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Abstract
A common strategy to avoid network censorship is to use a
fully encrypted protocol (FEP). Such protocols are designed
to make all bytes appear uniformly random and make packet
sizes unpredictable. These goals depend on cryptographic
assumptions, but no mathematical formalization of them has
been presented. We give the first definitions for FEPs, exam-
ples of how existing protocols fail to satisfy them, and a novel
protocol that does satisfy them.

1 Introduction
A common strategy to avoid network censorship is to use fully
encrypted protocols (FEPs) [16,30,31], also called “look-like-
nothing”, “obfuscated”, or “randomized” protocols [14]. FEPs
attempt to eliminate message features that would identify
the protocol being used. Examples of this strategy include
Obfs4 [19], Shadowsocks [2], Obfuscated OpenSSH [1], and
VMess [28]. Such protocols are typically used to connect to a
proxy to relay data to and from the intended (and censored)
destination. This strategy has proven effective in practice,
even though it requires a proxy unknown to the adversary,
an adversary unwilling to block connections using protocols
it does not recognize [25], and an adversary that does not
employ sophisticated detection techniques that can recognize
fully encrypted protocols [29]. Popular systems employing
FEPs include Tor [10], V2Ray [26], Outline VPN [20], and
OpenVPN (via the XOR patch [32]).

In addition to censorship circumvention, fully encrypting
all Internet traffic would significantly enhance privacy. Re-
cent encrypted transports, such as TLS 1.3 and QUIC, have
already applied encryption to some sensitive meta-data (e.g.
SNI encryption). FEPs represent a natural endpoint of such
development — all protocol meta-data is hidden, preventing
an adversary from learning which cryptographic techniques
are used, how much genuine data is transmitted, and even the
identity of the FEP itself. Hiding such data can prevent clients
from being fingerprinted [14], reduce the effectiveness of
traffic analysis based on packet lengths [24, 27], and prevent
blocking application-specific encrypted protocols [9, 18, 23].

The common goal of FEPs is to eliminate identifying pat-
terns by randomizing the protocol messages. FEPs attempt
to make each byte in a network packet to appear uniformly
and independently random to an observer, and they frequently
attempt to eliminate identifiable packet sizes by modifying
them as well. These goals are intertwined with cryptographic
security notions, as encryption is used to make data appear ran-
dom, and message sizes are affected by length requirements
of the cryptosystems employed. However, no cryptographic
definition of FEPs has yet been given. Closely-related defi-

nitions include the IND$-CPA notion of Rogaway [22] and
“boundary hiding” from Boldyreva et al. [8], but they only
apply to the encryption of individual messages and to the
existing boundaries within a message sequence, respectively.

In this work, we (1) provide mathematical definitions for
fully encrypted protocols, (2) show how existing protocols
fail to satisfy them, and (3) present a new protocol that is prov-
ably fully encrypted. We focus on the task of designing an
encrypted protocol to operate over an existing transport pro-
tocol, as solutions lower in the network stack cannot be used
without raw-socket permissions or a modified network stack.
Our results represent work in progress and are currently lim-
ited to the datastream setting [12], where a reliable-delivery
protocol like TCP is assumed to be used, and to the data-
transport phase, where a symmetric key is assumed to already
have been shared. Moreover, we do not consider the related
problem of proxy-detection via active probing [7, 13, 15].

2 Security Definitions
We give our model and notation before introducing novel
security notions for fully encrypted protocols.

2.1 Model and Notation
We assume an AEAD encryption scheme
(INIT(),ENCk(ad,m),DECk(c)), and we assume the
encryption is randomized in that a random IV is produced
implicitly whenever ENC is called and included in the cipher-
text output. We assume that when an input fails to decrypt,
DEC outputs ⊥DEC. We require and assume the AEAD
scheme is length-regular, meaning that, for any two messages
m1 and m2 with |m1| = |m2|, associated data values d1 and
d2, and keys k1 and k2, |ENCk1(d1,m1)| = |ENCk2(d2,m2)|.
Finally, we require the AEAD scheme to have ciphertexts
indistinguishable from random (i.e. IND$-CPA [22]). Typical
AEAD schemes, such as AES-GCM or ChaCha20/Poly1305,
satisfy all of these requirements.

