
Bleeding Wall: A Hematologic Examination on the Great Firewall
Sakamoto

Shinonome Lab
54k4m070@proton.me

Elson Wedwards
ElsonWedwards@proton.me

ABSTRACT
In-depth observations of the Great Firewall of China (GFW) are
challenging because it is an on-path black box, especially with
limited outbound packets that seldom reveal its internals. In this
paper, we had a rare opportunity to exfiltrate parts of the GFW’s
memory from its packet injectors with malformed DNS requests
by reviving a vintage vulnerability. Through analysis, we found it
contained Internet traffic going across China’s borders and stack
frames of the packet-handling processes of the GFW. With this
insight, we evaluated the encapsulated sensitive information and
inferred characteristics of the GFW’s processes. Moreover, we stud-
ied the feasibility of several attacks resulting from this vulnerability,
including off-path attacks and reflective amplification attacks. We
further discuss this novel attack surface and potential threats caused
by such defective censors.

1 INTRODUCTION
China’s Great Firewall is the largest censor on the Internet, inspect-
ing and intercepting the network traffic of over a billion netizens.
The GFW employs various techniques to impose its censorship
policies, including IP blocking [12], DNS poisoning [3, 24], active
probing [11], entropy-based traffic identification [32], etc. As a
bidirectional censorship middlebox between China and the rest
of the world, the GFW had several incidents impacting the global
Internet in its history, such as poisoning the DNS servers outside
China [4, 28] and forging SSL certificates for MITM attacks [23].

Despite its profound influence on the Internet, it remains difficult
to directly observe the GFW and its inner workings. The GFW
works in an on-path manner as a black box, meaning that it does
not have public IP addresses and is thus not directly accessible;
it only emits limited types of packets, predominantly simple TCP
RST and forged DNS responses. Prior measurement works on the
GFW mainly observed its expected behaviors or the side-channel
information, e.g., the IP ID of the packets from the GFW [3].

However, we find that it is surprisingly feasible to perform more
proactive measurements and even launch attacks leveraging GFW’s
certain implementation flaws. Specifically, we identified an out-of-
bounds read vulnerability in the DNS packet injector of the GFW,
which is a variant of a patched vulnerability revealed in 2010 [7].
Due to the lack of proper domain name validation, specially crafted
DNS requests could cause the GFW to include the data beyond
the network packet in its buffer in the forged responses. Such data
usually contained the remains of the last handled packet. On rare
occasions, it contained the stack frames of other functions.

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet (1), 13–21
© 2024 Copyright held by the owner/author(s).

This vulnerability essentially enabled one to sample the interna-
tional traffic flowing through China’s backbone networks, which
posed a great threat to the users’ data security. We evaluated the
sensitive information included in the leaked data. The leaked stack
frames contained memory addresses, including the return addresses
and saved frame pointers, which provided a peek into the GFW’s
processes. We inferred some characteristics of the GFW’s programs.

This vulnerability could also enable off-path attacks and reflec-
tive amplification attacks. Malicious adversaries might induce de-
sired traffic (e.g., DNS requests) and try to “read” it to perform
sophisticated attacks (e.g., DNS cache poisoning). Furthermore, the
leakage itself could make the GFW a distributed amplifier with
an amplification factor of 4.04×, and when combined with routing
loops, the factor could be over 400×.

We found that the GFW became aware of this vulnerability and
started to patch it during our measurements. We recorded a part of
this process, which implied the GFW was maintained and updated
city by city, except that the GFW in Shanghai was updated in two
steps. As of now, the GFW has fixed this vulnerability completely.

The existence of this vulnerability implies the possibility of ex-
ploiting the censors’ defective implementations and suggests a new
attack surface. As we present in this work, it not only provides the
researchers with chances of further in-depth studies but also shows
how flawed censors may threaten the Internet.

2 BACKGROUND
Architecture of the GFW. The GFW is an on-path system located

near the international Internet exchange points (IXPs) in three
cities of China: Beijing, Shanghai, and Guangzhou [20, 21]. Traffic
is copied with optical splitters and sent to the censorship devices in
order to prevent the GFW from becoming a bottleneck. When the
traffic matches specific censorship policies, the GFW intervenes in
the communication by injecting packets like forged TCP RST and
DNS responses, blocking ports, and/or disseminating false routing
information to block the IP addresses at the BGP level [3, 12].

DNS poisoning of the GFW. When the GFW detects a DNS request
on port 53 [13], it extracts the queried domain name and matches it
against the blocklist. If there is a match, the GFW injects a forged
response pointing to a wrong IP address to prevent the user from
accessing the target [3]. There are three packet injectors responsible
for DNS poisoning in the GFW, each with different characteristics
and blocklists. They also use different sets of IP addresses in the
forged responses. It is worth noting that this blocking method
only applies to DNS over UDP. The GFW injects RST packets for
TCP-based queries.

Previous works on the GFW. As the GFW evolves, many relevant
studies have appeared in recent years. An anonymous paper [3]
in 2014 analyzed the GFW’s DNS poisoning rules and studied the

13

https://creativecommons.org/licenses/by/4.0/

Free and Open Communications on the Internet (1) Sakamoto et al.

topology. It further inferred the size and traffic volume of one injec-
tor through the patterns of the IP ID field of its outbound packets.
In 2017, Wang et al. [31] analyzed the GFW’s state machine. In
2020, Alice et al. [11] researched the GFW’s active probing tech-
niques; Anonymous et al. [13] fingerprinted three different DNS
packet injectors of the GFW. In 2021, Hoang et al. [24] established
a long-term monitoring platform for the GFW’s domain filtering
policy. In 2023, Wu et al. [32] characterized the GFW censoring
fully encrypted traffic with entropy tests.

gfw-looking-glass.sh. In 2010, an organization named gfwrev pub-
lished a one-line script to dump parts of the memory of the GFW,
exploiting the GFW’s flaw in parsing DNS compression pointers [7].
One could specify the offset in the compression pointer beyond the
packet, and the GFW would copy the memory therein without vali-
dation. This vulnerability was fixed long ago, and the corresponding
packet injector stopped handling compression pointers in 2014. We
see no detailed measurements exploiting the old vulnerability on
the Internet. However, this vulnerability inspired us to find the one
we used in this work.

3 VULNERABILITY

00 00 01 00 00 01 00 00 00 00 00 00 03 77 77 77

06 67 6f 6f 67 6c 65 03 63 6f 6d 00 00 01 00 01
TXID Flags QD = 1 AN = 0 NS = 0 AR = 0 Label: www

Label: google Label: com NUL Type = A Class = IN

Figure 1: A Legitimate DNS Request for “www.google.com”

Figure 1 shows a legitimate DNS request, where the domain
name is represented as a series of labels. Each label is prepended
with a byte (length field) denoting its length in bytes, and a single
\x00 indicates the end of the domain name. Since a server copies
the query part to the response, if it fails to validate the lengths
of labels, it may be vulnerable to out-of-bounds reads. This has
historically happened in closed-source implementations of DNS
parsing logic, e.g., in CVE-2020-27737 [6].

