Assemblage: Chipping Away at Censorship
with Generative Steganography

Tushar M. Jois
City College of New York
New York, NY, USA
tjois@ccny.cuny.edu

Abstract

Increasing Internet censorship has led to developments in steganog-
raphy that are promising pathways to build circumvention technolo-
gies. We present Assemblage, a novel scheme which applies these
developments to encode messages within unassuming Al-generated
images. Assemblage communicates messages using popular pub-
lic platforms for these images as rendezvous points, effectively
circumventing the censor and opening communication.

Keywords

censorship circumvention, generative steganography, rendezvous

1 Introduction

Modern Internet censorship is pernicious and spreading. To cir-
cumvent this censorship, tools often include steganography, which
hides a sensitive message in a benign-looking cover channel. With
steganography, the presence of a message itself is hidden, a powerful
property for censored users and one that has made steganography
a key primitive in censorship circumvention technologies. A classic
example is Collage [10], which builds a framework for stegano-
graphically sending and receiving messages over online platforms
for user-generated content, e.g., image-sharing websites.

At the same time, the Internet is undergoing a monumental
upheaval with the advent of publicly available generative artifi-
cial intelligence (AI) models. A rapidly developing research area
poised to take advantage of this Al boom is generative steganog-
raphy [18, 43, 44], which hides messages (plaintext) inside of Al-
generated outputs. At a high level, a censor cannot distinguish
between an output that contains a message (stegotext) and a regu-
lar model output (covertext). Unlike prior efforts at steganography
(e.g., [36, 48, 61]), generative steganographic techniques both (1)
have provable, cryptographic security and (2) can run on realistic,
human-like channels. Moreover, with easily available generative
Al models for images and text, everyday people are generating and
posting Al-generated content to the Internet [46, 67] — even those
in authoritarian regimes [65]. These outputs are high quality and
online subcultures have risen [52] to share and discuss this content,
leading to plausible locations where steganographic messages can
be dropped for others to receive without alerting a censor.

But, despite the explosion of Al content on the Internet and its
potential to circumvent censors, generative steganography has not
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a BY

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Free and Open Communications on the Internet 2026(1), 33—42
© 2026 Copyright held by the owner/author(s).

This work is licensed under the Creative Commons Attribu-

Cora Rowena Ruiz
City College of New York
New York, NY, USA
cruizl@ccny.cuny.edu

33

Gabriel Kaptchuk
University of Maryland, College Park
College Park, MD, USA
kaptchuk@umd.edu

seen the transition from academia to practice. While works like
Collage have studied embedding data into user-generated content,
Al-generated content has different properties and is less understood
by the community. This mismatch does not preclude deployment;
rather, it means we must adapt circumvention frameworks to fit.

In this work, we design a system for censorship circumvention
based on state-of-the-art results in generative image steganogra-
phy. Just as Collage introduced a framework for circumventing
censorship via user-generated content, we introduce Assemblage,
which does so via Al-generated content. The goal of our work is
to highlight how generative steganography can be deployed to cir-
cumvent censorship while using previous work as a blueprint; but
more broadly, it is to spark a wider conversation about how best to
apply generative steganography to censorship circumvention and
what additional work is required for the future.

Contributions. With the above in mind, we contribute:

o Assemblage, a novel scheme for circumventing censorship us-
ing image-based generative steganography, constituting its first
concrete application in censorship circumvention.

o The first analysis of the image platforms and communities that
would be suitable for rendezvousing circumvention messages
between senders and receivers in generative steganography.

e An evaluation of Assemblage on these image platforms, high-
lighting its end-to-end resilience and efficiency.

e Directions for future work in the field implied by Assemblage.

2 From Collage to Assemblage

We begin by describing Collage, and how it and recent developments
in steganography lead us to our solution, Assemblage.

Collage. In the original Collage paper, Burnett et al. [10] discuss
two key properties to circumvent censorship. The first, availability,
is when clients can still communicate even if a censor starts target-
ing access to different types of content. The second, deniability, is
when censors cannot detect if users are engaging in circumvention.
To evade blocking while meeting these properties, these commu-
nication schemes typically force the censor into taking “collateral
damage”: to block potential circumvention traffic, the censor must
also block a service with social or economic value [26]. In Collage,
the collateral damage would be blocking an image-sharing platform.

