
A Utility-Preserving Obfuscation Approach for YouTube
Recommendations

Jiang Zhang1 Hadi Askari2 Konstantinos Psounis1 Zubair Shafiq2
1University of Southern California 2University of California, Davis

{jiangzha,kpsounis}@usc.edu,{haskari,zubair}@ucdavis.edu

ABSTRACT

Online content platforms optimize engagement by providing per-
sonalized recommendations to their users. These recommendation
systems track and profile users to predict relevant content a user
is likely interested in. While the personalized recommendations
provide utility to users, the tracking and profiling that enables
them poses a privacy issue. There is increasing interest in build-
ing privacy-enhancing obfuscation approaches that do not rely
on cooperation from online content platforms. However, existing
obfuscation approaches primarily focus on enhancing privacy but
at the same time they degrade the utility because obfuscation in-
troduces unrelated recommendations. We design and implement
De-Harpo, an obfuscation approach for YouTube’s recommenda-
tion system that not only obfuscates a user’s video watch history to
protect privacy but then also denoises the video recommendations
by YouTube to preserve their utility. In contrast to prior obfuscation
approaches, De-Harpo adds a denoiser that makes use of a “secret”
input (i.e., a user’s actual watch history) as well as information
that is also available to the adversarial recommendation system
(i.e., obfuscated watch history and corresponding “noisy" recom-
mendations). Our large-scale evaluation of De-Harpo shows that
it outperforms the state-of-the-art by a factor of 2× in terms of
preserving utility for the same level of privacy, while maintaining
stealthiness and robustness to de-obfuscation.

KEYWORDS

privacy, utility, obfuscator, denoiser

1 INTRODUCTION

Online content platforms, such as YouTube, heavily rely on rec-
ommendation systems to optimize user engagement on their plat-
forms. For instance, 70% of the content watched on YouTube is
recommended by its algorithm [54]. These recommendation sys-
tems provide personalized content recommendations by tracking
and profiling user activity. For instance, YouTube tracks and profiles
activities of its users on YouTube as well as off of YouTube to this
end [28]. This tracking and profiling enables these platforms to
predict relevant content that a user is likely to be interested in. On
one hand, this tracking and profiling enables desirable utility to
users by providing relevant content recommendations. On the other
hand, this tracking and profiling poses a privacy issue because the
platform might infer potentially sensitive user interests.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(4), 522–539
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0123

Some platforms, including YouTube, allow users to remove a
subset of the tracked activity (e.g., remove a specific video from
YouTube watch history) or even disable the use of certain profiled
user interests (e.g., gambling) to influence the recommendations.
However, these controls do not necessarily stop the platform from
tracking and profiling user activities in the first place. Thus, they
may not providemuch, if any, privacy benefit to users.Moreover, the
exercising of these controls would hurt the quality of personalized
recommendations. For example, if users employ these controls
to curtail tracking or profiling then they will likely not receive
personalized recommendations they are actually interested in.

The research community is increasingly interested in developing
privacy-enhancing obfuscation approaches that do not rely on co-
operation from online content platforms [13, 30, 48, 74]. At a high
level, these privacy-enhancing approaches work by adding fake
activity to real user activity to lessen the ability of the recommen-
dation system to infer sensitive information. However, the addition
of fake activity for the sake of obfuscation also ends up impacting
the utility users might derive from the recommendation system in
terms of relevance of personalized recommendations. Prior obfusca-
tion approaches attempt to navigate the trade-off between privacy
and utility, for example [74], by carefully adding fake activity so as
to obfuscate “private” interests but allow “non-private” interests.

In this work, we are interested in designing a privacy-enhancing
and utility-preserving obfuscation approach for recommendation
systems. In contrast to prior approaches that are typically limited
to only obfuscating inputs to the recommendation system, our
key idea is to design an obfuscation approach that can obfuscate
inputs to preserve user privacy but at the same time remove “noise”
from outputs to preserve the utility of recommendations. Since an
adversarial recommendation system might also attempt to remove
“noise”, it is crucial that the denoiser can only be used by the user
and not by the recommendation system. To this end, our insight is
that the denoiser uses a “secret” input (specifically, a user’s actual
browsing history), which is only available to the user and not the
recommendation system. The recommendation system instead only
has access to the obfuscated browsing history of the user. Therefore,
by leveraging the knowledge of a user’s actual browsing history,
the denoiser allows the user to preserve the recommendations
related to the users’ actual interests while discarding the unrelated
recommendations caused by obfuscation.

We design and implement De-Harpo, an obfuscation approach
for YouTube’s recommendation system that not only obfuscates a
user’s video watch history to protect privacy but then also denoises
the video recommendations by YouTube to preserve their utility.
De-Harpo uses an obfuscator to inject obfuscation videos into a
user’s video watch history and a denoiser to remove recommended
videos that are unrelated to the user’s actual interests.

522

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0123

A Utility-Preserving Obfuscation Approach for YouTube Recommendations Proceedings on Privacy Enhancing Technologies 2023(4)

The obfuscator is a RL model trained to insert YouTube videos
in a users’ watch history that will maximize the distortion in their
interests being inferred by YouTube. We address three key issues in
designing De-Harpo’s obfuscator , which is a non-trivial adaptation
of Harpo [74] to YouTube. First, we build a surrogate of YouTube’s
recommendation system to efficiently train the RL model in a vir-
tual environment. Second, we design the surrogate model to predict
the distribution of hundreds of different classes of YouTube recom-
mendation videos (we use the 154 affinity segments used by Google
[26] as our video classes) rather than the sheer number (order of
hundreds of millions) of individual YouTube videos. Lastly, the ob-
fuscator selects obfuscation videos based on embedding similarity,
which is scalable to millions of obfuscation videos.

The denoiser is a ML model that is trained to reproduce the
original recommendations that would have been received in the
absence of the obfuscator . We address two key issues in designing
De-Harpo’s denoiser . First, denoiser makes use of a “secret” input
(i.e., a user’s actual watch history) as well as information that is also
available to the adversarial recommendation system (i.e., obfuscated
watch history and corresponding “noisy" recommendations). As
we show later, this design ensures that only De-Harpo is able to re-
move “noise’ while the adversary is unable to de-obfusacte without
prohibitive collateral damage. Second, we define new divergence-
based metrics to measure privacy and utility in training obfuscator
and denoiser .

We deploy and evaluate De-Harpo’s effectiveness on YouTube
using 10,000 sock puppet based personas, 10,000 Reddit user per-
sonas, and 936 real-world YouTube users [7]. Our evaluation shows
thatDe-Harpo’s obfuscator is able to degrade the quality of YouTube’s
recommendations by up to 87.23% (privacy) and its denoiser is able
to recover up to 90.40% of the actual recommendations (utility). We
show that De-Harpo outperforms the state-of-the-art by a factor
of 2× in terms of improving utility for the same level of privacy.
Crucially, we also demonstrate that De-Harpo is stealthy and ro-
bust to de-obfuscation by an adversarial system. Our evaluation
shows that the adversary incurs a prohibitively large number of
false positives (order of tens/hundreds of millions) in attempting to
undermine stealthiness and achieving de-obfuscating.

2 PRELIMINARIES

2.1 Problem Statement

Recommendation systems track users’ browsing activity to pro-
vide personalized recommendations. YouTube, for example, tracks
users’ browsing activity on YouTube (e.g., videos watched, chan-
nel subscriptions) as well as off of YouTube (e.g., activity on other
Google services such as Google Search and Google Analytics, or
web pages opened in Chrome browser) to personalize homepage
and up-next video recommendations [28]. Users can selectively
remove certain videos from their YouTube watch history or clear
their browsing activity altogether to influence personalized video
recommendations. However, doing so does not necessarily mean
that their browsing activity is not tracked in the first place, and
thus there is no material privacy benefit to users. It will also hurt
the quality of personalized recommendations because users will
likely not receive recommendations for videos they are interested
in. In summary, users are unable to exert meaningful control over

User
1. User Persona

2. Video Recommendations

(a) Without obfuscation-denoising system.

User

2. Obfuscated
User Persona

Obfuscator

1. User Persona

Denoiser

4. Denoised Video
Recommendations

3. Noisy Video
Recommendations

1. U
ser

Perso
na2. Obfuscated

User Persona

Obfuscation-Denoising System

(b) With obfuscation-denoising system.

Figure 1: Problem Overview.

recommendation systems to protect their privacy while preserving
the utility of personalized recommendations.

Prior work has proposed obfuscation approaches to protect user
privacy in personalized recommendation systems without relying
on cooperation from online content platforms. Existing approaches
obfuscate a user’s browsing history by injecting fake activity (e.g.,
webpage visits) to manipulate a user’s interest segments and tar-
geted ads in online behavioral advertising [68, 74]. These obfusca-
tion approaches are designed for recommendation systems (e.g.,
online behavioral advertising) where users are not necessarily in-
terested in consuming the output of the recommendation system,
rather users are mainly interested in subverting it. While these
approaches aim to protect user privacy (e.g., inferred interest seg-
ments), they do not consider the utility of recommendations (e.g.,
whether targeted ads are of interest to the user). In contrast, in
recommendation systems such as YouTube, these obfuscation tools
would render the utility of YouTube’s video recommendations use-
less to the user.

Can we design privacy-enhancing obfuscation approaches that can
enhance privacy of users and at the same time preserve utility for users
in recommendation systems? With this goal in mind, we propose to
build a denoiser to remove the “noisy" videos injected as part of
obfuscation. It is crucial that the denoiser can only be used by the
user and not by the recommendation system. To this end, our insight
is that the denoiser uses a “secret” (specifically, the user’s actual
browsing history), which is only available to the user and not the
recommendation system. Therefore, by leveraging the knowledge
of a user’s actual browsing history, the denoiser may preserve
the recommendations related to the users’ actual interests while
discarding the unrelated recommendations caused by obfuscation.
Figure 1 illustrates this idea that we next operationalize in De-
Harpo.

2.2 Threat Model

User. The user’s goal is to routinely browse YouTube videos and get
high-quality recommendation videos fitting their interests, while
misleading the YouTube recommendation system such that it can
not accurately infer the user’s interests. To achieve this goal, users
install a local obfuscation-denoising system, which consists of an
obfuscator and a denoiser . The obfuscator will obfuscate their video

523

Proceedings on Privacy Enhancing Technologies 2023(4) Zhang et al.

watching history by injecting fake video watches into the user’s real
video watches, and the denoiser will automatically remove “noisy"
recommended videos from YouTube (i.e. caused by obfuscation)
that do not fit user’s interests. The obfuscation-denoising system is
designed to satisfy the following properties:

• it is privacy-preserving in that the user’s interests are
protected from being inferred by YouTube.

• it is utility-preserving in that the user can receive high-
quality videos fitting their interests.

• t has low overhead in that the amount of obfuscation videos
inject will not affect the user experience.

• it is stealthy in that it is impractical for YouTube to detect
the usage of obfuscation-denoising system.

• it is robust to deobfuscation in that it is impossible for
YouTube to distinguish fake video watches from real video
watches.

• it can be personalized in that it can treat video classes
differently based on user preferences.

Recommendation system. The goal of the recommendation sys-
tem is to track user activity for personalized recommendations to
maximize user engagement (e.g., click rate and watch time). We
assume that the recommendation system has full access to the
user’s video watching history (including both fake and real video
watches though it does not know which is which) and it recom-
mends videos based on the user’s video watching history, which
is true for YouTube [22] (unless the user deletes their watching
history). We further assume that the recommendation system does
not have access to the user’s off-platform browsing history (e.g., the
user is not simultaneously signed-in to YouTube and other services
by YouTube’s parent company Google, the user employs Google
account controls to prevent off-YouTube information linking (if
the user is signed-in to YouTube and other services by YouTube’s
parent company Google) [27], or the user uses a browser such as
Safari [66] or Firefox [46] – or privacy-enhancing browser exten-
sion [64] – that prevents cross-site tracking). We also assume that
the recommendation system has substantial computation resources
to train a machine learning model for its recommendations. This
assumption also holds for YouTube [11]. Moreover, we assume that
the recommendation system has access to De-Harpo once it is pub-
lic, such that it can use it to analyze the obfuscation approach and
possibly train adversarial detectors to detect and filter the usage of
De-Harpo. More specifically, we assume that the recommendation
system has a two-step detection workflow. In the first step, the
adversary will train a classifier to detect whether or not a user uses
De-Harpo. Then, in the second step, if De-Harpo usage is detected,
the adversary further attempts to achieve deobfuscation by filtering
out obfuscation videos and keeping the remaining videos.

3 PROPOSED APPROACH

In this section, we present the proposed utility-preserving obfusca-
tion approach De-Harpo.

3.1 Overview

As already discussed, at a high-level De-Harpo consists of an obfus-
cator designed for enhancing user privacy and a denoiser designed
for preserving user utility, as demonstrated in Figures 1 and 2 (in
more detail). The De-Harpo obfuscator is a non-trivial adaptation

of Harpo’s obfuscator [74] in the context of YouTube’s recommen-
dation system. The obfuscator injects fake video playing records
into a user’s video playing history at random times. We refer to
videos played by the user as user videos and to videos played by the
obfuscator as obfuscation videos. Note that without any obfuscation
videos in the user’s video playing history (which is denoted by 𝑉𝑢
in this case), YouTube will recommend a set of videos desired by
the user. We refer to this set of videos as “clean” YouTube videos.
However, with obfuscation videos in the user’s video playing history
(which is denoted by 𝑉𝑜 in this case), YouTube will recommend
a set of videos which include videos undesired by the user. We
refer to this set of videos as “noisy” YouTube videos. The denoiser
is designed to predict the class distribution of “clean” YouTube
videos from the class distribution of “noisy” YouTube videos, such
that De-Harpo can repopulate a new set of videos with the same
class distribution as the “clean” YouTube videos. We refer to the
repopulated videos as De-Harpo videos. Note that each video class
represents a video topic, and we use the 154 affinity segments used
by Google [26] as our video classes.

In more detail, see Figure 2,De-Harpo starts by generating video
embeddings of past played videos via an embedding model. It then
uses an obfuscator model to select obfuscation videos based on
the generated video embeddings. Note that we follow a similar
methodology with that in [74] to formulate the process of inserting
obfuscation videos as a Markov Decision Process (MDP), and use re-
inforcement learning (RL) to train the obfuscator model to maximize
the divergence between the class distribution of “noisy” YouTube
videos (denoted by𝐶𝑜) and the class distribution of “clean” YouTube
videos (denoted by𝐶𝑢). After receiving the “noisy” YouTube videos,
the denoiser outputs an estimate of the class distribution of “clean”
YouTube videos (denoted by 𝐶𝑢), by taking as inputs 𝑉𝑢 , 𝑉𝑜 , and
𝐶𝑜 . Finally, De-Harpo will use a repopulation model to generate
the set of De-Harpo videos with class distribution 𝐶𝑢 .