We found one of the GFW’s packet injectors1 susceptible to a
similar vulnerability due to a lack of proper checks on the DNS
requests. In fact, this injector violated multiple principles stated in
RFC 1035 [1] and RFC 9267 [18]:

• No strict format validation: The injector did not strictly check
the format of DNS requests, possibly for faster processing. It
responded to any query containing a blocked domain regard-
less of the values of its type and class fields or the absence of
these fields. In other words, even apparently malformed DNS
packets would still trigger this censor. The injector copied
the two fields to the response as is, and when they did not
exist in the request, it copied 4 bytes beyond the packet.

• No length or null-terminator validation: The injector did
not check whether the length of the domain and its labels
conformed to the specification (i.e., no labels longer than
63 bytes and no domain names longer than 255 bytes) or
whether the domain ended with a \x00. It did not check
whether the label length exceeded the request packet, either.

1Injector 3 in [13] with TTL mirroring and zero IP ID.

In this case, the response would contain the memory content
beyond the packet.

• No character validation: DNS only allows letters, digits, and
hyphens in domain labels, but the injector did not have any
restriction on the characters in a label. As a result, any data
could be included in the question section of the response.

3.1 Payloads and Delivery

\x03 w w w \x06 g o o g l e \x03 c o m \xFF ?......

(a) Format 1: Overflow the Last Label
\xFF w w w . g o o g l e . c o m ?......

(b) Format 2: Overflow the First Label

Figure 2: Two Formats of Payloads

We identified two formats of payloads that could trigger the
vulnerability and read out-of-bounds data. Furthermore, we devised
two methods to deliver the payloads, which had implications for
the responses in terms of the leak size and location.

The payload is the same as a legitimate DNS request before the
domain name, where we use malformed labels without the type or
class field. In this section, we use the domain www.google.com as
an example.

Format 1: Overflow the last label. As shown in Figure 2a, we
insert the byte \xFF after the regular labels, indicating a following
label of 255 bytes. Since this is the end of the packet, the injector
would continue copying out-of-bounds data to the response. In this
format, the payload looks similar to that of the old vulnerability,
though out of different mechanisms.

Format 2: Overflow the first label. As shown in Figure 2b, we
change the first length field to \xFF and replace the other length
fields with periods (\x2E). Since the GFW converted the domains
to strings and matched them literally [19], it could also trigger the
censor and exploit the vulnerability. This payload differs from the
previous work, and we could leak one more byte with the same
domain. Besides, this format had a higher success rate and more
triggering domains (details in §3.2).

00 00 01 00 00 01 00 00 00 00 00 00 03 77 77 77

06 67 6f 6f 67 6c 65 03 63 6f 6d ff
TXID Flags QD = 1 AN = 0 NS = 0 AR = 0 Label: www

Label: google Label: com OVF

(a) Example Payload in Format 1
00 00 01 00 00 01 00 00 00 00 00 00 ff 77 77 77

2e 67 6f 6f 67 6c 65 2e 63 6f 6d
TXID Flags QD = 1 AN = 0 NS = 0 AR = 0

String literal: www.google.com

OVF

(b) Example Payload in Format 2

Figure 3: Two Formats of the Payload

The two formats of payloads are illustrated in Figure 3a and
Figure 3b. The TXID could be any value and would be mirrored in
the response.

14

Bleeding Wall Free and Open Communications on the Internet (1)

When the vulnerability was triggered, the packet injector sent
forged responses, which included leaked memory after the domain
labels we used in the payload. The flavors of the leaked data varied
depending on the delivery method, implying different memory
locations.

Method 1: Regular UDP datagrams. The vulnerable packet injec-
tor enforced bidirectional filtering so the payload could be sent
across the GFW in regular UDP datagrams from either side. In
this case, the leaked data contained mostly network traffic flow-
ing through the GFW, as shown in Figure 4a. We redacted any
potentially sensitive information in the figure.

Method 2: Fragmented UDP datagrams. The GFW is capable of
assembling IP fragments [31], so we can split the payload packet
in the middle into two fragments before sending them across the
GFW. In this case, the leaked data usually included a domain (as
a literal string, not DNS labels) amid zeros and unknown data, as
shown in Figure 4b. We redacted part of the domain name in the
figure.

00 00 81 80 00 01 00 01 00 00 00 00 03 77 77 77
06 67 6f 6f 67 6c 65 03 63 6f 6d ff 2f 66 61 76
69 63 6f 6e 2e 69 63 6f 20 48 54 54 50 2f 31 2e
31 0d 0a 55 73 65 72 2d 41 67 65 6e 74 3a 20
 0d 0a
48 6f 73 74 3a 20

 c0 0c
00 01 00 01 00 00 00 4d 00 04 9d f0 14 08

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090

·············www
·google·com·/fav
icon.ico HTTP/1.
1··User-Agent:
 ··
Host:

 ··
·······M······

TXID Flags QD = 1 AN = 1 NS = 0 AR = 0

PTR

Type = A CLS = IN TTL Length Address

(a) Regular UDP Datagrams with Payload in Format 1

00 00 81 80 00 01 00 01 00 00 00 00 03 77 77 77
06 67 6f 6f 67 6c 65 03 63 6f 6d ff 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 35 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 20 15 ee 39
fd 7f 00 00 25 00 00 00 fd 7f 00 00 b0 5c bf ec
fd 7f 00 00 33 31 0d 0a cd cd cd cd 15 01 00 00
00 00 00 00 2e
 2e 63 6e 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 c0 0c
00 01 00 01 00 00 00 c2 00 04 a8 8f ab bd

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090

·············www
.google.com·····
············5···
···············9
····%········\··
····31··········
····.
 .cn········
················
·······M······

TXID Flags QD = 1 AN = 1 NS = 0 AR = 0

PTR

Type = A CLS = IN TTL Length Address

(b) Fragmented UDP Datagrams with Payload in Format 1

Figure 4: Typical Responses for the Two Delivery Methods

The vulnerable packet injector limited the size of responses to a
maximum of 158 bytes regardless of the requests. It seems like an
independent limit on the outgoing packets of this injector, as RFC
1035 restricts the DNS packets over UDP to 512 bytes.

This vulnerability could not be triggered with TCP-based queries
as the GFW injects simple RST packets for such queries instead of
forging responses.

3.2 Trigger Domains
Not all blocked domains could trigger this vulnerability. When the
exploit failed, we received no forged response. To determine the
effective domains and guide our following measurements, we exper-
imented with over 390K blocked base domains from GFWatch [24]
in October 2023. We encapsulated each domain in both payload
formats, sent the payloads to 16 different IP addresses across the
GFW, and recorded the number of successful exploits.