Collage separates its solution design three parts. The vector layer
provides the cover medium (e.g., images or text) for hiding a mes-
sage as well as functionality for short data chunks to be encoded
into and decoded from this cover medium. Then, the message layer
takes a message of arbitrary length and breaks it into chunks which
can be encoded into vectors. Finally, senders and receivers ren-
dezvous on a content host to store and receive vectors containing
hidden messages. Collage meets the above two properties by the

https://orcid.org/0000-0002-2740-8407
https://orcid.org/
https://orcid.org/
https://creativecommons.org/licenses/by/4.0/

[

Free and Open Communications on the Internet 2026(1)

D
Upload

Vector

ﬂ

Rendezvous
over censored
platform

Message
Let's

meet at
this...

Message
Let's

meet at
this...

Sender
Rateless erasure encoder

Generative image
steganography encoder

Vector
send()

Figure 1: Assemblage overview. The censor only sees an in-
nocuous post, but the receiver can decode the actual message
when they detect that a stegotext has been posted.

steganographic properties of the vectors, the robustness of message
chunking, and the deniability of the chosen rendezvous technique.

Steganography. The intuitive idea of steganography makes it at-
tractive for censorship resistance applications such as Collage. Be-
ginning with the classic work of Simmons [56], there has been a sig-
nificant treatment of steganography in the cryptographic literature,
including constructions of universal steganography for arbitrary
channels [5, 12, 36, 60], but these mostly theoretical works have
unrealistic assumptions on the cover channel and have not seen
deployment. In parallel, various heuristic schemes for steganog-
raphy have been developed and deployed, but either do not meet
cryptographic notions of security (e.g., [4, 6, 14, 15, 66]), or are
specific to individual cover channels (e.g., [23, 37, 48, 61, 62]). The
original Collage construction [10] implements heuristic steganog-
raphy as its vector layer due to its ease of deployment, even though
its authors note that attacks against it existed at the time [27].
Recent developments in generative steganography attempt to
reconcile this tradeoff between security and flexibility. Works in
this area [18, 43, 44] embed sensitive messages into the outputs of
generative Al models. These outputs — both text and images — have
both runtime overhead (requiring relatively slow machine learning
operations) and message overhead (only encoding data on the order
of hundreds of bytes), but are increasingly realistic and human-like
while maintaining cryptographic provable security.
Assemblage. In Assemblage, we adapt the Collage framework to
meet the properties of availability and deniability using generative
steganography. As we discuss above, generative steganography
avoids the issues of prior attempts, but considers Al-generated
rather than user-generated content. The aforementioned popularity
of this content [46, 67] (even in censored regimes [65]) opens a new
path for censorship circumvention. Thus, to take advantage of these
developments, Assemblage takes the Collage framework - vectors,
messages, and rendezvous - to fit the model and use of Al-generated
content. An overview can be found in Figure 1.

3 Assemblage design

We now introduce Assemblage, going layer-by-layer as in Collage.

3.1 Vector layer

For Assemblage’s core vector primitive, we choose Pulsar [43],
which embeds content using diffusion models [35, 58], the state-
of-the-art for image generation. The encoder and decoder locally

34

Tushar M. Jois, Cora Rowena Ruiz, and Gabriel Kaptchuk

Algorithm 1 offline(identifier, n)

1: Create a list to hold local states.

2: for each i from 1 to n do

3: Generate a local state using the underlying generative
steganographic algorithm.

4 Append the local state to the list.

5: return the list of n local states.

Algorithm 2 send(states, data)

1: Create a rateless erasure encoder for data.

2: for each state in states do

3: Retrieve a block from the erasure coder to meet the vector’s
encoding capacity.

4 encode the block into the state to create a vector using the
underlying generative steganographic algorithm.

5: Publish the vector on a Al-generated content host such that
receivers can find it. See discussion on rendezvousing in Sec-
tion 3.3.

Algorithm 3 receive(identifier)

1: Create a rateless erasure decoder.

2: while the decoder cannot decode the message do

3: Find and fetch a vector from an Al-generated content host.

4 Check if the vector contains encoded data for this identifier.
See discussion on rendezvousing in Section 3.3.

5: if the vector is encoded with message data then

6: decode payload from the vector using the underlying
generative steganographic algorithm.

7: Provide each decoded block to the erasure decoder.

8: return decoded message from erasure decoder

Figure 2: Pseudocode presented as Algorithm 1 (offline), Al-
gorithm 2 (send), and Algorithm 3 (receive).

generate state that allows for steganographic embedding. Then, the
encoder uses a local state to embed data into an image. The decoder
can then use its own local state to retrieve the data encoded into
the image. Pulsar operates on a symmetric key assumption, as in
the vector layer of Collage. But unlike the heuristic steganography
vectors used in Collage, which were vulnerable to attack even
then [27], a Pulsar-encoded image vector is provably secure [43].

