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ABSTRACT
The differentially private (DP) selection problem is a fundamental

building block in the private literature that is commonly solved

with the exponential mechanism. It is well known that efficiency is

the major drawback of the exponential mechanism, as the utility

function must be computed for all elements in the domain. Genetic

algorithms (GAs) use the principles of evolution in nature to effi-

ciently search through large domains and select the best candidate.

We observe that GAs have many appealing properties for DP Se-

lection. These include being robust to noisy objectives, placing no

restriction on the utility function, and efficient runtime for large

domains. However, prior work investigating DP GAs has shown

poor utility in practice and often gives the highest utility when zero
generations are conducted (indicating that GA operations are not

beneficial under DP). This work provides a new DPGA based on

the simple GA that addresses the weaknesses of prior solutions. We

reduce the destructive nature of previous GA operators and utilize

several techniques to reduce the noise from DP. Our modifications

allow us to utilize the GA operators over multiple generations (un-

der DP) and improve the GA’s overall utility over zero generation

techniques. Our work shows that private GAs are competitive with

state-of-the-art general and problem-specific solutions to the DP

selection problem, with runtime sublinear in the domain size.
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1 INTRODUCTION
A fundamental problem in data science is selecting a candidate

from a set of items that maximizes some objective function over the

dataset. Genetic algorithms (GAs) use the principles of evolution

in nature to search through large domains and find these optimal

candidates efficiently. For example, one might want to choose the

most representative features [2] or find the best ML model parame-

ters [43] for a given dataset. However, these datasets often contain

sensitive information, such as health care records. Thus, protecting

the participants’ privacy is crucial. An increasingly popular notion

for protecting the privacy of individuals while allowing the compu-

tation of aggregate statistics is differential privacy (DP). Differential

privacy guarantees that the output of an algorithm is approximately

the same, regardless of the participation of any single user. The

privacy parameter 𝜖 defines how similar the outputs must be and

determines the trade-off between privacy and utility. The intuitive

guarantee, along with a tunable privacy parameter, has led to wide
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adoption of DP by organizations such as Google [20], Microsoft [12],

Apple [11], and the U.S. Census Bureau [38].

We focus on the problem of differentially private selection, which

involves selecting an item from a set of candidates that approxi-
mately maximizes a given objective function, while preserving dif-
ferential privacy. The most popular mechanism for solving this

problem is the exponential mechanism [40]. The exponential mech-

anism can be used as a standalone algorithm for problems like heavy

hitter or median [18, 37] calculations. A recent line of work has

found that with the right utility function, the exponential mecha-

nism can outperform state-of-the-art solutions for simple problems

like mean estimation [6, 23, 44]. The exponential mechanism also

acts as a building block for more sophisticated algorithms such as

principal component analysis [8], synthetic data generation [53],

and empirical risk minimization [5]. A significant weakness of the

exponential mechanism is scalability. The exponential mechanism

requires that the utility function is evaluated for all possible candi-

dates in the domain. This results in exponential runtime for many

problems, such asMLmodel fitting, 𝑘-medians clustering, andmean

estimation. One possible solution is the sub-sampled exponential

mechanism; however, this technique depends heavily on the utility

of the uniform sampling [33]. Other solutions reduce the candidate

space in a data-dependent way; however, to maintain privacy, this

typically requires a non-negligible probability the algorithm will

return no output [17, 44].

Genetic algorithms usemeta-heuristics to efficiently search through

large domains and find high utility solutions. Like the exponential

mechanism, GAs require minimal assumptions about the objective

function and can be applied to a wide range of problems. The run-

time of the GA depends on hyperparameters such as the number

of generations which are typically sublinear in the domain size.

GAs also tend to be robust to noisy objective functions [51]. De-

spite these appealing properties, there have been no promising

experimental results applying GAs to the DP selection problem.

The fundamental challenge of adding DP to the GA is that each

selection from the population incurs a privacy cost that is deducted

from the total privacy budget 𝜖 . This induces a trade-off; the more

selections we make, the noisier each selection becomes in order to

preserve privacy.

Zhang et al. conducted the first and only investigation into the

concept of DP GAs with their algorithm PrivGene [54]. While Priv-

Gene lays an interesting theoretical foundation, it exhibits poor

utility in practice [50]. Su et al. speculate that the poor performance

is due to the destructive nature of the crossover operator and the

fact that GAs need a large number of iterations to converge (each

of which consumes privacy budget) [50]. Additionally, we observe

that when using the PrivGene algorithm, the highest utility is given

when zero generations are conducted. That is, PrivGene often uses

all of the privacy budget in a single (higher utility) selection, rather

than spreading the privacy budget over multiple generations and

540

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0124


Differentially Private Simple Genetic Algorithms Proceedings on Privacy Enhancing Technologies 2023(4)

utilizing the GA operations. This suggests that, using current tech-

niques, evolutionary operators are not helpful in the private setting.

In this work, we propose a new DPGA based on the classic simple
GA [24]. Our approach builds on some of the ideas in PrivGene, such

as using truncation selection in conjunction with the exponential

mechanism to ensure DP. However, we make several important

changes to overcome the drawbacks of PrivGene. First, we prevent

the crossover operator from destroying good candidates by using

elitism, which protects the best candidates by copying them directly

to the new population. By using the more popular simple GA, we

introduce standard hyperparameters that control the impact of both

crossover and mutation operations. Finally, we employ a number

of techniques to reduce the noise from DP in order to make more

generations feasible while maintaining sufficient selection pressure.

After designing our GA, we empirically evaluate the utility of our

solution on two example problems: logistic regression (convex) and

𝑘-medians (non-convex). We investigate the effect of DP on the

hyperparameters of the simple GA and suggest good default values

that generalize across the datasets and problems we considered. In

particular, we find that our new DPGA performs best with a higher

number of generations (always more than one for 𝜖 ∈ [0.1, 1]). That
is, GA operations can be utilized under DP and indeed help find

better solutions than applying all the privacy budget in one shot.

We also evaluate our DPGA against both general and problem-

specific solutions to the DP selection problems we consider. We

find that our DPGA consistently achieves better utility than the

sub-sampled exponential mechanism for 𝜖 > 0.32. Our DPGA is

competitive in utility or efficiency when compared against state-of-

the-art problem-specific techniques in private logistic regression

and 𝑘-medians. To summarize, we show that despite previous ef-

forts, GA operations can be utilized under the constraints of DP and

tend to result in higher utility than previously shown. Furthermore,

we show that DP GAs provide a competitive solution to the more

general DP selection problem that is sublinear in the size of the

candidate space.

2 PRELIMINARIES
2.1 Genetic Algorithms
The Genetic Algorithm (GA) is a metaheuristic that mimics the

evolutionary concept of natural selection [22, 24]. The idea was

first introduced by John Holland in the 1960s and has since been

developed extensively [27]. The foundations of the GA are very

simple probabilistic operations, that when applied carefully and

repeatedly, enable an effective search through complex solution

spaces. To use a GA, we require an encoding of possible solutions,

which we call chromosomes, and a utility function. The utility func-

tion takes as input a chromosome (encoded solution vector) and

returns a real number representing the effectiveness of the chromo-

some at solving the problem. To guide the search, a GA evaluates

this utility function directly and does not require derivatives or any

auxiliary knowledge. As such, there are minimal restrictions on the

types of utility functions that can be considered.

2.2 The Simple GA
There are many variants of the GA; we focus on the simple GA as

defined by Mitchell [42] for this work. The simple GA consists of

four main operations: initialization, selection, crossover, and muta-

tion. There are many possible versions of each of these operations.

We will describe the most simple example of each. In Algorithm 2.1,

we lay out the basic procedure of the simple GA and how each of

the four main operations are invoked. As input, the algorithm takes

a utility function and a set of four hyperparameters which we will

describe as they are used.

The first step in the algorithm (line 1) is to initialize the popula-

tion with 𝑁𝑝 chromosomes. Most commonly, these chromosomes

are sampled uniformly at random from the domain of possible chro-

mosomes. We then enter the algorithm’s main loop (line 2). Each

iteration of this loop represents a generation. For simplicity, we

assume a fixed number of generations (𝑁𝑔). In each generation,

the simple GA creates an entirely new population based on the

current population. We denote this new population P ′ and build

this population using the while loop in line 4.

To create the new population, we repeatedly use the remaining

threemain operators: selection, crossover, andmutation. First, using

the selection operator, we select two parent chromosomes 𝑥1 and

𝑥2 (line 5). The most common way to do this is Goldberg’s roulette

wheel or fitness proportionate selection, which randomly samples

parents weighted linearly by their utility. Next (line 6), we use the

𝑝𝑐 hyperparameter to decide if we should invoke the crossover op-

erator (line 7) or simply return the parents themselves (line 9). The

simplest crossover operator is the single-point crossover operator.

For this approach, we choose a random point in the chromosome

and create children by taking everything before that point from 𝑥1
and everything after from 𝑥2 and vice versa for the other child.

Once we have the set of children, C, the mutation operator is

applied to each child (line 10). The most basic mutation operator

iterates through each dimension of the given chromosome and, with

a very small probability 𝑝𝑚 , replaces the value with a uniformly

random one. Finally, after mutation, the children are added to the

new population (line 11). This process (selection, crossover, and

mutation) repeats until we have a new population P ′, which is the

same size as the old one, P. This marks the end of a generation. As

the final step in each generation, we discard the current population

and replace it with the new one (line 12). After all 𝑁𝑝 generations

have passed, we are left with a population P containing some

of the best chromosomes we have seen so far. Typically, the last

step (line 13) is to greedily choose the best chromosome from that

population to solve the problem.