Interestingly, we found that 3,976 domains in format 1 triggered
the vulnerability at least once, while the number for format 2 was
137,722. However, only 43,545 domains in format 2 triggered it
twice, 10,955 made it three times, and 4,422 made it four times. In
contrast, the figures for format 1 were relatively stable.

Considering this trait, we deemed domains with at least nine
successes effective, and the results are illustrated in Figure 5.

N
um

be
r

of
 D

om
ai

ns

0

500

1000

1500

2000

2500

3000

3500

Successful Exploits (≥)

9 10 11 12 13 14 15 16

Format 1 Format 2 In Common

Figure 5: Number of Domains and Successful Exploits

We got several facts from the results:
• A total of 3,233 domains could effectively trigger this vulner-
ability in at least one format.

• The effective domains were not strongly related to how they
were blocked. Only 489 of the 3,233 domains were blocked
with optional trailing characters2.

• The payload had a higher overall success rate at 86.38% in
format 2 than in format 1 at 76.98%.

• The shortest effective domains were {4,5,6,7,8,9}.tt and
x.co, and they only worked in format 2. On top of that, the
domains in the responses were always appended with a byte
\x00 for unknown reasons.

We were unable to determine what caused these behaviors with-
out access to the binary or source code of the GFW. However, based
on the results, we adopted the 4-letter domains and the second
format in later measurements as they could help us dump more
bytes with fewer exploits.

3.3 Limitations
There are several limitations in exploiting this vulnerability:

• Small leak size: The vulnerable packet injector limited the
responses to 158 bytes, where the query had at most 130
bytes. This restricted the leak size to a maximum of 124
bytes each time when using the second payload format and
the shortest known trigger domain.

• Fixed memory location: We can only extract memory adja-
cent to the domain labels at two fixed locations. This pre-
vented us from obtaining more interesting data at other
memory locations.

• Random GFW instance: The GFW adopts load balancing
based on the source and destination IP addresses and dis-
patches packets to different groups of servers [3]. As a result,
we could not continuously dump the memory from the same
instance and perform the long-term observation.

2Rule 1, 2, 5, 6, 7 and 8 in [24]
15

Free and Open Communications on the Internet (1) Sakamoto et al.

Table 1: Observation Sites

Site Location Landing ISP Landing City
1 Singapore China Unicom Shanghai
2 South Korea China Telecom Shanghai

China Mobile Shanghai
3 Japan China Unicom Guangzhou
4 Japan China Telecom Shanghai

China Unicom Shanghai
5 USA China Telecom Guangzhou
6 USA China Mobile Guangzhou
7 USA China Telecom Shanghai

China Unicom Shanghai
8 Germany China Mobile Shanghai

4 MEASUREMENTS AND INFERENCES
We conducted measurements by collecting the leaked data to under-
stand the vulnerability better and perform analysis. In this section,
we present our methodology, results, and inferences.

We did our initial measurements in September 2023. However,
when we started the formal measurements in October 2023, the
GFW had patched its devices in Beijing. Therefore, the majority of
the data came from the GFWnodes in Shanghai and Guangzhou.We
collected over 1 TB of data over a period of three days, containing
over 13B leaks. Approximately 87.43% of them have non-duplicate
data per a sampling inspection of 52M leaks. The methodology is
introduced in §4.1.

In §4.2, we verified the traffic leak, localized the memory location,
and identified the stack frames in the leaks. In §4.3, we classified and
evaluated the sensitive information included in the leaks. In §4.4, we
analyzed the stack frames further and inferred some characteristics
of the GFW’s processes. In §4.5, we recorded the process of the
GFW fixing this vulnerability.

4.1 Methodology
We set up eight observation sites in five countries to cover different
ISPs in different international IXPs where the payloads entered
China. The specific list is shown in Table 1, where the landing ISP
and city denote through which route a packet entered China. We
placed all of our observation sites outside China in order to avoid
unnecessary risks.

During the measurements, each site continuously sent payloads
to assigned subnets, extracted the leaked data from the responses
forged by the GFW, and uploaded it to a central server. We tested
the subnets on every site with traceroute so that the traffic flowed
through the desired landing ISPs and cities.

Besides, we set two restrictions based on what we found in the
initial measurements:

• The vulnerability existed in both IPv4 and IPv6 and the leaks
seemed similar. However, it was hard to determine the geo-
graphic location of IPv6 addresses at the city level. For ease
of analysis, we chose to measure using IPv4 only.

• We did not find much data of interest in the responses when
delivering the payload in IP fragments (the second delivery
method in §3.1), and the success rate was lower. To improve

efficiency, we only used regular UDP datagrams to deliver
the payload.

We conducted themeasurements responsibly.We collected, stored
and processed the data securely, and limited our rates and TTL to
avoid overwhelming the networks or hosts. The detailed ethical
considerations are presented in §7.

4.2 Characterizing the Leaks
In this section, we confirmed the data indeed contained the Internet
traffic handled by the GFW, inferred the leaks came from the stack,
and identified the stack frames included in the leaks.

4.2.1 Verifying the Traffic Leak. Most data leaked by the GFW
looked like Internet traffic, but we still needed to prove it.

We set up a tool on one of the observation sites to continuously
send probing packets of 256 bytes to a random port of a black-
hole IP address at 1,000 PPS. This address is the first one in a
prefix announced by an autonomous system, and we limited the
TTL to a value that just allowed the forged responses to reach
our observation site. We filled the probing packets with magic
numbers and timestamps so that we could distinguish them from
other network traffic and retrieve the departure time. We started
another collection process to leak data from the same landing ISP
and landing city at 5,000 PPS.

Over a period of 24 hours, we collected 86,647 leaks with our
magic number. We examined the matched parts and confirmed that
the GFW was leaking our probing packets across China’s borders.
Moreover, the leak times were very close to the departure times,
within a round-trip time. This indicated the leaks were from a buffer
holding all network packets passing through the GFW.

4.2.2 Localizing the Memory Location. We observed that all the
matched leaks had the middle 124 bytes of our probing packets at
the same position. Based on this observation, we presumed that
the packets were held at a fixed memory location, likely an array
buffer on the stack of the handler thread. The leading bytes were
overwritten by our own payload, and the trailing bytes exceeded
the maximum size of the DNS response, so we could not leak them.

To validate this hypothesis, we assumed the GFW was running
Linux on the x86-64 platform. In this case, the threads would have
stack frames of the layout in Figure 6a, where the return address
starts with 0x00005 for functions in the executable, and the saved
RBP starts with 0x00007f for stack addresses. Although in our
model, as shown in Figure 6b, we could not leak the saved RBP or
return address of the current function, as the packet buffer was
much larger3 than what we could leak, there was a possibility that
the leaked data contained a part of the stack frame of a function
previously called by the parent.