3.2 System Preliminaries

User persona.We define a user persona as a sequence of YouTube
videos. Formally, we denote the non-obfuscated user persona as
𝑉𝑢 = [𝑣𝑢1 , ..., 𝑣

𝑢
𝑛], where 𝑣𝑢𝑖 represents the 𝑖th video played by the

user, and 𝑛 is the total number of videos played by the user. We
denote the obfuscated user persona as 𝑉𝑜 = [𝑣 𝑗1, ..., 𝑣

𝑗

𝑛′], where
𝑗 ∈ {𝑢, 𝑜}, 𝑣𝑢

𝑖
and 𝑣𝑜

𝑖
represent that the 𝑖th video is played by the

user and obfuscator respectively, and𝑛′ is the total number of videos
played by the user and obfuscator combined.
Recommended video class distribution. We define the rec-
ommended video class distribution of a non-obfuscated user per-
sona 𝑉𝑢 (i.e. the class distribution of “clean” YouTube videos) as
𝐶𝑢 = [𝑐𝑢1 , ..., 𝑐

𝑢
𝐾
], where ∑𝑘=𝐾

𝑘=1 𝑐
𝑢
𝑘
= 1, 𝑐𝑢

𝑘
is the percentile of videos

from the 𝑘th class among recommended videos for 𝑉𝑢 , and 𝐾 is
the total number of classes. Similarly, we define the recommended
video class distribution of an obfuscated user persona 𝑉𝑜 (i.e. the
class distribution of “noisy” YouTube videos) as 𝐶𝑜 = [𝑐𝑜1 , ..., 𝑐

𝑜
𝐾
],

where
∑𝑘=𝐾
𝑘=1 𝑐

𝑜
𝑘

= 1 and 𝑐𝑜
𝑘
is the percentile of videos from the

𝑘th class among the recommended videos for 𝑉𝑜 . We use the rec-
ommended video class distribution as a representation of the user
interest profile built by YouTube instead of directly using the recom-
mended videos. This design choice is made to (i) mitigate the impact

524

A Utility-Preserving Obfuscation Approach for YouTube Recommendations Proceedings on Privacy Enhancing Technologies 2023(4)

… …
𝑣!" 𝑣#!

"

User

𝑉"

(c) “Clean” YouTube Videos

(a) User Videos

𝑉"

𝐶"

(a) Without obfuscation-denoising system.

… …

𝑠!

𝑣"# 𝑣!#

𝑣!$"%

2. Obfuscator Model

𝑉%

User
𝑉#

𝑣&%

3. Denoiser Model

… …

𝐶% %𝐶#

De-Harpo

(d) “Noisy”
YouTube
Videos

(e) De-Harpo Videos

1. Embedding Model

4. Repopulation Model

(a) User Videos

(b) Obfuscation
Videos

(b) With obfuscation-denoising system.

Figure 2: Overview of De-Harpo. Note that 𝑉𝑢 denotes the

non-obfuscated user persona,𝑉𝑜 denotes the obfuscated user

persona generated by the obfuscator,𝐶𝑢 is the recommended

video class distribution based on 𝑉𝑢 , 𝐶𝑜 is the recommended

video class distribution based on 𝑉𝑜 , 𝐶𝑢 is the denoiser’s esti-
mate of 𝐶𝑢 , and 𝑣𝑢

𝑖
and 𝑣𝑜

𝑖
represent user video and obfusca-

tion video respectively.

of non-determinism in YouTube’s recommendations and (ii) alle-
viate the difficulty of making video-level recommendations given
an incomplete set of available videos while still making reasonably
fine-grained recommendations (among 154 different classes).
Privacymetric.At a high level, we want to distort the user interest
profile built by YouTube for user personas to enhance user privacy.
Motivated by the use of the recommended video class distribution
as a representation of YouTube’s user interest profile, we first define
the following privacy metric:

𝑃 = 𝐸 [𝐷𝐾𝐿 (𝐶𝑜 | |𝐶𝑢)] = 𝐸 [
𝑘=𝐾∑︁
𝑘=1

𝑐𝑜
𝑘

log
𝑐𝑜
𝑘

𝑐𝑢
𝑘

], (1)

which measures the expected KL divergence between the two prob-
ability distributions (𝐶𝑜 and 𝐶𝑢)1.

It is worth noting that we use KL divergence since it is a well-
established measure of the discrepancy between two distributions,
and, together with the closely related mutual information measure
they have been used as on-average privacy metrics in myriad of
applications including recommendation systems [10, 12, 19, 51, 52,
73]. We do not use stricter privacy metrics which provide worst-
case privacy guarantees (e.g. differential privacy (DP) [18]), since in
the context of our application one would need to inject an enormous
number of obfuscation videos to satisfy such guarantees (see Section
3.3 and Appendix A for a detailed, formal discussion on DP in our
context).

1Note that if 𝑐𝑖
𝑘
= 0 (𝑖 ∈ {𝑢,𝑜 }), we assign a small value to it to avoid getting∞ in

KL divergence calculation.

During real-world experimentation on YouTube, we observe that
the recommended video class distribution of the same persona may
differ a bit due to an inherent randomness of the system. Since we
are interested to measure the divergence thanks to obfuscation only,
we define 𝐷𝑀𝑖𝑛 as the expected KL divergence between a random
sample of 𝐶𝑢 and its mean 𝐶𝑢 (i.e., 𝐷𝑀𝑖𝑛 = 𝐸 [𝐷𝐾𝐿 (𝐶𝑢 ,𝐶𝑢)]), and
subtract from 𝑃 the divergence caused by randomness, that is, we
work with 𝑃 − 𝐷𝑀𝑖𝑛 . Furthermore, since 𝑃 is unbounded, we nor-
malize the privacy metric as follows. Denote the user persona set
asV , which consists of all user personas. Let 𝑉𝑢 and 𝑉𝑢

′
be two

user personas uniformly and randomly sampled from V , and let
their associated recommended video class distributions be 𝐶𝑢 and
𝐶𝑢

′
respectively. Then, we define the normalized privacy metric

𝑃𝑁𝑜𝑟𝑚 by:

𝑃𝑁𝑜𝑟𝑚 =
𝑃 − 𝐷𝑀𝑖𝑛

𝐷𝑀𝑎𝑥 − 𝐷𝑀𝑖𝑛
, (2)

where 𝐷𝑀𝑎𝑥 = 𝐸 [𝐷𝐾𝐿 (𝐶𝑢 ,𝐶𝑢
′)] is the expectation of the KL di-

vergence between 𝐶𝑢 and 𝐶𝑢′ and thus corresponds to the average
“distance" between two video class distributions of two randomly
selected users. Hence, 𝑃𝑁𝑜𝑟𝑚 measures the fraction of the maxi-
mum possible divergence that obfuscation achieves, on average.
Note that for both 𝑃 and 𝑃𝑁𝑜𝑟𝑚 , the higher their value is, the more
effective the obfuscator is in enhancing user privacy (see Figure 3).
Utility metric. In our threat model, the user sends the obfuscated
persona to YouTube and then receives a “noisy” recommended video
list with class distribution𝐶𝑜 . However, the user desires the “clean”
recommended video list with class distribution 𝐶𝑢 . Our denoiser is
designed to predict𝐶𝑢 from𝐶𝑜 , such thatDe-Harpo can repopulate
the “clean” recommended video list from 𝐶𝑢 . With the above in
mind, we define our utility loss metric as follows:

𝑈𝐿𝑜𝑠𝑠 = 𝐸 [𝐷𝐾𝐿 (𝐶𝑢 | |𝐶𝑢)] = 𝐸 [
𝑘=𝐾∑︁
𝑘=1

𝑐𝑢
𝑘

log
𝑐𝑢
𝑘

𝑐𝑢
𝑘

], (3)

where 𝐶𝑢 is the output of the denoiser , representing its estimation
of 𝐶𝑢 . Smaller 𝑈𝐿𝑜𝑠𝑠 means smaller divergence between the non-
obfuscated recommended video class distribution 𝐶𝑢 and the de-
noiser’s estimate of such distribution 𝐶𝑢 and thus a better estimate.
The theoretical minimum that this value can take is 0, representing
two identical distributions i.e. the noise is perfectly removed. Note
that without applying the denoiser , the utility loss equals the value
of privacy 𝑃 (since 𝐶𝑢 = 𝐶𝑜). The denoiser can reduce the utility
loss caused by the obfuscator by 𝑃 − 𝑈𝐿𝑜𝑠𝑠 which represents the
denoiser utility gain. Similarly to above, because 𝑃 is unbounded
and YouTube’s randomness causes, on average, a divergence of
𝐷𝑀𝑖𝑛 , we define the normalized utility gain metric as follows:

𝑈𝑁𝑜𝑟𝑚𝐺𝑎𝑖𝑛 =
𝑃 −𝑈𝐿𝑜𝑠𝑠
𝑃 − 𝐷𝑀𝑖𝑛

, (4)
which represents the fraction of obfuscation noise reduced by the
denoiser , on average. Higher𝑈𝑁𝑜𝑟𝑚

𝐺𝑎𝑖𝑛
implies that the denoiser can

reduce the utility loss caused by the obfuscator more effectively and
a value of 100% indicates a complete removal of noise (see Figure
3).

3.3 Performance Goals and Guarantees

Performance goals. As discussed already, our goal is to obfus-
cate the actual user profile, that is, the inferred user’s interests

525

Proceedings on Privacy Enhancing Technologies 2023(4) Zhang et al.

𝐷!"# 𝑃

𝑈$%&&

𝐷!'(

𝑈)'"#*%+, (Denoiser)

100%
100%

!𝐶!

̅𝐶! 𝐶! 𝐶" 𝐶! 𝐶!#𝐶!

𝐶!

𝑃*%+, (Obfuscator)

𝐷!"

Figure 3: Privacy and utility metrics.

by YouTube from the user’s video watch history. (We do not con-
sider other sub-channels via which YouTube may infer user inter-
ests, see threat model details in Section 2.2.) In view of obfusca-
tion, YouTube’s goal is to reconstruct the actual user profile (what
YouTube would have inferred by the user’s video watch history
in the absence of obfuscation) as accurately as possible from the
obfuscated user profile (what YouTube infers by the user’s video
watch history in the presence of obfuscation). Since YouTube’s user
profiles are not public, we infer them from YouTube’s recommended
videos to the user, and, more specifically, from the the recommended
video class distribution (where we use the 154 affinity segments
used by Google as our video classes).

Motivated by the above, our privacy metric maximizes the dis-
tance (normalized KL divergence) between the recommended video
class distribution before and after obfuscation. If the distance be-
tween the recommended video class distribution before and after
obfuscation is almost the same with the distance between the rec-
ommended video class distribution before obfuscation and the rec-
ommended video class distribution of another random user, then
YouTube’s recommendations for the user under study are essen-
tially random implying that YouTube is not able to learn the user’s
actual interests from the obfuscated user’s video watch history.
Tellingly, in Section 6.3 we do show that with merely 70% of videos
in a user persona being obfuscation videos, the distance between the
recommended video class distribution before and after obfuscation
is already 93% of the distance between random distributions.
Performance guarantees. A discussion about performance guar-
antees is in order. First, can De-Harpo effectively de-noise the
noisy recommendations such that their utility is high, despite that
recommendations are as if they were random? Section 6.2 answers
affirmatively. Related to this, if De-Harpo can de-noise recommen-
dations, can’t YouTube de-noise them as well? Sections 6.5, 6.6 show
that it cannot in practice, and Section 3.5 offers a formal explanation
why it can’t. Note that even though YouTube unavoidably learns
the interests of a user corresponding to the user videos that the
user actually watches, it also learns interests corresponding to the
obfuscation videos, the relative importance of each interest is al-
tered, and YouTube has no practical way of telling which interest
is real and which is not. 2

Second, both our privacy and utility metrics are based on expec-
tations, see Eq. (1)-(4). Hence, De-Harpo guarantees performance
goals “on-average". But what about “worst-case" privacy guaran-
tees? In our context this would require that no matter how unique
the original video watch history of a specific user may be, YouTube
2If a user wishes YouTube to not learn about the user’s real interests at all, the user
should not use YouTube: Even though YouTube in theory offers a method to remove
a video from the watch history, (i) even if the video is deleted the corresponding
interest categories are not [3] and (ii) there is no "unlearning" at the ML level and
hence the recommendation algorithm will still recommend videos based on the total
watch history.

should not be able to learn any unique interests of this user regard-
less of how unsuccessful it may be across all users on average. There
is a large line of prior work on both “on-average" [10, 19, 51, 52, 73]
and “worst-case" [12, 17–19, 73] privacy guarantees. It is intuitive
that strict definitions of privacy like differential privacy (DP) [18],
which guarantee privacy in the worst-case, cannot be satisfied for
recommendations systems actively used by users. For a matter of
completeness, we provide a formal proof about why differential
privacy can not be achieved in Appendix A. A summary of the ar-
gument follows: Assume that there is one video 𝑉 in user persona
𝑃1 (i.e. video watch history) which is not in user persona 𝑃2, and
the obfuscator 𝑂 (the randomized function in the DP definition)
can not remove it from 𝑃1. Let 𝑃 be a user persona without video
𝑉 that we observe. Then, the probability of 𝑂 (𝑃1) being 𝑃 is zero
while the probability of 𝑂 (𝑃2) being 𝑃 is non-zero. Thus, per the
DP definition, the 𝜖 for this worst-case scenario will be infinite and
DP is violated.

3.4 System Model

Obfuscator. The obfuscation video selection process of obfuscator
is formulated as a Markov Decision Process (MDP). At the begin-
ning of each time step, a video will be played. If the played video is
an obfuscation video injected by the obfuscator , we refer to this time
step as an obfuscation step. Let 𝛼 ∈ [0, 1) be the obfuscation budget
which we use as a system parameter to control the percentile of
obfuscation videos. At each time step, with probability 𝛼 an obfus-
cation video will be injected by obfuscator into the user persona.
Let 𝑠𝑡 denote the state of the MDP at obfuscation step 𝑡 , defined
as all the played videos until now, and 𝑎𝑡 denote the action of the
MDP at obfuscation step 𝑡 , which represents the obfuscation video
sampled based on the MDP policy. The MDP policy is a probability
distribution which outputs the probability of selecting obfuscation
video 𝑖 given state 𝑠𝑡 , and we denote this probability by 𝜋 (𝑎𝑡 = 𝑖 |𝑠𝑡).
We associate a reward 𝑟𝑡 for the action 𝑎𝑡 at obfuscation step 𝑡 . We
set the reward 𝑟𝑡 to 𝑃𝑡 − 𝑃𝑡−1, where 𝑃𝑡 is the privacy metric value
at obfuscation step 𝑡 . The goal of solving this MDP is to find the
optimal policy, such that the accumulative rewards

∑𝑡=𝑇
𝑡=1 𝑟𝑡 can be

maximized. Note that 𝑇 denotes the total number of obfuscation
steps. (We consider a finite-horizon MDP) Appendix B.1 discusses
the MDP in more detail.
Denoiser. At a high level, we model the denoiser as a mapping
from the recommended video class distribution of the obfuscated
user persona𝐶𝑜 ∈ R𝐾 to the recommended video class distribution
of the non-obfuscated user persona𝐶𝑢 ∈ R𝐾 (𝐾 is the total number
of video categories).

Estimating directly 𝐶𝑢 from 𝐶𝑜 can be challenging. In the ex-
treme case, where the mutual information between 𝐶𝑢 and 𝐶𝑜 is
zero [41], it is impossible for the denoiser to estimate𝐶𝑢 from𝐶𝑜 . To
estimate 𝐶𝑢 , the denoiser may leverage side information indicating
how the obfuscation videos are injected into the user personas, as
in this case it may be able to undo the effect of obfuscation videos in
the recommendations list. In our application, such side information
is explicitly available to users (𝑉𝑢 portion of𝑉𝑜), since the obfusca-
tor is installed locally and users know exactly how the obfuscation
videos are injected into user personas. Therefore, our denoiser is
modeled to be a functional mapping from (𝑉𝑢 ,𝑉𝑜 ,𝐶𝑜) to 𝐶𝑢 .