3.2 Message layer

Our choice of an Al-generated vector impacts the design of our mes-
sage layer. We divide message transmission into three algorithms -
offline, send, and receive — with pseudocode definitions available
in Figure 2. In the first, offline, the message layer creates several
local Pulsar states corresponding to candidate Al-generated image
vectors. This step allows Assemblage to “prepare for” future send
and receive operations by having local states ready before they are
needed. As there is no offline step in the original Collage work,

Assemblage: Chipping Away at Censorship with Generative Steganography

this represents one of the ways Assemblage updates the Collage
framework for modern steganography.!

When the sender calls send on a message, we choose an offline
state, encode the message into this state, and return an image that
can be posted on an Al-generated content host. As in Collage, we
employ rateless erasure codes [11, 47, 55] to create short chunks
of data from the message for encoding into the vector. This allows
sender to handle messages of arbitrary length over multiple vectors,
even though a single vector’s encoding size is limited.

Correspondingly, in receive, the recipient’s message layer watches
posts on the Al image community and check to see if an image is
intended for them (i.e., matches their local state); if so, then the
recipient downloads the image and performs a Pulsar decoding to
retrieve the encoded data.? The decoded data is then passed back to
a rateless erasure decoder, and after enough vectors are processed,
it can return the sender’s message. On the recipient side, the rate-
less erasure code allows for vectors to be received out-of-order or
not at all and still reassemble to the original message.

3.3 Rendezvous

In designing its rendezvous approach, Collage utilizes popular plat-
forms for user-generated content for availability, and formalizes
a database of tasks that the sender and receiver agree upon be-
forehand for deniability. For Assemblage, Internet communities for
sharing Al-generated images are promising rendezvous locations.
Also, in addition to the social value of its associated communities
to its users, Al images also have economic value [69]: the kind of
“collateral damage” censors want to avoid. Given the popularity of
Al-generated content, we instead choose a single, global task for
Assemblage: senders post to a Al-generated content community,
and receivers view and download these posts. If both parties can
post to the community, communication could also be bi-directional.
So, to build rendezvousing, we must blend Assemblage posts within
this community, and we can achieve the twin goals of availability
and deniability.®> Collage address three challenges in rendezvousing;
we do the same for Assemblage below:

Choosing deniable tasks. The first challenge is in selecting tasks
that resemble innocuous user behavior. In Assemblage, this is post-
ing and viewing Al-generated content, but an important question
to answer is where to do so. Pulsar [43] mentions /r/AlArt [52] as
an Al-generated content location, but does not discuss where else
images can be plausibly placed to enable deniable communication.

So, to understand the sharing of Al-generated content, we studied
popular social media platforms to identify viable posting locations
and observe their communities’ cultures. Table 1 details the com-
munities we observed, their style of social media, and their relative
reach measured by community size and platform monthly active
users (MAU). Our examination of these channels revealed vibrant
communities showcasing Al-generated images, discussing gener-
ated content, and facilitating troubleshooting. Despite differences

!Note that, as Pulsar is probabilistic [43], not every offline state will successfully
generate a decodable message. But, it is possible to detect this in the offline step (i.e.,
before message transmission) by performing a trial decoding.

2By the security of Pulsar, only the intended recipient can generate this state and
therefore perform this detection; we refer to that paper [43] for the proof.

3We note that accounts used to rendezvous should establish a history of Al-generated
posts. Otherwise, participating heavily in these communities may be seen as suspicious.

35

Free and Open Communications on the Internet 2026(1)

in platform structure, they are similar in their relaxed, participa-
tory culture that emphasizes building community. To the best of
our knowledge, no prior work has done such a study of potential
rendezvous locations for generative Al steganography.

A key property is that rendezvous should be deniable against the
normal behaviors of the users of a platform [10]. Prior work that
has considered generative steganography for censorship circumven-
tion [7] has looked not at images but at Al-generated text, in which
~100 B messages will generate hundreds of words of text [18, 44].
But, while posting images is common, long-form text is rare on
social media, and long-form Al-generated text even less so. Thus,
we see Al image posting behaviors (and therefore Assemblage) as
better meeting the deniability criterion than those of prior work.