Therefore, we searched the leaks for this pattern; specifically the
adjacent saved RBP and return address. We got nine matched leaks
after examining a small sample of 1.5M leaks, and an example is
illustrated in Figure 7.

In this leak, a saved stack address 0x00007f159609fe82 is fol-
lowed by the return address 0x000055d9e8e82408, which is con-
sistent with the stack layout in x86-64 Linux. We can also see other

3Possibly 1,000 bytes, the maximum length of DNS requests that this injector would
respond to.

16

Bleeding Wall Free and Open Communications on the Internet (1)

Local Variables

Saved RBP

Return Address

Parameters

Local Variables

Saved RBP

Return Address

Parameters

In
cr

ea
si

ng
 A

dd
re

ss
S
ta

ck
 G

ro
w

th

C
urrent S

tack Fram
e

Parent S
tack Fram

e

(a) Linux Stack Frame

Local Variables

Saved RBP

Return Address

Parameters

Saved RBP

Return Address

Parameters

H
andler S

tack Fram
e

Pa
ck

et
 B

uf
fe

r

PayloadPayload

LeakLeak

(b) Leak Model

Figure 6: Stack Frame and Leak Model

 ca 23 ca 23 15 7f 00 00 00 00
00 00 00 00 00 00 02 00 00 00 00 00 00 00 00 17
8f be 15 7f 00 00 5d ce c8 be 15 7f 00 00 a8 61
 14 73 09 96 15 7f 00 00 06 00
00 00 00 00 00 00 04 00
00 00 00 00 00 00 05 00 00 00 00 00 00 00 30 76
09 96 15 7f 00 00 82 fe 09 96 15 7f 00 00 08 24
e8 e8 d9 55 00 00 27 00 00 00 00 00

0000
0010
0020
0030
0040
0050
0060
0070

 ·#·#······
················
······]········a
 ·s········
······. ··
··············0v
···············$
···U··'·····

Figure 7: Example Leak with Stack Frame Patterns

data that looks like pointers, all 8-byte aligned with the start of our
payload. All indications highly suggest that the leaks came from a
packet buffer on the stack.

4.2.3 Validating the Stack Frames. We found evidence supporting
our model, but we needed to validate the stack frames as well.

First, we analyzed the other leaks with automatic tools to reduce
our direct access to raw data. We found about 38K leaks with ad-
jacent saved RBPs and return addresses of the same format from
different observation sites throughout our measurements, 16K of
which have exactly the same layout as in Figure 7 with slightly
different addresses (due to address space layout randomization;
details in §4.4). This excluded the possibility that the stack frames
were random network traffic.

Second, we checked the stack signatures of Linux on AArch64,
whose address prefixes differ from Linux on x86-64 and got no
matches. This excluded the possibility that the GFW was also using
AArch64 processors.

At last, we verified the time distribution over which we collected
these stack frames. The stack frames were very rare because any
network packet longer than 142 bytes would completely wipe them
from our leaks, so we should have collected more stack frames when
there was less traffic. To expand the sample size, we included the
leaks with at least two consecutive addresses (64-bit integers) begin-
ning with 0x00007f (the prefix of addresses allocated by mmap(),
including the stacks) and got 9M results. The distribution on 10/30
is illustrated in Figure 8 and conforms to the characteristics of
China’s international traffic in [34] substantially: when the traffic

was heavy between 12:00 p.m. and 5:00 p.m. and between 8:00 p.m.
and 2:00 a.m., we got fewer leaks; when the traffic was light during
the rest of the time, we got more. The number dropped around
11:00 a.m. because the nodes in Guangzhou were patched at the
time (details in §4.5).

M
at

ch
ed

 L
ea

ks

0

100

200

300

400

500

600

700

800

0:
00

1:
00

2:
00

3:
00

4:
00

5:
00

6:
00

7:
00

8:
00

9:
00

10
:0

0

11
:0

0

12
:0

0

13
:0

0

14
:0

0

15
:0

0

16
:0

0

17
:0

0

18
:0

0

19
:0

0

20
:0

0

21
:0

0

22
:0

0

23
:0

0

Figure 8: Time Distribution of Matched Leaks on 10/30 (CST)

4.3 Traffic Patterns
The Leak of sensitive information is the first concern associated
with such a vulnerability. Despite the small leak size and the pop-
ularity of encryption nowadays, sensitive information might still
be transmitted as plaintext and included in the exact part, such as
passwords and tokens in various protocols.

We made tools to analyze the leaked data automatically by look-
ing for certain signatures and patterns with regular expressions.
We examined all the 13B leaks and looked for several patterns in
common protocols. The results are shown in Table 2.

From the results, we collected more than 3M pieces of potentially
sensitive data over a short period at a controlled low rate, which
was a huge volume. The credential signatures ranged from HTTP
to SMTP, and there could be many other susceptible unencrypted
protocols. Since one could harvest the data much faster and it
involved a whole country’s transnational traffic, the risk was of
great significance.

Although through our manual inspection of a small number of
cases, most of the data did not contain the full credentials and/or
enough information to infer the service locations (as the leaked data
did not include connection metadata), stealthy adversaries might
still use the partial data to help brute-force attacks or just store the
data for future reference. Besides, an adversary could proactively
trigger desired traffic (e.g., DNS queries) and capture it to launch
off-path attacks, as described in §5.1.

The results also implied that the protocol-specific packet injector
handled most network traffic going through the GFW, if not all, as
hypothesized in [15].

4.4 Process Characteristics
We inferred that the leaked data came from the stack in §4.2, and
we can deduce more characteristics of the GFW’s processes.

First, we knew from the addresses that the GFW nodes had ad-
dress space layout randomization (ASLR) and Position Independent
Executable (PIE) enabled. ASLR randomizes the addresses of a pro-
cess’s segments on each run to mitigate some memory corruption
attacks, and PIE makes ASLR possible for the code segment. In the
leaks of the same layouts, the middle bits of the stack and return

17

Free and Open Communications on the Internet (1) Sakamoto et al.

Table 2: Patterns of Common Protocols

Regular Expression Hits Positivity Rate (‰) Description
HTTP\/1\.[01] 52,851,094 38.30 HTTP/1.x protocol signature
Authorization: 984,567 0.71 HTTP header for tokens
Cookie: 1,937,274 1.40 HTTP header for cookies
&password= 79,090 0.06 Password in URLs/forms
"password":" 7,144 0.005 Password in JSON
AUTH (PLAIN|LOGIN|CRAM-MD5) 59,326 0.04 Credentials for SMTP & IMAP
USER .+\r\nPASS .+ 8 / Credentials for POP3 & FTP

addresses varied in conformity with ASLR and PIE. For example,
all of the 16K leaks of the layout in Figure 7 have return addresses
starting with 0x00005 and ending with 0x408 and stack addresses
starting with 0x00007f and ending with 0xe82.