2.3 Differential Privacy
We work in what is called the central model of DP, where a user

sends their data to a trusted curator who collects the data and runs

certain private algorithms on the private data. That is, the curator is

assumed to have access to the entire private dataset 𝐷 in plaintext.

We denote a general private algorithm asM that returns some

aggregate statisticM(𝐷) ∈ R. More formally, differential privacy

can be defined as follows.

Definition 2.1 (Differential Privacy). A randomized algorithm

M : D ↦→ R is (𝜖, 𝛿)-DP, if for any pair of neighbouring datasets

𝐷,𝐷 ′ ∈ D, and for any 𝑇 ⊆ R we have

Pr[M(𝐷) ∈ 𝑇 ] ≤ 𝑒𝜖 Pr[M(𝐷 ′) ∈ 𝑇 ] + 𝛿. (1)
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Algorithm 2.1 The Simple GA

Inputs: 𝑢: Utility function.

𝑝𝑐 : Fixed probability we do crossover.

𝑝𝑚 : Fixed probability we do mutation.

𝑁𝑔 : Number of generations.

𝑁𝑝 : Size of the population.

1: P = initialize(𝑁𝑝 )

2: for generation in range(𝑁𝑔) do
3: P ′= ∅
4: while |P ′ | ≤ 𝑁𝑝 do
5: 𝑥1, 𝑥2 = Select(𝑢 (P))
6: if Bernoulli(𝑝𝑐 ) then
7: C = Crossover(𝑥1, 𝑥2)
8: else
9: C = 𝑥1, 𝑥2

10: C =Mutate(C, 𝑝𝑚)

11: P ′ = P ′ ∪ C
12: P = P ′
13: return 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑢 (P))

The parameter 𝜖 captures how much sensitive information is

leaked by the mechanismM. The lower the value of 𝜖 , the better

the privacy. Typically, values less than 𝜖 = 1 are considered to

provide high privacy. The parameter 𝛿 makes it easier to satisfy

DP by allowing a small chance of failure in the guarantee. If 𝛿 ≠ 0,

then we say that the mechanism provides approximate differen-

tial privacy. When 𝛿 = 0, it satisfies pure differential privacy. It

is typical to choose 𝛿 < 1/𝑛, where 𝑛 is the number of elements

in the dataset [18]. We say that two datasets are neighbouring if

|𝐷 | = |𝐷 ′ | = 𝑛 and |𝐷 ∩ 𝐷 ′ | = 𝑛 − 1. That is, we allow the replace-

ment of a single data point. This is known as the bounded definition

of differential privacy. If we apply a differentially private mecha-

nism(s) sequentially, the resulting privacy parameter is simply the

sum of the privacy parameter in each step. We call this the naive

composition theorem [18]. Another useful property of differential

privacy is the post-processing lemma [18]. This lemma states that

once a DP result has been published, we can apply any additional

processing we wish without affecting the privacy guarantee.

In this work, we focus on maximizing a given utility function

while satisfying DP. We assume a public set of candidate items R
(e.g. weights to a machine learning model or locations of a new

facility) and corresponding utility function 𝑢 : D × R → R. The
objective is to return a candidate item 𝑟 ∈ R that approximately

maximizes 𝑢 (𝐷, 𝑟 ), whilst satisfying differential privacy. In order

to prove DP in this scenario, we must first introduce the concept of

sensitivity.

Definition 2.2. The sensitivity of a utility function𝑢 : D×R → R
is defined as

Δ(𝑢) = max

𝑟 ∈R
max

𝐷,𝐷′∈D
|𝑢 (𝐷, 𝑟 ) − 𝑢 (𝐷 ′, 𝑟 ) | (2)

where 𝐷, 𝐷 ′ are neighbouring datasets.

The exponential mechanism, introduced by McSherry and Tal-

war, is themost common approach for privatelymaximizing a utility

function [40]. The exponential mechanism randomly chooses a can-

didate following a specific distribution such that the utility function

exponentially affects the probability of selecting a given output; the

higher the utility, the larger the chance of selection. At the same

time, the privacy parameters 𝜖 and Δ(𝑢) smooth the distribution to

ensure the resulting selection is private (when 𝜖 = 0 the distribution

is uniform).

Definition 2.3 (Exponential Mechanism [40]). The exponential
mechanism defines a probability distribution in which each output

𝑟 , is sampled with the following probability:

𝑃𝑟 [𝑟 ] =
exp

(
𝜖𝑢 (𝐷,𝑟 )
2Δ(𝑢)

)
∑
𝑖∈R

exp

(
𝜖𝑢 (𝐷,𝑖)
2Δ(𝑢)

) (3)

The exponential mechanism, as defined above, guarantees 𝜖-

differential privacy [40, Theorem 6].

3 PROBLEM SETUP
3.1 Defining DP Selection
Given a set of (public) candidate items R and corresponding utility

function 𝑢 : D × R → R, the objective is to return a candidate

item 𝑟 ∈ R that approximately maximizes 𝑢 (𝐷, 𝑟 ), whilst satisfying
differential privacy. The only assumption we make about a given

utility function is that the sensitivity (defined in (2)) is bounded. This

paper aims to show that GAs can provide a general purpose, high

utility optimization algorithm for solving DP selection problems

with large and complex candidate item spaces. We will evaluate this

goal experimentally in terms of the utility of the solutions obtained

on a variety of problems in Section 5. To satisfy our goal of privacy,

a complete proof of privacy is included in Section 4.4.

3.2 Example Problem Definitions
Throughout the paper, we will focus on two specific instances of

DP selection, the convex optimization problem of training a logistic

regression model and the non-convex problem of 𝑘-medians.

Logistic Regression. Let D represent the data domain, where

each entry 𝑥 is a tuple of dimension 𝑑 , with an integer label 𝑦. We

consider a dataset 𝐷 ∼ D. We study the task of creating a classifier

ℎ() that, given an input 𝑥 , can accurately predict the true label 𝑦.

The model has a 𝑑-dimensional vector of weights, 𝛼 , and a bias 𝛽 .

The goal in this problem is to find a set of parameters, (𝛼, 𝛽) such
that the following function is maximized

𝑢 (𝐷, (𝛼, 𝛽)) = − 1

|𝐷 |
∑︁
𝑥 ∈𝐷
I(⌊ℎ(𝑥)⌉ ≠ 𝑦) (4)

where I is an indicator function,⌊ℎ(𝑥)⌉ represents rounding ℎ(𝑥)
to the nearest integer, and 𝑦 represents the true label of a point

𝑥 . This represents the standard zero-one loss, i.e., the fraction of

miss-classified instances in the training set.

𝑘-Median / Facility Location. The goal of the 𝑘-median problem

is to find a set of 𝑘 cluster centers (or facilities) that minimize the

distance from all private data points to their nearest cluster center.

The 𝑘-median problem has multiple definitions, but informally,

the problem definition lies between 𝑘-medoids (centers are from
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the dataset) and 𝑘-means (centers are real-valued vectors). In the

privacy literature [26, 33], 𝑘-median refers to selecting the cluster

centers from a finite domain set 𝑉 . Almost unanimously, the 𝑘-

median problem considers the ℓ1 distance metric. We generalize

the previous definition to distinguish between the private set of

demand points and a public set of possible facilities. We remark

that setting the public set to be the domain 𝑉 gives the previous

definition from the literature. We let 𝑉 represent the data domain,

where each record is a tuple of dimension 𝑑 . We consider a private

dataset 𝐷 ⊂ 𝑉 and a public set of potential medians (facilities)

𝑃 ⊂ 𝑉 such that 𝑃 ∩ 𝐷 = ∅.1 The goal is to choose 𝑀 ⊂ 𝑃 with

|𝑀 | = 𝑘 such that the following function is maximized.

𝑢 (𝐷,𝑀) = −
∑︁
𝑥 ∈𝐷

min

𝑦∈𝑀
𝑑𝑖𝑠𝑡 (𝑥,𝑦) (5)

where we assume 𝑑𝑖𝑠𝑡 represents ℓ1 distance.

3.3 Datasets
To instantiate our example problems, we use a series of binary clas-

sification datasets from the UCI machine learning repository [15].

We use Adult (48842×104), Credit [52](30000×24), Spam (4601×57),
and Mushrooms (8214 × 107). We preprocess these datasets by re-

placing the missing values with the mean or mode of the column.

All data is normalized using min-max scaling such that each col-

umn is in the range [0, 1]. Categorical attributes are converted to

numerical ones using a one-hot or binary encoding. For the logistic

regression, we use an 80 : 20 train to test split and report all evalu-

ations on the test set. For 𝑘-median, we disregard the classification

label and use the entire dataset as the private set. To create the

public set, we sample additional points uniformly from the range

of the attributes such that we achieve an 80 : 20 private to public

data ratio.
2

4 DESIGN
4.1 Investigating PrivGene
We recall that PrivGene [54] is the first and only prior work to

investigate DPGAs
3
. To make their GA private, Zhang et al. replace

the selection operator of the GA (e.g. roulette wheel) with calls

to the exponential mechanism (Definition 2.3). That is, instead of

the likelihood of choosing a chromosome 𝑥1 being 𝑢 (𝑥1) (as in
roulette wheel) it is now 𝑒𝑥𝑝 (𝑢 (𝑥1)𝜖/2Δ(𝑢) ) (following the expo-
nential mechanism) where 𝑢 is the utility function of the given

problem. For example, 𝑥1 could be a set of weights for a machine

learning model, and 𝑢 (𝐷, 𝑥1) could be the accuracy of the model

on dataset 𝐷 . Zhang et al. observe that all other GA operations are

completely independent of the private data. Thus, the privacy cost

for the GA can be computed by summing the cost of each call to the

exponential mechanism (by naive composition). As we mentioned,

the fundamental challenge in making a GA private is that the total

privacy budget must be divided over all selections. Thus, the more

selections the GA makes, the lower the utility of each selection. To

1
This can be relaxed when considering 𝑃 = 𝑉

2
We note that if we were to instead split the dataset into a public and private set, the

public set would be similarly distributed, and thus one would not need the private set

to solve the problem.