526

A Utility-Preserving Obfuscation Approach for YouTube Recommendations Proceedings on Privacy Enhancing Technologies 2023(4)

3.5 The “Secret" of the Denoiser

We use the information theory concept of mutual information (MI)
to explain why the denoiser works. Recall that the recommendation
system cannot distinguish user from obfuscation videos thus does
not know the user’s video playing history 𝑉𝑢 . In our system, both
𝑉𝑢 and 𝑉𝑜 are modelled as random vectors, and 𝑉𝑜 is generated
from𝑉𝑢 by the obfuscator , which is a random function. Additionally,
both 𝐶𝑢 and 𝐶𝑜 are random vectors, which are generated from 𝑉𝑢

and 𝑉𝑜 respectively by the YouTube recommendation system. By
applying the chain rule of MI, we can derive the following equation:

𝐼 (𝐶𝑜 ,𝑉𝑜 ,𝑉𝑢 ;𝐶𝑢) = 𝐼 (𝐶𝑜 ,𝑉𝑜 ;𝐶𝑢) + 𝐼 (𝑉𝑢 ;𝐶𝑢 |𝐶𝑜 ,𝑉𝑜), (5)

where 𝐼 (𝐶𝑜 ,𝑉𝑜 ,𝑉𝑢 ;𝐶𝑢) is the MI between (𝐶𝑜 ,𝑉𝑜 ,𝑉𝑢) and 𝐶𝑢 ,
𝐼 (𝐶𝑜 ,𝑉𝑜 ;𝐶𝑢) is theMI between (𝐶𝑜 ,𝑉𝑜) and𝐶𝑢 , and 𝐼 (𝑉𝑢 ;𝐶𝑢 |𝐶𝑜 ,𝑉𝑜)
is the MI between 𝑉𝑢 and 𝐶𝑢 conditioning on (𝐶𝑜 ,𝑉𝑜).

First, we show that the non-obfuscated user persona 𝑉𝑢 can
be leveraged by the denoiser to better estimate 𝐶𝑢 . Since 𝐶𝑢 is
generated by YouTube recommendation system given 𝑉𝑢 , 𝑉𝑢 is
correlated with 𝐶𝑢 , thus 𝐼 (𝑉𝑢 ;𝐶𝑢 |𝐶𝑜 ,𝑉𝑜) > 0. Hence,

𝐼 (𝐶𝑜 ,𝑉𝑜 ,𝑉𝑢︸ ︷︷ ︸
with secret

;𝐶𝑢) > 𝐼 (𝐶𝑜 ,𝑉𝑜︸ ︷︷ ︸
without secret

;𝐶𝑢). (6)

Since the MI between (𝑉𝑢 ,𝑉𝑜 ,𝐶𝑜) and 𝐶𝑢 is larger than the MI
between (𝐶𝑜 ,𝑉𝑜) and𝐶𝑢 , (𝐶𝑜 ,𝑉𝑜 ,𝑉𝑢) can reveal more information
about 𝐶𝑢 than (𝐶𝑜 ,𝑉𝑜), leading to a more accurate estimate of 𝐶𝑢 .
As an aside, note that YouTube may attempt to de-obfuscate 𝑉𝑢
from 𝑉𝑜 . We evaluate the robustness of the obfuscator against de-
obfuscation in Section 6.6.

Second, we show that including 𝐶𝑜 and 𝑉𝑜 may help to further
enhance the effectiveness of the denoiser , compared with using
𝑉𝑢 only. Based on the chain rule of MI, we can rewrite Eq. (5) as
follows:

𝐼 (𝑉𝑢 ,𝑉𝑜 ,𝐶𝑜 ;𝐶𝑢)
= 𝐼 (𝑉𝑢 ;𝐶𝑢) + 𝐼 (𝐶𝑜 ;𝐶𝑢 |𝑉𝑢) + 𝐼 (𝑉𝑜 ;𝐶𝑢 |𝐶𝑜 ,𝑉𝑢) . (7)

Consider the term 𝐼 (𝐶𝑜 ;𝐶𝑢 |𝑉𝑢). 𝐶𝑜 depends on 𝑉𝑢 and the ob-
fuscation videos, and 𝐶𝑢 depends on 𝑉𝑢 . Crucially, they both also
depend on the (non deterministic) YouTube recommendation sys-
tem. Hence, even when 𝑉𝑢 is given, there is non-zero MI between
𝐶𝑜 and 𝐶𝑢 , that is, 𝐼 (𝐶𝑜 ;𝐶𝑢 |𝑉𝑢) > 0, leading to the following
inequality:

𝐼 (𝑉𝑢 ,𝑉𝑜 ,𝐶𝑜 ;𝐶𝑢) > 𝐼 (𝑉𝑢 ;𝐶𝑢), (8)

which means the MI between (𝑉𝑢 ,𝑉𝑜 ,𝐶𝑜) and𝐶𝑢 is larger than the
MI between 𝑉𝑢 and 𝐶𝑢 only. Intuitively, knowing the pair 𝑉𝑜 ,𝐶𝑜
reveals information about how the YouTube recommendation sys-
tem selects videos to recommend given a user video watching
history. Therefore, the denoiser taking 𝐶𝑜 and 𝑉𝑜 as additional
inputs can learn more information about 𝐶𝑢 , as compared to the
denoiser taking only 𝑉𝑢 as input. Our evaluation results in Section
6.2 empirically support the above analysis.

4 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe the detailed design of De-Harpo and
how we implement De-Harpo as a browser extension. De-Harpo
consists of five modules: (1) a video embedding model that maps

Conv

LSTM

… …

Conv

LSTM

𝐴!

𝑠! 𝑠!"#

Video
embeddings

𝑣#$ 𝑣%!
$ 𝑣%!"#

$

𝐸! 𝐸!"#

𝜙!# ℎ! ℎ!"#

…
∗ ∗

𝐸

𝑒! 𝑒!"#

…

𝐴!"#

𝑣%!"#
&

FC FC

𝜙!"##

𝜙!' 𝜙!"#'

(a) obfuscator

…

𝑣!"

𝑣#"

𝑉" 𝑉$

𝑐!$

𝑐%$

…

𝐶$

…𝑣!"

𝑣#&"

…

LSTM LSTM

…

�̂�!" �̂�%"… &𝐶"

+ +

FC

𝑓! 𝑓' 𝑓(

(b) denoiser
Figure 4: Details of system design.

videos into embeddings; (2) a obfuscator model that selects obfus-
cation videos based on the video embeddings of played videos; (3)
a denoiser model that estimates the class distribution of “clean"
YouTube videos from the class distribution of “noisy" YouTube
videos; (4) a repopulation model that outputs De-Harpo videos
with the estimated class distribution of “clean" YouTube videos;
(5) a surrogate model used to train the obfuscator model offline
efficiently (see Figure 2b for the workflow of modules (1)-(4)).

4.1 Video Embedding

To make our system scalable to millions of YouTube videos without
being restricted to a fixed set, we represent each video by an em-
bedding vector. A YouTube video typically consists of metadata (e.g.
title, description, view count, rating, thumbnail, etc), a sequence
of image frames (i.e. the video), and the transcript for the video.
Since a video’s transcript is a good representation of its content
and it is more computationally and spatially efficient to process the
transcript compared to processing the original video stream, we
use video metadata and transcript to generate the video embedding,
where the video embedding for video 𝑣𝑖 is denoted by 𝑒𝑖 ∈ R404

(see Figure 9a in Appendix B.2 for details) 3.

4.2 Obfuscator Model

As discussed before, we model the process of injecting obfuscation
videos as an MDP. Due to the prohibitively large state space of this
MDP, we use RL, parameterized by a deep neural network, to learn
the optimal policy for obfuscation video selection.

The obfuscator takes as input the state at each obfuscation step,
and outputs a video embedding. By measuring the cosine similarity
between the output video embedding and each obfuscation video
embedding, the obfuscator derives the probability distribution of
the obfuscation video selection, where an obfuscation video with
more similar embedding as the output video embedding is assigned
a higher probability. Specifically, as shown in Figure 4a, the obfus-
cator consists of a convolutional layer (Conv), a LSTM layer, and a
3Note that the YouTube recommendation system will use the image frames and some
other private features to generate the video embedding (see [11]). We acknowledge
that by including these features, our video embeddings may be closer to the actual
embeddings used by YouTube. However, since our video embeddings can already
yield a surrogate model (see Section 4.5 with reasonable performance and it is more
computationally efficient, we choose the current design of our video embeddings.

527

Proceedings on Privacy Enhancing Technologies 2023(4) Zhang et al.

fully-connected layer (FC). At step 𝑡 , the convolutional layer takes
the embeddings of the past 𝑛𝑡 videos as input (𝐸𝑡 ∈ R𝑛𝑡×404) and
outputs a real vector with𝑚1 elements (𝜙1

𝑡 ∈ R𝑚1). Next, the LSTM
layer takes 𝜙1

𝑡 and the hidden vector at obfuscation step 𝑡 − 1 with
𝑚3 elements ℎ𝑡−1 ∈ R𝑚3 as input, and outputs a real vector with
𝑚2 elements (𝜙2

𝑡 ∈ R𝑚2) and the hidden vector ℎ𝑡 ∈ R𝑚3 for obfus-
cation step 𝑡 (𝑚1 =𝑚2 =𝑚3 = 128 in our experiments). Finally, a
linear layer converts 𝜙2

𝑡 into a real vector with the same dimension
as the video embedding. We denote this vector by 𝑒𝑡 ∈ R404 as
it represents the target embedding for the obfuscation video. Let
𝐸 = [𝑒1, ..., 𝑒𝑀] denote the embedding vectors of the𝑀 obfuscation
videos at our disposal. Then, the probability of selecting the 𝑖-th
obfuscation video, 𝑖 = 1 . . . 𝑀 , is calculated proportionally to the
similarity between its embedding and the target embedding after
normalizing using a softmax function:

𝜋 (𝑎𝑡 = 𝑖 |𝑠𝑡) =
𝑒 ⟨𝑒𝑡 ,𝑒𝑖 ⟩∑𝑖=𝑀
𝑖=1 𝑒 ⟨𝑒𝑡 ,𝑒𝑖 ⟩

, (9)

where ⟨𝑥,𝑦⟩ denotes the inner product between 𝑥 and 𝑦. Note that
we use the on-policy RL algorithm A2C (Advantage Actor and
Critic)[50] to train the obfuscator (see Appendix D).

Recall that the De-Harpo obfuscator is a non-trivial adaptation
of Harpo [74] to YouTube. An important technical difference is that
by calculating a target embedding and then selecting an obfuscation
item (video in case of YouTube) based on the similarity between its
embedding and the target embedding, theDe-Harpo obfuscator can
handle an unlimited and varying number of possible obfuscation
videos without requiring re-training when the set of obfuscation
videos changes.

4.3 Denoiser Model

As mentioned in Section 3.4, the denoiser has three inputs: the
non-obfuscated user persona 𝑉𝑢 , the obfuscated user persona 𝑉𝑜 ,
and the recommended video class distribution of obfuscated user
persona 𝐶𝑜 . The denoiser uses two LSTM layers and an FC layer to
encode inputs, as shown in Figure 4b. Specifically, the first LSTM
layer takes as input the embeddings of videos in the non-obfuscated
user persona 𝑉𝑢 recurrently and outputs its final hidden vector
𝑓 1 ∈ R𝑛 (we use 𝑛 = 128 in our experiments). Similarly, the inputs
of the second LSTM layer are the embeddings of videos in the
obfuscated user persona 𝑉𝑜 and its output is its last hidden vector
𝑓 2 ∈ R𝑛 . Last, the FC layer converts the class distribution𝐶𝑜 ∈ R𝐾
(where 𝐾 represents the number of categories) into a real vector
𝑓 3 ∈ R𝑛 . By concatenating vectors 𝑓 1, 𝑓 2, and 𝑓 3 into a single
vector with dimension 3𝑛, a final FC layer is used to map it into
the estimated recommended video class distribution 𝐶𝑢 ∈ R𝐾 .
Note that we train the denoiser based on supervised learning with
stochastic gradient descent (see Appendix D).

4.4 Repopulating Recommended Videos

Recall that the denoiser in De-Harpo outputs a target video class
distribution 𝐶𝑢 . In order to go from a target video class distribu-
tion back to actual videos on the user’s screen, we repopulate the
recommendations using a browser extension.

For efficiency, we maintain a “bank" of videos per class and use
it to repopulate the recommendations. This leads to the question

of how often should we refresh this bank in order to get a suitable
trade-off between the recency of the videos and the overhead re-
quired to collect the videos. To ascertain what the optimal time
period would be to refresh this bank we run a 24-hour experiment
where we query the name of a class in the YouTube search bar as
a proxy for the explicit class and collect statistics for each class’s
most popular recommended videos. Specifically, we run the same
query each hour, collect the top 20 search results per query, and
compute the percentile of top queries that remain the same. The
results indicate that for most classes about 70-80% of the top search
results remain the same. Motivated by this, we periodically – or on
an on-demand basis – crawl a sufficiently large number of videos
for each class to re-populate our bank. Note that the “noisy" rec-
ommended videos removed during the repopulation process will
be included into our obfuscation video sets such that they can be
played later to augment the obfuscation effect.

4.5 YouTube Surrogate Model

The training of the obfuscator requires frequent interactions with
the YouTube recommendation system. However, directly interact-
ing with YouTube is time-consuming, since it takes more than 30
minutes to construct a single persona (as described in Section 5.2).
To train the obfuscator efficiently, we build a surrogate model as a
replication of the actual YouTube recommendation system.

The architecture of our surrogate model consists of a LSTM layer
and a FC layer. The LSTM layer takes as input the embeddings of
videos in a user persona recurrently and outputs its last hidden
vector, which will be used as the input of the FC layer. Then, the
FC layer will output the recommended video class distribution
𝐶𝑖 ∈ R𝐾 , where 𝑖 ∈ {𝑢, 𝑜} (see Figure 9b in Appendix B.3 for
details). Note that we train the surrogate model via supervised
learning with stochastic gradient descent (see Appendix D). We
also provide detailed discussion about the rationale of designing
such surrogate model and the differences between our surrogate
model and prior works in Appendix B.3.

4.6 De-Harpo Implementation

We implement De-Harpo as a browser extension, which consists
of two components: obfuscator and denoiser .
Obfuscator. The obfuscator is a lightly modified version of Harpo’s
browser extension [74]. The browser extension plays the selected
obfuscation videos in a background tab that is hidden from users.
In order to determine the timing of playing obfuscation videos, the
obfuscator component uses a background script to keep monitoring
the URLs visited by the user and estimating the arrival rate of
YouTube videos watched by user as _𝑢 . Then, given obfuscation
budget 𝛼 , the obfuscator component will use a Poisson Process with
rate _𝑜 = _𝑢𝛼

1−𝛼 to inject randomly select obfuscation videos. To
mimic a typical user who watches one video at a time, the selected
obfuscation videos can be played only when the user is not already
using YouTube. However, if a user continues to watch YouTube
videos for an extended time period, we can simultaneously play the
selected obfuscation videos (in the background as explained above)
to prevent YouTube from getting unfettered user watch history.4

4It is not entirely uncommon for YouTube users to play videos in multiple browser
tabs.

528

A Utility-Preserving Obfuscation Approach for YouTube Recommendations Proceedings on Privacy Enhancing Technologies 2023(4)

Denoiser. The denoiser has two modules: HTML modification and
the denoising. The HTML modification module is implemented in
the background script. Whenever the user visits YouTube home-
page, the HTML modification module sends the “noisy" homepage
recommendation video list requested from the content script to
the denoising module. Once HTML modification module receives
the “clean" homepage recommended video list from the denoising
module, it will modify the HTML of YouTube homepage to show
“clean" homepage recommended videos. The denoising module is
implemented in the back-end, which is responsible for accessing the
metadata of the received “noisy” homepage recommended videos,
running the denoiser model to convert the “noisy” homepage rec-
ommended video list into a “clean" one, and then sends the “clean”
video list back to the HTML modification module. We evaluate the
implementation overhead of the obfuscator and denoiser compo-
nents in Section 6.4.