Second, we learned from the address prefixes that the GFWnodes
were running x86-64, i.e., stack addresses started with 0x00007f,
and functions in executables started with 0x00005. In our local
experiments, Linux on ARM64 always allocated executable ad-
dresses starting with 0x0000aaaa and stack addresses starting with
0x0000ffff.

Third, we did not see any stack canaries in leaked stack frames.
A stack canary is a random 64-bit integer starting with \x00 on the
stack before the saved RBP to mitigate buffer overflow attacks. We
found no leak with a saved RBP and a return address conforming to
this pattern. The GFW might not enable it because of performance
considerations or outdated compilers. This implies that if buffer
overflow vulnerabilities existed in the GFW, they might not be
effectively mitigated.

At last, we inferred that each injector process had four threads for
packet handling. A unique return address in the same stack frame
layout indicated a separate process due to ASLR (as it is globally
shared), and one unique stack indicated a thread. We analyzed
several stack frame layouts, including the one in Figure 7, and
counted the unique stack addresses in the saved RBP. We found
that each return address corresponded to up to four groups of
stack addresses. The addresses in a group differed within 8 MB (the
default stack size on Linux), indicating they were in the stack of one
thread. The portion of return addresses with four groups is about
one-third. This implied that every injector process might have four
handler threads for network packets.

4.5 Maintenance and Update
The vulnerability existed in all known paths across the GFW when
we identified it in early September 2023, including all major ISPs
and landing cities. Then, we started to design the experiments and
conducted initial measurements. However, when we were to start
the formal measurements in late October, payloads entering China
via Beijing no longer worked. The GFW in China Education and
Research Network (CERNET) might be patched earlier than the
nodes in Beijing as a separate system, though it also resides in
Beijing [2]. The nodes in Guangzhou were patched on October
30. The nodes in Shanghai were patched in two steps: on October
31, our observation sites in Singapore, South Korea, and Germany
stopped working, and the collection rate in Japan and the USA

declined; on November 1, the sites in Japan and the USA stopped
working completely. All times and dates in this section are in China
Standard Time (UTC+8).

R
el

at
iv

e
C
ol

le
ct

io
n

R
at

e
0%

20%

40%

60%

80%

100%

120%

10
:1

5

10
:2

1

10
:2

7

10
:3

3

10
:3

9

10
:4

5

10
:5

1

10
:5

7

11
:0

3

11
:0

9

11
:1

5

11
:2

1

11
:2

7

11
:3

3

11
:3

9

11
:4

5

11
:5

1

11
:5

7

12
:0

3

12
:0

9

Site 3 (JP via CU) Site 5 (US via CT) Site 6 (US via CM)

(a) Affected Sites When Guangzhou Was Patched on 10/30

R
el

at
iv

e
C
ol

le
ct

io
n

R
at

e

0%

20%

40%

60%

80%

100%

120%

10
:1

5

10
:2

1

10
:2

7

10
:3

3

10
:3

9

10
:4

5

10
:5

1

10
:5

7

11
:0

3

11
:0

9

11
:1

5

11
:2

1

11
:2

7

11
:3

3

11
:3

9

11
:4

5

11
:5

1

11
:5

7

12
:0

3

12
:0

9

Site 1 (SG via CU) Site 2 (KR via CT & CM) Site 4 (JP via CT/CU)
Site 7 (US via CT/CU) Site 9 (DE via CM)

(b) Affected Sites When Shanghai Was Partially Patched on 10/31

R
el

at
iv

e
C
ol

le
ct

io
n

R
at

e

0%

20%

40%

60%

80%

100%

120%

10
:1

5

10
:2

1

10
:2

7

10
:3

3

10
:3

9

10
:4

5

10
:5

1

10
:5

7

11
:0

3

11
:0

9

11
:1

5

11
:2

1

11
:2

7

11
:3

3

11
:3

9

11
:4

5

11
:5

1

11
:5

7

12
:0

3

12
:0

9

Site 4 (JP via CT & CU) Site 7 (US via CT & CU)

(c) Affected Sites When Shanghai Was Completely Patched on 11/01

Figure 9: Collection Rates during Patching

We summarize the timeline as follows:
• Sometime between 10/20 and 10/26: Nodes in CERNET were
patched.

• Sometime between 10/20 and 10/29: Nodes in Beijing were
patched.

18

Bleeding Wall Free and Open Communications on the Internet (1)

• October 30: Nodes in Guangzhou were patched.
• October 31: Some nodes in Shanghai were patched.
• November 1: Remaining nodes in Shanghai were patched.

We recorded the collection rates in leaks per second during the
patching of Guangzhou and Shanghai, which are presented in Figure
9. The baseline is the average collection rate of the corresponding
site during the last hour before it was affected by patching, and the
minor fluctuations were likely due to packet loss. Per the diagrams,
the updates all happened around 11 a.m. The update was divided
into phases even within the same city on the same day. Each update
phase affected our sites independently, except the sites in Japan
and the USA lost 20% and 50% of their rates, respectively, on 10/31.

Beijing, Shanghai, and Guangzhou are the cities where interna-
tional IXPs in China reside [21]. According to public information on
Submarine Cable Map [9], Beijing has the fewest international sub-
marine cables while Shanghai has the most. We hence hypothesize
the GFW’s maintenance process as follows: the GFW is updated
from the city with the least international traffic to the city with
the most, and the nodes in Shanghai are updated in two steps on
two days to observe and minimize potential side effects; the nodes
involved in each update phase are largely related to the combi-
nation of the ISP and country (possibly the corresponding cable);
CERNET may be the GFW’s experimental field as it has the least
international bandwidth and was patched earliest.

5 POTENTIAL ATTACKS
In §4.3, we analyzed the patterns of leaked traffic and posed the
possibility of a stealthy adversary passively collecting sensitive in-
formation by exploiting this vulnerability. However, it was feasible
for adversaries to launch more proactive attacks leveraging it.

In this section, we describe the potential attacks induced by this
vulnerability from two perspectives: off-path eavesdropping in §5.1
and the leakage itself in §5.2.

5.1 Off-Path Attacks
This vulnerability enabled any adversary on the Internet to intercept
parts of the transnational packets, hence allowing off-path attacks.
A proactive adversary could trigger desired traffic by initiating
requests and leak sensitive data when two systems communicated
across the GFW. Our experiment in §4.2.1 already showed one could
leak one out of 1,000 packets with merely 5,000 exploits, while a
malicious adversary could send payloads much faster to increase
the chance. We have also seen cases where sensitive information
was leaked despite the small leak size and inability to retrieve the
first few bytes in §4.3.

