
Extended Abstract: Oscur0:
One-Shot Circumvention without Registration

Mingye Chen
University of Michigan
mingyech@umich.edu

Jack Wampler
University of Colorado Boulder
Jack.Wampler@colorado.edu

Abdulrahman Alaraj
University of Colorado Boulder

abal6272@colorado.edu

Gaukas Wang
University of Colorado Boulder
Gaukas.Wang@colorado.edu

Eric Wustrow
University of Colorado Boulder

ewust@colorado.edu

ABSTRACT
Some proxies such as Conjure or Snowflake require users to register
before their client can connect to an agreed-upon proxy’s IP address.
Registration adds additional latency, and provides an alternative
avenue for censors to block to prohibit access to the proxy.

In this paper, we detail a proxy design that removes the need for
registration before connecting, by leveraging UDP protocols such
as DTLS or QUIC and encoding data directly in the first packet to
the proxy’s IP. This is not possible in TCP-based protocols, since the
station-based proxy would not know to respond to an initial SYN
packet, but UDP-based protocols can carry data in the first packet,
allowing us to signal the proxy. Our system, Oscur0, is designed to
work within a Refraction Networking context, and makes connect-
ing faster and less vulnerable to blocking than existing Refraction
schemes.

We outline our basic design, and detail several challenges with
UDP, both for circumventors building UDP-based transports and
for censors trying to block them alike. We implement a proof-of-
concept using DTLS, and discuss how similar strategies could be
applied to other UDP protocols such as QUIC. Our scheme provides
a promising direction for Refraction Networking transports, and we
believe they could be applicable to broader classes of circumvention
protocols as well.

KEYWORDS
censorship circumvention, DTLS, refraction networking, UDP, DPI

1 INTRODUCTION
Refraction Networking is a censorship circumvention technique
that places proxies inside the network, allowing clients to leverage
unused IPs or decoy sites as proxies so long as connections pass
by the proxy’s in-network station. These proxies are harder for
censors to block by IP address, because any IP that passes by the
station could be used as a proxy.

However, some Refraction schemes require the client to register
before they are able to use the proxy. For instance Conjure [7], the
most recently-deployed Refraction protocol [13], has clients first
send a short registration message to the in-network station to signal

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet (1), 32–34
© 2024 Copyright held by the owner/author(s).

that the client intends to connect to an unused (“phantom”) IP ad-
dress. Then, the client can make a TCP connection and the station
will pick up the other end, effectively “conjuring” a proxy at the
phantom IP. Registration can occur using several channels, includ-
ing domain-fronted HTTP endpoints, DNS messages, or by using
other more restrictive Refraction schemes such as TapDance [14] to
communicate the shared secret, phantom IP, and other parameters
needed for the station to know to respond to the client’s TCP SYN
packet sent to the phantom address.

This two-stage process (register, then connect) has several down-
sides. First, censors can detect and block either registration or sub-
sequent phantom connections, effectively creating single-points
of failure for the proxy. Similarly, registration methods may be
unreliable or could become unavailable for reasons independent
of censorship; for example domain-fronting has become harder to
use as more CDNs have moved to ban it [1, 2]. Finally, requiring
registration adds extra latency to connections: Conjure clients cur-
rently wait several seconds after registering for their registration to
propagate from the registration servers to Conjure stations before
the client can connect to the phantom IP.

Registration ServerPhantomClient

Conjure (w/ registration)

[response]

[app_data]

handshake

[connect]

reg ok

[reg]
Client Phantom

[response]

[reg] + [app_data]

Oscur0

Figure 1: A high-level comparison between refraction trans-
ports using TCP and our presented UDP alternative solution.

In this work we outline Oscur01, a new Conjure-like Refraction
Networking scheme that uses UDP to remove the need for a separate
registration mechanism. Oscur0 works by sending a DTLS [11] (or
optionally QUIC [5]) packet to a phantom IP, steganographically
encoding within it the necessary keys and parameters needed to
signal to an observing station that the client wants to be proxied.
Because Oscur0 uses UDP, the client can send data within the first
packet to the phantom IP. Contrasted with TCP, the client could
1One-Shot Circumvention Unencumbered by Registration using 0-RTT

32

https://orcid.org/0009-0005-8785-0570
https://orcid.org/0000-0002-9552-0978
https://creativecommons.org/licenses/by/4.0/

Oscur0 Free and Open Communications on the Internet (1)

[Hea r Info 1B]
[DTLS Ver. 2B]

[Epoch 2B]
[Seq. Num 6B] [Record Length 2B]

2f fe fd 00 01 00... 00 47 68... 9a 3f 00 a5 [elligator key][[parameters][nonce][timestamp]] 7d 72 27 8b 6c... 6c 64 9f ... fb 15
[DTLS Header] [Application Data] [Auth Tag 16B]

[Connection ID 8B]
[0-Rtt Client Data] [Record Type Byte 1B]Encrypted

Figure 2: Example Oscur0 connection establishment packet using a DTLS 1.2 connection ID packet structure.

only send an initial TCP SYN packet (sans data), and without the
station knowing if this is a client (via registration), the station won’t
know if it should respond with a SYN-ACK. In Oscur0, the station
can see the client’s first packet and derive a shared secret with the
client, and respond as the phantom.

