1 Weak Unforgeability. Despite not satisfying Unforgeability,
we show that EU-COV provides Weak Unforgeability. Recall that it

is a weaker version where the adversary does not get O𝜋 . In prac-

tice, this means that EU-COV has no impersonation resistance and

unforgeability is only guaranteed in a setting where all validators
are honest.

Theorem 3.1. If the schemes SI and SVS are EUF-CMA secure,
then EU-COV is weakly-unforgeable according to 𝐸𝑥𝑝weakUFA,COV .

Note that in the above theorem we do not require any property

from SU or E. The latter is easy to see, as the encryption scheme is

only used in 𝜋VS which is never exposed toA in the weak unforge-

ability game. The user’s signature scheme SU also does not serve

any purpose, as there is no relation between her key pair and her

certificate. The only important part is that her ephemeral public

𝑝𝑘U, which also serves as pseudonym, is signed by theVS, to bind
the final validation token to 𝑛𝑦𝑚 as required by our definition. But

this fully relies on SVS, not on SU.

Proof (Sketch). Assume an adversary wins in 𝐸𝑥𝑝weakUFA,COV , i.e.,

it outputs (𝑢𝑖𝑑∗, 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏
∗) such that ValTokVerify(𝑣𝑝𝑘 ,

𝑢𝑖𝑑∗, 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏
∗) = 1 and one of the Cases 1-4 of the game

is satisfied. Note that ValTokVerify outputs 1 only if 𝜏∗ is a valid
SVS signature over (1∥𝑛𝑦𝑚∗∥𝑢𝑖𝑑∗∥𝑠𝑖𝑑∗).

We show that winning 𝐸𝑥𝑝weakUFA,COV translates to a forgery either

for SI or SVS. In all four cases we have the same two sub-conditions:

(1) either 𝜏∗ validates a session (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) that was indeed
certified by the honestVS,

(2) or 𝜏∗ is for a session (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) that was never approved
byVS (which implies a direct forgery for SVS)

For the first sub-condition, the concrete argumentation is different

in each case, but always concludes that theVS must have received

a valid certificate (𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟) from a trusted issuer 𝑖𝑝𝑘 as part of

𝜋VS, that is inconsistent with the information that got certified by

the honest issuers through OCU and OHU. We then show that this

yields a forgery for SI. The full proof is in Appendix C.1. □

VS-Privacy. It is obvious that EU-COV cannot satisfy VS-Privacy,

which guarantees that the validator does not learn anything about

𝑢𝑖𝑑 or 𝑐𝑒𝑟𝑡 . Here the validator receives both. This information is

encrypted in 𝜋VS, but under the key of the validator, so this isn’t

providing any privacy when the validator is corrupt. Thus, the use

of the encryption scheme does not serve any purpose, but could

lead to the misconception that EU-COV is privacy friendly.

RP-Privacy. It is easy to see that EU-COV guarantees privacy

towards corrupt RP’s and does so information-theoretically.

Theorem 3.2. EU-COV satisfies RP-Privacy according to Def. 2.3.

Proof. In the RP-Privacy game, A receives 𝜋RP, 𝑛𝑦𝑚, 𝜏 derived

for (𝑖𝑝𝑘𝑏 , 𝑎𝑡𝑡𝑟𝑏 , 𝑐𝑒𝑟𝑡𝑏) and must determine 𝑏. Both 𝑛𝑦𝑚 and 𝜋RP
are the user’s ephemeral session public key 𝑝𝑘U, generated inde-

pendently from any of her long-term values. The validation token

is merely a signature on 1∥𝑛𝑦𝑚∥𝑢𝑖𝑑 ∥𝑠𝑖𝑑 and thus does not depend

on the challenge values or 𝑏 either. Hence, all information the ad-

versary sees is entirely independent of 𝑏, and thus he can only win

by guessing, which has probability
1

2
to be correct. □

329

Proceedings on Privacy Enhancing Technologies 2023(4) Tarek Galal and Anja Lehmann

3.4 Difference to the Original Specification
Note that EU-COV is not fully compliant with the original EU Spec-

ification (EU-Spec) [15]. We made a number of syntactical changes

that were necessary to fit our system model and syntax, while

preserving as much of the original protocol as possible. We pro-

vide a visual comparison of both protocols, EU-COV and EU-Spec,
and their message flows during a validation session in Figure 5. In

this section we explain where EU-COV deviates from EU-Spec and
justify what our results for EU-COV mean for EU-Spec.

An immediate question is why our model is not generic enough

to fit the original specification. The reason is that EU-Spec has an
unnecessarily complex communication scheme, which would have

required to model the VS’s part (ValTokGen𝑓 ,𝑃𝐾) as an interac-

tive multi-party protocol instead of a non-interactive algorithm: In

EU-Spec, theVS simultaneously receives inputs from the user and

RP, and the input of the user partially stems fromRP. None of that
message complexity is necessary though, but would significantly

complicate our formal model, and the unforgeability notion in par-

ticular. Thus, we rather opted for a simpler model and stripped out

just enough redundancies to make EU-Spec fit our model.

We argue in the following sections why these modifications do

not affect the security and privacy intended by EU-Spec. A nice

side effect is that EU-COV serves as an easy optimization upgrade

for EU-Spec that remains compatible with existing certificates.

3.4.1 Description of EU-Spec. The validation process begins with

a user generating a fresh signature key pair (𝑝𝑘U, 𝑠𝑘U) and sending
𝑢𝑖𝑑, 𝑝𝑘U along with a session identifier 𝑠𝑖𝑑 to RP (Step 1).

Then, RP forwards this 𝑠𝑖𝑑, 𝑝𝑘U to the designatedVS (Step 2),

which informsVS to be contacted by the owner of 𝑝𝑘U. RP also

generates a signed token 𝛾 containing the 𝑢𝑖𝑑 whose certificate it

wants validated in this session, and sends it to the user (Step 3).

The user then encrypts her certificate, along with𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟 under

VS’s public key, signs the ciphertext using 𝑠𝑘U, and sends RP’s
token 𝛾 , ciphertext, and signature toVS (Step 4). TheVS checks

that the user signature verifies under the 𝑝𝑘U it received from RP.
If so, it decrypts the ciphertext, and verifies the enclosed certificate.

It also checks thatRP’s token𝛾 signs the same𝑢𝑖𝑑 that is contained

in the certificate. If all is correct, theVS signs the policy validation

result along with 𝑠𝑖𝑑 and transmits it to RP (Step 5).

3.4.2 Comparison between EU-COV and EU-Spec. Themain differ-

ence between the original specification EU-Spec and our analysed

variant EU-COV is how the user binding is handled. We explain

our modifications in two steps:

Change 1: Omitting 𝛾 & Step 3. The EU-Spec protocol assumes

that the RP has a signature key pair. This key pair is used to

indirectly deliver authenticated information toVS by generating

the signed token 𝛾 and having the user U forward it (Step 3+4).

At the same time, the protocol (in Step 2 and 5) requires RP and

VS to communicate over a secure, mutually authenticated channel

(e.g., mTLS). One can eliminate Message 3 in EU-Spec and instead

let RP deliver the signed information directly to VS over their

secure channel. This information is (𝑢𝑖𝑑, 𝑠𝑖𝑑), which can be sent

along with 𝑝𝑘U in Step 2. Omitting 𝛾 also removes the need for

RP’s key pair, without changing the security of the protocol.

U RP

VSEU-Spec

1. 𝑠𝑖𝑑,𝑢𝑖𝑑, 𝑝𝑘U

2. 𝑠𝑖𝑑,

𝑝𝑘U

3. 𝛾 ← Sign(𝑟𝑠𝑘,𝑢𝑖𝑑 ∥𝑠𝑖𝑑)

𝑐 ← Enc(𝑣𝑝
𝑘,𝑢𝑖

𝑑 ∥𝑎𝑡𝑡𝑟
∥𝑐𝑒𝑟𝑡)

4.
𝑠𝑖𝑑,

𝛾, 𝑐,
Sign(𝑠

𝑘U, 𝑠
𝑖𝑑 ∥𝑐)

5. 𝜏 ← Sign(𝑣𝑠𝑘, 0/1∥𝑠𝑖𝑑)

EU-COV

U RP

VS

1. 𝑠𝑖𝑑,𝑢𝑖𝑑, 𝑝𝑘U

𝑐 ← Enc(𝑣𝑝
𝑘,𝑢𝑖

𝑑 ∥𝑎𝑡𝑡𝑟
∥𝑐𝑒𝑟𝑡)

2.
𝑠𝑖𝑑,

𝑝𝑘U,
𝑐, Sig

n(𝑠𝑘U
, 𝑠𝑖𝑑
∥𝑐)

3. 𝜏 ← Sign(𝑣𝑠𝑘, 0/1∥𝑝𝑘U ∥𝑢𝑖𝑑 ∥𝑠𝑖𝑑)

Figure 5: Comparison between the flow of messages in the
original EU specification and our adaptation of it as EU-COV.

Change 2: Omitting Step 2.We now argue that sending𝑢𝑖𝑑, 𝑝𝑘U,

𝑠𝑖𝑑 from RP toVS can be omitted entirely, if one shifts the checks

for user-binding fromVS to RP. Recall that a core security goal

of EU-Spec is to guarantee that RP and VS are talking to the

same user. EU-Spec achieves this by letting the RP tell the VS
for which 𝑢𝑖𝑑 and 𝑝𝑘U it expects the policy check. TheVS then

only issues a validation token 𝜏 ← Sign(𝑣𝑠𝑘, 1∥𝑠𝑖𝑑) if 1) the 𝑢𝑖𝑑
in the verified 𝑐𝑒𝑟𝑡 matches the one received from RP, and 2) it

receives a valid signature from the user that verifies under the 𝑝𝑘U
it received from RP.

We simplify this by letting the user send 𝑝𝑘U directly to VS.
The validator now checks the user’s signature and her certificate

for 𝑢𝑖𝑑 , and if both are valid, it signs 𝑢𝑖𝑑, 𝑝𝑘U along with the policy

result 𝑑 as 𝜏 ← Sign(𝑣𝑠𝑘, 𝑑 ∥𝑝𝑘U∥𝑢𝑖𝑑 ∥𝑠𝑖𝑑). The RP verifies 𝜏 and

that 𝑝𝑘U and 𝑢𝑖𝑑 are the same values it received from the user.

Thus, we maintain the binding of validation sessions to a partic-

ular 𝑢𝑖𝑑, 𝑝𝑘U while transmitting less messages among the parties.

In particular, our EU-COV interpretation does not require theVS
to wait for matching inputs from RP and the user, but simply

performs the validation after a single message from the user.

3.4.3 Security Results. Due to the additional interactions among

VS andRP in the EU-Spec variant, neither our systemnor security

model can be applied to EU-Spec, but we argue why we believe

that our shown security results for EU-COV apply (informally) to

EU-Spec too: In both protocols, the VS learns the 𝑢𝑖𝑑 and full

certificate of the user, and thus cannot satisfy any form of VS-

Privacy. Regarding RP-Privacy, all the RP learns is an ephemeral

public key 𝑝𝑘U, the 𝑢𝑖𝑑 , and a signature on the policy result (and

𝑢𝑖𝑑, 𝑝𝑘U in EU-COV). Thus, in both protocols, we reveal the same

amount of information about 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡 – namely none – to RP.
When it comes to unforgeability, note that we only shift the

matching of 𝑝𝑘U to 𝑢𝑖𝑑 from VS to RP. Both are honest in the

context of unforgeability, so the arguments from EU-COV apply

to EU-Spec: unforgeability is not satisfied due to the lack of imper-

sonation resistance (asVS learns the full certificate); but a weaker

form of unforgeability where all validators are honest holds.
330

Privacy-Preserving Outsourced Certificate Validation Proceedings on Privacy Enhancing Technologies 2023(4)

Optimizations. Our security analysis did not require any assump-

tions for the signature scheme SU. Further, our model implicitly

assumes that honest users and honest validators communicate over

a secure channel, e.g., via TLS. Thus, the encryption scheme E does

not provide any added security either. Therefore, both SU and E
can be omitted from EU-COV’s construction (and consequently

EU-Spec too) without impacting the security in our model. We dis-

cuss in Appendix B what security properties could have motivated

SU and E, and why they are not affected by the optimization.

4 OUR CONSTRUCTION: PP-COV
In this section we present our construction PP-COV, which prov-

ably achieves all security and privacy goals defined in Section 2.2.

We first introduce the additional building blocks needed for our

privacy-preserving scheme, and then describe the PP-COV con-

struction, and prove its security. A comparison between PP-COV
and EU-COV is given in Section 5.1.