One feasible attack is DNS cookie theft. DNS is vulnerable to
various attacks due to a lack of encryption and authentication [29],
and DNS cookies [10] were introduced as a lightweight security
mechanism to mitigate DNS cache poisoning and amplification
attacks. In short, a client includes an 8-byte cookie in requests,
and the server echoes it in the responses to eliminate source IP
spoofing; the server may also generate a cookie of 8 to 32 bytes for
this client and require the client to include it in every request for
verification. The adoption of DNS cookies can effectively prevent
cache poisoning and amplification attacks from off-path adversaries.

Adversary

Recursive ResolverName Server
GFW

3. Leak DNS cookies

2. Recursive queries

1. Domain requests

Figure 10: Threat Model of Off-Path DNS Cookie Theft

However, with our vulnerability, it was feasible to intercept the
DNS cookies since they are at the end of the DNS packets. Off-path
adversaries could send many queries to a recursive resolver and try
to capture the traffic between it and a name server across the GFW,
as shown in Figure 10. In fact, after scanning a small sample of 160K
leaks, we already found 30 DNS cookie signatures in the wild and
confirmed they all contained full DNS cookies. The default lifetime
of DNS cookies is one day per RFC 7873. So after the adversary
acquired the cookies, they could perform DNS cache poisoning by
stacking previous vulnerabilities or techniques like [5, 8, 17, 22,
25, 26]. The adversary might also spoof queries from a victim and
try to capture the server cookies in the error responses to exploit
resolvers enforcing server cookies for amplification attacks.

Another example is attacks on transnational database connec-
tions, where the database was located in China, but there was an
overseas application server for local users. An adversary could
initiate operations like logins to make the server fetch sensitive
information and try to eavesdrop on it, as most database protocols
are not encrypted by default.

5.2 Reflective Amplification Attack
Middleboxes for censorship can be used as amplifiers for DDoS
attacks as they send packets on detection of certain traffic. However,
the GFW was considered a weak one with an amplification factor
of only 1.45× in [14].

Large Responses
due to Leak

Adversary

VictimMisconfigured Router
GFW

Small Payload with
Spoofed Source Address

×

Figure 11: Threat Model of Reflective Amplification Attacks

Even so, with the out-of-bounds read vulnerability in this work,
we could increase the amplification factor significantly. Our shortest
payload packet had only 46 bytes in total, and the GFW would
respond with 186 bytes, bringing the amplification factor to 4.04×.
We could further increase it with routing loops described in [14],
where the packets crossed the GFW until their TTL expired or even
indefinitely. The threat model is illustrated in Figure 11. In our
experiment, we sent queries for blocked domains to IP addresses in
China and found around 1,000 destinations looping packets across
the GFW over 30 times, 159 of which still existed after two days. The

19

Free and Open Communications on the Internet (1) Sakamoto et al.

highest number of loop iterations is 119 packets in return for only
one query with a TTL of 64. This would result in an amplification
factor of 481.17×. With factors at this level, one could achieve an
attack volume of 100 Gbps with only a little more than 200 Mbps
of initial traffic, higher than 99.9% of the DDoS attacks in 2022
Q3 [30]. The factor might be even larger if we specified the TTL to
the maximum value of 255.

There are many benefits for adversaries to leverage a national
censor to launch DDoS attacks. First, the GFW is located beside
international IXPs with very high capacity. Despite the relatively
low amplification factor, the upper limit of the achievable through-
put is high. Second, the adversaries can use a large number of IP
addresses to launch attacks. An adversary outside the GFW can
inflict attack traffic by sending traffic to any IP address in China,
making the reflection come from a variety of source IP addresses
and, therefore, difficult to block. Third, the attacks can be stealthy
as all traffic comes from the backbone networks of China, which
is hard to trace and potentially bypasses inbound source address
validation.

6 DISCUSSION
The vulnerability presented in this work reveals a new attack sur-
face, i.e., even on-path censors can be compromised due to their
implementation flaws. In this section, we discuss other possible
attack vectors and the derived threats to data security.

6.1 Potential Attack Vectors
The GFW takes every measure to reinforce its censorship, including
stacking multiple systems for the same type of traffic. For instance,
the GFW has three packet injectors for DNS poisoning [3, 13]
and two middleboxes for blocking HTTPS [16] running in parallel.
There are other co-located systems for active probing [11], Great
Cannon [27], etc. This complex combo increases the success rate
of censorship but also introduces potential attack vectors, which
await further research.

This attack surface applies to other on-path censors besides the
GFW as well, like other national censors. Some ISPs in China also
deploy their own censors at the provincial level [33], which may
have independent attack vectors. We hope this work can spur more
in-depth studies on similar issues in the censors worldwide.

6.2 Data Threats of Flawed Censors
The censors operated by nations or ISPs are usually closed-source
black boxes developed in-house. Due to the lack of external audits,
they may be less secure than open-source or commercial products.
In the meantime, these censors filter a large volume of traffic on
critical paths at all times, a large amount of which is still plain-
text, despite the increasing popularity of encryption. It could cause
disastrous consequences if malicious adversaries managed to com-
promise them. Just as we demonstrated in this work, anyone on the
Internet could easily collect millions of sensitive data or facilitate
DNS cache poisoning attacks with merely one vulnerability of the
GFW.

Previous research mainly focused on characterizing the censors’
behaviors and evading the censorship. We hope this work can draw
attention to the risk of data security induced by defective censors.

7 ETHICS
Censorship research carries an element of risk, especially when it
might involve sensitive information or overwhelm the networks in
this work. We take the responsibility seriously and try to minimize
the side effects and repercussions to the greatest extent possible.

First, the leaked data we collected from the GFW contained
other users’ Internet traffic, which is sensitive. To mitigate the
risk of exposing such data, we rented a dedicated server from a
reputable provider to store and process it and adopted TLS for the
transmission from the observation sites. The observation sites did
not store the data. We programmed automatic tools to analyze the
data to minimize our direct access. After the analysis, all the disks
were wiped to prevent a secondary leak.

Second, to minimize the impact on the other hosts and networks,
we excluded the known online hosts and limited the TTL of our
outgoing packets during our measurements. We controlled the
sending rate to each routable IP address under 40 PPS and 2 KB/s so
it would not cause stress to the host even if the packets did reach it.
While scanning the Internet for routing loops, we kept the rate low
and sent less than 60 bytes each time. All sending and receiving
rates were negligible compared to the available bandwidth of both
our host providers and our targets.

At last, the vulnerability has been completely fixed before the
completion of this work. Therefore, nobody can further exploit it
to launch attacks or harvest sensitive information.