Oscur0 reduces the connection establishment time by several
round-trips, obviating the need for registration, TCP handshakes,
and even application-level handshakes that would otherwise be
present in a typical Conjure connection as show in figure 1. This
reduces the latency, and removes the potential for a censor to block
the scheme by blocking registration alone. In addition, by using a
UDP-based transport, Oscur0 connections can more easily blend
into peer-to-peer traffic, as DTLS is commonly used in protocols
such as WebRTC.

Related work. One of the currently most widely used UDP based
censorship circumvention protocols is Snowflakewhich builds upon
WebRTC [6]. WebRTC is a peer-to-peer (P2P) protocol built on top
of DTLS, but also requires a registration phase through a trusted
third party. Once past the negotiation phase the connection estab-
lishes a normal DTLS connection. Like Conjure, Snowflake could
also benefit from Oscur0-style connections to simplify registration.
Appendix A shows how this could be done.

2 THE CASE FOR UDP
In Conjure, the purpose of registration is for the client to 1) signal
that it wants to connect to a phantom IP, 2) establish a shared secret
with the station, and 3) provide other data such as a covert proxy
destination and transport parameters. To remove registration and
communicate with a phantom IP in the first step, we must still
share the above information with the station. Thus, the client must
send these data in the first packet so the station can recognize if
the connection is valid and determine if it will respond.

Since we cannot use TCP for this, we identified DTLS and QUIC
as two potential UDP-based candidates. DTLS is used byWebRTC [10]
and widely used on the internet for video conferencing applications
such as Microsoft Teams, Google Meet, Discord etc. QUIC is being
widely adopted for HTTP/3 [4].

To send the necessary registration data, QUIC supports 0-RTT
handshakes and connection migration features, and DTLS [12]
supports 0-RTT session resumption. Figure 2 demonstrates how
such features can be leveraged to include the registration data in
the encrypted application data in the first packet.

Past transports that tunneled over VoIP or voice conferencing
software were identifiable by censors due to the fingerprint of re-
transmitting dropped packets, a feature not characteristic of normal
VoIP communications [8, 9]. However, protocols such as DTLS and
QUIC, which support both fault-tolerant and sequential modes
without external indicators of their operation mode, offer a way to

create reliable transports for such traffic without alerting censors
through retransmission.

3 DESIGN
The client first generates a private and public key pair. Using the
station’s public key, the client derives an ECDH shared secret with
the station. We use the shared secret as the DTLS master secret,
and use it to generate the state of the DTLS connection with ran-
dom sequence numbers and connection ID (CID) for the client and
station. We set the epoch to 1 similar to normal DTLS connections
after the initial handshake [11].

When the client sends its first packet, we prepend a random
10 byte ID and registration information such as the covert address
and transport parameters to the application data. The combined
application data is encrypted to ciphertext normally by the DTLS
library. Similar to Conjure’s Tapdance-based decoy registration, we
use Elligator [3] to encode the client’s public key. We prepend the
client’s public key to the ciphertext and increment the data length
in the record header by the length of the encoded public key.

The station is able to determine if a connection is a valid Oscur0
connection by extracting an assumed client public key from the
first bytes of ciphertext, deriving the ECDH shared secret, and
trying to decrypt the ciphertext. If the decryption succeeds, the
station extracts the necessary data (transport parameters, what IP
the client wants to connect to, etc) and starts the proxy connection,
responding as the phantom IP. If the decryption fails, the station
drops the connection and does not respond.

Unlike data from a full handshake, this type of 0-RTT data is
vulnerable to replay attacks. To protect against this, we add a
random 10-byte ID in the encrypted application data. When the
first packet is received, the station checks the ID against a list (e.g.
bloom filter) to see if it has been used recently. If it has been seen,
the station drops the connection and does not respond.

Starting a connection without a handshake may be unusual, even
if allowed by the specification. However, we can instead have the
client first send a DTLS client hello message, using the key share
extension to send its public key, and the client random to send
an encyrypted minimal registration. The station can complete the
handshake, and the client can then send the remaining registration
information as encrypted application data.