3
Zhang et al. also introduce a variant only using mutation, which we call PrivEEM. We

focus on PrivGene for this work. However, we also evaluate PrivEEM in Section 5.2.4.

Figure 1: Investigating the utility of PrivGene for different
numbers of generations.

this end, PrivGene employs truncation selection [48], where one

first selects the top 𝑁𝑠 chromosomes from the population, then

randomly chooses parents from this set in order to perform the

usual breeding, crossover, and mutation operations. This reduces

the number of selections from the size of the population to 𝑁𝑠 (from

200 to 10 in PrivGene).

While the initial design of PrivGene is promising, recent work

has shown poor utility when evaluated in practice [50]. Su et al.

point out a number of reasons for the poor performance of Priv-

Gene. The first is that the crossover operator is destructive and often

results in poor candidates. PrivGene uses single-point crossover

(with a 100% probability of crossover) and a uniform mutation (ap-

plied to a single dimension of each solution with 100% probability)

with decreasing scale over the generations. We observe that both

the mutation and crossover operators allow no chance of the 𝑁𝑠

chromosomes making it to the next generation.

Su et al.’s second reason comes back to the fundamental challenge

of making a GA private. Despite their efforts using truncation

selection, the GA still needs many generations to converge, and

each generation requires some of the overall privacy budget to make

selections. In order to satisfy DP, the number of generations is fixed

to 𝑐 · |𝐷 |𝜖
𝑁𝑠
− 1 where 𝑐 is a constant that was experimentally set to

1.25×10−3 in the paper. We observe that this formula tends to result

in zero generations for most reasonable privacy parameters (𝜖 ≤ 3)

and dataset sizes. To confirm this hyperparameter setting is optimal,

we run an additional experiment varying the number of generations

for various privacy parameters. We plot the results in Figure 1. We

run the experiment 30 times for each number of generations and

compute the mean utility. The shaded region represents the 95%

confidence interval of the mean. We find for all reasonable epsilon

values, the optimal utility is achieved at zero generations. That

means the GA simply initializes the population and chooses the

best (this is equivalent to the sub-sampled exponential mechanism

described in Section 5.3). Any application of GA operators only

reduces performance over this naive baseline.

To summarize, the main takeaways from our investigation and

the work of Su et al. is that 1) the GA operators used in PrivGene do
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not allow high utility chromosomes to survive between generations.

2) under PrivGene, the best approach is to apply all of the privacy

budget in a single shot rather than use the GA operations. In the

following sections, we design a new DPGA that takes advantage

of the strengths of PrivGene (using truncation selection) while

addressing these issues.

4.2 Our DP Simple GA
We detail our complete solution in Algorithm 4.1. We start with the

simple GA using standard crossover and mutation operators and ap-

ply the necessary changes to satisfy DP and address the weaknesses

of PrivGene. The simple GA introduces a probability that we do

not invoke crossover and mutation, which partially addresses the

destructive nature of PrivGene’s operators. In line 7, we also add

elitism, which simply copies the best candidates to the next genera-

tion to ensure they are preserved. To add privacy, we introduce the

standard privacy parameters 𝜖, 𝛿 , representing the algorithm’s total

privacy budget. Our algorithm requires a DP selection mechanism

DPSelect that is used whenever we choose the best candidates

from the population to ensure DP. Since our algorithm makes mul-

tiple selections, we need to distribute the total privacy budget over

all these selections. To compute the privacy budget per selection,

we employ a DP composition theorem, DPComp in Lines 2 and 3. We

do this using a binary search over 𝜖𝑠 with 𝑛 compositions until we

reach the desired total privacy budget 𝜖 (a common approach [25]).

We use a binary search as most composition theorems do not have

a closed-form inverse. This is possible since 𝜖 = DPComp(𝜖𝑠 , 𝑛, 𝛿) is
monotonic with respect to 𝜖𝑠 .

Similarly to PrivGene, we employ truncation selection to re-

duce the privacy cost and help maintain selection pressure. This

introduces a new hyperparameter 𝑁𝑠 for the number of parent

chromosomes. In lines 5 and 6 we choose the top 𝑁𝑠 solutions from

the current population in a differentially private manner. We then

sample parents from these top 𝑁𝑠 candidates uniformly at random

in line 9. The new population is then created using the same proce-

dure as the non-private simple GA. We note that we fix the number

of generations in order to maintain DP. This means the population

is not guaranteed to converge to a single solution. Thus, as the last

step, we apply DPSelect to obtain the best solution from the final

population.

To encode a solution to logistic regression, we simply concate-

nate the weights 𝛼 and bias 𝛽 . We restrict each entry to the range

[−1, 1] using truncation if necessary. For the 𝑘-median problem,

we use an integer encoding where each entry represents the index

of a unique median in 𝑃 . We initialize the population randomly but

insert 10 zero vectors into the logistic regression population as it is a

common starting point for this problem. We use uniform crossover

for logistic regression, where each weight is equally likely to come

from either parent. That is, instead of single point crossover, we

use (𝑑 − 1)-point crossover. We use a modified uniform crossover

operator for 𝑘-median that ensures unique entries. Specifically, we

take two parent solutions 𝑥1, 𝑥2 and obtain the set union of their

entries, then uniformly sample a child 𝑐 ∼ 𝑥1 ∪ 𝑥2 without replace-
ment. We mutate using Gaussian noise with variance 0.1 for logistic

regression and use uniform replacement for 𝑘-medians (resampling

if needed to ensure unique entries).

Algorithm 4.1 DPSGA

Inputs: 𝑢: Utility Function.

𝑝𝑐 : Fixed probability we do crossover.

𝑝𝑚 : Fixed probability we do mutation.

𝑁𝑔 : Number of generations.

𝑁𝑝 : Size of the population.

𝑁𝑠 : Number of chosen parents.

DPComp, DPSelect: DP composition and selection mechanisms.

(𝜖, 𝛿): Privacy Parameters.

1: P = initialize(𝑁𝑝 )

2: 𝑛 = 𝑁𝑔 ∗ 𝑁𝑠 + 1
3: 𝜖𝑠 = BinarySearch(DPComp, 𝑛, 𝜖, 𝛿)
4: for generation in range(𝑁𝑔) do
5: for selection in range(𝑁𝑠 ) do
6: B = DPSelect(𝑢 (P − B), 𝜖𝑠 )
7: P ′= B
8: while |P ′ | ≤ 𝑁𝑝 do
9: 𝑥1, 𝑥2 = UniformRandomSelect(B)
10: if Bernoulli(𝑝𝑐 ) then
11: C = UniformCrossover(𝑥1, 𝑥2)
12: else
13: C = 𝑥1, 𝑥2

14: C =MutateAll(C, 𝑝𝑚)

15: P ′ = P ′ ∪ C
16: P = P ′
17: return DPSelect(𝑢 (P), 𝜖𝑠 )

4.3 Reducing the noise from DP
We designed our algorithm in such a way that we can easily use

any DP selection mechanism and composition theorem. We begin

by choosing the mechanism and theorem that gives the best per-

formance. In Appendix C, we discuss how to reduce the sensitivity

of the loss functions to further increase performance.

4.3.1 DP Selection Mechanisms. We describe the state-of-the-art

mechanisms for DP selection: the exponential mechanism [40],

report noisy max [18], and permute and flip [39]. For simplicity,

we consider mechanisms that return a single element of maximal

utility, where the utility function is problem specific (such as those

in Section 3.2). To select multiple elements, we will employ a peel-

ing version of each mechanism in a similar style to Durfee and

Rogers [17]. That is, we select the best candidate using the chosen

mechanism and then “peel off” (remove) this candidate from the

pool before selecting again. We define the exponential mechanism

in Definition 2.3.

Report Noisy Max. Report noisy max is a simple algorithm origi-

nally proposed to return the largest counting query from a list [18].

We consider the more general version that maximizes a given utility

function 𝑢. The mechanism simply computes the utility of each

outcome in R and adds Laplace noise, 𝐿𝑎𝑝 ( 2Δ(𝑢)𝜖 ), then returns

the outcome with the largest noisy utility. The result ensures 𝜖-

differential privacy [18, Claim 3.9].
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Permute and Flip Mechanism. McKenna and Sheldon recently

introduced the permute and flip mechanism [39]. We describe the

algorithm in Algorithm 4.2. Intuitively, this mechanism is very

similar to the exponential mechanism, with the key difference being

the permutation (which mimics sampling without replacement).

The algorithm gives the same privacy guarantee of 𝜖-differential

privacy [39, Theorem 1]. McKenna and Sheldon show that this

new mechanism never has a worse utility than the exponential

mechanism and can improve upon it by up to a factor of 2 [39,

Theorem 2].