4.1 Additional Building Blocks
In addition to a standard signature scheme S as defined in Sec-

tion 3.1, PP-COV requires non-interactive zero-knowledge proofs,

commitments and a signature scheme that enables privacy-friendly

presentations.

Non-Interactive Zero-Knowledge Proofs of Knowledge. We use the

notation 𝜋 ← NIZK{(𝑤) : 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 (𝑤)}(𝑐𝑥𝑡) to describe a non-
interactive zero-knowledge proof of knowledge (NIZK) of a witness

𝑤 such that 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 (𝑤) = 1 and the proof 𝜋 is bound to a context

𝑐𝑥𝑡 . We require the proofs to be simulation-sound extractable and

zero-knowledge. This enables us to simulate proofs that we give to

adversaries in security experiments, and use an extractor algorithm

E to extract witnesses from a new valid proof we get back.

Commitments. A commitment scheme Com = (Commit,
OpenVf) for public parameters 𝑝𝑝 consists of a probabilistic func-

tion (𝑐𝑜𝑚, 𝑜) ← Commit(𝑚) that takes a message 𝑚 and out-

puts a commitment 𝑐𝑜𝑚 and opener 𝑜 ; and a verification function

0/1← OpenVf (𝑚,𝑐𝑜𝑚, 𝑜) that outputs 1 if the given 𝑐𝑜𝑚 opens to

𝑚 using the opening 𝑜 . We require Com to be hiding and binding.

Multi-Message Signature (MMS) with Efficient NIZK. A multi-

message signature scheme MMS = (MMS.Setup, MMS.KGen,
MMS.Sign, MMS.Verify) extends standard signatures by produc-

ing and verifying signatures for 𝑛-sized vectors of messages rather

than just one. In our protocol we will handle exactly two message

blocks per signature, and thus tailor the definition accordingly

for simplicity. The algorithms are a setup 𝑝𝑝 ← MMS.Setup(1_)
that outputs public parameters, and a key generation function

(𝑝𝑘, 𝑠𝑘) ← MMS.KGen(𝑝𝑝, 𝑛) where 𝑛 denotes the number of

signed messages blocks, which we set to 𝑛 := 2. Accordingly, we

have a signature algorithm 𝜎 ← MMS.Sign(𝑠𝑘, (𝑚1,𝑚2)), and a

verification function {0, 1} ← MMS.Verify(𝑝𝑘, (𝑚1,𝑚2), 𝜎). We

requireMMS to satisfyMMS-EUF-CMA which translates the stan-

dard unforgeability game to the multi-message setting. For com-

pleteness, the definition is given in Appendix A.1.

Most importantly, we require the MMS to support efficient

NIZKs of signatures over partially committed messages.

4.2 Detailed Protocol
The idea of our protocol is in its core similar to anonymous cre-

dential and privacy-enhancing authentication [7, 9], but makes

an additional twist to ensure the required unforgeability property

in this multi-party verification setting. In the following we give

the high-level intuition of our protocol, and present the detailed

PP-COV construction in Figure 6.

In PP-COV, the user’s certificate on (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) is a MMS signa-

ture (under the issuer’s key), where both values are encoded as

individual message blocks. To convince a validator that she has

a policy-compliant certificate on 𝑎𝑡𝑡𝑟 from 𝑖𝑝𝑘 , she now merely

proves possession of such a certificate via a NIZK, but does not send

the original 𝑐𝑒𝑟𝑡 anymore. This is crucial to achieve the desired

impersonation resistance toward maliciousVS’s, which EU-COV
was lacking. In the NIZK proof we further hide 𝑢𝑖𝑑 from the certifi-

cate, which yields the VS-Privacy.

This solution would not provide any user binding though. This

is added by letting the user also compute a commitment 𝑐𝑜𝑚𝑢𝑖𝑑
on her 𝑢𝑖𝑑 which serves as session-specific pseudonym 𝑛𝑦𝑚. The

opening 𝑜𝑢𝑖𝑑 for that commitments becomes the authentication

value 𝜋RP for the RP. In her NIZK proof 𝜋VS towardsVS, the user
then also proves that the commitment 𝑐𝑜𝑚𝑢𝑖𝑑 is for the 𝑢𝑖𝑑 that

is also contained in 𝑐𝑒𝑟𝑡 . To ensure that the proof is bound to that

particular session, all public and session-specific information are

included as context to the NIZK. This also comprises the validator’s

public key, which ensures that a malicious validator can’t relay the

received proof to another honestVS.
The VS then verifies the NIZK proof for (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘, 𝑛𝑦𝑚, 𝑠𝑖𝑑)

and that it is the intended recipient. If the proof is correct and

𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 1, the VS signs (𝑠𝑖𝑑, 𝑛𝑦𝑚) with a standard

signature scheme as 𝜏 .

The RP receives (𝑠𝑖𝑑, 𝑛𝑦𝑚,𝑢𝑖𝑑, 𝑜𝑢𝑖𝑑) from the user, and (𝑠𝑖𝑑, 𝜏)
from the validator. It verifies that the signature 𝜏 under theVS’s
key signs the same (𝑠𝑖𝑑, 𝑛𝑦𝑚) received from the user, and that the

commitment 𝑛𝑦𝑚 = 𝑐𝑜𝑚𝑢𝑖𝑑 opens to the expected 𝑢𝑖𝑑 using 𝜋RP.

4.3 Security Analysis
We have informally argued how the different building blocks con-

tribute to the desired security and privacy goals and now formally

prove that PP-COV satisfies all properties defined in Section 2.2.

Theorem 4.1. If the signature schemes S andMMS are respectively
EUF-CMA and MMS-EUF-CMA secure, NIZK is simulation-sound
extractable and zero knowledge, and the commitment scheme Com is
binding, then PP-COV is unforgeable w.r.t. Def. 2.1.

Proof (Sketch). Assume A wins 𝐸𝑥𝑝UFA,COV against PP-COV,
thus outputs (𝑢𝑖𝑑∗, 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏

∗) such that ValTokVerify(𝑣𝑝𝑘 ,
𝑢𝑖𝑑∗, 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏

∗) = 1 and at least one of the conditions

given in Case 1-4 is fulfilled. Verification in our scheme only returns

1 when 𝜏∗ is a valid (standard) signature under 𝑣𝑝𝑘 on (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗)
and 𝑛𝑦𝑚∗ correctly opens to 𝑢𝑖𝑑∗.

Similar to EU-COV, the proof branches into two sub-conditions:

(1) (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) has not been signed by VS (which yields a

direct forgery for S),
(2) (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) has been signed by VS but the rest of A’s

output is not consistent with the state of the game.

331

Proceedings on Privacy Enhancing Technologies 2023(4) Tarek Galal and Anja Lehmann

Setup(1_)
return 𝑝𝑝 ← MMS.Setup(1_)

VKGen(𝑝𝑝)
(𝑠𝑝𝑘, 𝑠𝑠𝑘) ← S.KGen(𝑝𝑝)
return (𝑣𝑝𝑘 := 𝑠𝑝𝑘,

𝑣𝑠𝑘 := (𝑠𝑠𝑘, 𝑠𝑝𝑘))

IKGen(𝑝𝑝)
(𝑝𝑘, 𝑠𝑘) ← MMS.KGen(𝑝𝑝, 2)
return (𝑖𝑝𝑘 := 𝑝𝑘, 𝑖𝑠𝑘 := 𝑠𝑘)

CertIssue(𝑖𝑠𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)
𝜎 ← MMS.Sign(𝑖𝑠𝑘, (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟))
return 𝑐𝑒𝑟𝑡 := 𝜎

CertVerify(𝑖𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡)
return MMS.Verify(𝑖𝑝𝑘, (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟), 𝑐𝑒𝑟𝑡)

CertPresent(𝑖𝑝𝑘, 𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡)
(𝑐𝑜𝑚𝑢𝑖𝑑 , 𝑜𝑢𝑖𝑑) ← Commit(𝑢𝑖𝑑)
𝜋 ← NIZK{(𝑢𝑖𝑑, 𝑜𝑢𝑖𝑑 , 𝑐𝑒𝑟𝑡) : OpenVf (𝑢𝑖𝑑, 𝑐𝑜𝑚𝑢𝑖𝑑 , 𝑜𝑢𝑖𝑑) = 1 ∧

MMS.Verify(𝑖𝑝𝑘, (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟), 𝑐𝑒𝑟𝑡) = 1}(𝑖𝑝𝑘, 𝑣𝑝𝑘, 𝑠𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑜𝑚𝑢𝑖𝑑)
return (𝑛𝑦𝑚 := 𝑐𝑜𝑚𝑢𝑖𝑑 , 𝜋VS := 𝜋, 𝜋RP := 𝑜𝑢𝑖𝑑)

ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)
𝑐𝑜𝑚𝑢𝑖𝑑 := 𝑛𝑦𝑚; (𝑠𝑠𝑘, 𝑠𝑝𝑘) := 𝑣𝑠𝑘 ; 𝑣𝑝𝑘 := 𝑠𝑝𝑘

if 𝜋VS verifies w.r.t. 𝑣𝑝𝑘, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑜𝑚𝑢𝑖𝑑 ∧ 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 1

return 𝜏 := S.Sign(𝑠𝑠𝑘, 𝑐𝑜𝑚𝑢𝑖𝑑 ∥𝑠𝑖𝑑) else return ⊥

ValTokVerify(𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋RP, 𝜏)
𝑜𝑢𝑖𝑑 := 𝜋RP, 𝑐𝑜𝑚𝑢𝑖𝑑 := 𝑛𝑦𝑚

if OpenVf (𝑢𝑖𝑑 , 𝑐𝑜𝑚𝑢𝑖𝑑 , 𝑜𝑢𝑖𝑑) = 1 ∧ S.Verify(𝑣𝑝𝑘, 𝑐𝑜𝑚𝑢𝑖𝑑 ∥𝑠𝑖𝑑, 𝜏) = 1

return 1 else return 0

Figure 6: Generic Construction for PP-COV.

For (2), the proof then further branches for each of Case 1-4. In

summary we show that A either managed to re-use a validation

token for a different user by opening 𝑛𝑦𝑚∗ to an incorrect 𝑢𝑖𝑑∗

(which isn’t possible due to the binding property of Com), or the

VS must have received some forged input. This must have either

been through a forged proof 𝜋VS (which isn’t possible due to the

soundness of NIZK), or a correct proof for a forged certificate (which

isn’t possible due to the unforgeability of theMMS). For proving
the latter, we rely on the (simulation-)soundness of the NIZK to

extract 𝑐𝑒𝑟𝑡 from 𝜋VS and use this as forgery for the MMS scheme.

While most of the reductions are rather straight-forward, han-

dling Case 3 (unforgeability for honest users) requires special care:

To prove the desired impersonation resistance (which is part of

Case 3), and be able to extract a valid forgery from 𝜋VS, we no

longer create certificates for honest users in OHU, but only keep

state of which honest user has which attributes. When the adver-

sary requests an honest user to create a presentation for a corrupt

VS via O𝜋 , we then simulate 𝜋VS (which is why we need the zero-

knowledge property here too). If A manages to come up with a

valid proof 𝜋VS for an honest user that he presents to the honest

VS via O𝜏 , we extract a valid MMS forgery from there. This step

relies on the simulation-soundness of the NIZK, and on the fact that

we bind each proof to its specific context, i.e., the adversary can’t

replay any of our simulated proofs. As we never issued any certifi-

cates for honest users, we know that the extracted MMS signature

is a valid and fresh forgery in the reduction.

The full proof is given in Appendix C.2. □

Theorem 4.2. If NIZK is zero-knowledge and Com is hiding, then
PP-COV satisfies VS-Privacy according to Def. 2.2.

Proof. Assume an adversary wins, that is, it tells with non-

negligible probability which 𝑢𝑖𝑑𝑏 , 𝑐𝑒𝑟𝑡𝑏 were used in creating the

NIZK 𝜋VS and the 𝑢𝑖𝑑𝑏 commitment 𝑛𝑦𝑚, for uniform 𝑏 ∈ {0, 1}.
Because the values 𝑖𝑝𝑘, 𝑣𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑 are the same regardless of

𝑏, the adversary cannot use them for winning. Thus, either 𝜋VS or

𝑛𝑦𝑚 must be leaking information about 𝑢𝑖𝑑𝑏 or 𝑐𝑒𝑟𝑡𝑏 . But as we

assume 𝑛𝑦𝑚 to be hiding, and 𝜋VS to be zero-knowledge, this can

only happen with negligible probability. □

Theorem 4.3. PP-COV satisfies RP-Privacy according to Def. 2.3.