5 EXPERIMENTAL SETUP

5.1 User Personas

To train and evaluate De-Harpo, we need to construct realistic
user personas. However, it is challenging to have access to real-
world YouTube users’ video watch history in a large scale as our
training data. To address this concern, we design two approaches
that can generate a large number of synthetic user personas to
simulate real-world users: 1) the first approach creates sock puppet
based personas by following the “up next” videos recommended by
YouTube; 2) the second approach leverages the YouTube videos pub-
licly posted by Reddit users as an approximation of their YouTube
user personas. We use these synthetic user persona datasets to train
De-Harpo. Then, we evaluate it on both synthetic user persona
datasets and a real user persona dataset that contains YouTube
video watch history collected from real-world users. We describe
these three datasets in detail below.
Sock Puppet Based Personas. According to YouTube, about 70%
of the videos viewed on the platform are sourced from its recom-
mendation system [57]. Accordingly, given the current video, the
“up next” videos recommended by YouTube are good representa-
tions of the potential subsequent videos watched by real-world
YouTube users. Based on this insight, we build a sock puppet user
persona model that generates random recommendation trails from a
single seed video to model realistic YouTube user personas, by keep-
ing playing one of the “up next” videos recommended by YouTube
randomly with uniform probability (see Appendix C.1 for details).
Since these personas are synthetically built, we are able to exercise
more control over the distribution of watched videos.

In total, we generate 10,000 sock puppet based personas with 40
videos each. Note that we set the length of each user persona as
40, since we empirically observe that 40 videos can trigger enough
personalized recommended videos on the YouTube homepage and
the average time it takes to watch them is close to the average daily
time spent by each YouTube user (35 min) [22].
Reddit User Personas. As a second way of simulating real-world
user personas in a large scale, we gather YouTube links publicly
posted by social media users as an approximation of their YouTube
personas. While there are various social media platforms where
users can share YouTube videos, we choose to collect data from

Reddit, since it is one of the largest and most popular communities
where users post links related to their interests, and millions of
Reddit’s user submissions5 are publicly available.

Specifically, we download Reddit user submissions from 2017
to 2021 using APIs provided by pushshift.io [60]. For each user
submission, we first extract the username and all YouTube links
posted by this Reddit account. Next, we filter out any duplicate or
broken links. Then, we extract the YouTube video ids from these
remaining links in order. Finally, we remove users with less than
40 YouTube video posts, since a small number of videos is not a fair
approximation of the user’s actual YouTube persona. In total, we
collect 10,000 Reddit user personas with length 40.
Real-world YouTube Users. To conduct a more realistic eval-
uation of De-Harpo, we use a real-world user dataset from [7].
This dataset contains the web browsing histories of 936 real users
collected through Web Historian [29] for three months. It is a good
representative of real YouTube users, since: 1) the demographic
distribution of these users, including their gender, age (18-65+), and
education level (from less than high school to Doctoral degree),
are relatively uniform; 2) on average 650 YouTube video URLs are
watched by each user in three months; 3) the first 40 videos watched
by these users have different video class distribution, indicating
diverse user interests. Considering that the dataset is collected over
a long period, we select the first 40 YouTube videos watched by each
of these 936 users as our real user personas, to evaluate De-Harpo.

5.2 Data Collection

User Persona Construction.We use a fresh Firefox browser based
on Selenium to construct each user persona. For each sock puppet
based persona, we start with a seed video and then follow the “up
next" video recommendations to generate a recommendation trail.
We play each video in a user persona for 30 seconds before playing
the next video. Note that we clear any pop-up windows and skip
the ads before playing the video. For each Reddit user and real user
persona, since we already known the video ids in each persona, we
visit these videos sequentially6. Similar to constructing synthetic
user personas, if there are any pop-up windows or ads, we clear
them and then play the video for 30 seconds.
Recommended Video Collection. After we complete the con-
struction of each user persona, we go back to the YouTube home-
page and refresh it for 50 times to collect all the recommended
videos into a list. Note that we refresh the homepage multiple times
since we want to collect enough homepage recommended videos to
estimate the recommended video class distribution. We choose the
number of refresh times as 50 since we empirically observe that it is
a good tradeoff between collecting enough samples and minimizing
the quantity of crawls to be performed. Because extremely popular
videos are common across many users regardless of their profile, we
remove them to underscore personalized recommendations. With
this in mind, we filter out videos which appear in more than 1%
of personas’ homepage recommended video lists. We also exclude
YouTube videos showing in the homepage of a fresh browser. Then,
5A Reddit user submission is a json file storing metadata of a Reddit user’s posts,
including the username, the timestamp, the URL of post, the text, etc.
6Note that directly visiting the URL of each video doesn’t trigger cookies from YouTube
and hence no personal recommendation can happen. To address this, we first search
the video id at YouTube and then click the first search result.

529

Proceedings on Privacy Enhancing Technologies 2023(4) Zhang et al.

for each recommended video, we extract the associated tags (i.e. a
list of keywords) from its metadata, and map each of them into one
of the 154 topic-level video classes we have (note that a video may
belong to multiple video classes). Last, for each persona, we count
the number of recommended videos in each class and divide it by
the sum of videos in all classes to derive the recommended video
class distribution of each persona.

5.3 Training and Testing

We discuss details about how we prepare the training and testing
datasets, and use them to train and test surrogate model, obfuscator
and denoiser in Appendix C.2-D.

5.4 Baselines

Obfuscator.We compare the privacy-enhancing performance of
De-Harpo obfuscator with three baselines:

1) Rand-Obf: At each obfuscation step, we randomly select one
obfuscation video from the obfuscation video set, and the probabil-
ity of selecting each obfuscation video is equal to 1

𝑀
(𝑀 is the total

number of obfuscation videos in the set).
2) Bias-Obf: At each obfuscation step, we randomly select one

obfuscation video from the obfuscation video set. However, the
probability of selecting each obfuscation video is proportional to
the reward triggered by each obfuscation video. To create such
non-uniform distribution, we first use Rand-Obf to randomly select
obfuscation videos and then record the reward after injecting them
into non-obfuscated user personas. We repeat this experiment for
50 epochs and count the accumulative reward of each obfuscation
video, normalize it by the sum of the accumulative rewards of all
obfuscation videos, and use the normalized rewards as the non-
uniform probability distribution.

3) PBooster-Obf: At each obfuscation step, we select one obfusca-
tion video from the obfuscation video set which can maximize the
reward for the current step based on the greedy algorithm PBooster
proposed in [4].
Denoiser.We compare the utility-preserving performance of the
denoiser in De-Harpo with a baseline that uses the same archi-
tecture as the surrogate model to predict 𝐶𝑢 directly from a non-
obfuscated user persona𝑉𝑢 , without taking the obfuscated persona
𝑉𝑜 and the associated recommended video class distribution 𝐶𝑜 as
inputs. We refer to this baseline as Surro-Den. Ideally, if the surro-
gate model is a perfect replication of YouTube’s recommendation
system, then users could directly use it to get recommended videos
based on their non-obfuscated user personas. Clearly this is unre-
alistic in practice since the surrogate model does not have access
to the complete universe of YouTube videos which are updated
constantly, and the model is merely an approximation of the actual
YouTube recommendation system.

For convenience, we denote the De-Harpo obfuscator and De-
Harpo denoiser by De-Harpo-Obf and De-Harpo-Den respectively
in the rest of the paper.

6 EVALUATION

In this section, we evaluate the effectiveness of De-Harpo from six
perspectives: privacy, utility, overhead, stealthiness, robustness to
de-obfuscation, and personalization.

Table 1: Privacy evaluation results against YouTube w.r.t. 𝑃

and 𝑃𝑁𝑜𝑟𝑚 .

Obfuscator Rand-Obf Bias-Obf PBooster-Obf De-Harpo-Obf

𝑃 0.71 0.70 0.81 0.91

𝑃𝑁𝑜𝑟𝑚 21.55% 20.76% 31.24% 41.63%

(a) Using sock puppet based personas (𝐷𝑀𝑖𝑛 : 0.49, 𝐷𝑀𝑎𝑥 : 1.51).

Obfuscator Rand-Obf Bias-Obf PBooster-Obf De-Harpo-Obf

𝑃 1.05 1.07 1.13 1.30

𝑃𝑁𝑜𝑟𝑚 48.79% 50.99% 57.84% 76.49%

(b) Using Reddit user personas (𝐷𝑀𝑖𝑛 : 0.60, 𝐷𝑀𝑎𝑥 : 1.51).

Obfuscator Rand-Obf Bias-Obf PBooster-Obf De-Harpo-Obf

𝑃 0.98 1.00 1.05 1.39

𝑃𝑁𝑜𝑟𝑚 45.45% 48.01% 55.34% 87.23%

(c) Using real-world user personas (𝐷𝑀𝑖𝑛 : 0.53, 𝐷𝑀𝑎𝑥 : 1.51).

6.1 Privacy

We first evaluate the effectiveness of De-Harpo in enhancing pri-
vacy using three user persona datasets, and report the results in
TABLE 1. Note that we test De-Harpo-Obf and other obfuscator
baselines against the real-world YouTube recommendation system.

As shown in TABLE 1a, De-Harpo-Obf can trigger 0.91 KL diver-
gence in the recommended video class distribution after obfuscation
(𝑃) on sock puppet based personas, which translates into triggering
41.63% of themaximum possible KL divergence in the recommended
video class distribution (𝑃𝑁𝑜𝑟𝑚). Compared with other baselines,
De-Harpo-Obf can increase 𝑃𝑁𝑜𝑟𝑚 by up to 2.01× and at least
1.33×. Similarly, on Reddit user personas, De-Harpo-Obf outper-
forms all baselines by up to 1.57× and at least 1.32×, as reported in
TABLE 1b.

Moreover, we evaluate whether the effectiveness of De-Harpo
in enhancing privacy can be transferred to real-world user personas.
Specifically, we use the same obfuscator trained on sock puppet
based personas to inject obfuscated videos into real-world user’s
video watch history, and then test it against YouTube. As reported
in TABLE 1c, De-Harpo-Obf can trigger 87.23% of the maximum
possible KL divergence in the recommended video class distribution
(𝑃𝑁𝑜𝑟𝑚), which outperforms all baselines against YouTube by up
to 1.92× and at least 1.58× in terms of 𝑃𝑁𝑜𝑟𝑚 .

6.2 Utility

Next, we evaluate the effectiveness of De-Harpo in preserving
user utility. TABLE 2a reports our evaluation results in terms of
𝑈𝐿𝑜𝑠𝑠 and 𝑈𝑁𝑜𝑟𝑚𝐺𝑎𝑖𝑛

using sock puppet based personas. Compared
with Surro-Den, De-Harpo-Den achieves on average 26% better
performance in terms of decreasing 𝑈𝐿𝑜𝑠𝑠 (i.e. increasing 𝑈𝑁𝑜𝑟𝑚𝐺𝑎𝑖𝑛

).
Recall that different from Surro-Den, De-Harpo-Den also takes as
inputs the obfuscated user persona 𝑉𝑜 , and the associated recom-
mended video class distribution 𝐶𝑜 which comes directly from the
actual YouTube system. In contrast, the surrogate model is merely
a “first-order" model of the actual, quite complex YouTube system.
We also evaluate the effectiveness of De-Harpo-Den in preserving
user utility using both Reddit user personas and real-world users.
As reported in TABLE 2b-2c, De-Harpo-Den can consistently pre-
serve the utility well, reducing the utility loss by 93.80% and 90.40%
respectively.

It is worth noting that the effectiveness of the denoiser in preserv-
ing utility does not depend on the effectiveness of the obfuscator in

530

A Utility-Preserving Obfuscation Approach for YouTube Recommendations Proceedings on Privacy Enhancing Technologies 2023(4)

Table 2: Utility evaluation results w.r.t.𝑈𝐿𝑜𝑠𝑠 and𝑈
𝑁𝑜𝑟𝑚
𝐺𝑎𝑖𝑛

. Note

that each cell in the table reports𝑈𝐿𝑜𝑠𝑠/𝑈𝑁𝑜𝑟𝑚𝐺𝑎𝑖𝑛
.

Obfuscator
Denoiser Surro-Den De-Harpo-Den

Rand-Obf 0.60 / 50.91% 0.54 / 79.09%
Bias-Obf 0.60 / 49.06% 0.53 / 82.08%

PBooster-Obf 0.60 / 66.14% 0.53 / 86.83%
De-Harpo-Obf 0.60 / 74.59% 0.53 / 90.35%

(a) Using sock puppet based personas (𝐷𝑀𝑖𝑛 : 0.49).

Obfuscator
Denoiser Surro-Den De-Harpo-Den

Rand-Obf 0.68 / 83.26% 0.64 / 91.18%
Bias-Obf 0.68 / 83.98% 0.66 / 88.96%

PBooster-Obf 0.68 / 85.88% 0.65 / 90.46%
De-Harpo-Obf 0.68 / 89.32% 0.65 / 93.80%

(b) Using Reddit user personas (𝐷𝑀𝑖𝑛 : 0.6).

Obfuscator
Denoiser Surro-Den De-Harpo-Den

Rand-Obf 0.66 / 70.79% 0.62 / 81.12%
Bias-Obf 0.66 / 72.34% 0.61 / 82.34%

PBooster-Obf 0.66 / 76.99% 0.61 / 85.31%
De-Harpo-Obf 0.66 / 84.78% 0.61 / 90.40%

(c) Using real-world user personas (𝐷𝑀𝑖𝑛 : 0.53).

enhancing privacy. As shown in Table 2a-2c, the same denoiser can
achieve almost the same utility loss𝑈𝐿𝑜𝑠𝑠 under different obfusca-
tors, which implies the denoiser does not need to sacrifice privacy
in order to preserve utility. We discuss the privacy-utility tradeoff
in the next subsection.

6.3 Varying the Obfuscation Budget

So far, the obfuscation budget 𝛼 is set to 0.2 in our evaluation.
To evaluate how the obfuscation budget (i.e. the percentile of ob-
fuscation videos in a user persona) can affect the performance of
De-Harpo, we increase the value of 𝛼 and evaluate how the perfor-
mance of De-Harpo changes w.r.t. both privacy (𝑃𝑁𝑜𝑟𝑚) and utility
(𝑈𝐿𝑜𝑠𝑠). We use sock puppet based persona dataset and consider
three baselines: Rand-Obf/De-Harpo-Den (i.e. the combination of
Rand-Obf and the De-Harpo denoiser), Bias-Obf/De-Harpo-Den
(i.e. the combination of Bias-Obf and the De-Harpo denoiser), and
PBooster-Obf/De-Harpo-Den (i.e. the combination of PBooster-Obf
and the De-Harpo denoiser).
Privacy-utility tradeoff. Figure 5 shows the privacy-utility trade-
off between 𝑃𝑁𝑜𝑟𝑚 and 𝑈𝐿𝑜𝑠𝑠 with varying 𝛼 from {0.2, 0.3, 0.5},
where the top left region corresponds to both high privacy and util-
ity. We observe that, with De-Harpo-Den, the utility loss caused by
different obfuscators can be significantly reduced without sacrific-
ing privacy. Note that since our denoiser is designed to work after
obfuscation, it does not hurt the performance of the obfuscator.
Moreover, with De-Harpo-Den, the utility loss remains almost the
same as we keep increasing the obfuscation budget to get higher
privacy. For example, compared with baselines without using De-
Harpo-Den, De-Harpo can reduce the utility loss by 2.12× when
𝛼 = 0.5. Note that without De-Harpo-Den, the obfuscator needs
to sacrifice utility (higher utility loss) to achieve higher privacy.
This is a key difference between De-Harpo and prior works that
consider the privacy-utility tradeoff (see Section 8).
Obfuscation budget and privacy level. Recall that we use the
recommended video class distribution as a proxy to a user profile,

see Section 3.3. To evaluate whether De-Harpo can privatize a user
profile to look almost random, we increase the obfuscation budget
beyond 0.5 aiming to achieve a 𝑃𝑁𝑜𝑟𝑚 value as close to 100% as
possible. As shown in Figure 6, for 𝛼 equal to 0.7 (i.e. 70% of the
videos in a user persona are obfuscation videos), 𝑃𝑁𝑜𝑟𝑚 will reach
92.95%, which means the on-average (averaged over all users) di-
vergence between the recommended video class distribution before
and after obfuscation is 93% of the on-average divergence between
the recommended video class distribution of two random users. It
is also worth noting that for real-world user personas, 𝑃𝑁𝑜𝑟𝑚 can
get very close to 100% with 𝛼 merely equal to 0.5. Hence, we con-
clude that De-Harpo can achieve meaningful privacy for practical
obfuscation budgets 𝛼 .