Algorithm 4.2 Permute and Flip [39]

1: 𝑢∗ ← max𝑟 ∈R 𝑢 (𝐷, 𝑟 )
2: for 𝑟 in RandomPermutation(R) do
3: 𝑝𝑟 ← exp

(
𝜖

2Δ(𝑢)
(𝑢 (𝐷, 𝑟 ) − 𝑢∗)

)
4: if 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝𝑟 ) then
5: return r

Implementation. We note that both the exponential mechanism

and permute and flip can be equivalently implemented using a noisy

max algorithm. For the exponential mechanism, Durfee and Rogers

proved that using noisy max with Gumbel noise is equivalent to the

exponential (and peeling exponential) mechanism [17, Lemma 4.2].

Ding et al. recently proved that the permute and flip mechanism is

equivalent to the noisy max with exponential noise [13, Theorem

5].
4
We implement both the exponential mechanism and permute

and flip with their noisy max counterparts to improve efficiency as

well as circumvent precision issues when the loss is very high.

4.3.2 DP Composition Theorems. Now we have defined the selec-

tion mechanisms, we investigate the best way to compose these

mechanisms in order to use them repeatedly. We consider the case

of adaptive composition and let 𝜖𝑠 denote the privacy budget of

a single run of a specific mechanism. We state the total epsilon 𝜖

required for each composition theorem for all runs. Each theorem

below is significantly tighter than the naive composition theorem

of summing 𝜖𝑠 . The cost of this tighter composition is relaxing the

overall privacy guarantee from pure to approximate DP. We fix 𝛿 to

be 1/|𝐷 |1.1 to satisfy the rule of thumb that delta should be less than

1/|𝐷 | [18]. We list the (𝜖, 𝛿)-DP guarantees of each composition

technique below.

Advanced Composition. We begin with the most well-known

composition theorem (aside from naive composition) introduced

by Dwork et al. [19].

Lemma 4.1 (Advanced Composition [19]). The adaptive compo-
sition of a 𝜖𝑠 -DP mechanism under 𝑛-fold adaptive composition is
(𝜖, 𝛿)-DP with

𝜖 = 𝜖𝑠
√︁
2𝑛 ln 1/𝛿 + 𝑛𝜖𝑠 (𝑒𝜖𝑠 − 1) (6)

Kairouz et al. improved this bound and proved the optimal

advanced composition theorem for a general (𝜖, 𝛿)-DP mecha-

nism [30]. We use the simplified theorem that provides a slightly

looser bound with a closed-form expression described below.

4
It is currently an open question whether Gaussian noise could be used in a noisy

max algorithm. However, lower bounds on the DP selection problem suggest the

mechanisms we have presented are essentially optimal [13, 49]

Lemma 4.2 (Theorem 3.4 [30]). The adaptive composition of a 𝜖𝑠 -DP
mechanism under 𝑛-fold adaptive composition is (𝜖, 𝛿)-DP with

𝜖 = min

𝑛𝜖𝑠 ,
(𝑒𝜖𝑠 − 1)𝜖𝑠𝑛
(𝑒𝜖𝑠 + 1) + 𝜖𝑠

√√√√√√
2𝑛 ln

©«𝑒 +
√︃
𝑛𝜖2𝑠

𝛿

ª®®¬,
(𝑒𝜖𝑠 − 1)𝜖𝑠𝑛
(𝑒𝜖𝑠 + 1) + 𝜖𝑠

√︄
2𝑛 ln

(
1

𝛿

) (7)

TheMoments Accountant. Concentrated differential privacy (CDP)
and Renyi differential privacy (RDP) are popular privacy definitions

used for the composition of DP mechanisms that take advantage

of the Renyi divergence to give bounds [7, 41]. We focus on the

RDP as it tends to give a more accurate analysis [41]. Furthermore,

composing mechanisms using RDP is equivalent to the moments’

accountant of Abadi et al. [1]. To use RDP as a composition the-

orem, we must first provide a conversion from pure DP to RDP.

We can then use the composition theorems of RDP to compose the

mechanisms and finally convert back to approximate DP. We give

the details and prove the following lemma in Appendix A

Lemma 4.3. The adaptive composition of a 𝜖𝑠 -DP mechanism under
𝑛-fold adaptive composition is (𝜖, 𝛿)-DP with

𝜖 = min

𝛼

{
𝑛

𝛼 − 1 ln

(
sinh (𝛼𝜖𝑠 ) − sinh ((𝛼 − 1)𝜖𝑠 )

sinh (𝜖𝑠 )

)
+ ln 1/𝛿

𝛼 − 1

}
.

(8)

Bounded Range Composition. Bounded range DP was first intro-

duced by Durfee and Rogers in their work on top-k queries [17].

Definition 4.4 (Range-Bounded [17]). Given a mechanismM that

takes a collection of records in D to some outcome set R, we say
that M is 𝜖-range-bounded (𝜖-BR) if for any 𝑦,𝑦′ ∈ R and any

neighbouring databases 𝐷,𝐷 ′ we have

Pr[M(𝐷) = 𝑦]
Pr[M(𝐷 ′) = 𝑦] ≤ 𝑒𝜖

Pr[M(𝐷) = 𝑦′]
Pr[M(𝐷 ′) = 𝑦′] . (9)

This definition says that in addition to the distribution of outputs

being similar across neighbouring databases, the mechanism must

also offer a similar distribution over the outputs. Bounded range is

a general notion of privacy, but it is particularly useful for expo-

nential mechanisms. All 𝜖-DP mechanisms satisfy 2𝜖-BR; however,

the exponential mechanism enjoys a tighter analysis of 𝜖-BR [17,

Lemma 4.3].
5
Using this more restrictive form of DP allows one to

prove tighter composition bounds. Durfee and Rogers [17] showed

this in their initial work, which was later tightened by Dong et

al. [14]. We give the version with a closed-form expression that was

proven by computing the supremum of the KL divergence.

Lemma 4.5 (Proposition 4 [14]). The adaptive composition of a 𝜖𝑠 -
BR mechanism under 𝑛-fold adaptive composition is (𝜖, 𝛿)-DP with

𝜖 = min

𝑛𝜖𝑠 , 𝑛
( 𝜖𝑠

1 − 𝑒−𝜖𝑠 − 1 − ln
( 𝜖𝑠

1 − 𝑒−𝜖𝑠
))
+

√︄
𝑛𝜖2𝑠

2

ln(1/𝛿)
 .

(10)

5
A natural question to ask is if the permute and flip mechanism also enjoys a similar

analysis. A recent blog post by Durfee and Rogers shows that is likely not the case

as the permute and flip mechanism has a lower bound close to 2𝜖-BR (the value that

applies to all 𝜖-DP algorithms) [16].
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Figure 2: Comparing the various selection mechanisms and
composition theorems to choose the best for our DPGA.

4.3.3 Evaluation of the Best Selection and Composition Technique.
We have presented several selection mechanisms and composition

theorems. However, it is not apparent which combination is best.

We first narrow down the list of composition theorems. We plot the

per selection privacy budget 𝜖𝑠 for a given overall privacy budget

𝜖 and a typical run of our simple GA. That is we let 𝑛 = 1000

(100 generations, each with 10 selections) and fix 𝛿 = 10
−5
. To

compute the corresponding 𝜖𝑠 , we simply binary search, evaluating

the equation given by each lemma and plot the results in the left

plot of Figure 2. We remark that a higher 𝜖𝑠 means more privacy

budget is available at each step and thus a preferable composition

theorem.

We observe BR composition on the exponential mechanism out-

performs all other techniques. However, BR composition on a gen-

eral mechanism (all 𝜖-DP mechanisms are 2𝜖-BR) is comparable to

RDP. In general, we see a lot of similarities between the other tech-

niques, although the composition from Kairouz et al. offers slight

improvement for smaller values of 𝜖 . Thus, we choose Lemma 4.5

for the exponential mechanism and Lemma 4.2 for all other mecha-

nisms.

Despite choosing the best composition theorems, it is not clear

which combination of composition theorem and DP mechanism

will perform best. For example, the permute and flip mechanism

is known to have better utility than the exponential mechanism

but does not benefit from bounded range composition [16, 39].

Thus, we evaluate the exponential, permute and flip, and Laplace

noisy max mechanisms using the composition theorem of Kairouz

et al. (Lemma 4.2). Additionally, we will consider the exponential

mechanism under bounded range composition (Lemma 4.5).We give

the results in the right plot of Figure 2 using the Adult dataset on

Logistic Regression (extended results in Appendix D). We find that

using the exponential mechanism with bounded range composition

consistently gives the best results. Furthermore, the composition

theorem seems to be the dominating factor, as all three mechanisms

perform very similarly under advanced composition. Thus, we

chose the exponential mechanism as DPSelect and bounded range

composition as DPComp for our work.

4.4 Privacy Guarantee
We state and prove the end-to-end privacy of our algorithm, as-

suming that we use the exponential mechanism as DPSelect and
bounded range composition [14, 17] as DPComp. We use the utility

functions described in Section 3.2.