Proof. In 𝐸𝑥𝑝PRIV-RPA,COV , the adversary chooses some𝑢𝑖𝑑 , 𝑠𝑖𝑑 , and

a pair (𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟𝑖 , 𝑐𝑒𝑟𝑡𝑖)𝑖∈0,1. Then it receives (𝜋RP, 𝑛𝑦𝑚, 𝜏) derived
for (𝑖𝑝𝑘𝑏 , 𝑎𝑡𝑡𝑟𝑏 , 𝑐𝑒𝑟𝑡𝑏) and wins if it correctly guesses the random

bit 𝑏. Since 𝑛𝑦𝑚, 𝜋RP are a commitment and opening over the 𝑢𝑖𝑑

which is independent of 𝑏 or the different challenge sets, they

cannot contain any information that helpsA in determining 𝑏. The

game also requires 𝑠𝑖𝑑, 𝑓 (𝑎𝑡𝑡𝑟𝑏 , 𝑖𝑝𝑘𝑏 ∈ 𝑃𝐾) to be equivalent for

𝑏 ∈ {0, 1}, so 𝜏 will also be a standard signature independent of

the challenge values. Overall, the adversary does not receive any

information that depends on 𝑏, and thus can only guess the bit. □

5 DISCUSSION & COMPARISON
In this section we compare the efficiency of PP-COV to EU-COV
and discuss the information-leakage through attributes (and how

that can be contained), and what can (not) be achieved by construc-

tions relying on standard signatures only.

5.1 Comparison between PP-COV & EU-COV
To compare both protocols, we first need to choose instantiations

for all generic building blocks they are composed of.

Instantiations for EU-COV. For EU-COV, we rely on the schemes

proposed by the actual specification [15], and the concrete instan-

tiations used in their implementation [16]. Both suggest to use

ECDSA (with SHA-256) for all signature schemes SVS, SU, SI, and
the encryption is realized via hybrid encryption using RSA-OAEP

1

(with at least 3072 bits) and AES-256-GCM or AES-256-CBC.

Instantiations for PP-COV. For the standard signature scheme S
used by theVS in our PP-COV construction, we rely on the same

ECDSA signatures as EU-COV for better comparability. The MMS
scheme is instantiated with PS signatures [36] which has the short-

est signature sizes, and works in a pairing group (G, ˜G,G𝑇 , 𝑒, 𝑝) ←
PGen(1_). Pointcheval and Sanders already showed that their

scheme allows for efficient randomization and proofs of knowledge

via generalized Schnorr-signature proofs of knowledge [4] which

can be made non-interactive via the Fiat-Shamir heuristic [17],

which we use too. For the commitment scheme we rely on Pedersen

1
The specification [15] actually suggests to protect the AES key either with RSA-OAEP

or ECDSA; which we hope to be a typo. However, even if someone implements it by

signing the secret AES key instead of encrypting it, this wouldn’t create much harm, as

we prove the scheme to be secure regardless of any security of the encryption scheme.

332

Privacy-Preserving Outsourced Certificate Validation Proceedings on Privacy Enhancing Technologies 2023(4)

CertPresent ValTokGen𝑓 ,𝑃𝐾 ValTokVerify Unforgeability RP-Privacy VS-Privacy

PP-COV 3G + 5
˜G +2G𝑇 + 4𝑃 4

˜G + 2G𝑇 + 4𝑃 + 1
¯G 2

¯G + 2
˜G ✓ ✓ ✓

EU-COV 1Z𝑛 + 2
¯G 5

¯G + 1Z𝑛 2
¯G Weak Unforgeability ✓ -

Figure 7: Number of modular exponentiations and satisfied properties in PP-COV and EU-COV. In PP-COV, G, ˜G,G𝑇 are groups
of a pairing-friendly curve. EU-COV uses the RSA group Z𝑛 . Both constructions use an ECDSA group ¯G.

commitments [35], that we use in
˜G for two generators 𝑔, ˆℎ, cho-

sen at random during the Setup of our scheme, and which become

part of our public parameters. For completeness, we present the

instantiation of PP-COV with the aforementioned building blocks

in Appendix D.

Efficiency Comparison. In Figure 7, we compare the instantiations

in terms of the number of modular exponentiations and pairing

operations involved— these bear the highest cost in the algorithms.

We particularly focus on the algorithms that will be executed fre-

quently: CertPresent, ValTokGen𝑓 ,𝑃𝐾 , and ValTokVerify.
To create a presentation token, the user computes 10 exponen-

tiations and 4 pairings in PP-COV, which is more than the 3 ex-

ponentiations required by EU-COV (but some in RSA groups). By

running benchmarks from the open source cryptographic library

mcl
2
, we found that the exponentiations inG, ˜G,G𝑇 , and ¯G require

0.4ms, 0.9ms, 1.7ms, and 0.04ms respectively, while pairing costs

1.5ms. Accordingly, for PP-COV we estimate execution times of

15ms, 13ms, 1.9ms for CertPresent, ValTokGen𝑓 ,𝑃𝐾 , ValTokVerify
which is clearly efficient enough for real-world deployment.

5.2 Privacy Considerations
Our security model for VS-Privacy guarantees that the user’s pre-

sentation does not reveal anything beyond the user’s attributes to

the validator, and in particular does not reveal anything (beyond

𝑎𝑡𝑡𝑟) that allows to identify 𝑢𝑖𝑑 or link different presentations. This

means that one needs to ensure that the attribute values themselves

are not already unique and identifiable enough (as this is outside

the security model). The more attributes within one certificate and

the more detailed they are (e.g., very precise issuance/expiration

dates), the more identifiable their presentation will be.

Minimizing Attribute Leakage. One can already steer the informa-

tion leakage in the certificate setup, making sure to issue dedicated

certificates for each attribute instead of one 𝑐𝑒𝑟𝑡 for many (e.g., one

certificate per vaccination, instead of one cert containing all), and

avoid fine-grained time information as attributes (which often is

not needed, usually month/year is sufficient). Another approach is

to reduce the amount of information the user has to show during

its presentation. Currently, we assume that the user reveals all at-

tributes in the certificate toVS, which can easily be minimized by

encoding every attribute in 𝑐𝑒𝑟𝑡 individually and only reveal the

ones required by the policy via an adapted NIZK. In fact, this also

demonstrates another advantage of our PP-COV solution – one

reason for the lack of adoption of anonymous credentials is the

increased complexity in verifying these credentials. Our validation

system allows to securely outsource this verification.

2
https://github.com/herumi/mcl using AMD Ryzen 5 2.9GHz processor.

Unlinkability and Revocation. Assuming attributes to not be

unique per user does not match reality, if one considers classic

revocation. Therein, each certificate contains a globally unique 𝑐𝑖𝑑

that is checked against a black-list of revoked certificates. We do

not believe that classic revocation is the best approach for such

(low-value) user certificates; instead short-lived certificates that get

renewed regularly is a more suitable solution. In fact, also the EU’s

validation service currently does not consider or support revoca-

tion of user-specific certificates [15]. Revocation is more likely to

happen on the level of issuer keys (with each country maintaining

a hierarchy of issuer keys), which is also better for privacy.

However, if user-specific revocation should be supported, one

needs to deploy privacy-preserving revocation such as [1, 5, 30]

in order to still achieve our strong VS-Privacy notion. If standard

revocation is used, i.e., every presentation reveals the unique 𝑐𝑖𝑑

to theVS, one needs to adjust and weaken the security model to

capture a meaningful guarantee despite the linkability imposed by

revealing a user-specific 𝑐𝑖𝑑 in every presentation.

Weaker VS-Privacy for Classic Revocation. We sketch the weaker

VS-Privacy notion that incorporates the inherent privacy loss via

classic revocation (and that would be achieved by PP-COV with

classic revocation, but not EU-COV). First, one needs to assume

the issuer to be honest, as he knows which user is associated with

which 𝑐𝑖𝑑 . In the VS-Privacy game, this would be reflected by giving

A oracle access to the honest users and their certificates (instead of

letting A compute the 𝑐𝑒𝑟𝑡s). This actually complicates the model

significantly, as we’d now have to offer several oracles to steer the

honest users to engage in sessions with the corrupt VS as well

as with corrupt RPs (this was not necessary in our definition, as

thereinA knows the certificates and can run all algorithms himself).

Second, one no longer requires 𝑎𝑡𝑡𝑟 to be the same for𝑢𝑖𝑑0 and𝑢𝑖𝑑1

but allow different values, as long as they are both policy compliant.

This weaker model would no longer capture unlinkability of 𝜋VS,

but still ensure that a corrupt VS learns nothing beyond that

attribute linkage – in particular it cannot use information learned

in sessions where it received presentations in the role of a corrupt

RP, to identify the user.

Privacywith Standard Certificates? If one considers such aweaker

notion of VS-Privacy that no longer requires unlinkability of 𝜋VS,

this raises the question of whether a construction solely relying

on standard certificates could satisfy it. A clear disadvantage of

PP-COV is that it is not compatible with classic certificates based on

ECDSA and RSA-signatures like EU-COV is. However, we believe

that no meaningful privacy can be achieved by standard signatures,

and sketch a solution that can be constructed from standard signa-

tures S and explain why it does not satisfy the weaker VS-Privacy

above.

333

Proceedings on Privacy Enhancing Technologies 2023(4) Tarek Galal and Anja Lehmann

Certificates: The issuer uses a standard signature S and creates

certificates 𝑐𝑒𝑟𝑡 ′ ← Sign(𝑠𝑘, (H(𝑟,𝑢𝑖𝑑)∥𝑎𝑡𝑡𝑟)) where 𝑟 ←
{0, 1}_ is chosen at random and becomes part of the certifi-

cate sent to the user, i.e., 𝑐𝑒𝑟𝑡 ← (𝑐𝑒𝑟𝑡 ′, 𝑟).
Presentation toVS: When a userwants to engage in a validation

session, it sets 𝑛𝑦𝑚 ← H(𝑟,𝑢𝑖𝑑), 𝜋VS ← 𝑐𝑒𝑟𝑡 ′ and 𝜋RP ←
𝑟 . The VS verifies whether 𝑐𝑒𝑟𝑡 ′ is a valid signature on

(𝑛𝑦𝑚∥𝑎𝑡𝑡𝑟) and if so, signs (𝑠𝑖𝑑, 𝑛𝑦𝑚) as 𝜏 .
Verification by RP: RP receives 𝑠𝑖𝑑,𝑢𝑖𝑑, 𝑛𝑦𝑚, 𝜋RP (= 𝑟) from the

user, receives 𝑠𝑖𝑑, 𝜏 from VS, and verifies that 𝜏 correctly

signs (𝑠𝑖𝑑, 𝑛𝑦𝑚) and 𝑛𝑦𝑚 = H(𝑟,𝑢𝑖𝑑).

On the first glance, this might appear as a privacy-preserving

solution, as the VS only learns the hash value 𝑛𝑦𝑚 = H(𝑟,𝑢𝑖𝑑)
which is known to be a secure commitment if 𝑟 is random. However,

this pseudonym is static in every usage of the certificate, which in

turn allows linkage of all sessions that a user ever makes. As the

user is never anonymous towards RP, this allows the following
trivial attack even when the issuer is honest: the user runs a single

validation session (possibly via an honestVShon) towards a corrupt
RPcor, i.e., the corrupt RPcor learns the (static) 𝑛𝑦𝑚 that belongs

to user 𝑢𝑖𝑑 . If the user runs another validation session via a corrupt

VScor towards an honest RPhon, she sends the same 𝑛𝑦𝑚. The

adversary can then re-use its knowledge from the other session to

derive the user’s identity. This protocol sketched above would only

satisfy a very weak form of user hiding, if (in addition to the issuer)

all relying parties are honest, which clearly is not realistic.

Overall, we strongly believe that privacy-preserving certificates

are necessary for anymeaningful privacy in such system. Andwhile

they are not compatible with the existing infrastructure of health

certificates at the moment, this should not be taken as an excuse

to discard privacy-friendly solutions, but rather as (yet another)

reason to move user-centric certificates to solutions that have built-

in privacy as a core requirement and feature.

ACKNOWLEDGMENTS
This research was partially funded by the HPI Research School on

Data Science and Engineering. It was also supported by the Ger-

man Federal Ministry of Education and Research (BMBF) through

funding of the ATLAS project under reference number 16KISA037.