0.4 0.6 0.8 1 1.2

U
Loss

20

40

60

80

100

P
N

o
rm

/%

Rand-Obf/De-Harpo-Den

Bias-Obf/De-Harpo-Den

PBooster-Obf/De-Harpo-Den

De-Harpo

Rand-Obf

Bias-Obf

PBooster-Obf

De-Harpo-Obf

2.12x

1.72x

=0.5

1.81x=0.3

=0.2

Utility gain

Figure 5: Privacy-utility tradeoff w.r.t. 𝑃𝑁𝑜𝑟𝑚 and 𝑈𝐿𝑜𝑠𝑠 un-

der different obfuscation budget 𝛼 . Note that Rand-Obf/De-

Harpo-Den represents the combination of Rand-Obf obfus-

cator and the De-Harpo denoiser, Bias-Obf/De-Harpo-Den

represents the combination of Bias-Obf obfuscator and the

De-Harpo denoiser, and PBooster-Obf/De-Harpo-Den rep-

resents the combination of PBooster-Obf obfuscator and the

De-Harpo denoiser. Top left of figure represent both high

privacy and high utility.

6.4 Overhead

Obfuscation budget and overhead. The larger the obfuscation
budget the larger the overhead as more obfuscation videos need to
be injected in the video watch history. Not surprisingly, as shown in
Figure 5, with increasing obfuscation budget 𝛼 , the privacy (𝑃𝑁𝑜𝑟𝑚)
will increase for all obfuscators. That said, De-Harpo can increase
privacy with less obfuscation budget than the rest. Specifically,
with 𝛼 = 0.2, De-Harpo can achieve the same level of privacy as
other baselines achieve with 𝛼 = 0.5. That is, De-Harpo can be as
effective as baseline obfuscator in terms of enhancing privacy with
2.5× less obfuscation budget.
System overhead.We evaluate the system overhead of De-Harpo
in terms of CPU and memory usage and the video page load time
using a an Intel i7 workstation with 64GB RAM on a campus WiFi
network.We report that for the obfuscator component, the increased
CPU and memory usage are less than 5% and 2% respectively, and
the increased video page load time is less than 2% evenwhen𝛼 = 0.5.
For the denoiser component, the increased CPU and memory usage
are less than 28% and 3% respectively, and the YouTube’s homepage
load time is only increased by 38 millisecond. Overall, we conclude
that De-Harpo has a negligible impact on the user experience. (See
Appendix E for more detailed analysis).

531

Proceedings on Privacy Enhancing Technologies 2023(4) Zhang et al.

Table 3: Stealthiness evaluation results under different obfus-

cation budget 𝛼 with 5% DeHarpo users. Note that we choose

𝛼 from {0.2, 0.3, 0.5} and report (Precision, Recall) of the ad-

versarial detector for different obfuscators.

Obfuscator (Precision, Recall)
𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.5

Rand-Obf (4%, 99%) (5%, 92%) (5%, 92%)
Bias-Obf (7%, 72%) (5%, 81%) (36%, 94%)

PBooster-Obf (19%, 86%) (16%, 93%) (49%, 88%)
De-Harpo-Obf (67%, 98%) (73%, 99%) (74%, 99%)

0 0.2 0.4 0.6 0.8 1

Obfuscation budget

30

40

50

60

70

80

90

100

P
N

o
rm

/%

De-Harpo

92.95%

Figure 6: Privacy level 𝑃𝑁𝑜𝑟𝑚

vs obfuscation budget 𝛼 .

50% 25% 10% 5% 1%

Percentage of DeHarpo Users

30

40

50

60

70

80

90

100

P
re

ci
si

o
n

/%

De-Harpo

Figure 7: Precision of the ad-

versarial detector vs the per-

centage of De-Harpo users

under 𝛼 = 0.5.
6.5 Stealthiness

In this subsection, we evaluate whether an adversary can train
an ML classifier to accurately detect the usage of obfuscators. We
use the precision and recall of this adversarial detector to measure
stealthiness of obfuscation. If the detector achieves high precision
and recall, then it means that an obfuscator is less stealthy. Specifi-
cally, the input of the adversary is a user persona consisting of a
sequence of videos and the binary output indicates whether or not
the user persona contains at least one obfuscation video.

We train the adversarial classifier via supervised learning. To
create the labeled dataset, we use the same set of non-obfuscated
and obfuscated sock puppet based user personas used for evaluation
in Section 6.4 as inputs, and assign the corresponding labels to the
personas (0: non-obfuscated, 1: obfuscated). For each obfuscator and
obfuscation budget 𝛼 , we get a balanced training dataset with 1,440
obfuscated personas and the corresponding 1,440 non-obfuscated
personas. After training, we use an unbalanced dataset with 5%
obfuscation personas (a total of 360 obfuscated personas and 6,840
non-obfuscated personas) to test the detector, since only a small
fraction of YouTube users are expected to employ De-Harpo.

Table 3 reports the testing precision and recall of the adversarial
detector under different 𝛼 values. We observe that as 𝛼 increases,
both the precision and recall of the detector also increase. This is
expected as larger 𝛼 represents more obfuscation videos, which
makes it easier for the adversarial detector to distinguish obfuscated
personas from non-obfuscated personas.

Not surprisingly, Rand-Obf is the most stealthy obfuscator since
it injects obfuscation videos randomly. De-Harpo-Obf, which in-
jects obfuscation videos that introduce new user interests to con-
fuse YouTube, can still achieve reasonable stealthiness even when
𝛼 = 0.5. Specifically, it leads to 74% precision (36% false positive
rate) evenwith𝛼 = 0.5. Note the the high false positive rate presents
a major obstacle in deployment of the adversarial detector due to
base-rate fallacy [2]. We further vary the percentage of De-Harpo

Table 4: De-obfuscation robustness evaluation results under

different obfuscation budget. Note thatwe set𝛼 ∈ {0.2, 0.3, 0.5}
and report (Precision, Recall) of adversarial detector under

different obfuscation approaches.

Obfuscator (Precision, Recall)
𝛼 = 0.2 𝛼 = 0.3 𝛼 = 0.5

Rand-Obf (62%, 97%) (67%, 91%) (69%, 99%)
Bias-Obf (67%, 89%) (71%, 89%) (77%, 92%)

PBooster-Obf (68%, 93%) (71%, 90%) (77%, 94%)
De-Harpo-Obf (79%, 93%) (83%, 97%) (84%, 97%)

users over all YouTube users to show how the precision of the ad-
versarial detector changes as we go from a very unbalanced dataset
to a perfectly balanced one. As shown in Figure 7, as the percentage
of De-Harpo users varies from 1% to 50%, the adversarial detec-
tor’s precision will increase, as expected. However, it is unlikely in
practice that a large fraction of YouTube users will use obfuscation
measures. And, even in the case of a balanced dataset, a 2% false
positive rate still corresponds to tens of millions of users making
it prohibitively expensive to deploy it. Essentially, the adversarial
detector will have to achieve exceptionally high precision to be
useful in practice.

Note that such a binary detector may be used as a first step of the
detection workflow. Once the adversary detects the usage of De-
Harpo, it may further attempt to de-obfuscate the obfuscated user
personas. That is, the adversary may attempt to identify obfuscation
videos in the obfuscated user persona such that it may remove them
to retrieve the non-obfuscated user personas. We evaluate this de-
obfuscation performance of an adversary next.

6.6 De-obfuscation Robustness

Once the adversary detects the usage of De-Harpo in a user per-
sona, it can conduct de-obfuscation. To evaluate whether an ob-
fuscator is robust to de-obfuscation, we train a second adversarial
detector to distinguish the obfuscation videos from the actual user
videos. Specifically, we build a second ML classifier to detect the
type of each video (user versus obfuscation video) in each sock
puppet based user persona, and use its precision and recall to mea-
sure the de-obfuscation robustness. Smaller precision and recall
represents higher de-obfuscation robustness.

We use the same set of obfuscated personas as in Section 6.4 as
inputs. For each video in an obfuscated user persona, we assign a
binary label, where 0 represents it is watched by the user while 1
represents that it is injected by the obfuscator. The detector model
takes as input the obfuscated user persona, and predicts a label for
each video in the user persona. We use a recurrent neural network
(LSTM layer) to model this adversarial detector.

As shown in Table 4, the precision of this adversarial detector
is lower than 85%, which means more than 15% of the obfuscated
videos identified by the adversary are false positives (they are actual
user videos). Similar to stealthiness, false positives present a bigger
challenge to the adversary in deploying this detector in practice.
Hence, we conclude that De-Harpo is robust to de-obfuscation by
an adversary.

Note that while the adversary has lower precision against Rand-
Obf and Bias-Obf than agaisntDe-Harpo, this is becauseDe-Harpo
is 2.5× more effective in preserving privacy (see Section 6.4), thus,
overall, it is more privacy-preserving.

532

A Utility-Preserving Obfuscation Approach for YouTube Recommendations Proceedings on Privacy Enhancing Technologies 2023(4)

Table 5: Personalization results. 𝐷𝑁𝑜𝑛𝑆𝑒𝑛𝑠
𝐾𝐿

and 𝐷𝑆𝑒𝑛𝑠
𝐾𝐿

denote

the divergence in non-sensitive classes and sensitive classes
respectively.

𝐷𝑁𝑜𝑛𝑆𝑒𝑛
𝐾𝐿

𝐷𝑆𝑒𝑛
𝐾𝐿

De-Harpo 1.18 0.26
Personalized De-Harpo 0.81 (↓ 31.36%) 0.05 (↓ 80.77%)

6.7 Personalization

De-Harpo so far is trained to maximize the KL divergence in the
recommended video class distribution after obfuscation, by either
increasing or reducing the probability of each video class. However,
a YouTube user may have a list of sensitive video classes (e.g. health
or wellness related), where they do not want the YouTube recom-
mendations containing videos from these classes after obfuscation
(i.e. reducing their probability to zero).

Motivated by this, we design a mechanism that can treat sensi-
tive video classes and non-sensitive video classes differently based
on user preferences. Without loss of generality, suppose the first
𝐿 classes of the recommended video class distribution are non-
sensitive and the remaining 𝐾 − 𝐿 classes are sensitive. We then
train De-Harpo to maximize the following privacy metric, which
aims to treat non-sensitive classes like before (maximize divergence
before and after obfuscation) and eliminate sensitive class videos:

𝑃𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑=𝐸 [𝐷𝐾𝐿 (𝐶𝑜1:𝐿,𝐶
𝑢
1:𝐿)︸ ︷︷ ︸

𝐷𝑁𝑜𝑛𝑆𝑒𝑛𝑠
𝐾𝐿

−_ 𝐷𝐾𝐿 (𝐶𝑜𝐿+1:𝐾 ,[𝜖]𝐿+1:𝐾)︸ ︷︷ ︸
𝐷𝑆𝑒𝑛𝑠
𝐾𝐿

], (10)

where [𝜖]𝐿+1:𝐾 ∈ R𝐾−𝐿 indicates a close-to-zero vector filled with
a small positive number 𝜖 (e.g. 0.0001), and _ > 0 is an adjustable
parameter for controlling the relative importance of 𝐷𝑁𝑜𝑛𝑆𝑒𝑛𝑠

𝐾𝐿
ver-

sus 𝐷𝑆𝑒𝑛𝑠
𝐾𝐿

. Specifically, the term 𝐷𝑁𝑜𝑛𝑆𝑒𝑛𝑠
𝐾𝐿

aims to maximize the
distance between the distribution of non-sensitive classes before
and after obfuscation, like we did before for all classes. The term
−_𝐷𝑆𝑒𝑛𝑠

𝐾𝐿
aims to minimize the distance between the distribution of

the sensitive classes and a distribution of very small probabilities.7
Table 5 reports our evaluation results of personalized De-Harpo

against surrogate models, where we select 27 out of 154 video
classes related to Beauty &Wellness and Sports & Fitness as sensitive
classes. Compared with non-personalized De-Harpo, personalized
De-Harpo can reduce the divergence between sensitive video class
distribution and a zero vector (𝐷𝑆𝑒𝑛𝑠

𝐾𝐿
) by more than 80%, while

still triggering high divergence in non-sensitive class distribution
(𝐷𝑁𝑜𝑛𝑆𝑒𝑛𝑠
𝐾𝐿

).

7 DISCUSSION

7.1 Ethical Considerations

We outline the potential benefits and harms to the user and the
recommendation system. We argue that the potential benefits of
De-Harpo outweigh its potential harms.

7Notice that we are somewhat abusing the “distribution" term above, because we do
not re-normalize the corresponding probabilities to sum up to 1, as this would (i)
de-emphasize the contrast between the patterns of interest and (ii) is not required to
meaningfully use the KL divergence formula.

Users. De-Harpo provides a clear privacy benefit to its users, espe-
cially when platforms such as YouTube do not provide any mean-
ingful control over its tracking and profiling of users. Crucially,
De-Harpo is able to enhance privacy while mostly preserving the
utility of personalized recommendations. Thus, De-Harpo does
not degrade user experience on YouTube. However, users of De-
Harpo potentially violate YouTube’s Terms of Service (TOS) [71]
because YouTube might interpret obfuscation as “fake engagement”.
Therefore, if a user is signed-in to YouTube, their YouTube account
might be suspended if YouTube is able to detect De-Harpo’s usage
(though we showed that YouTube would be unable to do so without
risking significant collateral damage). More seriously, the violation
of TOS might be considered possible violation of the Computer
Fraud and Abuse Act (CFAA, 18 U.S. Code § 1030) [1]. However,
given that De-Harpo users only watch videos that they are autho-
rized to (i.e., publicly available videos), we argue that the videos
injected to the watch history for obfuscation nor the videos injected
to the recommendations for repopulation exceed authorized access
that could be a violation of CFAA [42].
YouTube. Since De-Harpo aims to preserve utility of recommen-
dations to YouTube users, we argue that it will not directly hurt
user engagement on YouTube. De-Harpo’s obfuscator and denoiser
would, however, contribute to additional traffic to YouTube servers
andmay have some indirect impact on the effectiveness of YouTube’s
recommendation system, if a large enough portion of the users
adopt De-Harpo. We note that De-Harpo can be applied with sat-
isfactory trade-off privacy vs. utility as long as only a minority
of YouTube users employ obfuscation tools, which is arguably a
realistic expectation. Otherwise, if a significant fraction of users
adopts De-Harpo, the obfuscation may lead to data poisoning,
which will indirectly affect the quality of recommendations for all
users. In this case, and in the absence of legal regulation of tracking
and user profiling by YouTube, future research will need to ex-
plore an alternative scalable solution for privacy preservation that
is complementary to obfuscation. Overall, as compared to extant
privacy-enhancing obfuscation tools, we conclude that De-Harpo
is more favorable since it specifically aims to preserve utility and
user engagement on YouTube.

7.2 Limitations & Future Work

Side channels. De-Harpo’s stealthiness can be undermined by
exploiting various implementation side channels. For example,
YouTube could use Page Visibility API [47] or the Performance
API [6] to detect whether obfuscation videos are unusually not
being played in the foreground. However, there are patches such as
wpears [67] to avoid detection. Additionally, the obfuscator plays
the obfuscation videos in full in a background tab while disabling
background throttling (or other such optimizations [6, 61]) to pre-
vent detection by such side channels. As another example, the
repopulation of recommendations on the homepage after denoising
would entail manipulation of the HTML DOM [16], which might be
detectable. However, such an attach would be infeasible in practice,
because the detection approaches would add an overhead of up to
several seconds [34, 59].
Deployment on mobile devices. De-Harpo is currently imple-
mented as a browser extension for desktops. Since browser exten-
sions are not supported on iOS or Android, the only option for users

533

Proceedings on Privacy Enhancing Technologies 2023(4) Zhang et al.

to benefit from De-Harpo on their mobile phone is to use other
Chromium based browsers that allow extensions [37, 69]. Another
option for mobile users is to use a remote desktop utility [15] to
access YouTube with De-Harpo on a desktop. Finally, users might
still be able to reap the obfuscation benefits of De-Harpo if they
deploy the extension on their desktop and be logged-in to the same
Google account [23] on both their mobile app and desktop with
De-Harpo.