Identifying suitable vectors. To address the next challenge, we
must understand the norms in Al image communities: what kinds
of things do they post about? Community norms for rendezvous
locations are relatively understudied but critically important for
deniability. If a post does not match those of the rest of the com-
munity, it may compromise the presence of Assemblage. As an
example, a satirical comic may be suspicious when posted a more
serious community on Al-generated cinematic realism. Moreover,
no prior works discuss post metadata; each community has differ-
ent expectations regarding what information is posted alongside
an image, which also must be followed to avoid arousing suspicion.
Considering the above, we collected requirements by analyzing
community guidelines and existing posts as well as how those posts
were received. We also study image style, as this varied across
platforms with distinct tonal differences. Matching these norms
supports the authenticity of a post, allowing it to blend into the
surrounding community. We discuss further in Section 4.1.

Agreeing on tasks for a message. We mention above that the
global task for Assemblage is simply posting to and downloading
from Al image communities. But, monitoring the community and
naively attempting to decode every single post on it would be
prohibitively expensive and ineffective for the receiver. Instead, we
note that Pulsar images generated by a given local state are visually
similar regardless of the content encoded into them [43]. So, we
can apply a perceptual hash — a type of fuzzy hash robust to slight
variations in images — to each new post on the platform, and see if
it matches that of a local state.? If it does, then we download the
image and decode the vector. Locally checking a perceptual hash is
fast (as we will see in Section 4) and induces no behavior visible to
the censor, so deniability is maintained. Here again, Assemblage
takes advantage of a steganography innovation to optimize the
deployment of censorship circumvention.

4 Evaluation

We implement Assemblage based on the public Pulsar artifact [42].
We generate image vectors of places of worship [32], celebrity
faces [31], bedrooms [29], and cats [30]. To implement perceptual
hashing, we use the PDQ algorithm [24], and to implement rateless
erasure coding, we use Raptor codes [55]. Our code and benchmarks
are available at https://github.com/spacelab-ccny/assemblage as
artifacts for the community.

4We merely use perceptual hashing to identify images in our local offline set and not for
the security-sensitive purposes for which perceptual hashing has failure modes [51].

https://github.com/spacelab-ccny/assemblage

Free and Open Communications on the Internet 2026(1)

Tushar M. Jois, Cora Rowena Ruiz, and Gabriel Kaptchuk

Table 1: Potential locations for Al-generated content, and if Assemblage can be built on top of them.

Platform Style Viable Drop Locations Reach Metadata Required? Compresses Images? Successful?
. . . Platform-wide 65 mil MAU [25]
DeviantArt - Media sharing Public Al image communities 800+ groups [3] / ” v
Platform-wide 200 mil MAU [22]
. . “Al Hub by Weights” 521k members [21]
Discord Messaging “ai Art” 6k members [19] X v v
“NightCafeLounge” 78.2k members [20]
. . Platform-wide 300 mil MAU [40]
Imgur Media sharing “aiart” hashtag 1k posts [41] / v v
Rednote Media sharing Platform-wide 300 mil MAU [28] v v X
Platform-wide 1.21 bil MAU [16]
Reddit Discussion board ~ “/r/AIArt” subreddit 608k members [52] v X v
“/r/AlArtwork” subreddit 83k members [53]
. . . Platform-wide 611 mil MAU [64]
X (Twitter) - Micro-blogging “Generative Al Community” 191.7k members [63] / ” v
Broadcast groups 1 bil MAU [17]
Telegram Messaging “Robots and Art” group 103.3k members [54] X 4 4
“Atlas Al Art” group 1.2k members [2]
WeChat Messaging Broadcast groups 1.3 bil MAU [57] X 4 X

0% 8

!

-

o

\ |
| i.
(a) celebahq-256, “Angela” (b) bedroom-256, “Snooze”

(c) cat-256, “Gary” (d) church-256, “Chapel”

Figure 3: The four encoded test images used during testing
of potential channels, and their respective models.

4.1 Candidate Platforms

To deploy Assemblage, we must first evaluate the interactions be-
tween Assemblage vectors and candidate rendezvous platforms.

Resilience. Platforms can compress or otherwise modify uploaded
images [9], and these modifications interfere with Assemblage vec-
tors. To test the end-to-end resilience of Assemblage, we conducted
trials over our roster of Al-generated content platforms. Each trial

36

used Assemblage image vectors (see Figure 3) from one of the afore-
mentioned models. Vectors were uploaded to the platform with
the required metadata and downloaded from a different account
to emulate rendezvousing. We considered the trial a success if the
downloaded vector was successfully decodable into the original
message sent. All vectors were promptly deleted after verifying
behavior to avoid disrupting communities.