REFERENCES
[1] Foteini Baldimtsi, Jan Camenisch, Maria Dubovitskaya, Anna Lysyanskaya,

Leonid Reyzin, Kai Samelin, and Sophia Yakoubov. 2017. Accumulators with

Applications to Anonymity-Preserving Revocation. In 2017 IEEE European Sym-
posium on Security and Privacy. IEEE Computer Society Press, Paris, France,

301–315. https://doi.org/10.1109/EuroSP.2017.13

[2] Stefan A. Brands. 2000. Rethinking Public Key Infrastructures and Digital
Certificates: Building in Privacy. MIT Press, Cambridge, MA, USA. https:

//doi.org/10.7551/mitpress/5931.001.0001

[3] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf

Kohlweiss. 2015. Composable and Modular Anonymous Credentials: Defini-

tions and Practical Constructions. In ASIACRYPT 2015, Part II (LNCS, Vol. 9453),
Tetsu Iwata and Jung Hee Cheon (Eds.). Springer, Heidelberg, Germany, Auckland,

New Zealand, 262–288. https://doi.org/10.1007/978-3-662-48800-3_11

[4] Jan Camenisch, Aggelos Kiayias, and Moti Yung. 2009. On the Portability of

Generalized Schnorr Proofs. In EUROCRYPT 2009 (LNCS, Vol. 5479), Antoine
Joux (Ed.). Springer, Heidelberg, Germany, Cologne, Germany, 425–442. https:

//doi.org/10.1007/978-3-642-01001-9_25

[5] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. 2009. An Accumulator

Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials. In

PKC 2009 (LNCS, Vol. 5443), Stanislaw Jarecki and Gene Tsudik (Eds.). Springer,

Heidelberg, Germany, Irvine, CA, USA, 481–500. https://doi.org/10.1007/978-3-

642-00468-1_27

[6] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen, Gregory

Neven, and Michael Østergaard Pedersen. 2016. Formal Treatment of Privacy-

Enhancing Credential Systems. In SAC 2015 (LNCS, Vol. 9566), Orr Dunkelman

and Liam Keliher (Eds.). Springer, Heidelberg, Germany, Sackville, NB, Canada,

3–24. https://doi.org/10.1007/978-3-319-31301-6_1

[7] Jan Camenisch and Anna Lysyanskaya. 2001. An Efficient System for Non-

transferable Anonymous Credentials with Optional Anonymity Revocation. In

EUROCRYPT 2001 (LNCS, Vol. 2045), Birgit Pfitzmann (Ed.). Springer, Heidelberg,

Germany, Innsbruck, Austria, 93–118. https://doi.org/10.1007/3-540-44987-6_7

[8] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous

Credentials from Bilinear Maps. In CRYPTO 2004 (LNCS, Vol. 3152), Matthew

Franklin (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 56–72.

https://doi.org/10.1007/978-3-540-28628-8_4

[9] David Chaum. 1981. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the Association for Computing Machinery 24, 2

(1981), 84–90. https://doi.org/10.1145/358549.358563

[10] David Chaum. 1985. Security without identification: Transaction systems to

make big brother obsolete. Communications of the Association for Computing
Machinery 28, 10 (1985), 1030–1044. https://doi.org/10.1145/4372.4373

[11] Yu Chen, Jiguo Li, Chengdong Liu, Jinguang Han, Yichen Zhang, and Peng

Yi. 2022. Efficient Attribute Based Server-Aided Verification Signature. IEEE
Transactions on Services Computing 15, 6 (2022), 3224–3232. https://doi.org/10.

1109/TSC.2021.3096420

[12] The European Commission. 2021. Commission Implementing Decision (EU)

2021/1073 of 28 June 2021 laying down technical specifications and rules for the

implementation of the trust framework for the EU Digital COVID Certificate

established by Regulation (EU) 2021/953 of the European Parliament and of the

Council. https://eur-lex.europa.eu/eli/dec_impl/2021/1073/oj

[13] The European Commission. 2022. EU Digital COVID Certificate: EU launches

new revocation feature. https://digital-strategy.ec.europa.eu/en/news/eu-digital-

covid-certificate-eu-launches-new-revocation-feature.

[14] The European Commission. 2022. Regulation (EU) 2021/953 of the European

Parliament and of the Council of 14 June 2021 on a framework for the issuance,

verification and acceptance of interoperable COVID-19 vaccination, test and

recovery certificates (EU Digital COVID Certificate) to facilitate free movement

during the COVID-19 pandemic. http://data.europa.eu/eli/reg/2021/953/2022-

03-31/eng

[15] eHealth Network. 2021. Guidlines on the use of Digital Covid Certificates in

traveller and online booking scenarios. https://ec.europa.eu/health/sites/default/

files/ehealth/docs/covid-certificate_traveller-onlinebooking_en.pdf.

[16] eHealth Network. 2022. EU Digital COVID Certificate Validation Service. https://

github.com/eu-digital-green-certificates/dgca-validation-service/tree/2f047cd.

[17] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), Andrew M.

Odlyzko (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 186–194.

https://doi.org/10.1007/3-540-47721-7_12

[18] Centers for Disease Control and Prevention. 2021. Requirement for Proof

of COVID-19 Vaccination for Air Passengers. https://web.archive.org/web/

20211101003745/https://www.cdc.gov/coronavirus/2019-ncov/travelers/proof-

of-vaccination.html.

[19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2019. Structure-

Preserving Signatures on Equivalence Classes and Constant-Size Anonymous

Credentials. Journal of Cryptology 32, 2 (April 2019), 498–546. https://doi.org/10.

1007/s00145-018-9281-4

[20] Marc Girault and David Lefranc. 2005. Server-Aided Verification: Theory and

Practice. In ASIACRYPT 2005 (LNCS, Vol. 3788), Bimal K. Roy (Ed.). Springer, Hei-

delberg, Germany, Chennai, India, 605–623. https://doi.org/10.1007/11593447_33

[21] Ulrich Haböck and Stephan Krenn. 2019. Breaking and Fixing Anonymous

Credentials for the Cloud. In CANS 19 (LNCS, Vol. 11829), Yi Mu, Robert H. Deng,

and Xinyi Huang (Eds.). Springer, Heidelberg, Germany, Fuzhou, China, 249–269.

https://doi.org/10.1007/978-3-030-31578-8_14

[22] Mark A. Hall and David M. Studdert. 2021. “Vaccine Passport” Certification -

Policy and Ethical Considerations. New England Journal of Medicine 385, 11
(2021), e32. https://doi.org/10.1056/NEJMp2104289

[23] Javier Herranz, Fabien Laguillaumie, Benoît Libert, and Carla Ràfols. 2012. Short

Attribute-Based Signatures for Threshold Predicates. In CT-RSA 2012 (LNCS,
Vol. 7178), Orr Dunkelman (Ed.). Springer, Heidelberg, Germany, San Francisco,

CA, USA, 51–67. https://doi.org/10.1007/978-3-642-27954-6_4

[24] Susan Hohenberger and Anna Lysyanskaya. 2005. How to Securely Outsource

Cryptographic Computations. In TCC 2005 (LNCS, Vol. 3378), Joe Kilian (Ed.).

Springer, Heidelberg, Germany, Cambridge, MA, USA, 264–282. https://doi.org/

10.1007/978-3-540-30576-7_15

[25] Georgios Karopoulos, Jose L. Hernandez-Ramos, Vasileios Kouliaridis, and

Georgios Kambourakis. 2021. A Survey on Digital Certificates Approaches

for the COVID-19 Pandemic. IEEE Access 9 (2021), 138003–138025. https:

//doi.org/10.1109/ACCESS.2021.3117781

334

https://doi.org/10.1109/EuroSP.2017.13
https://doi.org/10.7551/mitpress/5931.001.0001
https://doi.org/10.7551/mitpress/5931.001.0001
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-01001-9_25
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/4372.4373
https://doi.org/10.1109/TSC.2021.3096420
https://doi.org/10.1109/TSC.2021.3096420
https://eur-lex.europa.eu/eli/dec_impl/2021/1073/oj
https://digital-strategy.ec.europa.eu/en/news/eu-digital-covid-certificate-eu-launches-new-revocation-feature
https://digital-strategy.ec.europa.eu/en/news/eu-digital-covid-certificate-eu-launches-new-revocation-feature
http://data.europa.eu/eli/reg/2021/953/2022-03-31/eng
http://data.europa.eu/eli/reg/2021/953/2022-03-31/eng
https://ec.europa.eu/health/sites/default/files/ehealth/docs/covid-certificate_traveller-onlinebooking_en.pdf
https://ec.europa.eu/health/sites/default/files/ehealth/docs/covid-certificate_traveller-onlinebooking_en.pdf
https://github.com/eu-digital-green-certificates/dgca-validation-service/tree/2f047cd
https://github.com/eu-digital-green-certificates/dgca-validation-service/tree/2f047cd
https://doi.org/10.1007/3-540-47721-7_12
https://web.archive.org/web/20211101003745/https://www.cdc.gov/coronavirus/2019-ncov/travelers/proof-of-vaccination.html
https://web.archive.org/web/20211101003745/https://www.cdc.gov/coronavirus/2019-ncov/travelers/proof-of-vaccination.html
https://web.archive.org/web/20211101003745/https://www.cdc.gov/coronavirus/2019-ncov/travelers/proof-of-vaccination.html
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/11593447_33
https://doi.org/10.1007/978-3-030-31578-8_14
https://doi.org/10.1056/NEJMp2104289
https://doi.org/10.1007/978-3-642-27954-6_4
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1109/ACCESS.2021.3117781
https://doi.org/10.1109/ACCESS.2021.3117781

Privacy-Preserving Outsourced Certificate Validation Proceedings on Privacy Enhancing Technologies 2023(4)

[26] Stephan Krenn, Thomas Lorünser, Anja Salzer, and Christoph Striecks. 2017.

Towards Attribute-Based Credentials in the Cloud. In CANS 17 (LNCS, Vol. 11261),
Srdjan Capkun and Sherman S. M. Chow (Eds.). Springer, Heidelberg, Germany,

Hong Kong, China, 179–202. https://doi.org/10.1007/978-3-030-02641-7_9

[27] Jin Li, Man Ho Au, Willy Susilo, Dongqing Xie, and Kui Ren. 2010. Attribute-

Based Signature and Its Applications. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security (Beijing, China) (ASIACCS
’10). Association for Computing Machinery, New York, NY, USA, 60–69. https:

//doi.org/10.1145/1755688.1755697

[28] Chae Hoon Lim and Pil Joong Lee. 1995. Server (Prover/Signer)-Aided Verification

of Identity Proofs and Signatures. In EUROCRYPT’95 (LNCS, Vol. 921), Louis C.
Guillou and Jean-Jacques Quisquater (Eds.). Springer, Heidelberg, Germany, Saint-

Malo, France, 64–78. https://doi.org/10.1007/3-540-49264-X_6

[29] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. 2011. Attribute-Based

Signatures. In CT-RSA 2011 (LNCS, Vol. 6558), Aggelos Kiayias (Ed.). Springer,
Heidelberg, Germany, San Francisco, CA, USA, 376–392. https://doi.org/10.1007/

978-3-642-19074-2_24

[30] Toru Nakanishi, Hiroki Fujii, Yuta Hira, and Nobuo Funabiki. 2009. Revocable

Group Signature Schemes with Constant Costs for Signing and Verifying. In

PKC 2009 (LNCS, Vol. 5443), Stanislaw Jarecki and Gene Tsudik (Eds.). Springer,

Heidelberg, Germany, Irvine, CA, USA, 463–480. https://doi.org/10.1007/978-3-

642-00468-1_26

[31] NIST. 2013. Digital Signature Standard (DSS). National Institute of Standards

and Technology, NIST FIPS PUB 186-5. https://doi.org/10.6028/NIST.FIPS.186-5

[32] Ministry of Foreign Affairs of Japan. 2023. Border measures to prevent the spread

of novel coronavirus (COVID-19). https://www.mofa.go.jp/ca/fna/page4e_001053.

html.

[33] Israel Ministry of Health. 2021. What is a Green Pass. https://web.archive.

org/web/20210213060744/https://corona.health.gov.il/en/directives/green-pass-

info/.

[34] Christian Paquin and Greg Zaverucha. 2013. U-Prove Cryptographic Specification

V1.1 (Revision 3). https://www.microsoft.com/en-us/research/publication/u-

prove-cryptographic-specification-v1-1-revision-3/

[35] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In CRYPTO’91 (LNCS, Vol. 576), Joan Feigenbaum (Ed.).

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 129–140. https://doi.

org/10.1007/3-540-46766-1_9

[36] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures. In

CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, Germany,

San Francisco, CA, USA, 111–126. https://doi.org/10.1007/978-3-319-29485-8_7

[37] The Washington Post. 2020. Chile’s ‘immunity passport’ will allow recov-

ered coronavirus patients to break free from lockdown, get back to work.

https://www.washingtonpost.com/world/the_americas/chile-coronavirus-

immunity-passport-antibody-testing-card/2020/04/20/8daef326-826d-11ea-

81a3-9690c9881111_story.html.