8 RELATEDWORK

In this section, we discuss prior work on privacy-enhancing obfus-
cation in recommendation systems.

One line of prior research focuses on developing privacy-enhancing
obfuscation approaches in online behavioral advertising. These ef-
forts are relevant to our work because online behavioral advertising
is essentially a recommendation system where the advertiser’s goal
is to “recommend” personalized ads to users based on their online
activity. However, most of these privacy-enhancing obfuscation
approaches are not designed to preserve the utility (i.e., relevance
of personalized ads) [13, 30, 32, 36, 44], as they generally randomly
insert a curated set of obfuscation inputs to manipulate online
behavioral advertising.

TrackThis [32] by Mozilla injects a curated list of 100 URLs to ob-
fuscate a user’s browsing profile. AdNauseam [30] clicks a random
set of ads to “confuse” advertisers. One subset of these efforts pro-
pose “pollution attacks” against online behavioral advertising that
also serve a dual role as privacy-enhancing obfuscation [13, 36, 44].
Meng et al. [44] propose a pollution attack that can be launched by
publishers to increase their advertising revenue by manipulating
advertisers into targeting higher paying ads. The attack involves the
addition of curated URLs into a user’s browsing profile. Degeling et
al. [13] and Kim et al. [36] propose similar attacks but focus on two
distinct stages of the online behavioral advertising pipeline: user
profiling and ad targeting. Degeling et al. [13] propose an obfusca-
tion approach that involves adding URLs posted on Reddit into a
user’s browsing profile. Kim et al. [36] propose “AdbudgetKiller"
that involves adding a sequence of URLs into a user’s browsing
profile to trigger retargeted ads, which are costly for advertisers
and waste their advertising budget.

Moving beyond online behavioral advertising, Xing et al [68]
propose pollution attacks against more general personalized recom-
mendation systems such as YouTube, Amazon, and Google Search.
The authors show that personalized recommendations could easily
be manipulated by injecting random or curated obfuscation inputs.
Since the attack’s victim is the user, the work does not take into
account the utility of recommendations to the user. In contrast, De-
Harpo is a privacy-enhancing obfuscation system that also takes
into account the utility of the recommendations.

Follow up privacy-enhancing obfuscation systems do attempt to
take into account the utility-privacy trade-off. Beigi et al, [4] pro-
pose PBooster, a greedy search approach to obfuscate a user’s brows-
ing profile while also keeping utility in consideration. PBooster
employs topic modeling to select a subset of target topics and cor-
responding obfuscation URLs to add in a user’s browsing history.
Zhang et al. [74] propose Harpo, a reinforcement learning approach
to obfuscate a user’s browsing profile such that a subset of interest

segments are kept while others are modified. Different from Harpo,
De-Harpo pairs the obfuscator with a denoiser to preserve the
recommended videos related to the users’ actual interests while re-
moving the unrelated recommended videos caused by obfuscation.
Moreover, the De-Harpo obfuscator non-trivially adapts Harpo
to YouTube, by building 1) a surrogate model with a different em-
bedding model and loss function for replicating the YouTube rec-
ommendation system and 2) an obfuscator model which selects
obfuscation videos based on the similarity between its embedding
and the output embedding, such that it can handle an unlimited
and varying number of possible obfuscation videos without requir-
ing retraining. Huang et al. [31] propose a context-aware genera-
tive adversarial privacy (GAP) approach to train a “privatizer” for
privacy-enhancing obfuscation against an adversary who attempts
to infer sensitive information from input data. This approach is
used to obfuscate mobile sensor data while navigating the privacy-
utility tradeoff [38, 43, 53]. While in theory we can apply GAP to
jointly train the obfuscator and denoiser, in practice training them
against YouTube in the wild which is prohibitively time consum-
ing due to the iterative nature of GAP, and training them against
the surrogate model is ineffective because the denoiser is able to
trivially replicate the surrogate model (see Appendix F). Beiga et
al. [5] propose a crowd-based obfuscation approach that allows
individual users to preserve privacy by scrambling their browsing
profiles via mediator accounts, which are selected such that the
personalized recommendations to these mediator accounts are still
coherent and utility-preserving to the users behind each mediator
account. However, this approach requires a collaboration across
multiple users of a recommendation system, and cannot be used by
standalone users.

While recent work on privacy-enhancing obfuscation has at-
tempted to balance the privacy-utility tradeoff, they are limited to
obfuscating the input to the recommendation system to achieve
this balance. These approaches are fundamentally limited as to how
much utility can be preserved without undermining privacy by
obfuscating the input to the recommendation system (see Fig. 9).
In contrast, De-Harpo employs a two-step approach to this end.
It first obfuscates the input to the recommendation system to pre-
serve user privacy and then attempts to de-obfuscate the output
recommendations to preserve utility.

9 CONCLUSION

In this paper, we proposed De-Harpo, a privacy-enhancing and
utility-preserving obfuscation approach for YouTube’s recommen-
dation system that does not rely on cooperation from YouTube.

De-Harpo used an obfuscator to inject obfuscation videos into a
user’s video watching history and a denoiser to remove the “noisy”
recommended videos thus recovering the initial, unobfuscated
recommendations. Our evaluation results demonstrated that De-
Harpo can reduce the utility loss by 2× for the same level of privacy
compared to existing state-of-the-art obfuscation approaches. Our
work provides a template for implementing such utility-preserving
obfuscation approaches on other similar online platforms, such as
TikTok [58] and Facebook [49]. We will publicly release our code
in conjunction with this paper to facilitate follow-up research.

534

A Utility-Preserving Obfuscation Approach for YouTube Recommendations Proceedings on Privacy Enhancing Technologies 2023(4)

ACKNOWLEDGMENTS

The authors would like to thank Sean Hackett for his help with the
discussion of the denoiser idea, Muhammad Haroon for his help
with the data collection and browser extension implementation,
and Magdalena Wojcieszak for sharing the web browsing histories
of real-world users. This work is supported in part by the National
Science Foundation under grant numbers 1956435, 1901488, and
2103439.

REFERENCES

[1] 18 US Code § 1030. 2022. Fraud and related activity in connection with computers.
https://www.law.cornell.edu/uscode/text/18/1030.

[2] Stefan Axelsson. 2000. The base-rate fallacy and the difficulty of intrusion
detection. ACM Transactions on Information and System Security (TISSEC) 3, 3
(2000), 186–205.

[3] Ricks Becca and McCrosky Jesse. 2022. Does This Button Work? Investigating
YouTube’s ineffective user controls. https://foundation.mozilla.org/en/research/l
ibrary/user-controls/report/.

[4] Ghazaleh Beigi, Ruocheng Guo, Alexander Nou, Yanchao Zhang, and Huan Liu.
2019. Protecting user privacy: An approach for untraceable web browsing history
and unambiguous user profiles. In Proceedings of the twelfth ACM international
conference on web search and data mining. 213–221.

[5] Asia J Biega, Rishiraj Saha Roy, and Gerhard Weikum. 2017. Privacy through sol-
idarity: A user-utility-preserving framework to counter profiling. In Proceedings
of the 40th international ACM SIGIR conference on research and development in
information retrieval. 675–684.

[6] Chromium Blog. 2022. Tab throttling and more performance improvements
in Chrome M87. https://blog.chromium.org/2020/11/tab-throttling-and-more-
performance.html.

[7] Andreu Casas, Ericka Menchen-Trevino, and Magdalena Wojcieszak. 2022. Ex-
posure to extremely partisan news from the other political side shows scarce
boomerang effects. Political Behavior (2022), 1–40.

[8] Chong Chen, Min Zhang, Yongfeng Zhang, Yiqun Liu, and Shaoping Ma. 2020.
Efficient neural matrix factorization without sampling for recommendation. ACM
Transactions on Information Systems (TOIS) 38, 2 (2020), 1–28.

[9] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-k off-policy correction for a REINFORCE recommender
system. In Proceedings of the Twelfth ACM International Conference on Web Search
and Data Mining. 456–464.

[10] Matthew Clark and Konstantinos Psounis. 2020. Optimizing primary user privacy
in spectrum sharing systems. IEEE/ACM Transactions on Networking 28, 2 (2020),
533–546.

[11] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[12] Paul Cuff and Lanqing Yu. 2016. Differential privacy as a mutual information
constraint. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. 43–54.

[13] Martin Degeling and Jan Nierhoff. 2018. Tracking and Tricking a Profiler: Auto-
mated Measuring and Influencing of Bluekai’s Interest Profiling. In Proceedings
of the 2018 Workshop on Privacy in the Electronic Society. 1–13.

[14] Shuiguang Deng, Longtao Huang, Guandong Xu, Xindong Wu, and Zhaohui Wu.
2016. On deep learning for trust-aware recommendations in social networks.
IEEE transactions on neural networks and learning systems 28, 5 (2016), 1164–1177.

[15] Chrome Remote Desktop. 2022. https://remotedesktop.google.com/access.
[16] MDN Web Docs. 2022. HTML DOM API. https://developer.mozilla.org/en-

US/docs/Web/API/HTML_DOM_API.
[17] Cynthia Dwork. 2006. Differential privacy. In Automata, Languages and Program-

ming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II 33. Springer, 1–12.

[18] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends® in Theoretical Computer Science 9, 3–4
(2014), 211–407.

[19] Ahmed Roushdy Elkordy, Jiang Zhang, Yahya H Ezzeldin, Konstantinos Psounis,
and Salman Avestimehr. 2023. How Much Privacy Does Federated Learning with
Secure Aggregation Guarantee? Proceedings on Privacy Enhancing Technologies
(2023), 510–526.

[20] Wenqi Fan, Qing Li, and Min Cheng. 2018. Deep modeling of social relations for
recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 32.

[21] Wenqi Fan, Yao Ma, Dawei Yin, Jianping Wang, Jiliang Tang, and Qing Li. 2019.
Deep social collaborative filtering. In Proceedings of the 13th ACM Conference on
Recommender Systems. 305–313.

[22] Cristos Goodrow. 2021. On YouTube’s recommendation system. https://blog.you
tube/inside-youtube/on-youtubes-recommendation-system/.

[23] Google Account. 2022. https://www.google.com/account/about.
[24] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng

Chua. 2018. Outer product-based neural collaborative filtering. arXiv preprint
arXiv:1808.03912 (2018).

[25] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[26] Google Ads Help. 2022. About audience targeting. https://support.google.com/g
oogle-ads/answer/2497941?hl=en#zippy=%2Cin-market-segments%2Caffinity-
segments.

[27] Google Account Help. 2023. Web & App Activity Controls. https://support.goog
le.com/accounts/answer/54068?hl=en.

[28] YouTube Help. 2019. Manage your recommendations and search results. https:
//support.google.com/youtube/answer/6342839?hl=en.

[29] Web Historian. 2022. Visualize your web use to understand your habits. https:
//webhistorian.github.io/.

[30] Daniel C Howe and Helen Nissenbaum. 2017. Engineering Privacy and Protest:
A Case Study of AdNauseam.. In IWPE@ SP. 57–64.

[31] Chong Huang, Peter Kairouz, Xiao Chen, Lalitha Sankar, and Ram Rajagopal.
2017. Context-aware generative adversarial privacy. Entropy 19, 12 (2017), 656.

[32] Liz Hull. 2019. Hey advertisers, track THIS. https://blog.mozilla.org/firefox/hey-
advertisers-track-this.

[33] Mohsen Jamali and Martin Ester. 2010. A matrix factorization technique with
trust propagation for recommendation in social networks. In Proceedings of the
fourth ACM conference on Recommender systems. 135–142.

[34] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. 2020.
Carnus: Exploring the privacy threats of browser extension fingerprinting. In
Proceedings of the Symposium on Network and Distributed System Security (NDSS).

[35] Erin Kenneally and David Dittrich. 2012. The menlo report: Ethical principles
guiding information and communication technology research. Available at SSRN
2445102 (2012).

[36] I Luk Kim, Weihang Wang, Yonghwi Kwon, Yunhui Zheng, Yousra Aafer, Weijie
Meng, and Xiangyu Zhang. 2018. Adbudgetkiller: Online advertising budget
draining attack. In Proceedings of the 2018 World Wide Web Conference. 297–307.

[37] KiwiBrowser. 2022. https://kiwibrowser.com.
[38] Sicong Liu, Junzhao Du, Anshumali Shrivastava, and Lin Zhong. 2019. Privacy

adversarial network: representation learning for mobile data privacy. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 4 (2019),
1–18.

[39] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. 2008. Sorec: social
recommendation using probabilistic matrix factorization. In Proceedings of the
17th ACM conference on Information and knowledge management. 931–940.

[40] Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin King. 2011. Rec-
ommender systems with social regularization. In Proceedings of the fourth ACM
international conference on Web search and data mining. 287–296.

[41] David JC MacKay, David JC Mac Kay, et al. 2003. Information theory, inference
and learning algorithms. Cambridge university press.

[42] Aaron Mackey and Kurt Opsahl. 2021. Van Buren is a Victory Against
Overbroad Interpretations of the CFAA, and Protects Security Researchers.
EFF. https://www.eff.org/deeplinks/2021/06/van-buren-victory-against-over
broad-interpretations-cfaa-protects-security.

[43] Mohammad Malekzadeh, Richard G Clegg, Andrea Cavallaro, and Hamed Had-
dadi. 2019. Mobile sensor data anonymization. In Proceedings of the international
conference on internet of things design and implementation. 49–58.

[44] Wei Meng, Xinyu Xing, Anmol Sheth, Udi Weinsberg, and Wenke Lee. 2014.
Your online interests: Pwned! a pollution attack against targeted advertising. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. 129–140.

[45] Andriy Mnih and Russ R Salakhutdinov. 2007. Probabilistic matrix factorization.
Advances in neural information processing systems 20 (2007), 1257–1264.

[46] Mozilla. 2022. Firefox rolls out Total Cookie Protection by default to all users
worldwide . https://blog.mozilla.org/en/mozilla/firefox-rolls-out-total-cookie-
protection-by-default-to-all-users-worldwide/.

[47] Mozilla page visibility API. 2022. https://developer.mozilla.org/en-US/docs/Web/
API/Page_Visibility_API.

[48] Helen Nissenbaum and Howe Daniel. 2009. TrackMeNot: Resisting surveillance
in web search. Oxford: Oxford University Press (2009).

[49] O’Flaherty. 2021. The 1 Facebook Setting You Should Change Now.
https://www.forbes.com/sites/kateoflahertyuk/2021/11/20/facebook-has-
hijacked-your-news-feed-heres-how-to-get-it-back/?sh=4c942aa62e79.

[50] OpenAI. 2022. OpenAI Baselines: ACKTR & A2C. https://openai.com/blog/baseli
nes-acktr-a2c/.

[51] Javier Parra-Arnau, Jagdish Prasad Achara, and Claude Castelluccia. 2017. Myad-
choices: Bringing transparency and control to online advertising. ACM Transac-
tions on the Web (TWEB) 11, 1 (2017), 1–47.