We express protocol functionality using the channel model
of Fischlin et al. [12]. It consists of the algorithms (1)
INIT(), which sets up state; (2) SEND(stS,m, p, f ), which
takes sender state stS, plaintext message m, desired output
length p, and flush flag f , and outputs a ciphertext; and (3)
RECV(stR,c), which takes receiver state stR and ciphertext
c and outputs a plaintext (possibly empty or an error symbol)
and a channel closure flag. These provide a unidirectional
channel permitting arbitrary plaintext fragmentation, where
inputs may be partially buffered by SEND, and ciphertext
fragmentation, where partial ciphertexts may be delivered
to RECV. A protocol in this model is correct if (1) after a
series of SEND calls with the last one given f = 1, passing
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the ciphertexts from SEND to RECV (possibly fragmented)
yields the plaintext messages submitted to SEND (possibly
fragmented); (2) passing any prefix of the ciphertexts from
any sequence of SEND calls to RECV (possibly fragmented)
produces some valid prefix of the plaintext inputs (possibly
fragmented) and no channel closures.

This model includes modifications to Fischlin et al. [12]
to express important characteristics of FEPs. First, since the
termination of a TCP connection is observable to a passive
adversary and is a typical protocol response to malicious
behavior, we include it as a potential output of RECV (ter-
mination by sender is not modeled). Second, we include the
desired output length p as an additional SEND parameter to
allow for our length shaping security definition (Section 2.4).

We operate primarily on strings of bytes. ε denotes the
empty string. s∥t denotes concatenation of s and t. x[i.. j] in-
dicates the subsequence of x from the ith to jth bytes, with
indexing beginning at 1. We use % to mean “without the pre-
fix”, i.e., xyxz%xy= xz. JA,BK denotes the longest common
prefix between A and B. ⪯ (≺) denotes (strict) string prefixes.

We adopt the stream-based security notions for integrity
and confidentiality without modification [12]: IND-CCFA
(Indistinguishability under Chosen Ciphertext-Fragment At-
tacks) and INT-CST (Integrity of Ciphertext Streams). Our
new definitions for FEPs do not necessarily imply these secu-
rity notions, and so a FEP should satisfy them as well.

Our passive and active security notions will both be quanti-
fied using the security experiment in Algorithm 1. Following
Fischlin et al., it gives the adversary a send oracle in the pas-
sive attack and adds a receive oracle for the active case. Note
that the experiment defines the following global variables:
CS, which will store the ciphertext outputs of the channel
SEND; CR, which will store the ciphertext inputs to the chan-
nel RECV; stS, the state of the channel SEND; and stR, the
state of the channel RECV. Definition 1 then requires that the
adversary’s success in the security experiment be negligible.

Algorithm 1 ExpFEP-ATK,b
A (1λ)

1: (stS,stR)← INIT(1λ)
2: CS← ε

3: CR← ε

4: b′←

{
AOb

SEND()(1λ) if ATK = CPFA
AOb

SEND(),O
b
RECV()(1λ) if ATK = CCFA

5: return b′ = b

Definition 1. A channel satisfies FEP-ATK if, for
a security parameter λ and PPT adversary A ,∣∣∣P[

ExpFEP-ATK,b
A (1λ) = 1

]
−1/2

∣∣∣ is negligible in λ.

We motivate each of the following definitions with a brief
example of an existing fully encrypted protocol that fails to
satisfy the corresponding security notion.