We can see from Table 1 that the majority of platforms we tested
successfully transmitted data over image vectors, with the biggest
factor being lossy compression. For some of these platforms (e.g.,
Discord), an image downloaded via “Save image as..” from the
browser context menu is often a scaled-down, compressed version
(~30 KB in size), not the original upload (~300 KB in size). We could
not receive from the scaled version. Instead, if we use the platform’s
native “Download” option to obtain the original image, receive
works. We speculate this is related to CDN-style optimizations;
platforms prefer to serve compressed thumbnails when possible,
and provide the original only when requested. But, this trick did
not extend to all platforms; inhibiting us from building Assemblage
on platforms that only provide lossy downloads (e.g., Rednote).

Platform metadata. A vital component of a successful rendezvous
is ensuring that the post carrying the stegotext image is associated
with metadata that fits in with the target community. Having the
correct metadata is an important part of achieving deniability. We
now discuss the required and optional metadata required to post
by platform type outlined in Table 1.

Messaging: no metadata required. In Discord [19-21] members are
typically allowed to upload an image without a caption or context.
However, some communities [21] ask brief questions during the
on-boarding process — such as “What kind of experience are you
looking for?” or “What are your areas of interest?” — to help place
users in relevant channels/groups or assign server nicknames ac-
cordingly. Telegram groups [2, 54] had no standing requirements
at the time of our examination.

Assemblage: Chipping Away at Censorship with Generative Steganography

Micro-blogging: minimal metadata required. X (Twitter) had low
requirements, with the Generative Al Community [63] requiring
only a post title. We note that all X Communities only allow public
accounts to contribute to making posts within the group.

Media sharing: minimal metadata required. In our testing, media-
sharing platforms such as Imgur [41], DeviantArt [3], and Red-
note [25] also had minimal requirements. Note that Imgur [41] has
an optional tag which discloses if the uploaded piece was generated
using Al this was enabled during all test uploads. These platforms
only required a post title, which based on our observations are
informal in nature and can be presented in a variety of styles —
comedic, descriptive, but consistently brief.

Discussion board: More metadata required. Reddit’s forum structure
has more involved metadata requirements, with posts requiring a
title, caption, and flair, which is a tag that categorizes a post. They
are created by community moderators and can vary from place to
place. For example, /r/ATArt [52] has 25 flair options and a write-in
section to denote the type of generator used to make the attached
image. During our testing, all images posted to /r/AIArt had the
“Diffusion"” flair. [52] Conversely, /r/AlArtwork [53] only asks for the
type of post being made, with options such as discussion, artwork,
news, guide, and series. Similar to media sharing metadata, the title
and captions are informal and brief.

Generating metadata. Pulsar does not generate accompanying
metadata with its encoded images. So, we decided to use a large lan-
guage model to gauge its effectiveness at matching metadata.> We
used ChatGPT-4o to generate captions and titles for our experimen-
tal posts. We note that ChatGPT and other large language models
tend to output generation with unnatural or overly polished lan-
guage, which can stand out. We found that the most effective way
to generate metadata was to include an example of the target style -
such as a screenshot or link of existing posts — and to use keywords
such as “simple” and “short” in the prompt. Figure 4 illustrates this
contrast, showing how better prompting can significantly improve
the quality of metadata generation.

Figure 5 presents an encoded image deployed in a potential chan-
nel, showing metadata qualities we discuss. The encoded image
does not attract undue attention and appears like a natural commu-
nity output in a search for a “bedroom”. We deleted this post once
we verified this behavior.

Image styles. In addition to the metadata required for each post,
communities have common stylistic tropes that should be matched
by any Assemblage vector. We provide examples of image styles
we observed in our analysis in Appendix A.

4.2 Performance

We now turn to the performance of Assemblage. We first study the
efficiency of all stages of the message layer when sending messages
short enough to fit in one vector. We then study how messages
spread out over several messages using rateless erasure codes fare.
All evaluations were run on a MacBook Pro with an M4 Pro system-
on-chip running macOS Sequoia 15.6.

5As an aside, by using another form of Al-generated content as a part of Assemblage
rendezvous, one could transmit additional messages using post metadata as a vector,
perhaps by using text-based steganography such as Meteor [44] or Discop [18].