535

https://www.law.cornell.edu/uscode/text/18/1030
https://foundation.mozilla.org/en/research/library/user-controls/report/
https://foundation.mozilla.org/en/research/library/user-controls/report/
https://blog.chromium.org/2020/11/tab-throttling-and-more-performance.html
https://blog.chromium.org/2020/11/tab-throttling-and-more-performance.html
https://remotedesktop.google.com/access
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API
https://developer.mozilla.org/en-US/docs/Web/API/HTML_DOM_API
https://blog.youtube/inside-youtube/on-youtubes-recommendation-system/
https://blog.youtube/inside-youtube/on-youtubes-recommendation-system/
https://www.google.com/account/about
https://support.google.com/google-ads/answer/2497941?hl=en#zippy=%2Cin-market-segments%2Caffinity-segments
https://support.google.com/google-ads/answer/2497941?hl=en#zippy=%2Cin-market-segments%2Caffinity-segments
https://support.google.com/google-ads/answer/2497941?hl=en#zippy=%2Cin-market-segments%2Caffinity-segments
https://support.google.com/accounts/answer/54068?hl=en
https://support.google.com/accounts/answer/54068?hl=en
https://support.google.com/youtube/answer/6342839?hl=en
https://support.google.com/youtube/answer/6342839?hl=en
https://webhistorian.github.io/
https://webhistorian.github.io/
https://blog.mozilla.org/firefox/hey-advertisers-track-this
https://blog.mozilla.org/firefox/hey-advertisers-track-this
https://kiwibrowser.com
https://www.eff.org/deeplinks/2021/06/van-buren-victory-against-overbroad-interpretations-cfaa-protects-security
https://www.eff.org/deeplinks/2021/06/van-buren-victory-against-overbroad-interpretations-cfaa-protects-security
https://developer.mozilla.org/en-US/docs/Web/API/Page_Visibility_API
https://developer.mozilla.org/en-US/docs/Web/API/Page_Visibility_API
https://www.forbes.com/sites/kateoflahertyuk/2021/11/20/facebook-has-hijacked-your-news-feed-heres-how-to-get-it-back/?sh=4c942aa62e79
https://www.forbes.com/sites/kateoflahertyuk/2021/11/20/facebook-has-hijacked-your-news-feed-heres-how-to-get-it-back/?sh=4c942aa62e79
https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/

Proceedings on Privacy Enhancing Technologies 2023(4) Zhang et al.

[52] Javier Parra-Arnau, David Rebollo-Monedero, and Jordi Forné. 2014. Measur-
ing the privacy of user profiles in personalized information systems. Future
Generation Computer Systems 33 (2014), 53–63.

[53] Nisarg Raval, Ashwin Machanavajjhala, and Jerry Pan. 2019. Olympus: Sensor
Privacy through Utility Aware Obfuscation. Proc. Priv. Enhancing Technol. 2019,
1 (2019), 5–25.

[54] Ashley Rodriguez. 2018. YouTube’s recommendations drive 70% of what we
watch. Quartz. https://qz.com/1178125/youtubes-recommendations-drive-70-of-
what-we-watch.

[55] SentenceTransformers Documentation. 2022. https://www.sbert.net/.
[56] Hanhuai Shan and Arindam Banerjee. 2010. Generalized probabilistic matrix

factorizations for collaborative filtering. In 2010 IEEE International Conference on
Data Mining. IEEE, 1025–1030.

[57] Joan E. Solsman. 2021. YouTube’s AI is the puppet master over most of what you
watch. https://www.cnet.com/news/youtube-ces-2018-neal-mohan/. (2021).

[58] WSJ Staff. 2021. Inside Tiktok’s Highly Secretive Algorithm.
https://www.wsj.com/video/series/inside-tiktoks-highly-secretive-
algorithm/investigation-how-tiktok-algorithm-figures-out-your-deepest-
desires/6C0C2040-FF25-4827-8528-2BD6612E3796.

[59] Oleksii Starov and Nick Nikiforakis. 2017. Xhound: Quantifying the fingerprint-
ability of browser extensions. In 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 941–956.

[60] Reddit User Submissions. 2022. https://files.pushshift.io/reddit/submissions/.
[61] Mozilla Support. 2018. Non-Active-Tabs. https://support.mozilla.org/si/questio

ns/1228604.
[62] Jiliang Tang, Charu Aggarwal, and Huan Liu. 2016. Recommendations in signed

social networks. In Proceedings of the 25th International Conference on World Wide
Web. 31–40.

[63] Jiliang Tang, Xia Hu, Huiji Gao, and Huan Liu. 2013. Exploiting local and global
social context for recommendation.. In IJCAI, Vol. 13. Citeseer, 2712–2718.

[64] uBlock Origin. 2022. uBlock-Origin. https://ublockorigin.com/.
[65] Xiang Wang, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2017. Item silk road:

Recommending items from information domains to social users. In Proceedings
of the 40th International ACM SIGIR conference on Research and Development in
Information Retrieval. 185–194.

[66] John Wilander. 2020. Full Third-Party Cookie Blocking and More.
https://webkit.org/blog/10218/full-third-party-cookie-blocking-and-more/ .

[67] Wpears. 2018. Don’t Make Me Watch, Page Visibility API Blocker.
[68] Xingyu Xing,Wei Meng, Dan Doozan, Alex C Snoeren, Nick Feamster, andWenke

Lee. 2013. Take this personally: Pollution attacks on personalized services. In
22nd {USENIX} Security Symposium ({USENIX} Security 13). 671–686.

[69] Yandex. 2022. https://yandex.com.
[70] Bo Yang, Yu Lei, Jiming Liu, and Wenjie Li. 2016. Social collaborative filtering by

trust. IEEE transactions on pattern analysis and machine intelligence 39, 8 (2016),
1633–1647.

[71] YouTube. 2022. Terms of Service. https://www.youtube.com/static?template=te
rms.

[72] youtube-dl downloads. 2022. https://youtube-dl.org/.
[73] Jiang Zhang, Lillian Clark, Matthew Clark, Konstantinos Psounis, and Peter

Kairouz. 2022. Privacy-utility trades in crowdsourced signal map obfuscation.
Computer Networks 215 (2022), 109187.

[74] Jiang Zhang, Konstantinos Psounis, Muhammad Haroon, and Zubair Shafiq. 2022.
HARPO: Learning to Subvert Online Behavioral Advertising. NDSS (2022).

[75] Zhou Zhao, Qifan Yang, Hanqing Lu, Tim Weninger, Deng Cai, Xiaofei He, and
Yueting Zhuang. 2017. Social-aware movie recommendation via multimodal
network learning. IEEE Transactions on Multimedia 20, 2 (2017), 430–440.

A WHY DP CAN NOT BE GUARANTEED

Theorem A.1. Assume that there is one video, which the obfusca-
tor (𝑂 , a randomized function) can not delete from a user persona (𝑃),
then we can not achieve 𝜖-DP or (𝜖, 𝛿)-DP in terms of protecting the
user persona.

Proof. First, to achieve 𝜖-DP, for any two user personas 𝑃1
and 𝑃2 differing from one video, and for any user persona set P
belonging to the output space of the obfuscator, 𝑃𝑟 (𝑂 (𝑃1) ∈P)

𝑃𝑟 (𝑂 (𝑃2) ∈P) ≤ 𝑒𝜖
should be satisfied. Now, assume that that there is one video 𝑉
which only exists in 𝑃2 but not in 𝑃1, and the obfuscator 𝑂 can not
remove it from 𝑃2 after obfuscation, whichmeans𝑂 (𝑃2) will always
contain video 𝑉 . Then, there exists an user persona set P which
contains user personas without video𝑉 , where 𝑃𝑟 (𝑂 (𝑃1) ∈ P) = 1

but 𝑃𝑟 (𝑂 (𝑃2) ∈ P) = 0. Therefore, 𝑃𝑟 (𝑂 (𝑃1) ∈P)
𝑃𝑟 (𝑂 (𝑃2) ∈P) = +∞ and hence

𝜖 will be infinite in order to bound this worst case.
Second, to achieve (𝜖, 𝛿)-DP, for any two user personas 𝑃1 and

𝑃2 differing from one video, and for any user persona set P be-
longing to the output space of the obfuscator, |𝑃𝑟 (𝑂 (𝑃1) ∈ P) −
𝑒𝜖𝑃𝑟 (𝑂 (𝑃2) ∈ P)| ≤ 𝛿 should be satisfied. Moreover, for 𝛿 to be
meaningful, it has to be inversely proportional to the size of the
dataset, which in our case is enormous (all possible user personas).
However, since there exists an user persona set P without video 𝑉 ,
where 𝑃𝑟 (𝑂 (𝑃1) ∈ P) = 1 but 𝑃𝑟 (𝑂 (𝑃2) ∈ P) = 0, the value of 𝛿
equals 1, which is meaningless in terms of (𝜖, 𝛿)-DP. □

Theorem A.2. Assume that there is one interest category, which
the obfuscator (𝑂 , a randomized function) can not remove from a user
profile (i.e. a list of interest categories) created by YouTube (𝑅), then
we can not achieve 𝜖-DP or (𝜖, 𝛿)-DP in terms of protecting the user
profiles.

Proof. Define the YouTube recommendation system as 𝑅. First,
to achieve 𝜖-DP, for any two user profiles 𝑅(𝑃1) and 𝑅(𝑃2) differ-
ing from one interest category, and for any user profile set R in
the output space of recommendation system, 𝑃𝑟 (𝑅 (𝑂 (𝑃1) ∈R)

𝑃𝑟 (𝑅 (𝑂 (𝑃2) ∈R) ≤ 𝑒𝜖
should be satisfied. Now, assume that there is one interest category
𝐼 which is only in user profile 𝑅(𝑃2) but not in user profile 𝑅(𝑃1),
and the obfuscator𝑂 can not remove it from user profile 𝑅(𝑂 (𝑃2)),
which means user profile 𝑅(𝑂 (𝑃2)) will always contain interest
category 𝐼 . Then, there exists a user profile set R containing user
profiles without interest category 𝐼 , where 𝑃𝑟 (𝑅(𝑂 (𝑃1)) ∈ R) = 1
but 𝑃𝑟 (𝑅(𝑂 (𝑃2) ∈ R) = 0. Therefore, 𝑃𝑟 (𝑅 (𝑂 (𝑃1) ∈R)

𝑃𝑟 (𝑅 (𝑂 (𝑃2) ∈R) = +∞ and
hence 𝜖 will be infinite in order to bound this worst case.

Second, to achieve (𝜖, 𝛿)-DP, for any two user profiles 𝑅(𝑃1) and
𝑅(𝑃2) differing from one interest category, and for any user profile
𝑅(𝑃) in the output space of recommendation system, |𝑃𝑟 (𝑅(𝑂 (𝑃1)) =
𝑅(𝑃)) − 𝑒𝜖𝑃𝑟 (𝑅(𝑂 (𝑃2)) = 𝑅(𝑃)) | ≤ 𝛿 should be satisfied. How-
ever, since there exists a user profile set R containing user pro-
files without interest category 𝐼 , where 𝑃𝑟 (𝑅(𝑂 (𝑃1) ∈ R) = 1 but
𝑃𝑟 (𝑅(𝑂 (𝑃2) ∈ R) = 0, the value of 𝛿 equals 1, which is meaningless
in terms of (𝜖, 𝛿)-DP. □

B SYSTEM DESIGN DETAILS

B.1 MDP

The obfuscation video selection process of obfuscator can be for-
mulated as a Markov Decision Process (MDP) defined as follows:

1) Obfuscation step: As shown in Figure 8, at the beginning of
each time step, a video will be played. If the played video is an
obfuscation video injected by the obfuscator , we refer to this time
step as an obfuscation step. We denote the number of videos that
have been played up to obfuscation step 𝑡 by 𝑛𝑡 . Note that we
use the obfuscation budget 𝛼 as a system parameter to control the
percentile of obfuscation videos. At each time step, with probability
𝛼 , an obfuscation video will be injected by obfuscator into the user
persona.

2) State: We define state 𝑠𝑡 ∈ S at obfuscation step 𝑡 as 𝑠𝑡 =

[𝑣1, ..., 𝑣𝑛𝑡], where 𝑛𝑡 is the total number of videos played until
the beginning of obfuscation step 𝑡 , and S is the state space of the
MDP.

536

https://qz.com/1178125/youtubes-recommendations-drive-70-of-what-we-watch
https://qz.com/1178125/youtubes-recommendations-drive-70-of-what-we-watch
https://www.sbert.net/
https://www.cnet.com/news/youtube-ces-2018-neal-mohan/
https://www.wsj.com/video/series/inside-tiktoks-highly-secretive-algorithm/investigation-how-tiktok-algorithm-figures-out-your-deepest-desires/6C0C2040-FF25-4827-8528-2BD6612E3796
https://www.wsj.com/video/series/inside-tiktoks-highly-secretive-algorithm/investigation-how-tiktok-algorithm-figures-out-your-deepest-desires/6C0C2040-FF25-4827-8528-2BD6612E3796
https://www.wsj.com/video/series/inside-tiktoks-highly-secretive-algorithm/investigation-how-tiktok-algorithm-figures-out-your-deepest-desires/6C0C2040-FF25-4827-8528-2BD6612E3796
https://files.pushshift.io/reddit/submissions/
https://support.mozilla.org/si/questions/1228604
https://support.mozilla.org/si/questions/1228604
https://yandex.com
https://www.youtube.com/static?template=terms
https://www.youtube.com/static?template=terms
https://youtube-dl.org/

A Utility-Preserving Obfuscation Approach for YouTube Recommendations Proceedings on Privacy Enhancing Technologies 2023(4)

3) Action: At obfuscation step 𝑡 , an action 𝑎𝑡 will be taken by the
MDP. We define action 𝑎𝑡 ∈ A as the obfuscation video selected by
the MDP policy, where A is the action space of the MDP, i.e. the
obfuscation videos set in our application.

4) State Transition: We define the state transition function as
T (·|S,A) : S × A × S → R, which outputs the probability of
𝑠𝑡+1 = 𝑠 ′ given 𝑠𝑡 = 𝑠 and 𝑎𝑡 = 𝑎 as T (𝑠𝑡+1 = 𝑠 ′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎). In
our system, state 𝑠𝑡+1 contains all videos played until state 𝑠𝑡 , the
action 𝑎𝑡 (i.e. the obfuscation videos selected at obfuscation step
𝑡), and all the videos played by users between obfuscation step 𝑡
and obfuscation step 𝑡 + 1. Note that the randomness of this MDP
comes from the random injection of obfuscation videos.

5) Reward: We associate a reward 𝑟𝑡 for the action 𝑎𝑡 at obfusca-
tion step 𝑡 . Specifically, we define 𝑟𝑡 as the difference of the privacy
metric 𝑃 (see Eq. (1)) between this obfuscation step and the previous
one, i.e., 𝑟𝑡 = 𝑃𝑡 − 𝑃𝑡−1, where 𝑃𝑡 represents the privacy metric
value at obfuscation step 𝑡 , calculated based on the recommended
video class distributions of a non-obfuscated user persona and the
corresponding obfuscated user persona at the end of obfuscation
step 𝑡 .

6) Policy: The policy of the MDP can be defined as 𝜋 (·|S) :
S × A → R, which outputs the probability of 𝑎𝑡 = 𝑎 given 𝑠𝑡 = 𝑠
as 𝜋 (𝑎𝑡 = 𝑎 |𝑠𝑡 = 𝑠). In our system, the obfuscator is modeled as
the policy in MDP, which outputs the probability distribution of
obfuscation video selection. Suppose we have𝑀 obfuscation videos
in the obfuscation video set (A), then we have

∑𝑖=𝑀
𝑖=1 𝜋 (𝑎𝑡 = 𝑖 |𝑠𝑡) =

1, where 𝑎𝑡 = 𝑖 represents the selection of 𝑖-th obfuscation video.
At each obfuscation step 𝑡 , we randomly choose one obfuscation
video based on a multinomial distribution parameterized by 𝐴𝑡 =
[𝜋 (𝑎𝑡 = 1|𝑠𝑡), · · · , 𝜋 (𝑎𝑡 = 𝑀 |𝑠𝑡)], conditioning on the current state
𝑠𝑡 . The goal of solving this MDP is to find the optimal policy, such
that the accumulative rewards

∑𝑡=𝑇
𝑡=1 𝑟𝑡 can be maximized. Note

that 𝑇 is the total number of obfuscation steps since we consider a
finite-horizon MDP.