2.2 Passive Security
Fully encrypted protocols have adopted the informal security
goal of attempting to appear like random bytes to passive
adversaries. For example, Obfuscated OpenSSH [1] is a plu-
gin for SSH that requires the client send a random value to
initiate a connection, which is then used to derive a symmet-
ric key. The key is used to encrypt the messages that follow.
While the cipher suite in use may satisfy IND$-CPA, if the
plugin is configured without an optional pre-shared key, all
key material is observable so protocol is easily distinguish-
able from random and does not satisfy our notion for passive
security, FEP-CPFA (Fully Encrypted Protocol under Chosen
Plaintext-Fragment Attacks).

The security-experiment oracle ORECV is defined in Algo-
rithm 2. The oracle allows an adversary to input arbitrary
plaintexts, and if the challenge bit is set (i.e., b = 1) it uses
a RAND function to replace the ciphertext output with a ran-
dom string of the same length. The experiment returns 1 if
adversary guesses the challenge bit and returns 0 otherwise.

Algorithm 2 Ob
SEND(m, p, f )

1: (stS,c0)← SEND(stS,m, p, f )
2: c1← RAND(|c0|)
3: CS←CS∥cb
4: return cb to A

FEP-CPFA is not hard to satisfy, but it does preclude the
use of plaintext metadata fields. In particular, plaintext length
headers are commonly used to identify ciphertext boundaries
within the stream of incoming data, while FEPs must use a
different method.

2.3 Active Security
Even if protocol outputs are indistinguishable from random
to a passive adversary, protocols may nonetheless leak identi-
fying information when confronted with modified or forged
messages. For example, the data transport phase of the Obfs4
protocol [19] is structured as a sequence of AEAD encrypted
ciphertexts prepended by their lengths in the form of two-byte
unsigned integers. The length field is encrypted by an unau-
thenticated stream cipher. When any Obfs4 ciphertext fails
to decrypt, the TCP connection is immediately terminated on
the receiver side. Thus, an active adversary can modify this
length field in transit so that it is k, causing the receiver to
interpret the following k bytes as a ciphertext, which causes a
predictable channel closure exactly when Obfs4 is in use. We
have experimentally confirmed this behavior, and since the
messages sent by the client to initiate a standard Tor connec-
tion have consistent lengths, we were able to use it to reliably
distinguish Tor-over-Obfs4 connections from other FEPs.

This attack and others like it motivate our second security
notion, FEP-CCFA (Fully Encrypted Protocol under Chosen
Ciphertext-Fragment Attacks). Algorithm 3 presents the re-
ceive oracle ORECV defining this notion, which is similar to
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the analogous oracle used in the definitions of IND-CCFA
and INT-CST [12]. The stream of ciphertext inputs given to
ORECV is considered “in sync” until ciphertext fragments are
given to ORECV that differ from or exceed the genuine stream
produced by OSEND. While the stream is in sync, outputs are
suppressed, mimicking the IND-CCA definition in that the
adversary is not allowed to decrypt the challenge ciphertext.
After the stream is out of sync, the adversary is given the plain-
text outputs. The adversary always obtains channel closures,
if any, regardless of the sync state of the oracle.

In response to ciphertext manipulation, our definition re-
quires that a fully encrypted protocol simply holds the channel
open and drops incoming messages, in line with the recom-
mendation from Frolov et al. [13]. Doing so avoids leaking
any observable information about the point at which the error
was detected, which could leak information about ciphertext
boundaries in the stream, and it is achievable by a variety of
transport protocol designs.

Observe that achieving FEP-CCFA requires that the cipher-
text stream be authenticated. In the b = 1 case no messages or
channel closures are ever sent to the adversary, and so, to sat-
isfy the definition, in the b = 0 case the protocol must detect
the de-sync and stop delivering messages at that point.