[38] Abhishek Singh, Ramesh Raskar, and Anna Lysyanskaya. 2021. Safepaths: Vaccine

Diary Protocol and Decentralized Vaccine Coordination System using a Privacy

Preserving User Centric Experience. CoRR abs/2103.01754 (2021), 13 pages.

https://doi.org/10.48550/arXiv.2103.01754

[39] T-Systems. 2021. Corona Validation Service. https://www.t-systems.com/de/en/

newsroom/news/corona-validation-service-475486.

[40] T-Systems. 2022. World Health Organization selects T-Systems as industry

partner. https://www.telekom.com/en/media/media-information/archive/covid-

19-who-commissions-t-systems-648634.

[41] Zhiwei Wang, Ruirui Xie, and Shaohui Wang. 2014. Attribute-based Server-Aided

Verification Signature. Applied Mathematics & Information Sciences 8 (11 2014),
3183–3190. https://doi.org/10.12785/amis/080660

A DEFINITIONS
In this section we include the formal definition of MMS-EUF-CMA

that we used in our construction, as well as of correctness of the

COV system.

A.1 MMS-EUF-CMA
It is infeasible for A in the game 𝐸𝑥𝑝MMS-EUF-CMA

A,MMS to find a valid

signature 𝜎 w.r.t. 𝑝𝑘 for a message vector with size 𝑛 that was never

queried to OMMS. Here we are only interested in 𝑛 = 2, so without

loss of generality, we adjust the definition to operate on exactly

two messages𝑚1 and𝑚2 directly.

Definition A.1 (MMS-EUF-CMA). MMS is unforgeable if for all
PPT adversaries A, Pr[𝐸𝑥𝑝MMS-EUF-CMA

A,MMS (_) = 1] ≤ negl(_).

U RP

VS

1. 𝑠𝑖𝑑,𝑢𝑖𝑑

2.
𝑠𝑖𝑑,

𝑢𝑖𝑑,
𝑎𝑡𝑡𝑟

, 𝑐𝑒𝑟
𝑡

3. Sign(𝑣𝑠𝑘,𝑢𝑖𝑑 ∥𝑠𝑖𝑑)

Figure 8: Optimized EU-COV, omitting the unnecessary user
signature and certificate encryption.

Experiment 𝐸𝑥𝑝MMS-EUF-CMA
A,MMS (_)

Define OMMS (𝑚1,𝑚2)

𝑄MMS := 𝑄MMS ∪ (𝑚1,𝑚2)
returnMMS.Sign(𝑠𝑘, (𝑚1,𝑚2))

Initialize𝑄MMS as empty array.

𝑝𝑝 ← MMS.Setup(1_)
(𝑝𝑘, 𝑠𝑘) ← MMS.KGen(𝑝𝑝,𝑛 := 2)
(𝜎,𝑚1,𝑚2) ← AOMMS (𝑝𝑘)
return (𝑚1,𝑚2) ∉ 𝑄MMS ∧
MMS.Verify(𝑝𝑘, (𝑚1,𝑚2), 𝜎) = 1

A.2 COV Correctness
A COV system is correct if for all _ ∈ N, all 𝑝𝑝 ← Setup(1_), all
issuer keys (𝑖𝑝𝑘, 𝑖𝑠𝑘) ← IKGen(𝑝𝑝), all (𝑢𝑖𝑑 , 𝑎𝑡𝑡𝑟) ∈ D2

, and all

𝑐𝑒𝑟𝑡 ← CertIssue(𝑖𝑠𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟), it holds that

CertVerify(𝑖𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡) = 1

and for all 𝑠𝑖𝑑 ∈ Z, all validator keys (𝑣𝑝𝑘, 𝑣𝑠𝑘) ← VKGen(𝑝𝑝) that
implicitly define policy 𝑓 and trusted issuers 𝑃𝐾 , all presentations

(𝜋VS, 𝜋RP, 𝑛𝑦𝑚) ← CertPresent(𝑖𝑝𝑘, 𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡), and
all validations 𝜏 ← ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS),
the following holds:

ValTokVerify(𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋RP, 𝜏) = 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾)

B EU-COV OPTIMIZATIONS
Our security analysis did not require any assumptions on the en-

cryption scheme E and the user’s signature scheme SU, and thus can
simply be omitted from EU-COV’s construction (and consequently

for EU-Spec too) without impacting the security in our model. The

optimized version of EU-COV is depicted in Figure 8, and can be

seen as a version that implicitly uses 𝑛𝑦𝑚 = 𝜋RP = ⊥ everywhere.

In the following we briefly discuss what security properties (pos-

sibly not captured by our model) could have been the motivation

for SU and E, and why they are not affected by the optimization.

Omitting Signature Scheme SU. The EU-Specmotivates the user’s

signature key pair with two properties: user-binding and data pri-

vacy. We now argue that it doesn’t contribute to either.

No impact on user-binding: One reason for SU could be to en-

sure that the same user talks to VS and RP: the user sends a

signature under 𝑝𝑘U to VS, and sends 𝑝𝑘U to the RP, who for-

wards the key toVS. The validator then checks that they match,

i.e., it verifies the signature it receives from the user, under the

key it gets from the RP. This is unnecessary though, as theVS
already verifies that the expected 𝑢𝑖𝑑 from RP matches the 𝑢𝑖𝑑 in

335

https://doi.org/10.1007/978-3-030-02641-7_9
https://doi.org/10.1145/1755688.1755697
https://doi.org/10.1145/1755688.1755697
https://doi.org/10.1007/3-540-49264-X_6
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/978-3-642-19074-2_24
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.6028/NIST.FIPS.186-5
https://www.mofa.go.jp/ca/fna/page4e_001053.html
https://www.mofa.go.jp/ca/fna/page4e_001053.html
https://web.archive.org/web/20210213060744/https://corona.health.gov.il/en/directives/green-pass-info/
https://web.archive.org/web/20210213060744/https://corona.health.gov.il/en/directives/green-pass-info/
https://web.archive.org/web/20210213060744/https://corona.health.gov.il/en/directives/green-pass-info/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-29485-8_7
https://www.washingtonpost.com/world/the_americas/chile-coronavirus-immunity-passport-antibody-testing-card/2020/04/20/8daef326-826d-11ea-81a3-9690c9881111_story.html
https://www.washingtonpost.com/world/the_americas/chile-coronavirus-immunity-passport-antibody-testing-card/2020/04/20/8daef326-826d-11ea-81a3-9690c9881111_story.html
https://www.washingtonpost.com/world/the_americas/chile-coronavirus-immunity-passport-antibody-testing-card/2020/04/20/8daef326-826d-11ea-81a3-9690c9881111_story.html
https://doi.org/10.48550/arXiv.2103.01754
https://www.t-systems.com/de/en/newsroom/news/corona-validation-service-475486
https://www.t-systems.com/de/en/newsroom/news/corona-validation-service-475486
https://www.telekom.com/en/media/media-information/archive/covid-19-who-commissions-t-systems-648634
https://www.telekom.com/en/media/media-information/archive/covid-19-who-commissions-t-systems-648634
https://doi.org/10.12785/amis/080660

Proceedings on Privacy Enhancing Technologies 2023(4) Tarek Galal and Anja Lehmann

𝑐𝑒𝑟𝑡 (or signs the verified 𝑢𝑖𝑑 and shifts the check whether this is

the expected user to RP, which is what we do in EU-COV).
What we do not know though, is whether the user showing

the certificate and getting a token for 𝑢𝑖𝑑 is indeed that user. The

underlying problem is that users don’t own any long-term secret

keys, i.e., there is nothing that defines who a user is, except the cer-

tificate 𝑐𝑒𝑟𝑡 containing the user’s unique 𝑢𝑖𝑑 . Now anyone having

the certificate can pose as 𝑢𝑖𝑑 . This is unavoidable and cannot be

fixed by sending an unrelated ephemeral public key and signature

with the certificate.

For the targeted application this is not a problem though, as the

final assertion is still bound to the 𝑢𝑖𝑑 that had a proper certificate

and passed the check by theVS. This already prevents the main

threat, namely that a user not owning the necessary certificate can

convince RP of the opposite.

No impact on data-privacy: The EU-Spec argues that the “[user]
public key must be unique for each subject for maximum data

privacy” [15]. As the key relates to a signature and not an encryption

scheme, there is no data it can protect other than the user’s identity.

Thus, we expect that the unique public key is meant as some form

of a pseudonym. While having pseudonymous authentication is an

admirable goal, it is impossible to achieve here as the user sends

her unique identity 𝑢𝑖𝑑 to both theVS and RP.
Overall, the SU scheme neither provides any additional guaran-

tees regarding user binding, nor is there any hope for user privacy

(which is what we cover as VS-Privacy) in the scheme altogether,

and thus SU can be fully omitted from the protocol.

Omitting Encryption Scheme E. In a validation session, the user

encrypts her certificate withVS’s public key before transmitting

it, however, we did not require any guarantees from E. This is
because our model implicitly assumes that honest users and hon-

est validators communicate over a secure channel, which aligns

with EU-Spec’s assumption of a TLS connection between those

parties. Hence, the additional encryption via E does not contribute

to privacy in our model and can be omitted.

In a broader perspective though, not only must the communi-

cation channel itself be secure, but the whole environment (e.g.,

smartphone software) that handles the user’s certificate, until it

finally gets transmitted. An additional encryption performed by

the user would provide extra protection that alleviates the amount

of effective trust required in practice.

Validation Oracle. In the EU-Spec (and EU-COV) construction,
ValTokGen𝑓 ,𝑃𝐾 distinguishes between invalid inputs (e.g., unverifi-

able signatures) and policy check failures. For the former it outputs

⊥, for the latter it creates a validation token 𝜏 , but with a signed 0

as the verification result. This has a side effect of creating an oracle

that leaks unwanted information (e.g., signature checks passed,

policy validation failed). It also requires careful handling of the

different possible outcomes when realizing the function in practice.

Thus we suggest to generate 𝜏 only if both the certificate and the

policy validation succeeds.

C FULL PROOFS
In this section we give the full proofs for EU-COV satisfying Weak

Unforgeability, and PP-COV satisfying Unforgeability.

C.1 EU-COVWeak Unforgeability
Recall that this is the weaker notion of Unforgeability where the

adversary A in the game 𝐸𝑥𝑝weakUFA,COV is not provided access to O𝜋 .
A outputs 𝑢𝑖𝑑∗, 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏

∗
and wins if ValTokVerify(𝑣𝑝𝑘 ,

𝑢𝑖𝑑∗, 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏
∗) = 1 and one of Case 1-4 annotated in the

game holds. For each of the cases, we use A to construct efficient

adversaries B and C against EUF-CMA of SVS and SI respectively.

Proof. The proof branches into addressing indirect and direct

forgeries, depending on whether the honestVS has seen a query

for (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) or not. If (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) ∉ 𝑄𝜏 ∪ 𝑄𝜋,𝜏 we have an

immediate forgery against SVS (direct forgery), and in Figure 9, we

useA to construct the adversary B against the EUF-CMA game. B
is initialized with a public key from the scheme SVS, which becomes

the honest VS’s public key, and we modify O𝜏 ,O𝜋,𝜏 to forward

requests to OSIG if the given certificate verification succeeds. We

do not need to alter the other oracles OCU,OHU as their operation

is independent of what O𝜋,𝜏 and O𝜏 do. With the oracles perfectly

simulated, B runsA and outputs (𝜎 := 𝜏∗,𝑚 := 1∥𝑛𝑦𝑚∗∥𝑢𝑖𝑑∗∥𝑠𝑖𝑑∗
as a forgery in the EUF-CMA game.

The rest of the proof is now for the case when (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) ∈
𝑄𝜏 ∪𝑄𝜋,𝜏 . For this, we will useA to construct the other adversary

C against EUF-CMA of SI, shown in Figure 9. C is initialized with

a public key from the scheme SI, which it inserts as an issuer’s

public key into a random index in the list of public keys of honest

issuers given to A. We modify the oracles OCU,OHU to forward

queries to OSIG if the input 𝑖𝑝𝑘𝑖 equals 𝑝𝑘 , and the oracle O𝜏 to

store 𝜋VS from the queries it receives. We do not require similar

modification to O𝜋,𝜏 as we will show that the adversary’s forgeries

could not have originated from it. Further, as our changes perfectly

simulate the original oracles, the unchanged O𝜋,𝜏 – which accesses

OHU’s𝑄HU – also remains perfectly simulated. C runsA, and with

probability ≥ 1

𝑙
, the query thatA won with, used 𝑖𝑝𝑘𝑖 = 𝑝𝑘 . In this

case, we retrieve the respective 𝑎𝑡𝑡𝑟 and 𝜋VS, decrypt the enclosed

ciphertext to obtain 𝑐𝑒𝑟𝑡 , and output (𝜎 := 𝑐𝑒𝑟𝑡,𝑚 := 𝑢𝑖𝑑∗∥𝑎𝑡𝑡𝑟) as
forgery for EUF-CMA. Note that we only look up this query in 𝑄𝜏 .