Theorem 4.6. If we set the parameter of the exponential mechanism
to 𝜖𝑠𝑢 (𝐷,𝑟 )

2Δ(𝑢)
as specified in Definition 2.3, Algorithm 4.1 is (𝜖, 𝛿)-DP

where

𝜖 = min

𝑛𝜖𝑠 , 𝑛
( 𝜖𝑠

1 − 𝑒−𝜖𝑠 − 1 − ln
( 𝜖𝑠

1 − 𝑒−𝜖𝑠
))
+

√︄
𝑛𝜖2𝑠

2

ln(1/𝛿)


with 𝑛 = 𝑁𝑔 ∗ 𝑁𝑠 + 1.

At a high level, proving the privacy of our simple GA consists of

the following four parts.

(1) Bound the sensitivity of a given utility function.

(2) Prove that each selection (Algorithm 4.1, line 6 and 17) is

𝜖-BR (or 𝜖-DP).

(3) Prove that all other components of the simple GA incur no

additional privacy cost.

(4) Prove that the adaptive composition of all selections is (𝜖, 𝛿)-
DP.

We begin by bounding the sensitivity of our example problem

utility functions under bounded-DP.

Lemma 4.7. The sensitivity, Δ(𝑢) of the zero-one loss for logistic
regression (given in (4)) is at most 1

|𝐷 |

Proof. For a given vector 𝜃 changing 𝐷 for 𝐷 ′ changes at most

one entry in the summation. This can change the value of the

indicator function by at most one. Thus, the sensitivity is equivalent

to the normalization term
1

|𝐷 | . □

Lemma 4.8. The sensitivity, Δ(𝑢) of the 𝑘-median loss function
(given in (5)) using the ℓ1 distance metric is 𝑑

Proof. For a given set 𝑀 changing 𝐷 for 𝐷 ′ changes at most

one entry in the summation. This can change the minimum of that

entry by at most the sensitivity of 𝑑𝑖𝑠𝑡 (𝑥,𝑦). Assuming we use the

ℓ1-norm and all records in𝑉 are normalized
6
onto the interval [0, 1],

𝑑𝑖𝑠𝑡 (𝑥,𝑦) ≤ 𝑑 . □

We now prove Theorem 4.6.

Proof. We begin by showing that each selection is 𝜖𝑠 -BR. This

follows from the fact we follow the definition of the exponential

mechanism (Definition 2.3) and the result of Durfee and Rogers [17,

Lemma 4.3]. Next, we discuss the various steps of the algorithm to

show that the selection step is the only step that requires spending

any privacy budget. We follow Algorithm 4.1 line by line. First,

the random initialization (line 1) is entirely independent of the

database, so it incurs no privacy cost. Then for a given generation,

we first select the best parents (lines 5-6). This incurs a privacy cost

of 𝜖𝑠 -BR and is performed 𝑁𝑔 ∗ 𝑁𝑠 times. The remaining steps in

each generation perform post-processing on the output of this step

6
We note that this is a rather pessimistic bound on the sensitivity that can be improved

using domain information. We show one such example in Appendix C.
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B (by Proposition 2.1 [18]). Specifically, line 9 uniformly selects

from the pool, line 11 randomly combines the chosen solutions, and

line 14 randomly changes the solutions created by crossover. None

of these steps require the use of the utility function, and thus the

dataset, in any way. Finally, after all generations have passed, we

must choose the best solution from the final population (line 17).

For this, we simply make one more selection, and thus we add

this to our count 𝑛. Hence, the privacy budget consumption of our

algorithm consists of𝑛 = 𝑁𝑔∗𝑁𝑠 +1 calls to exponential mechanism.

Thus applying the adaptive composition theorem from Lemma 4.5

gives the desired result. □

4.4.1 Additional DP Costs. In addition to the privacy cost described
in Section 4.4, there are two other potential sources of leakage in

our system: dataset pre-processing and hyperparameter tuning.

Following the relatedworkwe compare to [26, 28, 33], we assume all

datasets have features scaled to the range [0, 1] and have no missing

values. However, in practice, we must also ensure that the process

of normalization and imputation is done privately. We use min-max

scaling, which is optional for logistic regression, but needed to

bound the sensitivity of the 𝑘-median problem [26]. In many cases,

a pessimistic min and max value can be derived publically e.g., age

could be bounded between 0 and 125, or max pixel values are well

known for an image. Any values outside of the public range can

be clipped [28]. Neither of these approaches incurs any additional

privacy cost. However, in the worst case, an analyst could assign an

arbitrary portion of their privacy budget to compute the min and

max using standard differentially private mechanisms. The simplest

solution to replace missing values is to drop rows with missing

values (and incurs no cost). An alternative is to use known private

techniques for imputation [10]. Once again, the amount of privacy

budget assigned to this mechanism is arbitrary.

The other potential source of leakage is hyperparameter tuning.

First, we note that our “default" solution, given in all experiments,

uses folklore hyperparameters that are fixed across all datasets and

problems. Thus, there would be no additional cost to use these

values, and they perform well in our experiments. Our “optimal

hyperparams” solution is obtained using a grid search specific to

each dataset and problem (following the related work of Iyengar

et al. [28]). This process indeed incurs additional privacy costs in

practice. It is used only to ensure a fair comparison where all al-

gorithms (including those from related work) use their optimal

hyperparameters. In practice, a data analyst could optimize the hy-

perparameters on a public or random dataset for the given problem

at no cost to privacy. If public data is unavailable, the analyst can

use a known random search technique [46] (similar to a grid search,

but choosing the number of configurations following a Poisson

distribution) on the private data. The cost of this approach would

be 2𝜖 , where 𝜖 is the total privacy cost proved in Theorem 4.6 [46].

However, our experiments show that the expected gain in utility

would not justify doubling the privacy cost of our default solution.

5 EVALUATION
In this section, we empirically evaluate the utility of our DPGA.

First, we tune the hyperparameters of our GA and confirm that our

modifications improve the utility over PrivGene. We also evaluate a

variation of PrivGene, which we call PrivEEM. Second, we compare

our DPGA to the sub-sampled exponential mechanism, the state-

of-the-art general solution to the DP selection problem. Third, we

compare our DPGA to Local Search techniques from the literature.

Finally, we consider how our DPGA compares to state-of-the-art

problem-specific solutions.

5.1 Setup
In each evaluation, we consider a trivial baseline and a non-private

solution to give context to the performance of the algorithms. For

logistic regression, the trivial baseline is a solution of all zero vec-

tors. Whereas for 𝑘-median, we sample 1000 solutions uniformly

at random and plot the average utility. As non-private algorithms,

we use Scikit-learn packages. For logistic regression, we use the de-

fault logistic regression model with the stochastic average gradient

solver.
7
For 𝑘-median, we consider the partitioning around medoids

(PAM) algorithm of Kaufman and Rousseeuw [32]. We adapt the

Scikit-learn implementation
8
to consider distances between a pri-

vate and public set (rather than distances between points in the

same set). We make all source code, including this modification,

publicly available.
9

We repeat each evaluation over 100 runs (unless otherwise spec-

ified), varying each run’s random seed. We plot the mean utility

over all runs and show the 95% confidence interval as a shaded

region. For all evaluations, we consider multiple values of the pri-

vacy parameter 𝜖 with a fixed 𝛿 . We fix 𝛿 = 1/|𝐷 |1.1 to satisfy the

rule of thumb that delta should be less than 1/|𝐷 | [18]. Due to

space restrictions, we present each evaluation on two of our four

datasets. Results on the other datasets can be found in Appendix D.

We choose the Adult and Mushrooms datasets for most evalua-

tions as they are the most representative. The only exceptions are

Section 5.5.1, where Credit and Mushrooms better represent the

performance and Section 5.4.2, where we could only use the smaller

Spam and Mushrooms datasets.

5.2 Evaluating our DPGA
We start by studying the effect of hyperparameters on the utility

of our DPGA. We are particularly interested in the relationship

between the hyperparameter values and the privacy budget 𝜖 .

5.2.1 Number of Generations. As we have mentioned, the number

of generations parameter is the most affected by the privacy budget

as the more generations we conduct, the more DP degrades the

selections made in each generation. To investigate this parameter,

we fix all other hyperparameters to the following defaults (used as

the default in all experiments). 𝑝𝑐 = 0.5, 𝑝𝑚 = 1

|𝑐 |+1 where |𝑐 | is the
length of the chromosome, 𝑁𝑝 = 200, and 𝑁𝑠 = 10. In Figure 3, we

vary the number of generations for various values of 𝜖 (similar to

Figure 1 for PrivGene).

We see that, on average, for 𝜖 ≥ 0.1, the optimal utility is reached

using more than zero generations, showing that our modifications

enable the use of GA operations (and they improve utility). As ex-

pected, the lower the privacy budget, the fewer feasible generations,

7
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html

8
https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn_extra.cluster.

KMedoids.html

9
https://gitlab.uwaterloo.ca/t3humphr/dp-simple-ga

547

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn_extra.cluster.KMedoids.html
https://scikit-learn-extra.readthedocs.io/en/stable/generated/sklearn_extra.cluster.KMedoids.html
https://gitlab.uwaterloo.ca/t3humphr/dp-simple-ga


Proceedings on Privacy Enhancing Technologies 2023(4) Humphries and Kerschbaum

Figure 3: Investigating the utility of our DPGA for different numbers of generations.

and for extremely low values (𝜖 = 0.01), it is impossible to run mul-

tiple generations. We also observe a relatively flat trend after 30

generations for higher epsilon values. This seems to indicate an

equilibrium between the improvement of adding more generations

vs. the decrease of utility for each selection.