37

Free and Open Communications on the Internet 2026(1)

R

e
generate some post titles for this ai art image that match the style
of this reddit community, r/aiart: https:/jwww.reddit.com/r/aiArt/

Here are some post title ideas for your Al-generated bedroom scene, styled to match the aesthetic and
vibe of the r/aiArt community:

1. "Dreamscape Chamber: Where Light Whispers Through Linen"

2. "Al-Rendered Bedroom Elegance - Victorian Dreams in Pastel"

3. "Tranquil Textures and Soft Sunlight — Neural Networks at Rest"

4. "When the Algorithm Dreams of Soft Mornings"

5. "Florals and Glows: A Neural Interpretation of Comfort"

6. "Delicate Chaos: GAN's Take on a Morning Bed"

7. "Snooze to WeChat: A Surreal Bedroom in Neural Pastels" (title based on your file name!)
8. "Where Time Melts Between Curtains — Al Interior Art"

9. "Faded Florals in Latent Space"

10. "A Model’'s Morning: Blurred Boundaries Between Sleep and Light"

Want help writing a short artist's statement or prompt credit to go with it?

(a) Unnatural sounding metadata generated by ChatGPT-4o0.

generate some post titles for this ai art image that match the style
of this reddit community, r/aiart: https://www.reddit.com/r/aiArt/,
make them simple and short like the other ones are

Absolutely! Here are some short and simple r/aiArt-style post titles for your image:
1. "Soft morning light"

2. "Albedroom dream"

3. "Cozy neural nook"

4. "Pastel sleep space"

5. "Dreamy bed scene"

6. "Morning haze"

7. "Al-generated comfort"

8. "Vintage vibes"

9. "Where dreams rest"

10. "Tranquil Al room"

Let me know if you want a version that includes the model or prompt too!
(b) Natural metadata output from ChatGPT-4o.

Figure 4: Examples of metadata generations from ChatGPT:
(a) a verbose version and (b) a more natural sounding version
by using keywords in the prompt.

Efficiency of vectors. For our first set of experiments, we ran
each stage of the Assemblage message layers — offline, send, and
receive — 30 times on each of the four models mentioned above.
We discard trials that do not result in a successful offline state
due to the probabilistic nature of Pulsar [43]. We wish to study
runtime and disk storage required for each operation in detail, and
as such we choose a message length small enough to fit within
a single vector; we study longer messages (using rateless erasure
codes) below. Also, given the number of images generated, we do
not perform rendezvous on a live platform in these experiments,
focusing instead on efficiency on local hardware.

Free and Open Communications on the Internet 2026(1)

Q @ rfaiat @ bedroom ®

€ rainrt - 7moago
Which room are you sleeping in? kay

247 votes - 230 comments

€ et smo oo

bedroom

5votes - 2 comments

9 rfaiArt - 17m ago
Dreamy Bedroom Vibes

|
1comment w' T]

1vote

& rainrt - 2200
Imaginary Bedrooms

3votes - 1comment

@ rfaiArt - 1y ago
Which one is your dream bedroom?

113 votes - 76 comments

€ voinct 10mo o
bedroom

5votes - 1comment

Figure 5: Reddit search results from /r/AiArt showing results
for the term “bedroom”. The image vector “Snooze” is the
3rd result from top. This post has since been deleted.

Our full results can be found in Table 2. One generation of a local
offline state — loading the Al model, running the model to create the
state, and serializing it for storage — takes ~9.5 sec, and each local
state requires only ~5.6 MB on disk. The encoding phase is similarly
fast, taking ~4.4 sec to go from a local state on disk to a saved image
ready to be uploaded. Each generated image vector holds ~300-600
B on average. Finally, we measured that perceptual hash detection
of image vectors takes ~0.0013 sec and steganographic decoding
after that is ~4.2 sec; we did not observe any false positive hash
matches in our tests. These experimental results show our design
is efficient enough for deployment.

Efficiency with rateless erasure codes. In Section 3, we describe
how our message layer takes advantage of rateless erasure codes [11,
47], as in Collage [10], to allow for arbitrary size messages to be
sent over vectors in any order. Thus, achieve a truly end-to-end
evaluation, we also wish to measure the impact of rateless erasure
codes on the performance of Assemblage.

We instantiate rateless erasure coding using Raptor codes [55],

as implemented by the Python raptorq library. The reconstruction
1 h+1

probability for the decoder after receiving K +hblocksis 1 - =2,
where K is the number of blocks of the original message, and h
is the number of extra blocks received. We configure raptorqg’s
encoder to h = [K - 0.5], such that 50% more blocks are generated
(rounded up). We configure the decoder to reconstruct the message
based on some size K subset of the K + h generated blocks.®

®We choose h = 0 during recovery as the recovery probability is 1 — Tflse ~ 99.6%.
We did not see any failures to decode Raptor-encoded blocks during our experiments,

though some Assemblage users may wish to use more messages to be more robust.