Algorithm 3 Ob
RECV(c)

1: if b = 0 then
2: if sync = 0 then // already out of sync with SEND
3: (stR,m,cl)← RECV(stR,c)
4: return (m,cl) to A
5: else if CR∥c⪯CS then // in sync with SEND
6: (stR,m,cl)← RECV(stR,c)
7: CR←CR∥c
8: return (ε,cl) to A
9: else // either deviating or exceeding SEND outputs

10: if CR ≺ JCR∥c,CSK then // c partially in sync
11: c̃← JCR∥c,CSK % CR // in-sync part
12: (s̃tR, m̃, c̃l)← RECV(stR, c̃)
13: (stR,m,cl)← RECV(stR,c)
14: m′← m % Jm, m̃K // out-of-sync output
15: else // none of c in sync with SEND outputs
16: (stR,m′,cl)← RECV(stR,c)
17: if CS ⪯̸CR∥c or m′ ̸= ε then
18: sync← 0
19: CR←CR∥c
20: return (m′,cl) to A
21: else // b = 1, return empty string and keep channel open
22: return (ε,0) to A

2.4 Length Shaping
Traffic analysis is a serious concern for FEPs in practice [32],
but their approaches to modifying message lengths are in-
complete or non-existent. For example, while the widely-used

Shadowsocks proxy protocol [2] does satisfy FEP-CCFA, it
has no support for modifying message lengths. Shadowsocks
simply sends an AEAD-encrypted fixed-size length field fol-
lowed by the AEAD encryption of the message. Obfs4 has a
similar design, and while it does enable a specified amount
of padding to be added to the message, it does not enable
ciphertext lengths to be reduced (e.g. by fragmenting a ci-
phertext). A result of these choices is that the protocols have
minimum output message lengths, and their slightly different
designs make these values distinct. Thus, when when they are
used to transport short messages, these transports can be dis-
tinguished based on the minimum observed message length
alone. We note that the wire formats of these protocols need
not necessarily change to enable arbitrary message lengths,
but the implementations would need to include some kind of
ciphertext fragmentation and buffering.

To avoid traffic analysis based on message length, we give
a novel security notion for FEPs called length shaping, in
part inspired by real-world concerns [11]. It requires that the
protocol be capable of producing any given number p of bytes
of valid ciphertext data on command. While protocols like
Obfs4 will add specified padding to the input, we require
length shaping to apply to the output to provide greater con-
trol over the lengths of network messages. Length shaping
precludes the existence of a minimum message length, and,
more generally, the output lengths can be shaped arbitrarily,
such as into a data-independent pattern or that of a different
FEP. Definition 2 formalizes this new notion.

Definition 2. A channel satisfies length shaping if, for any
state stS, message m, and integer p ≥ 0, with (_,c f ) ←
SEND(stS,m, p, f ), f ∈ {0,1}, |c0|= p and |c1| ≥ p.

Note that the definition allows the protocol to produce
more bytes than requested when the flush flag is set. Such
an exception is necessary to satisfy the channel correctness
requirement because SEND may be called with the flush flag
set and insufficient output bytes to transport the required data.
Also observe that the definition permits SEND to be called
with length shaping “turned off” by setting p < 0, in which
case it imposes no requirements on protocol behavior. Fur-
thermore, length shaping requires arbitrary buffering because
SEND can be called with p = f = 0 and m ̸= ε, and it also
requires a padding mechanism because SEND can be called
with m = ε and p > 0, f = 0.

3 A Stream-based Construction
Since no existing FEP satisfies all our security notions simul-
taneously, we present a novel construction that does. At a
high level, the construction keeps an output buffer, which is
extended as needed to accommodate the output length param-
eter; either by encrypting some plaintext in the input buffer,
building a length-payload block pair where some or all of the
payload block consists of padding bytes, or creating a length
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Figure 1: A Stream-based Fully Encrypted Protocol

INIT(1λ):
1: K←$ K
2: stS = (K,0,ε,ε)
3: stR = (K,0,ε,0)
4: return (stS,stR)