We take the average optimal values over all datasets and prob-

lems to construct a list of default generations per epsilon. Specif-

ically, we choose 𝑁𝑔 = {10, 10, 20, 50, 75, 100, 120, 120} for 𝜖 ∈ {

10
−2, 10−1.5, 10−1, 10−0.5, 100, 100.5, 101, 101.5} respectively. The per-

formance of these values are highlighted in Figure 3. We observe

that the defaults tend to give similar utility to the optimal number

of generations (except when 𝜖 = 0.01).

5.2.2 Grid Search over Remaining Hyperparameters. We further

conduct a full grid search over 2016 configurations of the 4 most in-

fluential parameters:𝑁𝑔 ∈ {2, 10, 20, 50, 75, 100, 120},𝑁𝑠 ∈ {5, 10, 20},
𝑝𝑐 ∈ {0.35, 0.5, 0.65}, and 𝑝𝑚 ∈ { 2

|𝑐 |+1 ,
1.5
|𝑐 |+1 ,

1

|𝑐 |+1 ,
0.75
|𝑐 |+1 } The re-

maining hyperparameter 𝑁𝑝 is fixed to its default value of 200. We

run each configuration for various epsilons to study the effect of

privacy on hyperparameter tuning. The full experiment results are

given in Appendix B. Similar to the generations parameter, we see

𝑁𝑠 exhibits an approximate trend of decrease with lower epsilons.

However, this parameter’s impact on utility is minor compared to

the generations parameter, so we keep the default of 𝑁𝑠 = 10. There

was no clear relationship between epsilon and 𝑝𝑚 or 𝑝𝑐 , so we posit

that they can be tuned following techniques from the non-private

literature. We choose to maintain their default values of 𝑝𝑐 = 0.5

and 𝑝𝑚 = 1

|𝑐 |+1 as we observe reasonable utility.

We further use the grid search results to evaluate the optimal

performance of the DPGA when all hyperparameters are tuned. As

mentioned in Section 4.4.1, we do this to ensure a fair comparison

to related work, as well as to evaluate if hyperparameter tuning is

worth the extra privacy cost it would incur in practice. Specifically,

we compute the optimal utility over the 30 runs of each config-

uration, then re-run the optimal configuration for an additional

70 runs. This optimal performance is plotted alongside the per-

formance using the default parameters in our evaluations against

related work in Section 5.3 (e.g. Figure 6). On average, we observe

only a slight advantage to hyperparameter tuning and conclude

that hyperparameter tuning is helpful but not necessary for our

algorithm in the use cases we have considered.

Figure 4: Comparing the utility of our DPGA to Priv-
Gene [54].

5.2.3 Comparison to PrivGene. To confirm ourmodifications strictly

improve over PrivGene, we plot the utility of our solution compared

with theirs in Figure 4. On the y-axis, we give the utility of the

candidate returned by the GA (higher is better). On the x-axis, we

evaluate various levels of privacy 𝜖 (lower is more private). We also

include a data point for 𝜖 = ∞ representing the non-private perfor-

mance of the algorithms. We observe that our solution consistently

improves over PrivGene (both privately and non-privately). We

remark that the performance we observe for PrivGene is in line

with the results of Su et al. [50, Figure 6].

5.2.4 Evaluation of PrivEEM. To address the limitations of their

DPGA, Zhang et al. also introduce a variant of PrivGene, which

we call PrivEEM, where the chosen size (𝑁𝑠 ) is reduced to 1. This

removes the crossover operator completely, making PrivEEM an

evolutionary strategy that only uses mutation. This modification
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Figure 5: A comparison of our DPGA with PrivEEM [54].

allows the use of the enhanced exponential mechanism (EEM), a

mechanism introduced by Zhang et al. with tighter sensitivity anal-

ysis than the exponential mechanism.We note that this only applies

to logistic regression, and thus (similar to Zhang et al. [54][Section

5.3]), we only evaluate PrivEEM on logistic regression.

We set all parameters to the defaults specified by Zhang et al. [54].

We note that PrivEEM uses the same formula for the number of

generations as PrivGene. That is, 𝑐 · |𝐷 |𝜖
𝑁𝑠
− 1 where 𝑐 is a constant

that was experimentally set to 1.25 × 10−3 in the paper. We recall

that this formula often leads to zero generations. To evaluate the po-

tential of this approach, we also investigate several improvements

to PrivEEM. First, we consider setting the number of generations to

100 so that the mutation operator will be invoked at lower epsilons.

Second, we consider a modified version applying our tighter pri-

vacy analysis by using bounded range composition and the lower

sensitivity zero-one loss function.
10

We give the results in Figure 5.

We observe that the DPGA outperforms all variants of PrivEEM

for 𝜖 > 0.1 (except on Mushrooms where we tie). Furthermore, we

always beat PrivEEM in the most important region of 𝜖 ∈ [0.1, 1].
We find that increasing the generations to 100 has mixed success

depending on the dataset. Our modified version outperforms 100

generations as expected; however, for larger 𝜖 values, the 100 gen-

erations solution can still be best. This is likely due to the enhanced

exponential mechanism. We leave further investigation into this

evolutionary strategy to future work.

5.3 Sub-Sampled Exponential Mechanism
Since our work is not problem-specific, we evaluate against another

general DP selection technique. We consider the sub-sampled ex-

ponential mechanism from Lantz et al. [33]. This technique first

takes a random sample from the space of possible solutions before

applying the standard exponential mechanism. We evaluate the

sub-sampled exponential mechanism on both logistic regression

and the 𝑘-median problem. The original paper by Lantz et al. also

considered the 𝑘-median problem and showed competitive perfor-

mance compared to the techniques of Gupta et al. [33] (evaluated

in Section 5.4.2).

10
In this case, we bound the sensitivity using Lemma 4.7. We leave the tighter analysis

of the enhanced exponential mechanism to future work.

We choose the sample size to be 1000 and run the sub-sampled

exponential mechanism 100 times. In Figure 6, we see that the

utility appears to plateau at a specific value much less than the

non-private baseline. For logistic regression, both our default and

optimal parameter solution always outperforms the sub-sampled

exponential mechanism when 𝜖 > 0.1. For the 𝑘-median problem,

we tend to outperform the sub-sampled exponential mechanism

for 𝜖 >= 0.32 (except on the Mushrooms dataset). This indicates

our solution provides a much more stable solution in that offers

significantly better utility when 𝜖 > 0.32 (𝜖 > 0.032 for logistic

regression). Furthermore, this means our algorithm gives the most

promising alternative to date for the exponential mechanism on

large solution spaces.

5.4 Local Search Algorithms
A local search algorithm is an alternate iterative search algorithm

that takes a small greedy step towards a better solution in each

iteration. Both of our example problems have been solved with

local searches in the literature, so we compare these solutions to

our DPGA.

5.4.1 PrivLocal. Su et al. first observed that the source code linked

in the PrivGene paper did not implement PrivGene [50]. The source

code actually implements a local search algorithm that did not

appear in the PrivGene paper. Su et al. named this local search

algorithm PrivLocal, and give a detailed description of it. In their

evaluation, Su et al. show that PrivLocal performs much better than

PrivGene. Thus, we also evaluate this local search algorithm. We

confirmed that the source code publicly available for PrivGene
11

implements PrivLocal (and not PrivGene). We also confirmed that

work by Lee and Kifer [34] that claims to evaluate PrivGene actually

evaluated PrivLocal (which explains the difference in performance).

We use Lee and Kifer’s Python implementation of PrivLocal
12

in

this evaluation.

Similar to our evaluation of PrivEEM, we also investigate im-

proved variants with 100 generations and a modified version with

our privacy analysis. We give the results in Figure 7. While PrivLo-

cal gives much better performance than PrivGene, we once again

observe very dataset-dependent performance. We significantly out-

perform PrivLocal on our first three test datasets over all values

of 𝜖 . PrivLocal performs better on the Mushrooms dataset, slightly

outperforming our default solution when 𝜖 > 0.3. However, our

optimized solution can consistently outperform PrivLocal. We see

that 100 generations tend to decrease the performance of PrivLocal;

however, our modified version drastically improves performance.

Despite this increase, we observe the DPGA tends to give the best

utility in the important region of 𝜖 ∈ [0.1, 1].

5.4.2 Gupta et al.’s 𝑘-Median. The first work in private 𝑘-medians

by Gupta et al. is also a local search algorithm [26]. The algorithm is

based on the non-private search of Arya et al. [3], simply replacing

each selection with the exponential mechanism. To evaluate this

algorithm, we implement it from scratch, introducing our notion

of public and private set; however, in the original algorithm, 𝑃 = 𝑉 .

We found that the algorithm is rather inefficient for large public set

11
https://sourceforge.net/p/privgene/

12
https://github.com/ppmlguy/DP-AGD
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Figure 6: Comparing the utility of the DPGA vs. the sub-sampled exponential mechanism [33].

Figure 7: A comparison of our DPGA to PrivLocal [50, 54].

Figure 8: A comparison of our DPGA to Gupta et al.’s 𝑘-
Median [26].

sizes due to the large number of swaps considered. For this reason,

we only consider our smaller datasets and a smaller number of

runs. In Figure 8, we see that our solution drastically outperforms

Gupta et al.’s solution. We conclude that in both utility and runtime,

Figure 9: A comparison of our DPGA to the benchmark of pri-
vate convex optimization techniques from Iyenger et al. [28].

our solution is superior to that of Gupta et al. [26]. Our modified

version once again greatly improves the performance of Gupta et

al.’s solution. However, the DPGA still gives the best utility.