38

Tushar M. Jois, Cora Rowena Ruiz, and Gabriel Kaptchuk

For our experiments, we combine Raptor codes with our existing
Pulsar-based Assemblage implementation. To generate the data
used as input, we randomly select 300 English words using the
Python wonderwords library, and then apply z1ib compression to
the output. The idea here is to support a realistic long-form message
that requires multiple vectors to transmit. Next, we create K + h
Raptor-encoded blocks from this data, and perform the offline() and
send() operations in sequence to create K + h Pulsar vectors. We
then perform the receive() operation on K vectors to recover the
Raptor code blocks, and finally recover the original message.

We performed 30 experiments per model, and Table 3 shows
the results of our experiment. We provide information on the size
of the input data, runtime of the Raptor encoder and decoder, as
well as runtime of offline(), send(), and receive() on the Raptor-
encoded message blocks. Note that K is dependent on the capacity
of each image vector; as a safe estimate, we use a vector capacity of
X — s (i.e., one standard deviation below the mean) from Table 2 for
each model. But, this estimate is not exact, so there may be some
scenarios where a larger or smaller K is necessary for a specific
image. As such, in Table 3, the values of K and h are the mode.

Based on our results, rateless erasure coding itself has a marginal
effect on the runtime of Assemblage, with Raptor code blocks being
generated almost instantaneously. Also, with compression, sending
300 English words over Assemblage requires only K + h = 4 + 2
image vectors using our best model (church-256), which can be
sent (Raptor encoding, offline(), and send()) in less than 90 seconds
on the laptop used for our experiment, and received (receive() and
Raptor decoding) in less than 30 seconds.

The church-256 model had the lowest times because it generates
higher capacity vectors on average. As mentioned previously, K
varies with vector capacity, and as K increases, the number of
vectors generated increases as well; more vectors mean more offline
states, which is where the bottleneck is, as we saw in Table 2.
celebahq-256 and bedroom-256 have lower capacity but still do
not require too many vectors to transmit 300 words, and therefore
are suitable for deployment. The low capacity of cat-256, however,
results in an impractically large amount of images generated (over
double than that of the next model, bedroom-256), meaning it is far
slower end-to-end than the other models.

Our current implementation performs offline() on-demand to
generate offline states before a send(). We note that, in a production
workflow, offline() to generate dozens of offline states in the back-
ground before any message was ready to be sent, as discussed in
Section 3.2. Given the relatively low size of an offline state (Table 2),
and the relative speed of send() and receive(), this approach would
result in a better deployment. Additionally, our use of x — s from
Table 2 as an estimate of the capacity is somewhat conservative and
is likely a lower bound. By generating offline states before sending
a message, we could get a precise value for K and optimize the
number of vectors that we have to send() and receive().

Moreover, 4-6 image posts (K for most of our models) are rela-
tively few in the context of the hundreds of images that are shared
on some of these communities every day, especially if all generated
image vectors are shared as an “album” of related images on the
Al-generated content community. Sending very large messages or
using lower-quality models (such as cat-256) may require dozens
of image vectors, however; to meet deniability, image vectors may

Assemblage: Chipping Away at Censorship with Generative Steganography

Free and Open Communications on the Internet 2026(1)

Table 2: Performance of our scheme over n successful trials for on the bedroom-256 (n = 26), cat-256 (n = 28), celebahq-256
(n = 29), and church-256 (n = 28) models across message layer operations. Trials vary due to the probabilistic nature of Pulsar [43].
Runtimes (sec) and data sizes (bytes) are presented as x + s, where X is the mean and s is the standard deviation. For some
runtimes, we only provide the mean as the standard deviations are very small (x 107 sec).

Operation

bedroom-256 [29]

cat-256 [30]

celebahq-256 [31]

church-256 [32]

offline()

Model Load Runtime
Model Runtime

State Serialization Runtime
Perceptual Hash Runtime

Vector Capacity
Serialized Local State Size
Local State Hash Size

0.3914 + 0.0534 sec
9.1887 + 0.0192 sec
0.0069 + 0.0001 sec
0.0041 + 0.0001 sec

376.19 + 142.30 bytes

5.6816 + 0.0648 MB
3.9547 + 0.0005 KB

0.2836 + 0.0669 sec
9.2075 £ 0.0237 sec
0.0068 + 0.0006 sec
0.0043 + 0.0002 sec

368.64 + 262.26 bytes

5.6649 + 0.0908 MB
3.9546 + 0.0006 KB

0.3900 £ 0.0269 sec
9.1808 + 0.0218 sec
0.0069 £ 0.0006 sec
0.0042 £ 0.0002 sec

417.55 + 89.30 bytes
5.6926 + 0.0416 MB
3.9547 + 0.0005 KB

0.4239 % 0.0935 sec
9.2893 + 0.3073 sec
0.0073 £ 0.0005 sec
0.0046 + 0.0023 sec

618.21 + 210.28 bytes
5.7597 + 0.0849 MB
3.9545 + 0.0010 KB

send()