SEND(stS,m, p, f ):
1: (K,seqno,buf,obuf)← stS
2: buf← buf∥m
3: if (|obuf| ≥ p)∧ (( f = 0)∨ (buf = ε)) then
4: c← obuf[1..MAX(p, f ∗ |obuf|)]
5: obuf← obuf%c
6: return (stS,c)
7: o←MIN(|buf|,il)
8: ℓp← 0 // Padding length
9: ℓc←|ENC(seqno,0(2+o))| // Ciphertext length

10: while (|obuf|+ ℓc + ℓlen < p)∧ (ℓc ̸= ol) do
11: ℓp← ℓp +1
12: ℓc← |ENC(seqno,0(2+o+ℓp))|
13: c← ENC(seqno, ℓc)
14: seqno← seqno+1
15: if ℓc > 0 then
16: m′← ℓp∥(0ℓp)∥buf[1..o]
17: buf← buf%buf[1..o]
18: c← c∥ENC(seqno,m′)
19: seqno← seqno+1
20: obuf← obuf∥c
21: return SEND(stS,ε, p, f )

RECV(stR,c):
1: (K,seqno,buf,fail)← stR
2: if fail = 1 then
3: return (stR,ε,0)
4: buf← buf∥c
5: m← ε

6: while |buf| ≥ ℓlen do
7: ℓc← DEC(seqno,buf[1..ℓlen ])
8: if ℓc =⊥DEC then
9: fail← 1

10: return (stR,ε,0)
11: else if ℓc = 0 then
12: buf← buf%buf[1..ℓlen ]
13: seqno← seqno+1
14: else if |buf| ≥ ℓlen + ℓc then
15: c′← buf[ℓlen +1..ℓlen + ℓc]
16: buf← buf%buf[1..1+ ℓlen + ℓc]
17: m′← DEC(seqno+1,c′)
18: seqno← seqno+2
19: if m′ =⊥DEC then
20: fail← 1
21: return (stR,ε,0)
22: ℓp← MIN(m′[1,2], |m′|−2)
23: m← m∥m′[3+ ℓp..]
24: else
25: break
26: return (stR,m,0)

block with length field 0 (when a small number of padding
bytes are required).

Our construction is inspired by Shadowsocks, but with
our payload blocks beginning with a fixed two-byte padding
field indicating the actual plaintext length. We let ℓlen be the
length of a the ciphertext produced by encrypted a two-byte
message. Length shaping is achieved by outputting arbitrary-
length fragments of a stream of ciphertext blocks. We set a
maximum ciphertext length for our scheme as ol = 216 and
use il to refer to the input length such that, when a two-byte
padding length prefix is added to il bytes of plaintext and the
result is encrypted, the output length is ol. The construction
is presented in Figure 1.

The SEND function first determines if it can immediately
return p bytes. If not, it extends the output buffer by at least
one block, and then calls itself with an empty plaintext input.

RECV waits for a full length block, and if the resulting
length value is nonzero it waits for the following payload
block, consuming its buffer as the outputs are produced. Any
decryption errors result in the protocol returning ε indefinitely
without producing any further output or channel closure.

4 Related and Future Work

We build on work around secure symmetric encryption in
the presence of ciphertext and plaintext fragmentation in the
stream setting [3–5, 8, 12], which is related to the problem of
expressing ciphertext lengths without plaintext metadata.

Fully encrypted protocols have been analyzed against active
probing [7, 13] and redirection [17, 21] attacks. Some work
has also developed methods to identify FEPs [6, 14, 29, 32].

Obfs4 is based on Scramblesuit [31] and is the fourth it-
eration of Tor’s fully encrypted protocol. Shadowsocks [2],
Obfuscated OpenSSH [1], and VMess [28] come from the
open-source community, and they are among the more sophis-
ticated and popular fully encrypted protocols, which also have
become useful to avoid VPN blocking [32].

This work is ongoing. Future work includes presenting
proofs that our construction satisfies the required security
notions, deriving relations between the security definitions,
addressing forward secrecy via key exchange in the protocol,
and extending our definitions to the datagram setting.
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