Our experiments on local search techniques show that they have

more potential than has been previously shown in the literature.

Applying our tighter privacy analysis can greatly improve their

performance. However, in all experiments, we find that our DPGA

offers the most promising result to date.

5.5 Problem Specific Techniques
In this section, we consider the state-of-the-art solutions specific

to each of our example problems.

5.5.1 Logistic Regression. We consider the benchmark of state-of-

the-art algorithms in DP convex optimization by Iyengar et al. [28].

The code was made publicly available
13
, which allows us to simply

run their benchmark, unchanged, on our own datasets. We note

that the code performs a grid search over the hyperparameters of

the various algorithms and reports the best in a similar manner

13
https://github.com/sunblaze-ucb/dpml-benchmark
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Figure 10: Comparing the utility of our DPGA against the
state-of-the-art 𝑘-medians solution given by Jones et al. [29].

to our optimal hyperparameter solution. We focus on AMP and

SGD as they tend to perform best, but we give the complete re-

sults in Appendix D.9. For this evaluation, we give the results for

the Credit and Mushrooms dataset as they better reflect our best

and worst performance, respectively (results on all datasets are

given in Appendix D.9). In Figure 9, we observe that our optimal

hyperparameter solution is very rarely outperformed, with a strong

performance on the Credit dataset in particular.
14

We conclude that

even against problem-specific solutions in private convex optimiza-

tion, our general technique provides a competitive solution.

5.5.2 𝑘-Median. We conduct the first empirical evaluation of work

by Jones et al. [29], the theoretical state-of-the-art for the 𝑘-median

problem, achieving smaller additive error than any other work.

The algorithm first creates and publishes a DP weighted coreset,

then applies an off-the-shelf non-private 𝑘-median algorithm. The

algorithm has a single hyperparameter 𝜖 ∈ (0, 1), which we will

rename 𝛼 to avoid confusion. This parameter controls the number

of iterations and plays a major role in the utility and runtime of the

protocol (the lower the value, the better utility but the longer the

runtime). For our experiments, we chose 𝛼 ∈ {0.2, 0.6, 0.99}. We

did not choose 𝛼 < 0.2 as the runtime was too large, and the utility

gains were insignificant. We implement the algorithm from scratch

in Python using our problem definition of public and private sets.

We use our non-private Scikit-learn baseline for the final step.

In Figure 10, we see that for higher values of 𝛼 , our algorithm

often outperforms Jones et al. significantly. Furthermore, our so-

lution is significantly faster than the solution of Jones et al. in all

experiments. However, for smaller values of 𝛼 , Jones et al. gives the

best utility (but is approximately twenty times slower on the Adult

dataset). We note that the computation complexity of Jones et al. is

𝑂 (𝑘 |𝑃 | |𝐷 | log
1+𝛼 ( |𝐷 |) ln(1/𝛼)) as opposed to our solution that is

𝑂 (𝑘𝑁𝑝𝑁𝑔 |𝐷 |) where 𝛼 and 𝑁𝑝 ∗ 𝑁𝑔 are technically constants, but,

we include them as they have a significant effect in practice. In

14
We include the non-private GA performance in this plot to explain why the private

GA outperforms the non-private baseline. For this dataset, the GA outperforms the

stochastic average gradient (SAG) algorithm we use as the non-private baseline. We

posit that this is due to the GA optimizing zero-one loss directly, whereas SAG uses

cross-entropy loss (as zero-one loss is not differentiable).

particular, as 𝛼 approaches zero, log
1+𝛼 ( |𝐷 |) and ln(1/𝛼) approach

infinity. We remark that our algorithm removes this additional log

dependence on the private dataset and has no dependence on the

size of the public set. Since our solution still offers reasonable utility

with a significant improvement in efficiency, we believe it is indeed

competitive with this problem-dependent approach.
15

6 RELATEDWORK
Differentially Private Selection. We have studied the exponen-

tial mechanism [40], the permute and flip mechanism [39] and the

report noisy max mechanism [18]. All of these solutions suffer pro-

hibitively high computation complexity as they require computing

the utility of every candidate. One attempt to address this issue

was the sub-sampled exponential mechanism, which we evaluated

and found high-quality solutions are often discarded in the sam-

pling [33]. In a similar light, Durfee and Rogers investigate solving

the top-k selection problem for counting queries without consid-

ering the entire domain [17]. The limitations of this work are that

they assume the domain of candidates is sorted in order of utility,

and there is a non-trivial chance that no solution is returned. A

recent line of work investigates privately tuning the hyperparame-

ters of DP machine learning algorithms [35, 46]. While their work

gives a method to apply the exponential mechanism on a subset of

the domain, it does so randomly (like the sub-sampled exponential

mechanism) and is best suited to the case of DP selection from DP

candidates.

Differentially Private Nature-Inspired Algorithms. Very fewworks

have focused on nature-inspired algorithms under the constraints

of differential privacy. While PrivGene [54] has been the only work

investigating differentially private genetic algorithms, other works

have made use of swarm intelligence and evolutionary computation

alongside differential privacy [36, 55]. However, these works either

did not make the nature-inspired algorithms private [55], or focus

on census protocols [36] instead of DP selection.

Problem Specific Differentially Private Solutions. Most works are

not specific to DP logistic regression. Instead, they use it as one of

the multiple examples to evaluate the effectiveness of their opti-

mization algorithm. Recent work by Iyengar et al. [28] performs an

extensive performance benchmark of state-of-the-art algorithms

from the three major areas of work in differentially private convex

optimization (output, objective, and gradient perturbation). We use

this benchmark to evaluate the performance of our techniques in

Section 5.5.1. The first work to define the 𝑘-median problem in a

private setting was Gupta et al. [26]. Following up on this work,

Lantz et al. used the 𝑘-median problem to show the effectiveness

of the sub-sampled exponential mechanism [33]. The most recent

work in this space is that of Jones et al. [29] (evaluated in Sec-

tion 5.5.2). Other notable works solve variants of this problem such

as DP 𝑘-means [4, 31, 45], the facility location problem [21, 26], and

𝑘-tuples clustering [9].

15
We remark that Jones et al.’s solution would suffer a severe drop in utility if we

consider the 𝑘-medoid problem. This is because publishing the coreset when the

centers are not public would require a significant amount of additional privacy budget.

Our DPGA would not suffer the same loss as we only publish the index within the

population and not the private set.
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7 CONCLUSION
As the public becomes more privacy savvy, we are starting to see

an increased effort from organizations to use privacy-preserving

mechanisms. We show that despite previous misconceptions, ge-

netic algorithms can offer competitive solutions to optimization

problems under the constraints of differential privacy. A crucial trade-

off influencing the adoption of privacy-preserving mechanisms is

privacy vs. utility vs. efficiency. Our work provides a better com-

promise in terms of these objectives. First, the DPGA is proven to

satisfy differential privacy. Second, the runtime scales polynomially

with the size of the private dataset and does not require iterating

over the whole domain of solutions. Finally, the utility of the DPGA

is competitive with both general and problem-specific related work

on the DP selection problem. We believe genetic algorithms are

well suited to privacy-sensitive problems for these reasons.
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A RDP COMPOSITION THEOREM
We detail the building blocks and proof for our RDP composition

theorem stated in Section 4.3.2. We begin by defining RDP. To define

RDP, we must first recall Renyi divergence.

Definition A.1. Renyi Divergence [47] For two probability dis-

tributions 𝑃 and 𝑄 defined over R, the Renyi divergence of order
𝛼 > 1 is

𝐷 (𝑃 ∥𝑄) = 1

1 − 𝛼 ln E
𝑥∼𝑄

(
𝑃 (𝑥)
𝑄 (𝑥)

)𝛼
(11)

where 𝑃 (𝑥) is the density of 𝑃 at 𝑥 .

Definition A.2. (RDP [41]) An algorithm𝐴 is said to be (𝛼, 𝜖)-RDP
if for all neighbouring databases 𝐷, 𝐷 ′ ∈ D

𝐷 (𝐴(𝐷)∥𝐴(𝐷 ′)) ≤ 𝜖. (12)

The first step is to convert the arbitrary DP mechanism to the

RDP definition. To do this, we take advantage of an intermediary

result from Bun and Steinke [7, Proposition 19]. Specifically,

Lemma A.3 (From DP to RDP [7]). If a mechanism satisfies 𝜖𝑠 -DP,
it also satisfies (𝜖 (𝛼), 𝛼)-RDP with

𝜖 (𝛼) = 1

𝛼 − 1 ln

(
sinh (𝛼𝜖𝑠 ) − sinh ((𝛼 − 1)𝜖𝑠 )

sinh (𝜖𝑠 )

)
(13)

After we have converted to RDP, we can take advantage of the

following composition theorem (similar to naive composition for

DP).

Proposition A.4 (Proposition 1 [41]). Consider two mechanisms

𝐹 and 𝐺 . If 𝐹 is (𝛼, 𝜖1)-RDP and 𝐺 is (𝛼, 𝜖2)-RDP then 𝐹 (𝐺 (𝑥)) is
(𝛼, 𝜖1 + 𝜖2)-RDP

Finally, we need to convert the final result to approximate DP as

follows.

Proposition A.5 (Proposition 3 [41]). If a mechanism satisfies

(𝛼, 𝜖)-RDP, then it is also (𝜖 + ln 1/𝛿
𝛼−1 , 𝛿)-DP for any 𝛿 ∈ (0, 1).