8 CONCLUSION
In this work, we identified and studied an out-of-bounds read vul-
nerability in the GFW’s packet injector.We localized the leak source,
evaluated the data risk induced by it, and inferred information
about the GFW’s processes. We also proposed several feasible at-
tacks leveraging the vulnerability. In the end, we discussed the
possibilities of similar attack vectors and threats to data security
induced by large censors.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments
and constructive feedback.We also would like to express our special
thanks to gfwrev and GFW.Report for their great work serving as
the foundation for our research. Sakamoto dedicates this work to
his friends.

REFERENCES
[1] 1987. Domain names - implementation and specification. RFC 1035. https:

//doi.org/10.17487/RFC1035
[2] 2006. Management Structure. https://web.archive.org/web/20171002170430/http:

//www.edu.cn/structure_1380/20060323/t20060323_158673.shtml. (Accessed on
11/02/2023).

[3] 2014. Towards a Comprehensive Picture of the Great Firewall’s DNS Censorship.
In 4th USENIX Workshop on Free and Open Communications on the Internet (FOCI
14). USENIX Association, San Diego, CA. https://www.usenix.org/conference/
foci14/workshop-program/presentation/anonymous

[4] 2014. Internet outage in China on Jan 21 | GreatFire.org. https://zh.greatfire.org/
blog/2014/jan/internet-outage-china-jan-21. (Accessed on 11/01/2023).

[5] 2020. CVE-2020-25684. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2020-25684

[6] 2020. CVE-2020-27737. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2020-27737

[7] 2020. GFW Archaeology: gfw-looking-glass.sh. https://gfw.report/blog/gfw_
looking_glass/en/. (Accessed on 11/01/2023).

20

https://doi.org/10.17487/RFC1035
https://doi.org/10.17487/RFC1035
https://web.archive.org/web/20171002170430/http://www.edu.cn/structure_1380/20060323/t20060323_158673.shtml
https://web.archive.org/web/20171002170430/http://www.edu.cn/structure_1380/20060323/t20060323_158673.shtml
https://www.usenix.org/conference/foci14/workshop-program/presentation/anonymous
https://www.usenix.org/conference/foci14/workshop-program/presentation/anonymous
https://zh.greatfire.org/blog/2014/jan/internet-outage-china-jan-21
https://zh.greatfire.org/blog/2014/jan/internet-outage-china-jan-21
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25684
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25684
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27737
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27737
https://gfw.report/blog/gfw_looking_glass/en/
https://gfw.report/blog/gfw_looking_glass/en/

Bleeding Wall Free and Open Communications on the Internet (1)

[8] 2021. CVE-2021-3448. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2021-3448

[9] 2023. Submarine Cable Map. https://www.submarinecablemap.com/
[10] Donald E. Eastlake 3rd and Mark P. Andrews. 2016. Domain Name System (DNS)

Cookies. RFC 7873. https://doi.org/10.17487/RFC7873
[11] Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr. 2020. How China

Detects and Blocks Shadowsocks. In Proceedings of the ACM Internet Measurement
Conference (Virtual Event, USA) (IMC ’20). Association for Computing Machinery,
New York, NY, USA, 111–124. https://doi.org/10.1145/3419394.3423644

[12] Daniel Anderson. 2012. Splinternet Behind the Great Firewall of China: Once
China Opened Its Door to the World, It Could Not Close It Again. Queue 10, 11
(nov 2012), 40–49. https://doi.org/10.1145/2390756.2405036

[13] Anonymous, Arian Akhavan Niaki, Nguyen Phong Hoang, Phillipa Gill, and
Amir Houmansadr. 2020. Triplet Censors: Demystifying Great Firewall’s DNS
Censorship Behavior. In 10th USENIX Workshop on Free and Open Communica-
tions on the Internet (FOCI 20). USENIX Association. https://www.usenix.org/
conference/foci20/presentation/anonymous

[14] Kevin Bock, Abdulrahman Alaraj, Yair Fax, Kyle Hurley, Eric Wustrow, and Dave
Levin. 2021. Weaponizing Middleboxes for TCP Reflected Amplification. In 30th
USENIX Security Symposium (USENIX Security 21). USENIX Association, 3345–
3361. https://www.usenix.org/conference/usenixsecurity21/presentation/bock

[15] Kevin Bock, George Hughey, Louis-Henri Merino, Tania Arya, Daniel Liscinsky,
Regina Pogosian, and Dave Levin. 2020. Come as You Are: Helping Unmodified
Clients Bypass Censorship with Server-side Evasion. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on the Ap-
plications, Technologies, Architectures, and Protocols for Computer Communication
(Virtual Event, USA) (SIGCOMM ’20). Association for Computing Machinery,
New York, NY, USA, 586–598. https://doi.org/10.1145/3387514.3405889

[16] Kevin Bock, Gabriel Naval, Kyle Reese, and Dave Levin. 2021. Even Censors
Have a Backup: Examining China’s Double HTTPS Censorship Middleboxes. In
Proceedings of the ACM SIGCOMM 2021 Workshop on Free and Open Communica-
tions on the Internet (Virtual Event, USA) (FOCI ’21). Association for Computing
Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3473604.3474559

[17] Tianxiang Dai, Haya Shulman, and Michael Waidner. 2021. DNS-over-TCP Con-
sidered Vulnerable. In Proceedings of the Applied Networking Research Workshop
(Virtual Event, USA) (ANRW ’21). Association for Computing Machinery, New
York, NY, USA, 76–81. https://doi.org/10.1145/3472305.3472884

[18] Stanislav Dashevskyi, Daniel dos Santos, Jos Wetzels, and Amine Amri. 2022.
Common Implementation Anti-Patterns Related to Domain Name System (DNS)
Resource Record (RR) Processing. RFC 9267. https://doi.org/10.17487/RFC9267

[19] gfwrev. 2009. GFW Tech Review: Deeper Understanding of the GFW: DNS
Poisoning. https://gfwrev.blogspot.com/2009/11/gfwdns.html. (Accessed on
11/06/2023).

[20] gfwrev. 2010. GFW Tech Review: Deeper Understanding of the GFW: Inter-
nal Structure. https://gfwrev.blogspot.com/2010/02/gfw.html. (Accessed on
11/01/2023).

[21] Lisa Hanson. 2015. The Chinese Internet Gets A Stronger Back-
bone. https://www.forbes.com/sites/lisachanson/2015/02/24/the-chinese-
internet-gets-a-stronger-backbone/?sh=35d9a5d91ff4. (Accessed on 11/3/2023).

[22] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous,
or: One-domain-to-rule-them-all.org. In 2013 IEEE Conference on Communications
and Network Security (CNS). 224–232. https://doi.org/10.1109/CNS.2013.6682711

[23] Erik Hjelmvik. 2013. Forensics of Chinese MITM on GitHub.
https://www.netresec.com/?page=Blog&month=2013-02&post=Forensics-
of-Chinese-MITM-on-GitHub. (Accessed on 11/01/2023).