… …

State 𝑠! State 𝑠!"#

𝑣#$ 𝑣%!
$ 𝑣%!"#

$𝑣%!"#
& 𝑣%!"#

&

𝑇

𝑛!

Obfuscation step

Time step

𝑡

𝑛"

Policy
Action 𝑎! Reward 𝑟!

𝑡 + 1

𝑛"#$

Figure 8: MDP for the obfuscator.

Note that the state 𝑠𝑡 (i.e. video sequence) will be continuously
updated by appending new videos and is only growing unless users
manually delete the history. De-Harpo is designed to take the
whole state 𝑠𝑡 as input of its obfuscator to select an obfuscation
video, and then run denoising at each step. Hence, the calculation
made by De-Harpo at each step will depend on the calculation
made by De-Harpo in the previous step, which is consistent with
how YouTube works.

Moreover, we clarify that Harpo [74] and De-Harpo use a similar
MDP formulation but with a different state (video sequence instead
of webpage sequence) and reward function (privacy metric). They
apply the same RL algorithm (A2C) to train the obfuscator, though
the implementation differs due to MDP differences.

Transcript

Category
View count

Average rating

Metadata
embedding 𝑒!"

Transcript
embedding 𝑒!#

Metadata

Pretrained
Transformers

Video embedding 𝑒!

Concatenate

Video 𝑣!

(a) Video embedding

…𝑣!" 𝑣#"

𝑒! 𝑒#!

LSTM LSTM…

…

𝑐!"

𝑐$"

…

!
!"#

$

𝑐!% = 1

𝑉"

𝐶"

FC

(b) Surrogate model

Figure 9: Details of system design.

B.2 Video Embedding

As demonstrated in Figure 9a, we start by extracting the category,
view count and average rating of each video from its metadata. We
then use an one-hot embedding to represent the category of each
video (with dimension 18)8, and use two real numbers to represent
the standardized view count and average rating of each video. By
combining them together, we derive the metadata embedding with
20 elements. We denote the metadata embedding for video 𝑣𝑖 as
𝑒𝑀
𝑖

∈ R20.
Next, we use a pretrained natural language processing (NLP)

Transformer from [55] to generate the transcript embedding for
the video transcript. Since the pretrained NLP Transformer has a
constraint on the maximal number of words in the input text (256
words in our case), we firstly split video transcript with more than
256 words into multiple transcript chunks, each of which contains
256 words. Then, for each transcript chunk, we use it as input of
the NLP model and get the output embedding vector. We take the
average of these embedding vectors for these transcript chunks
to derive the final transcript embedding. We denote the transcript
embedding for video 𝑣𝑖 as 𝑒𝑇𝑖 ∈ R384, which is a real vector with
dimension 384. Note that if a video does not contain any transcript
(e.g. music videos), we use the video title and description as an
alternative of transcript to generate the transcript embedding. Last,
we concatenate the metadata and transcript embeddings and derive
the complete video embedding vector 𝑒𝑖 = [𝑒𝑀

𝑖
, 𝑒𝑇
𝑖
] ∈ R404.

B.3 YouTube Surrogate Model

Prior approaches to learn latent user-item relationships for rec-
ommendation systems (e.g., matrix factorization [33, 39, 40, 45, 56,
62, 63, 70], neural MF [8, 14, 20, 21, 24, 25, 65, 75]) are not scalable
because they rely on a fixed set of users and items. To address this
limitation, recent work has focused on embedding based recommen-
dation systems that predict the next item clicked by users from their
item-click history and thus can scale to a large and dynamic set of
users and items [9, 11]. YouTube, deals with a large influx of videos

8Note that YouTube has 17 video categories, and we add an additional “none” category
for videos without category metadata. Hence, the one-hot-embedding for category
information has a dimension of 18.

537

Proceedings on Privacy Enhancing Technologies 2023(4) Zhang et al.

and users everyday [22] and thus uses a scalable recommendation
system that predicts the next watched videos based on the embed-
dings of the past watched videos and other factors [11]. Similar
to YouTube’s embedding based recommendation architecture, our
surrogate model also takes as input the video embeddings. Slightly
different from YouTube’s embedding based recommendation ar-
chitecture and as explained in Section 3.2, our surrogate model
is designed to predict the recommended video class distribution,
instead of making video-level recommendations.

C EXPERIMENTAL SETUP

C.1 Sock Puppet Based Persona Model

Specifically, we denote this model as𝐺 (𝐷,𝑇) parameterized by 𝐷 ,
the depth of the recommendation trail, and 𝑇 , the total number
of videos in the watch history, and we define the recommendation
trail as a sequence of videos that are recommended and subse-
quently watched by a user starting from the given seed video. At
each step of the recommendation trail, we randomly select one “up
next" video to watch from the list of recommended videos with uni-
form probability. We repeat this process until the recommendation
trail reaches the depth 𝐷 at which point we check if the user has
watched 𝑇 videos. If not, we randomly select another seed video
from the user’s homepage and repeat the process until 𝑇 videos
have been watched. Note that we randomly select around 20,000
popular videos from a set of popular YouTube channels as our seed
videos. For each seed video, we randomly generate a recommendation
trail and use it as a synthetic user persona. Note that we collect
seed videos used for generating sock puppet randomly from 200
popular YouTube channels, which include videos from all YouTube
video categories.

C.2 Data Preparation

Video Embedding Preparation. We use youtube-dl, a free soft-
ware for downloading YouTube videos [72], to collect metadata and
transcripts of videos. For metadata, we extract the category, average
rating, view count, title, and description of each video, which is
then used to generate the metadata embedding of each video. For a
transcript, after we download it, we extract the transcript text, split
it into text chunks with 256 words each, and use the pretrained
Transformer all-MiniLM-L6-v2 from [55] to convert them into
transcript embeddings. As described in Section 4.1, we combine
the metadata and transcript embeddings to generate the final video
embedding.
User Persona Dataset Collected for Surrogate Model. We con-
struct 10,000 sock puppet based personas and 10,000 Reddit user
personas with 40 videos each. For each of these personas, we collect
the YouTube homepage recommended videos and derive the recom-
mended video class distribution. We use these constructed personas
as inputs (𝑉𝑢) and the associated recommended video class distribu-
tions as labels (𝐶𝑢) to build the dataset for surrogate model training
and testing. As discussed in Section D, we use supervised learning
to train the surrogate model.
User Persona Dataset Collected for Obfuscator and Denoiser.

To evaluate the effectiveness of the obfuscator model against the
real-world YouTube recommendation system, we need to construct

both non-obfuscated and obfuscated user personas. Specifically,
for each obfuscator model under an obfuscation budget 𝛼 , we first
construct 2,936 non-obfuscated user personas 9 with 40 videos each
and the corresponding 2,936 obfuscated user personas generated by
the obfuscator with on average 40 ∗ 𝛼

1−𝛼 videos each. Then for each
pair of non-obfuscated and obfuscated user persona (𝑉𝑢 and 𝑉𝑜),
we collect their associated recommended videos from the YouTube
homepage and derive their recommended video class distribution
(𝐶𝑢 and 𝐶𝑜).

Moreover, we use the same user persona data collected for the
obfuscator evaluation to create the dataset for the denoiser training
and testing (see Section D). Specifically, each input of this dataset
consists of one non-obfuscated user personas (𝑉𝑢), the correspond-
ing obfuscated user persona generated by the obfuscator (𝑉𝑜), and
its associated recommended video class distribution (𝐶𝑜). Each label
of this dataset is the recommended video class distribution of the
non-obfuscated user persona (𝐶𝑢).
Obfuscation Video Set. We create our obfuscation video set by
combining played videos during persona construction and videos
appearing in homepage recommendations of all personas. In total,
we collect approximately one million YouTube videos and use them
as the obfuscation video set. Note that the obfuscator will select one
obfuscation video from the obfuscation video set at each obfuscation
step.

C.3 Ethical Issues Related to Reddit User and

Real-world User Personas

For the Reddit dataset, it is deemed exempt by IRB, and the dataset is
publicly available and pre-crawled at https://files.pushshift.io/reddit/.
We will de-identify usernames before public data release. For the
YouTube users’ dataset we obtained an IRB approval and conducted
experiments along the Menlo Report guidelines [35]: Users con-
sented to their data being collected for research purposes. We will
not publicly release the dataset.

D TRAINING AND TESTING

Surrogate Model.We split the user persona dataset collected for
the surrogate model in 80% for training and 20% for testing. We
use stochastic gradient descent for the surrogate model to mini-
mize its loss, which is defined as the KL divergence between its
output distribution and the actual recommended video category
distribution of input user persona. We train our surrogate model
for 50 epochs, where all the training samples are used once at each
training epoch. We report that the average loss of our surrogate
model on the testing dataset is 0.55.
Obfuscator. Recall that the obfuscator needs to take as input the
non-obfuscated user personas. We use the training and testing user
personas in the dataset collected for the surrogate model as the
non-obfuscated user personas, and train the obfuscator to generate
obfuscated user personas that maximize privacy (see Section 3.4).
Specifically, we train the obfuscator against the surrogate model for
50 epochs, where all the training user personas are used once at

9Note that 2,936 non-obfuscated user personas consist of 1,000 sock puppet based
personas, 1,000 Reddit user personas, and the 936 real user personas from real-world
users.

538

A Utility-Preserving Obfuscation Approach for YouTube Recommendations Proceedings on Privacy Enhancing Technologies 2023(4)

each epoch. After that, we use the testing user personas to evaluate
the obfuscator against both the surrogate model and the real-world
YouTube recommendation system, and report the average privacy
metrics (𝑃 and 𝑃𝑁𝑜𝑟𝑚). Note that to evaluate the performance of
the obfuscator against YouTube, we construct non-obfuscated and
obfuscated user personas to collect real-world data from YouTube
(see Section 5.2). Moreover, when training the obfuscator , we use
the on-policy RL algorithm A2C (Advantage Actor and Critic)[50],
which is one of the state-of-the-art on-policy RL algorithms. Note
that we choose the on-policy RL algorithm since it fits our applica-
tion well, where the obfuscator (RL agent) needs to keep interacting
with the YouTube recommendation system (environment) to im-
prove the policy in an online fashion due to the dynamics of the
YouTube recommendation system.
Denoiser.As described in Section 5.2, we create a dataset with 1,800
samples to train and test the denoiser , where 80% of the samples
are used for training and 20% are used for testing. Specifically,
the denoiser is trained via stochastic gradient descent to minimize
the KL divergence between the output of the denoiser 𝐶𝑢 , i.e. the
estimated recommendation video category distribution of a non-
obfuscated user persona, and the actual distribution𝐶𝑢 .We train the
denoiser for 50 epochs, where all the training samples are used once
at each training epoch. We test the denoiser using the remaining
20% samples and report the average utility metrics (𝑈𝑁𝑜𝑟𝑚

𝐺𝑎𝑖𝑛
and

𝑈 𝐿𝑜𝑠𝑠).
Note that when we testDe-Harpo on sock puppet based persona

dataset, we use the models of De-Harpo trained on sock puppets
dataset; when we test De-Harpo on Reddit user persona dataset,
we use the models of De-Harpo trained on sock puppets dataset;
when we test De-Harpo on Real-world YouTube user dataset, we
use the models of De-Harpo trained on sock puppets dataset.

E SYSTEM OVERHEAD ANALYSIS

We evaluate the system overhead of De-Harpo in terms of CPU and
memory usage and the video page load time using a an Intel i7 work-
station with 64GB RAM on a campus WiFi network. As described
in Section 4.6, De-Harpo consists of an obfuscator component that
always runs in the background and a denoiser component that only
runs when the user visits the YouTube homepage. We separately
report their overhead below.

1) Obfuscator: We select an obfuscation budget 𝛼 from {0.0, 0.2,
0.3, 0.5}, where 𝛼 = 0.0 is used as the baseline (i.e. no obfuscation
videos). For each obfuscation budget 𝛼 we construct 10 user per-
sonas with 15 user videos each, and the browser extension visits
15 · 𝛼 obfuscation videos in the background. We find that the in-
creased CPU usage is less than 5% and the increased memory usage
is less than 2%, even for obfuscation budget 𝛼 = 0.5. Moreover, the
change in video page load time of user videos is less than 2% as 𝛼
increases. Hence, we conclude that the obfuscator component in
De-Harpo has a negligible impact on the user experience overall.

2) Denoiser: The YouTube’s homepage load time with De-Harpo
is 1.79 seconds, which represents just a 37.8 millisecond increase as
compared to the homepage load time without De-Harpo. Specif-
ically, it takes less than 24.6 millisecond to get the “noisy" rec-
ommended videos from the homepage, 13.0 millisecond for the

denoising module to get “clean" recommended videos, and 0.2 mil-
lisecond for showing these videos in the homepage. In terms of the
CPU and memory usage, the denoiser of De-Harpo will increase
them by 27.1% and 2.2% respectively, which is mainly due to run-
ning the ML model in the denoising module. Note that the increase
of the CPU usage (from 12.9% to 40.0%) lasts for just 13 milliseconds
while the ML model runs and returns to the normal level right after
that. It is worth noting that the aforementioned measurements are
conducted for the live version of De-Harpo. In practice, we can
reduce the overhead even further by implementing a cached version
of De-Harpo, which caches the YouTube homepage periodically in
the background and simply shows the cached homepage when the
user navigates to the YouTube homepage. Hence, we conclude that
the denoiser component in De-Harpo has a negligible impact on
the user experience overall.

F DISCUSSION OF JOINT TRAINING OF

OBFUSCATOR AND DENOISER

The obfuscator and denoiser in De-Harpo are separately trained
and their joint training might be much more effective. We experi-
mented with jointly training the obfuscator and the denoiser using
multi-objective reinforcement learning. Specifically, we started by
training a denoiser model. Then, we trained the obfuscator to maxi-
mize the privacy against the surrogate model, while minimizing the
loss of the denoiser with obfuscated user personas as inputs. After
we trained the obfuscator , we retrained the denoiser and repeat the
above process until both the obfuscator and the denoiser converge.
We found that jointly training did not improve privacy or utility
because of our use of the surrogate model, instead of YouTube in
the wild, for practical reasons. When trained against the surrogate
model, denoiser was able to trivially replicate the surrogate model.
While in theory we could jointly train the obfuscator and the de-
noiser in the wild to avoid this issue, it would not be practical due
to its time consuming nature. Future work can look into hybrid
surrogate and in the wild joint training of obfuscator and denoiser .

539

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Statement
	2.2 Threat Model

	3 Proposed Approach
	3.1 Overview
	3.2 System Preliminaries
	3.3 Performance Goals and Guarantees
	3.4 System Model
	3.5 The ``Secret" of the Denoiser

	4 System Design and Implementation
	4.1 Video Embedding
	4.2 Obfuscator Model
	4.3 Denoiser Model
	4.4 Repopulating Recommended Videos
	4.5 YouTube Surrogate Model
	4.6 De-Harpo Implementation

	5 Experimental Setup
	5.1 User Personas
	5.2 Data Collection
	5.3 Training and Testing
	5.4 Baselines

	6 Evaluation
	6.1 Privacy
	6.2 Utility
	6.3 Varying the Obfuscation Budget
	6.4 Overhead
	6.5 Stealthiness
	6.6 De-obfuscation Robustness
	6.7 Personalization

	7 Discussion
	7.1 Ethical Considerations
	7.2 Limitations & Future Work

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Why DP can not be guaranteed
	B System Design Details
	B.1 MDP
	B.2 Video Embedding
	B.3 YouTube Surrogate Model

	C Experimental setup
	C.1 Sock Puppet Based Persona Model
	C.2 Data Preparation
	C.3 Ethical Issues Related to Reddit User and Real-world User Personas

	D Training and Testing
	E System Overhead Analysis
	F Discussion of Joint Training of Obfuscator and Denoiser