In the following, we address each of the four cases of the definition

individually, which will reveal that the query cannot exist in𝑄𝜋,𝜏 .

Case 1 - (𝑢𝑖𝑑∗,−,−) ∉ 𝑄CU ∪𝑄HU: The condition requires that

𝑢𝑖𝑑∗ was never certified by any honest issuer. Since 𝑢𝑖𝑑∗ does not
exist, there cannot be any successful query to the honest user oracle

O𝜋,𝜏 for that 𝑢𝑖𝑑∗, i.e,. we know there is no matching tuple in 𝑄𝜋,𝜏 .

To get a validation token from O𝜏 , the adversary must provide it

with a certificate 𝑐𝑒𝑟𝑡 from an honest issuer (this follows from the

policy bit 1 signed in 𝜏∗), that was never produced by that honest

issuer. This gives an immediate forgery for SI.
Case 2 - (𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) ∈ 𝑄CU ∧ (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟) ∉ 𝑄𝜏 :

A certificate was issued to a corrupt user𝑢𝑖𝑑∗ from an honest issuer

𝑖𝑝𝑘 over 𝑎𝑡𝑡𝑟 , but O𝜏 did not see a query with (𝑠𝑖𝑑∗,𝑛𝑦𝑚∗,𝑖𝑝𝑘 ,𝑎𝑡𝑡𝑟).
Because 𝑢𝑖𝑑∗ is corrupt, we know no there is no matching tuple in

the state maintained by O𝜋,𝜏 either. Then a query to O𝜏 must be

w.r.t. to some 𝑎𝑡𝑡𝑟 ′ ≠ 𝑎𝑡𝑡𝑟 or honest issuer’s public key 𝑖𝑝𝑘 ′ ≠ 𝑖𝑝𝑘 ,
that is, not matching what the honest issuer 𝑖𝑝𝑘 originally certified

for this 𝑢𝑖𝑑∗. If 𝑎𝑡𝑡𝑟 ′ ≠ 𝑎𝑡𝑡𝑟 , but 𝑖𝑝𝑘 ′ = 𝑖𝑝𝑘 , this is a forgery for the
honest 𝑖𝑝𝑘 . If 𝑖𝑝𝑘 ′ ≠ 𝑖𝑝𝑘 , we know by the game’s definition that

𝑖𝑝𝑘 ′ must also belong to an honest issuer. We also assumed 𝑢𝑖𝑑’s

336

Privacy-Preserving Outsourced Certificate Validation Proceedings on Privacy Enhancing Technologies 2023(4)

BOSIGEUF-CMA (𝑝𝑝, 𝑝𝑘)

Simulate O𝜏 , O𝜋,𝜏 as follows:

Define O𝜏 (𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)

(𝜎U, 𝑐) := 𝜋VS, 𝑝𝑘U := 𝑛𝑦𝑚

(𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡) ← Dec(𝑒𝑠𝑘, 𝑐)
if SU .Verify(𝑝𝑘U, 𝑠𝑖𝑑 ∥𝑐, 𝜎U) = 1 ∧

SI .Verify(𝑖𝑝𝑘𝑖 ,𝑢𝑖𝑑 ∥𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡) = 1

𝜎 ← OSIG (𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) ∥𝑝𝑘U ∥𝑢𝑖𝑑 ∥𝑠𝑖𝑑)
return 𝜏 := 𝜎

else abort

Define O𝜋,𝜏 (𝑢𝑖𝑑, 𝑠𝑖𝑑)

if (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘, _) ∈ 𝑄HU

(𝑝𝑘U, 𝑠𝑘U) ← SU .KGen(𝑝𝑝)
𝜎 ← OSIG (𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) ∥𝑝𝑘U ∥𝑢𝑖𝑑 ∥𝑠𝑖𝑑)
return (𝑛𝑦𝑚 := 𝑝𝑘U, 𝜋RP := 𝑝𝑘U, 𝜏 := 𝜎)

else abort

𝑓 𝑜𝑟 𝑖 := {1, ..., 𝑙 } : (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ← IKGen(𝑝𝑝)

𝐿ℎ𝑜𝑛𝑒𝑠𝑡 := {𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖 }𝑙1;

(𝑒𝑝𝑘, 𝑒𝑠𝑘) ← E.KGen(𝑝𝑝) ; 𝑣𝑝𝑘 := (𝑝𝑘, 𝑒𝑝𝑘)

𝑃𝐾∗, 𝑓 ∗ ← AOCU,OHU (𝑝𝑝, 𝑖𝑝𝑘1, ..., 𝑖𝑝𝑘𝑙)

(𝑠𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏
∗) ← AOCU,OHU,O𝜋,𝜏 ,O𝜏 (𝑣𝑝𝑘)

return (𝜎 := 𝜏∗,𝑚 := 1∥𝑛𝑦𝑚∗ ∥𝑢𝑖𝑑∗ ∥𝑠𝑖𝑑∗)

COSIGEUF-CMA (𝑝𝑝, 𝑝𝑘)

Initialize𝑄HU,𝑄CU,𝑄𝜏 to empty arrays and simulate the oracles as follows:

Define OCU (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖)

abort if 𝑢𝑖𝑑 ∈ 𝑄CU ∪𝑄HU ∨ (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ∉ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡
if 𝑖𝑝𝑘𝑖 ≠ 𝑝𝑘 : 𝑐𝑒𝑟𝑡 ← CertIssue(𝑖𝑠𝑘𝑖 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)

else 𝜎 ← OSIG (𝑢𝑖𝑑 ∥𝑎𝑡𝑡𝑟) ; 𝑐𝑒𝑟𝑡 := 𝜎

𝑄CU := 𝑄CU ∪ (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖) ; return 𝑐𝑒𝑟𝑡

Define OHU (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖)

abort if 𝑢𝑖𝑑 ∈ 𝑄CU ∪𝑄HU ∨ (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ∉ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡
if 𝑖𝑝𝑘𝑖 ≠ 𝑝𝑘 : 𝑐𝑒𝑟𝑡 ← CertIssue(𝑖𝑠𝑘𝑖 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)

else 𝜎 ← OSIG (𝑢𝑖𝑑 ∥𝑎𝑡𝑡𝑟) ; 𝑐𝑒𝑟𝑡 := 𝜎

𝑄HU := 𝑄HU ∪ (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖 , 𝑐𝑒𝑟𝑡)

Define O𝜏 (𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)

𝜏 ← ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)
𝑄𝜏 := 𝑄𝜏 ∪ (𝑠𝑖𝑑,𝑛𝑦𝑚, 𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝜋VS) ; return 𝜏

𝑘 ←𝑅 Z𝑙 ; 𝑖𝑝𝑘𝑘 := 𝑝𝑘 ; (𝑣𝑝𝑘, 𝑣𝑠𝑘) ← VKGen(𝑝𝑝)

𝑓 𝑜𝑟 𝑖 := {1, ..., 𝑙 } \ 𝑘 : (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ← IKGen(𝑝𝑝) ; 𝐿ℎ𝑜𝑛𝑒𝑠𝑡 := {𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖 }𝑙1
𝑃𝐾∗, 𝑓 ∗ ← AOCU,OHU (𝑝𝑝, 𝑖𝑝𝑘1 ..., 𝑖𝑝𝑘𝑙)

(𝑠𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏
∗) ← AOCU,OHU,O𝜋,𝜏 ,O𝜏 (𝑣𝑝𝑘)

if (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝜋VS) ∈ 𝑄𝜏
_, 𝑐 := 𝜋VS; _∥_∥𝑐𝑒𝑟𝑡 := Dec(𝑣𝑠𝑘, 𝑐)
return (𝜎 := 𝑐𝑒𝑟𝑡,𝑚 := 𝑢𝑖𝑑∗ ∥𝑎𝑡𝑡𝑟)

Figure 9: EU-COV’s adversaries against EUF-CMA of the schemes SVS and SI. The adversaries B, C use the adversaryA who wins
in 𝐸𝑥𝑝weakUFA,COV with direct and indirect forgeries respectively to win in EUF-CMA.

to be globally unique, and ensured that 𝑢𝑖𝑑∗ was signed only by

𝑖𝑝𝑘 . This yields a forgery for SI under 𝑖𝑝𝑘 ′.
Case 3 - (𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) ∈ 𝑄HU ∧ (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟,𝑢𝑖𝑑∗) ∉ 𝑄𝜋VS,𝜏 :

A certificate was issued for an honest user𝑢𝑖𝑑∗, but O𝜋,𝜏 did not see
a query with 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟,𝑢𝑖𝑑∗. To get a validation token

from O𝜏 , the adversary must present a valid 𝜋VS to it, i.e., one that

contains a valid certificate for 𝑢𝑖𝑑∗. But because certificates of hon-
est users are never revealed to the adversary, it must have forged

𝑐𝑒𝑟𝑡 . However, this would not be a fresh forgery for EUF-CMA as

there is already a certificate issued by the honest issuer 𝑖𝑝𝑘 for

(𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟), i.e., OSIG has already seen a query for this message.

Therefore, we make the reduction work by not generating a cer-

tificate for 𝑢𝑖𝑑∗ and “simulate” it instead. We do this by adjusting

OHU to not issue certificates, but only store requests for them:

Define OHU (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖)

abort if 𝑢𝑖𝑑 ∈ 𝑄CU ∪𝑄HU ∨ (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ∉ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡
if 𝑖𝑝𝑘𝑖 ≠ 𝑝𝑘

𝑐𝑒𝑟𝑡 ← CertIssue(𝑖𝑠𝑘𝑖 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)
else 𝑐𝑒𝑟𝑡 := ⊥
𝑄HU := 𝑄HU ∪ (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖 , 𝑐𝑒𝑟𝑡)

To maintain the indistinguishability of our changes w.r.t. the

adversary’s perspective, we additionally change O𝜋,𝜏 to not run

ValTokGen𝑓 ,𝑃𝐾 but directly create the signature for honest users:

Define O𝜋,𝜏 (𝑢𝑖𝑑, 𝑠𝑖𝑑)

if (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘, _) ∈ 𝑄HU

(𝑝𝑘U, 𝑠𝑘U) ← SU .KGen(𝑝𝑝)
(𝑠𝑘VS, _) := 𝑣𝑠𝑘

𝜎VS ← SVS .Sign(𝑠𝑘VS, 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) ∥𝑝𝑘U ∥𝑢𝑖𝑑 ∥𝑠𝑖𝑑)
return (𝑛𝑦𝑚 := 𝑝𝑘U, 𝜋RP := 𝑝𝑘U, 𝜏 := 𝜎VS,)

else abort

We stress that this kind of simulation does not require any zero-

knowledge-like behaviour from the signature scheme, but fully

relies on the fact that we are in the weak unforgeability game. This

means that A does not have access to O𝜋 , and thus never sees

the user’s certificates. We then simply keep track of the signed

information internally.

With that, we are perfectly simulating the oracles and at the

same time, C extracts a fresh forgery for SI from A’s interaction

with O𝜏 .

337

Proceedings on Privacy Enhancing Technologies 2023(4) Tarek Galal and Anja Lehmann

Case 4 - (𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) ∈ 𝑄CU ∪𝑄HU ∧ 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 0:

This case requires that the forgery is for a user 𝑢𝑖𝑑∗ (corrupt or
honest) that has a proper certificate on 𝑎𝑡𝑡𝑟 from an honest issuer

𝑖𝑝𝑘 , but with (𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟) not satisfying the policy 𝑓 . Any matching

query to either O𝜏 or O𝜋,𝜏 , must be with some 𝑎𝑡𝑡𝑟 ′ ≠ 𝑎𝑡𝑡𝑟 or

𝑖𝑝𝑘 ′ ≠ 𝑖𝑝𝑘 , i.e., different than what has been originally certified,

such that 𝑓 produces 1. This is impossible in O𝜋,𝜏 , which internally

always uses the correct certificate, thus must have happened with

O𝜏 . Like in Case 2, this results in a forgery for SI under 𝑖𝑝𝑘 ′.
Note that unlike Case 3, we do not require oracle adjustments for

the reduction to work when 𝑢𝑖𝑑∗ is honest. This is because we have
proven that the adversary’s forged 𝑐𝑒𝑟𝑡 is w.r.t. 𝑖𝑝𝑘 ′, 𝑎𝑡𝑡𝑟 ′ that were
never used together in certifying 𝑢𝑖𝑑∗, making (𝜎 := 𝑐𝑒𝑟𝑡,𝑚 :=

𝑢𝑖𝑑∗∥𝑎𝑡𝑡𝑟 ′) a fresh forgery in the EUF-CMA game of SI. □

C.2 PP-COV Unforgeability
Recall that the adversary A in the game 𝐸𝑥𝑝UFA,COV outputs 𝑢𝑖𝑑∗,
𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏

∗
and wins if ValTokVerify(𝑣𝑝𝑘 , 𝑢𝑖𝑑∗, 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗,

𝜋∗RP, 𝜏
∗) = 1 and one of Case 1-4 annotated in the game holds.