[24] Nguyen Phong Hoang, Arian Akhavan Niaki, Jakub Dalek, Jeffrey Knockel,
Pellaeon Lin, Bill Marczak, Masashi Crete-Nishihata, Phillipa Gill, and Michalis
Polychronakis. 2021. How Great is the Great Firewall? Measuring China’s DNS
Censorship. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 3381–3398. https://www.usenix.org/conference/usenixsecurity21/
presentation/hoang

[25] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang, and
Haixin Duan. 2020. DNS Cache Poisoning Attack Reloaded: Revolutions with
Side Channels. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (Virtual Event, USA) (CCS ’20). Association for
Computing Machinery, New York, NY, USA, 1337–1350. https://doi.org/10.1145/
3372297.3417280

[26] Keyu Man, Xin’an Zhou, and Zhiyun Qian. 2021. DNS Cache Poisoning Attack:
Resurrections with Side Channels. In Proceedings of the 2021 ACM SIGSAC Con-
ference on Computer and Communications Security (Virtual Event, Republic of
Korea) (CCS ’21). Association for Computing Machinery, New York, NY, USA,
3400–3414. https://doi.org/10.1145/3460120.3486219

[27] Bill Marczak, Nicholas Weaver, Jakub Dalek, Roya Ensafi, David Fifield, Sarah
McKune, Arn Rey, John Scott-Railton, Ron Deibert, and Vern Paxson. 2015.
An Analysis of China’s “Great Cannon”. In 5th USENIX Workshop on Free and
Open Communications on the Internet (FOCI 15). USENIX Association, Wash-
ington, D.C. https://www.usenix.org/conference/foci15/workshop-program/
presentation/marczak

[28] Robert McMillan. 2010. After DNS problem, Chinese root server is shut down
| Computerworld. https://www.computerworld.com/article/2755924/after-dns-
problem--chinese-root-server-is-shut-down.html. (Accessed on 11/01/2023).

[29] Anju Ramdas and Ramakrishnan Muthukrishnan. 2019. A Survey on DNS Se-
curity Issues and Mitigation Techniques. In 2019 International Conference on
Intelligent Computing and Control Systems (ICCS). 781–784. https://doi.org/10.
1109/ICCS45141.2019.9065354

[30] Cloudflare DDoS Protection Team. 2022. DDoS Attack Trends for 2022 Q3.
https://radar.cloudflare.com/reports/ddos-2022-q3. (Accessed on 11/04/2023).

[31] Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song, and Srikanth V. Krishna-
murthy. 2017. Your State is Not Mine: A Closer Look at Evading Stateful Internet
Censorship. In Proceedings of the 2017 Internet Measurement Conference (London,
United Kingdom) (IMC ’17). Association for Computing Machinery, New York,
NY, USA, 114–127. https://doi.org/10.1145/3131365.3131374

[32] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson,
Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow.
2023. How the Great Firewall of China Detects and Blocks Fully Encrypted Traffic.
In 32nd USENIX Security Symposium (USENIX Security 23). USENIX Association,
Anaheim, CA, 2653–2670. https://www.usenix.org/conference/usenixsecurity23/
presentation/wu-mingshi

[33] Xueyang Xu, Z. Morley Mao, and J. Alex Halderman. 2011. Internet Censorship in
China: Where Does the Filtering Occur?. In Passive and Active Measurement, Neil
Spring and George F. Riley (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
133–142.

[34] Pengxiong Zhu, Keyu Man, Zhongjie Wang, Zhiyun Qian, Roya Ensafi, J. Alex
Halderman, and Haixin Duan. 2020. Characterizing Transnational Internet Per-
formance and the Great Bottleneck of China. Proc. ACM Meas. Anal. Comput.
Syst. 4, 1, Article 13 (may 2020), 23 pages. https://doi.org/10.1145/3379479

21

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3448
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3448
https://www.submarinecablemap.com/
https://doi.org/10.17487/RFC7873
https://doi.org/10.1145/3419394.3423644
https://doi.org/10.1145/2390756.2405036
https://www.usenix.org/conference/foci20/presentation/anonymous
https://www.usenix.org/conference/foci20/presentation/anonymous
https://www.usenix.org/conference/usenixsecurity21/presentation/bock
https://doi.org/10.1145/3387514.3405889
https://doi.org/10.1145/3473604.3474559
https://doi.org/10.1145/3472305.3472884
https://doi.org/10.17487/RFC9267
https://gfwrev.blogspot.com/2009/11/gfwdns.html
https://gfwrev.blogspot.com/2010/02/gfw.html
https://www.forbes.com/sites/lisachanson/2015/02/24/the-chinese-internet-gets-a-stronger-backbone/?sh=35d9a5d91ff4
https://www.forbes.com/sites/lisachanson/2015/02/24/the-chinese-internet-gets-a-stronger-backbone/?sh=35d9a5d91ff4
https://doi.org/10.1109/CNS.2013.6682711
https://www.netresec.com/?page=Blog&month=2013-02&post=Forensics-of-Chinese-MITM-on-GitHub
https://www.netresec.com/?page=Blog&month=2013-02&post=Forensics-of-Chinese-MITM-on-GitHub
https://www.usenix.org/conference/usenixsecurity21/presentation/hoang
https://www.usenix.org/conference/usenixsecurity21/presentation/hoang
https://doi.org/10.1145/3372297.3417280
https://doi.org/10.1145/3372297.3417280
https://doi.org/10.1145/3460120.3486219
https://www.usenix.org/conference/foci15/workshop-program/presentation/marczak
https://www.usenix.org/conference/foci15/workshop-program/presentation/marczak
https://www.computerworld.com/article/2755924/after-dns-problem--chinese-root-server-is-shut-down.html
https://www.computerworld.com/article/2755924/after-dns-problem--chinese-root-server-is-shut-down.html
https://doi.org/10.1109/ICCS45141.2019.9065354
https://doi.org/10.1109/ICCS45141.2019.9065354
https://radar.cloudflare.com/reports/ddos-2022-q3
https://doi.org/10.1145/3131365.3131374
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi
https://doi.org/10.1145/3379479

	Abstract
	1 Introduction
	2 Background
	3 Vulnerability
	3.1 Payloads and Delivery
	3.2 Trigger Domains
	3.3 Limitations

	4 Measurements and Inferences
	4.1 Methodology
	4.2 Characterizing the Leaks
	4.3 Traffic Patterns
	4.4 Process Characteristics
	4.5 Maintenance and Update

	5 Potential Attacks
	5.1 Off-Path Attacks
	5.2 Reflective Amplification Attack

	6 Discussion
	6.1 Potential Attack Vectors
	6.2 Data Threats of Flawed Censors

	7 Ethics
	8 Conclusion
	Acknowledgments
	References