Implementation. We implemented a proof-of-concept Oscur0
client and server in around 600 lines of Go, building on top of the
pion/dtls library [11], and tested it from a VPS in Iran. We note
that while DTLS handshakes are blocked for our Iran vantage point,
Oscur0 is able to avoid this blocking as it sends only Application
Data (with CID) packets. In the future, we hope to integrate Os-
cur0 with the existing Conjure deployment, and be able to compare
the performance in a real-world setting.

33

Free and Open Communications on the Internet (1) Chen et al.

REFERENCES
[1] 2021. Securing our approach to domain fronting within Azure.

https://www.microsoft.com/en-us/security/blog/2021/03/26/securing-our-
approach-to-domain-fronting-within-azure/.

[2] 2023. Fastly to block domain fronting in February 2024. https://lists.torproject.
org/pipermail/anti-censorship-team/2023-October/000328.html.

[3] Daniel J Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. 2013.
Elligator: elliptic-curve points indistinguishable from uniform random strings. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 967–980.

[4] Mike Bishop. 2022. HTTP/3. RFC 9114. https://doi.org/10.17487/RFC9114
[5] Martin Duke. 2023. QUIC Version 2. RFC 9369. https://doi.org/10.17487/RFC9369
[6] David Fifield, Nate Hardison, Jonathan Ellithorpe, Emily Stark, Dan Boneh, Roger

Dingledine, and Phil Porras. 2012. Evading censorship with browser-based
proxies. In Privacy Enhancing Technologies: 12th International Symposium, PETS
2012, Vigo, Spain, July 11-13, 2012. Proceedings 12. Springer, 239–258.

[7] Sergey Frolov, Jack Wampler, Sze Chuen Tan, J Alex Halderman, Nikita Borisov,
and Eric Wustrow. 2019. Conjure: Summoning proxies from unused address
space. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2215–2229.

[8] John Geddes, Max Schuchard, and Nicholas Hopper. 2013. Cover your acks:
Pitfalls of covert channel censorship circumvention. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. 361–372.

[9] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. 2013. The parrot is
dead: Observing unobservable network communications. In 2013 IEEE Symposium
on Security and Privacy. IEEE, 65–79.

[10] Randell Jesup, Salvatore Loreto, and Michael Tüxen. 2021. WebRTC Data Chan-
nels. RFC 8831. https://doi.org/10.17487/RFC8831

[11] Eric Rescorla and Nagendra Modadugu. 2012. Datagram Transport Layer Security
Version 1.2. RFC 6347. https://doi.org/10.17487/RFC6347

[12] Eric Rescorla, Hannes Tschofenig, Thomas Fossati, and Achim Kraus. 2022. Con-
nection Identifier for DTLS 1.2. RFC 9146. https://doi.org/10.17487/RFC9146

[13] Benjamin VanderSloot, Sergey Frolov, Jack Wampler, Sze Chuen Tan, Irv Simp-
son, Michalis Kallitsis, J Alex Halderman, Nikita Borisov, and Eric Wustrow.
2020. Running refraction networking for real. Proceedings on Privacy Enhancing
Technologies 2020, 4 (2020).

[14] Eric Wustrow, Colleen M Swanson, and J Alex Halderman. 2014. TapDance:
End-to-Middle Anticensorship without Flow Blocking. In 23rd USENIX Security
Symposium (USENIX Security 14). 159–174.

A SNOWFLAKE
In schemes such as snowflake, the client might not know the IP
address of the proxy in advance. Therefore, the client still needs
a way to obtain the IP address of the proxy. Oscur0 in this case
does not eliminate the latency of obtaining the proxy IP address,
but could still eliminate the need of the registration server sending
registration data to the proxy server, therefore saving at least 1
round trip. In addition, the IP address of the proxy might not have
the same requirements as registration and could be sent through a
more distributed way such as DNS or DHT, which eliminates the
single point of failure of the registration server.

34

https://www.microsoft.com/en-us/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/
https://www.microsoft.com/en-us/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/
https://lists.torproject.org/pipermail/anti-censorship-team/2023-October/000328.html
https://lists.torproject.org/pipermail/anti-censorship-team/2023-October/000328.html
https://doi.org/10.17487/RFC9114
https://doi.org/10.17487/RFC9369
https://doi.org/10.17487/RFC8831
https://doi.org/10.17487/RFC6347
https://doi.org/10.17487/RFC9146

	Abstract
	1 Introduction
	2 The case for UDP
	3 Design
	References
	A snowflake