In the following, we use the adversary A that wins in each case

to construct efficient adversaries B and C against EUF-CMA and

MMS-EUF-CMA of the schemes S andMMS respectively.

The proof branches into direct forgery against S when we have

(𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) ∉ 𝑄𝜏 ∪𝑄𝜋,𝜏 , and into indirect forgeries. For the for-

mer, we use the adversary A to construct the adversary B in the

EUF-CMA game. Shown in Figure 10, B is initialized with a public

key from the scheme S, which is the honestVS’s public key, and we
modify O𝜏 and O𝜋,𝜏 to forward requests to OSIG if certificate veri-

fication succeeds. We do not alter the other oracles OCU,OHU,O𝜋
as their operation is independent of what O𝜋,𝜏 and O𝜏 do. With

the oracles given to A perfectly simulated, B runs A and outputs

(𝜎 := 𝜏∗,𝑚 := 𝑛𝑦𝑚∗∥𝑠𝑖𝑑∗) as a forgery in the EUF-CMA game.

The rest of the proof is for indirect forgeries, i.e., (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗) ∈
𝑄𝜏 ∪𝑄𝜋,𝜏 . In this case, we will useA to construct the adversary C
in theMMS-EUF-CMA game. In Figure 10, C is initialized with a

public key 𝑝𝑘 from the schemeMMS, which it inserts as an issuer’s

public key into a random location in the list of public keys of honest

issuers thatA takes. The oracles OCU,OHU are modified to forward

queries to OMMS if the input 𝑖𝑝𝑘𝑖 equals 𝑝𝑘 , and O𝜏 is modified to

store 𝜋VS that it gets in queries.We do not require suchmodification

to O𝜋,𝜏 as we will show that the adversary’s forgeries could not

have originated from it. Further, as our changes perfectly simulate

the original oracles, the unchangedO𝜋,𝜏 ,O𝜋 –which accesssOHU’s
𝑄HU – remain perfectly simulated. C runsA, then with probability

≥ 1

𝑙
, the query in 𝑄𝜏 ∪ 𝑄𝜋VS,𝜏 used 𝑖𝑝𝑘𝑖 = 𝑝𝑘 . In this case, we

retrieve the respective 𝑎𝑡𝑡𝑟, 𝜋VS and use an extractor algorithm E
to obtain the witness 𝑐𝑒𝑟𝑡 from 𝜋VS, and output (𝜎 := 𝑐𝑒𝑟𝑡, (𝑚1 :=

𝑢𝑖𝑑∗,𝑚2 := 𝑎𝑡𝑡𝑟)) as forgery in the MMS-EUF-CMA game. Note

that C looks up the query in 𝑄𝜏 but not 𝑄𝜋VS,𝜏 – we will show in

the proofs that it can only exist in 𝑄𝜏 .

Lemma C.1. (Case 1) IfMMS and S are unforgeable according to
MMS-EUF-CMA and EUF-CMA respectively, NIZK is special sound
(which is implied by simulation soundness), and Com is binding, then
PP-COV is unforgeable when (𝑢𝑖𝑑∗,−,−) ∉ 𝑄CU ∪𝑄HU.

Proof. The adversary’s forgery is for a user 𝑢𝑖𝑑∗ that has never
received any certificate. Thus, we know the session validation can-

not stem from O𝜋,𝜏 , as this only returns tokens for honest users.

So (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟) ∈ 𝑄𝜏 and the honest validator must have

accepted the provided proof 𝜋VS in that session. To get a session

validation from O𝜏 , it must be provided with valid values for the

commitment 𝑛𝑦𝑚∗ and the NIZK 𝜋VS. In this case, the NIZK sound-

ness requires knowledge of the witnesses 𝑐𝑒𝑟𝑡 and 𝑢𝑖𝑑 .

Furthermore, the binding property of 𝑛𝑦𝑚∗ ensures that this 𝑢𝑖𝑑
must be the same one output by the adversary (i.e., 𝑢𝑖𝑑 = 𝑢𝑖𝑑∗).

As both OCU and OHU have not seen any queries for 𝑢𝑖𝑑∗, then
the adversary used a forged 𝑐𝑒𝑟𝑡 . This makes (𝜎 := 𝑐𝑒𝑟𝑡,𝑚1 :=

𝑢𝑖𝑑∗,𝑚2 := 𝑎𝑡𝑡𝑟) a valid forgery forMMS. In the reduction, C uses

the special soundness of the NIZK to extract 𝑐𝑒𝑟𝑡 from 𝜋VS and

wins againstMMS-EUF-CMA if 𝑝𝑘 = 𝑖𝑝𝑘 . □

Lemma C.2. (Case 2) If MMS and S are unforgeable accord-
ing to MMS-EUF-CMA and EUF-CMA respectively, NIZK is spe-
cial sound, and Com is binding, then PP-COV is unforgeable when
(𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) ∈ 𝑄CU ∧ (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟) ∉ 𝑄𝜏 .

Proof. The condition requires O𝜏 to not have seen a query

involving 𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗ and the 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟 used in certifying the corrupt

𝑢𝑖𝑑∗. It is also not possible to receive 𝜏∗ from O𝜋,𝜏 using a corrupt

𝑢𝑖𝑑∗. Thus, the adversary must have queried O𝜏 using some 𝑖𝑝𝑘 ′ ≠
𝑖𝑝𝑘 or 𝑎𝑡𝑡𝑟 ′ ≠ 𝑎𝑡𝑡𝑟 . If 𝑎𝑡𝑡𝑟 ′ ≠ 𝑎𝑡𝑡𝑟 , but 𝑖𝑝𝑘 ′ = 𝑖𝑝𝑘 , this is a forgery
for the honest 𝑖𝑝𝑘 . If 𝑖𝑝𝑘 ′ ≠ 𝑖𝑝𝑘 , we know by the game’s definition

that 𝑖𝑝𝑘 ′ must also belong to an honest issuer. As 𝑛𝑦𝑚∗ is bound to
𝑢𝑖𝑑∗, 𝑢𝑖𝑑∗ is assumed to be globally unique, and we ensured that

𝑢𝑖𝑑∗ was signed only by 𝑖𝑝𝑘 , we must have a forgery for MMS
under 𝑖𝑝𝑘 ′. By NIZK soundness, C extracts the forged certificate

and wins in theMMS-EUF-CMA game. □

Lemma C.3. (Case 3) If S andMMS are unforgeable in EUF-CMA
andMMS-EUF-CMA,NIZK is simulation-sound extractable and zero
knowledge, and Com is binding, then PP-COV is unforgeable when
(𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) ∈ 𝑄HU ∧ (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟,𝑢𝑖𝑑∗) ∉ 𝑄𝜋VS,𝜏 .

Proof. The condition forbids having a query to O𝜋,𝜏 that in-

volves 𝑠𝑖𝑑∗, 𝑢𝑖𝑑∗, and 𝑛𝑦𝑚∗, thus a query to O𝜏 must exist. This

query must contain a 𝜋VS bound to 𝑛𝑦𝑚∗, that in turn is bound to

𝑢𝑖𝑑∗ due to Com binding. As the adversary has no way of obtaining

𝜋VS or the underlying 𝑐𝑒𝑟𝑡 for the honest 𝑢𝑖𝑑
∗
through any of the

oracles, it must have a forged 𝜋VS, and – by NIZK soundness – the

underlying 𝑐𝑒𝑟𝑡 .

However, this forgery would be for some (𝜎 := 𝑐𝑒𝑟𝑡,𝑚1 :=

𝑢𝑖𝑑∗,𝑚2 := 𝑎𝑡𝑡𝑟) that is not fresh w.r.t. to OMMS. To be able to

carry out the reduction, we modify OHU to not issue certificates at

all, but only store requests for them:

Define OHU (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖)

abort if 𝑢𝑖𝑑 ∈ 𝑄CU ∪𝑄HU ∨ (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ∉ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡
if 𝑖𝑝𝑘𝑖 ≠ 𝑝𝑘 : 𝑐𝑒𝑟𝑡 ← CertIssue(𝑖𝑠𝑘𝑖 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) else 𝑐𝑒𝑟𝑡 := ⊥
𝑄HU := 𝑄HU ∪ (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖 , 𝑐𝑒𝑟𝑡)

Weaccommodate this changewithinO𝜋,𝜏 andO𝜋 by not running

CertPresent, instead, we simulate the NIZK proof when OHU has

seen the given 𝑢𝑖𝑑∗ with 𝑖𝑝𝑘𝑖 = 𝑝𝑘 before. This is possible because

the NIZK is zero knowledge:

338

Privacy-Preserving Outsourced Certificate Validation Proceedings on Privacy Enhancing Technologies 2023(4)

BOSIGEUF-CMA (𝑝𝑝, 𝑝𝑘) :

Simulate O𝜏 , O𝜋,𝜏 as follows:

Define O𝜏 (𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)

if 𝜋VS verifies w.r.t. 𝑠𝑝𝑘, 𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚 ∧
𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖 ∈ 𝑃𝐾) = 1

𝜎 ← OSIG (𝑛𝑦𝑚 ∥𝑠𝑖𝑑)
return 𝜏 := 𝜎

else abort

Define O𝜋,𝜏 (𝑢𝑖𝑑, 𝑠𝑖𝑑)

if (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘, _) ∈ 𝑄HU

(𝑐𝑜𝑚𝑢𝑖𝑑 , 𝑜𝑢𝑖𝑑) ← Commit(𝑢𝑖𝑑)
if 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 1

𝜎 ← OSIG (𝑛𝑦𝑚 ∥𝑠𝑖𝑑)
return (𝑛𝑦𝑚 := 𝑐𝑜𝑚𝑢𝑖𝑑 , 𝜋RP := 𝑜𝑢𝑖𝑑 , 𝜏 := 𝜎)

else

return (𝑛𝑦𝑚 := 𝑐𝑜𝑚𝑢𝑖𝑑 , 𝜋RP := 𝑜𝑢𝑖𝑑 ,⊥)

𝑓 𝑜𝑟 𝑖 := {1, ..., 𝑙 } : (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ← IKGen(𝑝𝑝)

𝑣𝑝𝑘 := 𝑝𝑘 ; 𝐿ℎ𝑜𝑛𝑒𝑠𝑡 := {𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖 }𝑙1
𝑃𝐾∗, 𝑓 ∗ ← AOCU,OHU,O𝜋 (𝑝𝑝, 𝑖𝑝𝑘1, ..., 𝑖𝑝𝑘𝑙)

(𝑠𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏
∗) ← AOCU,OHU,O𝜋 ,O𝜋,𝜏 ,O𝜏 (𝑣𝑝𝑘)

return (𝜎 := 𝜏∗,𝑚 := 𝑛𝑦𝑚∗ ∥𝑠𝑖𝑑∗)

COMMS
MMS-EUF-CMA (𝑝𝑝, 𝑝𝑘) :

Initialize𝑄HU,𝑄CU,𝑄𝜏 to empty arrays and simulate the oracles as follows:

Define OCU (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖)

abort if 𝑢𝑖𝑑 ∈ 𝑄CU ∪𝑄HU ∨ (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ∉ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡
if 𝑖𝑝𝑘𝑖 ≠ 𝑝𝑘 : 𝑐𝑒𝑟𝑡 ← CertIssue(𝑖𝑠𝑘𝑖 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)
else 𝜎 ← OMMS (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) ; 𝑐𝑒𝑟𝑡 := 𝜎

𝑄CU := 𝑄CU ∪ (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖) ; return 𝑐𝑒𝑟𝑡

Define OHU (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖)

abort if 𝑢𝑖𝑑 ∈ 𝑄CU ∪𝑄HU ∨ (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ∉ 𝐿ℎ𝑜𝑛𝑒𝑠𝑡
if 𝑖𝑝𝑘𝑖 ≠ 𝑝𝑘 : 𝑐𝑒𝑟𝑡 ← CertIssue(𝑖𝑠𝑘𝑖 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)
else 𝜎 ← OMMS (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟) ; 𝑐𝑒𝑟𝑡 := 𝜎

𝑄HU := 𝑄HU ∪ (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘𝑖 , 𝑐𝑒𝑟𝑡)

Define O𝜏 (𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)

𝜏 ← ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)
𝑄𝜏 := 𝑄𝜏 ∪ (𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝑖𝑝𝑘𝑖 , 𝑎𝑡𝑡𝑟, 𝜋VS) ; return 𝜏

𝑘 ←𝑅 Z𝑙 ; 𝑖𝑝𝑘𝑘 := 𝑝𝑘 ; (𝑣𝑝𝑘, 𝑣𝑠𝑘) ← VKGen(𝑝𝑝)

𝑓 𝑜𝑟 𝑖 := {1, ..., 𝑙 } \ 𝑘 : (𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖) ← IKGen(𝑝𝑝) ; 𝐿ℎ𝑜𝑛𝑒𝑠𝑡 := {𝑖𝑝𝑘𝑖 , 𝑖𝑠𝑘𝑖 }𝑙1
𝑃𝐾∗, 𝑓 ∗ ← AOCU,OHU,O𝜋 (𝑝𝑝, 𝑖𝑝𝑘1 ..., 𝑖𝑝𝑘𝑙)

(𝑠𝑖𝑑∗,𝑢𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝜋∗RP, 𝜏
∗) ← AOCU,OHU,O𝜋 ,O𝜋,𝜏 ,O𝜏 (𝑣𝑝𝑘)

if (𝑠𝑖𝑑∗, 𝑛𝑦𝑚∗, 𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝜋VS) ∈ 𝑄𝜏
𝑐𝑒𝑟𝑡 := E(𝜋VS)
return (𝜎 := 𝑐𝑒𝑟𝑡, (𝑚1 := 𝑢𝑖𝑑∗,𝑚2 := 𝑎𝑡𝑡𝑟))

Figure 10: PP-COV’s adversaries against EUF-CMA and MMS-EUF-CMA of S and MMS. The adversaries B, C use the adversary A
who wins in 𝐸𝑥𝑝UFA,COV with direct and indirect forgeries to win in EUF-CMA andMMS-EUF-CMA respectively.