Mirnov showed that in practice, it suffices to consider a restricted

set of alphas and compute that 𝛼 that approximately minimizes

𝜖 [41]. In our implementation, we take this approach, brute-forcing

over a small set of alphas to find the empirical minimum. Putting

all of these steps together, we obtain the following end-to-end

composition theorem restated for convenience.

Lemma A.6. The adaptive composition of a 𝜖𝑠 -DP mechanism under
𝑛-fold adaptive composition is (𝜖, 𝛿)-DP with

𝜖 = min

𝛼

{
𝑛

𝛼 − 1 ln

(
sinh (𝛼𝜖𝑠 ) − sinh ((𝛼 − 1)𝜖𝑠 )

sinh (𝜖𝑠 )

)
+ ln 1/𝛿

𝛼 − 1

}
(14)

Proof. The result follows by first applying Lemma A.3, then

multiplying by 𝑛 as per Proposition A.4. Finally, we apply Proposi-

tion A.5 and minimize over 𝛼 . □
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Figure 11: The best settings for the various hyperparameters found from the grid search.
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B HYPERPARAMETER SEARCH
In Section 5.2.2, we describe our hyperparameter search over var-

ious parameters. Specifically, we conduct a full grid search over

2016 configurations of the 4 most influential parameters: 𝑁𝑔 ∈
{2, 10, 20, 50, 75, 100, 120},𝑁𝑠 ∈ {5, 10, 20}, 𝑝𝑐 ∈ {0.35, 0.5, 0.65},
and 𝑝𝑚 ∈ { 2

|𝑐 |+1 ,
1.5
|𝑐 |+1 ,

1

|𝑐 |+1 ,
0.75
|𝑐 |+1 } The remaining hyperparam-

eter 𝑁𝑝 is fixed to its default value of 200. We present the best

hyperparameter values for various epsilons in Figure 11. We omit

the generations parameter as we studied it in Section 5.2.1, and the

results here are similar. Similar to the generations parameter, we

see an approximate trend of increase in the number of selections

parameter with epsilon. We investigated setting default values in a

similar fashion to the generations parameter. However, we found

that the increase in performance was relatively small. Thus, we

maintain the default value of 10.

The probability of crossover parameter does not have an obvi-

ous trend across datasets or problems. Thus, we also maintain the

default value of 0.5. Finally, the probability of mutation parameter

similarly has no obvious trend with epsilon. However, we generally

see values higher than our default do perform better. We inves-

tigated increasing the mutation rate but once again found only

a slight performance increase, so for simplicity, we maintain our

default value of
1

|𝑐 |+1 .

C REDUCING SENSITIVITY
Outside of the choice of DPSelect and DPComp, another major con-

tributor to the amount of random noise introduced by DP is the

choice of the utility function. The lower the sensitivity of the func-

tion, the less noise must be added, and thus the utility improves. A

recent line of work has found that by choosing a lower sensitivity

utility function, the exponential mechanism can outperform state-

of-the-art problem-specific techniques [6, 23, 44]. When training

a logistic regression model, PrivGene uses standard cross-entropy

loss. However, cross-entropy loss has a sensitivity of 𝑂 (𝑑) [54].
Conversely, we use zero-one loss as it has a sensitivity of 𝑂 (1) (as
shown in Section 4.4) and significantly increases the performance

of the DPGA. We note that the zero-one loss is not typically used

in the non-private literature since it is not differentiable. However,

since our GA does not use gradients, we can take advantage of this

loss function to decrease the impacts of DP.

For the 𝑘-median problem, the classic utility function (5) has

sensitivity 𝑂 (𝑑). We found that using alternatives such as the Sil-

houette index or the ℓ∞ norm reduces the sensitivity but does not

sufficiently represent the original loss function. Thus, we main-

tained the original loss function for all experiments in the paper.

We did find that improvements can be made if we modify the ex-

isting utility function by carefully clipping the distance metric to

reduce the sensitivity while preserving utility. In the unmodified

version, the distance between two points is in [0, 𝑑] (the width of

this range gives the sensitivity). We instead use a distance metric

where the distance between two points is in [𝑑/4, 𝑑/2]. We do this

by simply truncating any distance values outside this range. In the

datasets we study, we find this to have minimal effect on utility.

Few distances are below 𝑑/4, and distances above 𝑑/2 (approx. the
mean) are not helpful when looking for a solution that minimizes

distance. This technique reduces the sensitivity by a factor of 4 and

significantly increases GA performance.

Figure 13 shows the effect on utility. We can see that, in general,

this gives us a significant boost in utility across all datasets and

values of epsilon. We note that this interval does not generalize to

all datasets or distributions of public vs. private data. The credit

dataset for higher epsilon values is one such example since the min

is slightly higher than𝑑/4. A simple approach to setting the clipping

parameters, in such a case, would be first to compute the DP min

and mean values of the distance matrix and then clip accordingly.

However, we find that [𝑑/4, 𝑑/2] is a reasonable choice without

tailoring to each specific dataset.

D ADDITIONAL EXPERIMENTS
In this section, we show additional figures that we could not fit into

the paper. The majority of these are the same figures as the main

paper on the datasets missing from the paper.

D.1 Selection and Composition Experiment
Figure 12 shows the results of the comparison described in Sec-

tion 4.3.3 on additional datasets. We confirm that using the expo-

nential mechanism with bounded range composition consistently

gives the best results.

D.2 Utility vs. Generations for PrivGene
This corresponds to Figure 1 of the main paper. We give the results

for the other datasets in Figure 14. We observe similar trends on the

missing datasets, with zero generations being the optimal solution.

D.3 Utility vs. Generations for Our Solution
This corresponds to Figure 3 of the main paper. We give the results

for the other datasets in Figure 16. We observe similar results to the

main paper except for the Spam dataset on 𝑘-median. In particular,

we see that for 𝜖 > 0.32, the GA converges for any number of

generations. We find it is very easy to solve the 𝑘-medians problem

on the Spam dataset. This pattern is visible in all evaluations of this

problem and dataset. For example, the sub-sampled exponential

mechanism (equivalent to zero generations of the GA) also obtains

the optimal non-private solution for 𝜖 > 0.32 on this problem

(Figure 17).

D.4 PrivGene Comparison
This corresponds to Figure 4 of the main paper. We give the results

for the other datasets in Figure 15. We observe very similar results

to the main paper, corroborating the observation that we improve

over PrivGene, both privately and non-privately.

D.5 PrivEEM Comparison
This corresponds to Figure 5 of the main paper. We give the results

for the other datasets in Figure 18. We observe very similar results

to the main paper with Credit and Spam showing similar trends to

the Adult dataset.
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Figure 12: An evaluation of the various selection techniques and composition theorems discussed in this section.

Figure 13: Evaluating the performance of distance matrix
clipping.

D.6 Sub-sampled Exponential Mechanism
Comparison

This corresponds to Figure 6 of the main paper. We give the results

for the other datasets in Figure 17. We again see that the utility

appears to plateau at a specific value much less than the non-private

baseline (except 𝑘-median on Spam as discussed in Section D.3). Our

optimal parameter solution always outperforms the sub-sampled

exponential mechanism when 𝜖 > 0.1.

D.7 PrivLocal Comparison
This corresponds to Figure 7 of the main paper. We give the results

for the other datasets in Figure 19. We observe very similar results

to the main paper, with even larger performance gaps in Spam and

Credit.

D.8 Gupta et al. Comparison
This corresponds to Figure 8 of the main paper. We recall that we

only used the two smallest datasets, Spam and Mushrooms, for this

experiment due to the large runtime of this algorithm. We give the

results for 𝑘 = 4 in Figure 21. We observe very similar results to the

main paper, with the modified version performing slightly better

on this problem. Our conclusion remains the same the DPGA still

gives the best utility and runtime.

D.9 Logistic Regression Benchmark
Comparison

This corresponds to Figure 9 of the main paper. We give the results

for all approaches in the benchmark on all of our datasets in Fig-

ure 20. We see that our solution performs comparably on the Adult

and Spam datasets and that the excluded algorithms typically per-

form worse than the ones in the paper. Thus, we can still conclude

that even against problem-specific solutions in convex optimization,

our general technique provides a competitive solution.

D.10 Jones et al. Comparison
This corresponds to Figure 10 of the main paper. We give the results

for the other datasets in Figure 22. We observe very similar trends

on the missing datasets, with the Jones et al. solution performing

best for higher values of 𝛼 . However, for smaller values, where the

runtime of Jones is significantly higher (approximately ten times

our solution on Adult), the solution of Jones et al. is the best.
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Figure 14: Investigating the utility of PrivGene for different
numbers of generations.

Figure 15: Comparing the utility of our DPGA to Priv-
Gene [54].

Figure 16: Investigating the utility of our DPGA for different numbers of generations.

Figure 17: Comparing the utility of the DPGA vs. the sub-sampled exponential mechanism [33].
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Figure 18: Comparing the utility of our DPGA to Priv-
Gene [54].

Figure 19: Comparing the utility of our DPGA to PrivLo-
cal [50, 54].

Figure 20: A comparison of our DPGA to the benchmark of private convex optimization techniques from Iyenger et al. [28].

Figure 21: Comparing the utility of our DPGA to the local
search of Gupta et al. [26].

Figure 22: Comparing the utility of our DPGA against the
state-of-the-art 𝑘-medians solution given by Jones et al. [29].
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