Define O𝜋,𝜏 (𝑢𝑖𝑑, 𝑠𝑖𝑑)

if (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘, 𝑐𝑒𝑟𝑡) ∈ 𝑄HU

if 𝑖𝑝𝑘 = 𝑝𝑘 : (𝑛𝑦𝑚, 𝜋RP) ← Commit(𝑢𝑖𝑑)
𝜋VS ← S(𝑖𝑝𝑘, 𝑣𝑝𝑘, 𝑠𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑛𝑦𝑚)

else (𝜋VS, 𝜋RP, 𝑛𝑦𝑚) ← CertPresent(𝑖𝑝𝑘, 𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡)
𝜏 ← ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)
return (𝑛𝑦𝑚, 𝜋RP, 𝜏)

Define O𝜋 (𝑣𝑝𝑘 𝑗 , 𝑢𝑖𝑑, 𝑠𝑖𝑑)

if 𝑣𝑝𝑘 𝑗 ≠ 𝑣𝑝𝑘 ∧ (𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘, 𝑐𝑒𝑟𝑡) ∈ 𝑄HU :

if 𝑖𝑝𝑘 = 𝑝𝑘 : (𝑛𝑦𝑚, 𝜋RP) ← Commit(𝑢𝑖𝑑)
𝜋VS ← S(𝑖𝑝𝑘, 𝑣𝑝𝑘 𝑗 , 𝑠𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑛𝑦𝑚)

else (𝜋VS, 𝜋RP, 𝑛𝑦𝑚) ← CertPresent(𝑖𝑝𝑘, 𝑣𝑝𝑘 𝑗 ,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡)
return (𝜋VS, 𝜋RP, 𝑛𝑦𝑚)

With that, we still perfectly simulate the oracles given to the

adversary in 𝐸𝑥𝑝UFA,COV and at the same time extract a fresh forgery

againstMMS-EUF-CMA. □

Lemma C.4. (Case 4) IfMMS is unforgeable inMMS-EUF-CMA,
S is unforgeable in EUF-CMA, NIZK is simulation-sound extractable

and zero knowledge, andCom is binding, then PP-COV is unforgeable
when (𝑢𝑖𝑑∗, 𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘) ∈ 𝑄CU ∪𝑄HU ∧ 𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 0.

Proof. Any query to O𝜏 or O𝜋,𝜏 that produces 𝜏∗ must be w.r.t.

to some 𝑎𝑡𝑡𝑟 ′ and 𝑖𝑝𝑘 ′ such that 𝑓 (𝑎𝑡𝑡𝑟 ′, 𝑖𝑝𝑘 ′ ∈ 𝑃𝐾) = 1. Further,

satisfying the second condition of Case 4 requires that either 𝑎𝑡𝑡𝑟 ′ ≠
𝑎𝑡𝑡𝑟 or 𝑖𝑝𝑘 ′ ≠ 𝑖𝑝𝑘 . This is impossible in O𝜋,𝜏 which internally

always uses the 𝑖𝑝𝑘 and 𝑎𝑡𝑡𝑟 certified with 𝑢𝑖𝑑∗, thus the query
took place towards O𝜏 . Like in Case 2, this results in a forgery for

MMS under 𝑖𝑝𝑘 ′.
In contrast to Case 3, as this forgery is w.r.t. 𝑖𝑝𝑘 ′, 𝑎𝑡𝑡𝑟 ′ that were

never used together in certifying 𝑢𝑖𝑑∗, we do not require oracle

adjustments for the reduction to work when 𝑢𝑖𝑑∗ is honest.
□

D PP-COV INSTANTIATION
We include the full instantiation details of all algorithms under

the PP-COV construction in Figure 11. PS Signatures [36] are used

for MMS, Pedersen Commitments [35] for Com, ECDSA [31] for

the signature scheme S, and generalized Schnorr-signature proofs

of knowledge [4] for NIZK, which are made non-interactive via

Fiat-Shamir heuristic [17].

339

Proceedings on Privacy Enhancing Technologies 2023(4) Tarek Galal and Anja Lehmann

Setup(1_) → 𝑝𝑝

- (G, ˜G,G𝑇 , 𝑒, 𝑝) ← PGen(1_) generates three cyclic groups with

prime order 𝑝 and type-3 pairing with 𝑒 : G × ˜G→ G𝑇 , for use in
PS Signatures. In practice, already established and publicly known

pairing groups are used.

- (𝑔, ˆℎ) ←𝑅
˜G2

are random generators of the pairing’s source group
˜G

for use in Pedersen commitments.

- (¯G, 𝑞, 𝑔) ← GGen(1_) generates a secure elliptic curve group with

prime order 𝑞 and generator 𝑔, for use in ECDSA. In practice, already

established and publicly known groups and generators are used.

return 𝑝𝑝 := (G, ˜G,G𝑇 , 𝑒, 𝑝, 𝑔, ˆℎ, ¯G, 𝑞, 𝑔)

IKGen(𝑝𝑝)

𝑔←𝑅
˜G; (𝑥, 𝑦1, 𝑦2) ←𝑅 Z

3

𝑝

(�̃� ,𝑌1, 𝑌2) := 𝑔𝑥 , 𝑔𝑦1 , 𝑔𝑦2

return (𝑖𝑝𝑘 := (𝑔, �̃� ,𝑌1, 𝑌2),
𝑖𝑠𝑘 := (𝑥, 𝑦1, 𝑦2))

VKGen(𝑝𝑝)

(𝑝𝑘, 𝑠𝑘) ← ECDSA.KGen(¯G, 𝑞, 𝑔)
return (𝑣𝑝𝑘 := 𝑝𝑘, 𝑣𝑠𝑘 := 𝑠𝑘)

CertIssue(𝑖𝑠𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟)

(𝑥, 𝑦1, 𝑦2) := 𝑖𝑠𝑘

ℎ ←𝑅 G\{1G }

𝑠 := ℎ𝑥+𝑢𝑖𝑑 ·𝑦1+𝑎𝑡𝑡𝑟 ·𝑦2

return 𝑐𝑒𝑟𝑡 := (ℎ, 𝑠)

CertVerify(𝑖𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑒𝑟𝑡)

(ℎ, 𝑠) := 𝑐𝑒𝑟𝑡 ; (𝑔, �̃� ,𝑌1, 𝑌2) := 𝑖𝑝𝑘

return 1 if ℎ ≠ 1G ∧

𝑒 (ℎ, �̃� · 𝑌1

𝑢𝑖𝑑 · 𝑌2

𝑎𝑡𝑡𝑟) = 𝑒 (𝑠, 𝑔)

CertPresent(𝑖𝑝𝑘, 𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑐𝑒𝑟𝑡)

(𝑔, �̃� ,𝑌1, 𝑌2) := 𝑖𝑝𝑘 ; (ℎ, 𝑠) := 𝑐𝑒𝑟𝑡 ; (𝑜𝑢𝑖𝑑 , 𝑟 , 𝑡) ←𝑅 Z
3

𝑝

𝑐𝑜𝑚𝑢𝑖𝑑 := 𝑔𝑢𝑖𝑑 ˆℎ𝑜𝑢𝑖𝑑 ; (ℎ′, 𝑠′) := (ℎ𝑡 , (𝑠𝑡 · ℎ𝑡𝑟))
𝜋 ← NIZK{(𝑢𝑖𝑑, 𝑜𝑢𝑖𝑑 , 𝑟) :

𝑒 (ℎ′, 𝑌1)𝑢𝑖𝑑 · 𝑒 (ℎ′, 𝑔)𝑟 =
𝑒 (𝑠′, 𝑔)

𝑒 (ℎ′, �̃� · 𝑌2

𝑎𝑡𝑡𝑟)
∧

𝑔𝑢𝑖𝑑 · ˆℎ𝑜𝑢𝑖𝑑 = 𝑐𝑜𝑚𝑢𝑖𝑑 }(𝑖𝑝𝑘, 𝑣𝑝𝑘, 𝑠𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑜𝑚𝑢𝑖𝑑)
return (𝜋VS := (ℎ′, 𝑠′, 𝜋), 𝑛𝑦𝑚 := 𝑐𝑜𝑚𝑢𝑖𝑑 , 𝜋RP := 𝑜𝑢𝑖𝑑)

ValTokGen𝑓 ,𝑃𝐾 (𝑣𝑠𝑘, 𝑖𝑝𝑘, 𝑎𝑡𝑡𝑟, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋VS)

(𝑔, �̃� ,𝑌1, 𝑌2) := 𝑖𝑝𝑘 ; 𝑐𝑜𝑚𝑢𝑖𝑑 := 𝑛𝑦𝑚; (ℎ′, 𝑠′, 𝜋) := 𝜋VS

if ℎ′ ≠ 1G ∧ 𝜋 verifies w.r.t. (𝑖𝑝𝑘, 𝑣𝑝𝑘, 𝑠𝑖𝑑, 𝑎𝑡𝑡𝑟, 𝑐𝑜𝑚𝑢𝑖𝑑) ∧
𝑓 (𝑎𝑡𝑡𝑟, 𝑖𝑝𝑘 ∈ 𝑃𝐾) = 1 :

𝜎 ← ECDSA.Sign(𝑠𝑘 := 𝑣𝑠𝑘,𝑚 := 𝑐𝑜𝑚𝑢𝑖𝑑 ∥𝑠𝑖𝑑)
return 𝜏 := 𝜎

else return ⊥

ValTokVerify(𝑣𝑝𝑘,𝑢𝑖𝑑, 𝑠𝑖𝑑, 𝑛𝑦𝑚, 𝜋RP, 𝜏)

𝑜𝑢𝑖𝑑 := 𝜋RP; 𝑐𝑜𝑚𝑢𝑖𝑑 := 𝑛𝑦𝑚

return 1 if ECDSA.Verify(𝑝𝑘 := 𝑣𝑝𝑘,𝑚 := 𝑐𝑜𝑚𝑢𝑖𝑑 ∥𝑠𝑖𝑑, 𝜎 := 𝜏) = 1 ∧

𝑐𝑜𝑚𝑢𝑖𝑑 = 𝑔𝑢𝑖𝑑 ˆℎ𝑜𝑢𝑖𝑑 else 0

Figure 11: Secure Instantiation of PP-COV

340

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 System and Security Model
	2.1 Syntax
	2.2 Security Model

	3 Security Analysis of EU-COV
	3.1 Standard Building Blocks
	3.2 EU-COV Construction
	3.3 Security Analysis
	3.4 Difference to the Original Specification

	4 Our Construction: PP-COV
	4.1 Additional Building Blocks
	4.2 Detailed Protocol
	4.3 Security Analysis

	5 Discussion & Comparison
	5.1 Comparison between PP-COV & EU-COV
	5.2 Privacy Considerations

	Acknowledgments
	References
	A Definitions
	A.1 MMS-EUF-CMA
	A.2 COV Correctness

	B EU-COV Optimizations
	C Full Proofs
	C.1 EU-COV Weak Unforgeability
	C.2 PP-COV Unforgeability

	D PP-COV Instantiation