Local State Deserialization Runtime
Model Load Runtime

Pulsar Encoding Runtime

Image Save Runtime

Image Size

0.0027 + 0.0001 sec
0.2701 + 0.0293 sec
4.1725 + 0.0466 sec
0.0558 + 0.0007 sec

383.9161 + 3.8510 KB

0.0027 + 0.0001 sec
0.2140 + 0.0185 sec
4.1388 + 0.0490 sec
0.0563 + 0.0007 sec

372.4326 + 9.8040 KB

0.0027 £ 0.0001 sec
0.2683 £ 0.0241 sec
4.1949 + 0.0417 sec
0.0559 £ 0.0007 sec

386.7969 + 2.9960 KB

0.0028 + 0.0003 sec
0.0213 + 0.0213 sec
4.2293 +0.2127 sec
0.0567 + 0.0007 sec

378.6861 + 7.4133 KB

receive()

Perceptual Hash Runtime

Find Hash Match Runtime

Local State Deserialization Runtime
Image Load Runtime

3.33 X 10 % sec
1.54 X 107 sec
0.0038 + 0.0005 sec
0.0090 + 0.0004 sec
4.1976 + 0.1831 sec

3.36 X 10™* sec
2.54 X 1077 sec
0.0037 + 0.0003 sec
0.0112 * 0.0084 sec
4.1191 + 0.2741 sec

4.04 x 1073 sec
4.48 X 1077 sec
0.0038 + 0.0038 sec
0.0092 £ 0.0007 sec
4.2463 + 0.1409 sec

3.00 X 10~ % sec
3.53 X 107° sec
0.0036 + 0.0002 sec
0.0103 + 0.0076 sec
4.3999+0.2671 sec

Pulsar Decoding Runtime

have to be posted on multiple communities or posted over the span
of multiple hours. But, because even hundreds of words can be
sent in just a few images, our results show that the rateless erasure
coding approach in Assemblage improves its practical applicability.

5 Discussion and Future Work

Broadly, our work is a first step towards recent steganography
research realizing its lofty censorship resistance aspirations. We
conclude by discussing insights from our design and results.

Feasibility. Through our evaluation, we can see that image-based
generative steganography is indeed a feasible technique for cen-
sorship circumvention. Our investigations show there are several
active communities where posting Al images is commonplace, and
our Assemblage design can be established over many of them.
Moreover, our efficiency results demonstrate the practicality
of Assemblage. For instance, generating 30 local states — more
than enough for sending thousands of message bytes - takes only
~5 minutes of runtime on a laptop, and ~150 MB of disk space.
In terms of message capacity, note that each image vector can
hold at least one standard X/Twitter post (280 B) on average, and
potentially 2 depending on the model/image vector. Based on our
experiments with rateless erasure codes, the cat-256 model may
have too low capacity to be deployable for longer messages, but
the rest of the models (and especially church-256) are performant
enough for deployment. Also, our perceptual hashing approach is
practical for detecting Assemblage stegotexts; perceptual hashing

39

every image posted to /r/AIArt in one day (~150 [52]), for instance,
would require less than a second. Thus, decoders do not have to
expend excess compute trial decoding to participate in Assemblage.
We show good efficiency on our laptop hardware, but we ex-
pect that a significant number of users would run Assemblage over
smartphone hardware as well. Given the rise of accelerated machine
learning hardware on mobile devices [38, 39], paralleling develop-
ments in laptops, generative steganography could be reasonably
deployed on smartphones. But, as these devices have resource and
battery constraints, future work must develop new optimizations
and perhaps even new algorithms for generative steganography.

Image compression. Table 1 shows that our candidate design can
be deployed on major social media platforms, and is even resilient
to some compression. But, our design fails under lossy compression,
as a result of the underlying Pulsar scheme; while it does include
error correction, significant modifications to the pixel data — even
if the visual appearance is preserved — can destroy any embedded
content. So, rather than just looking at increasing the capacity of
generative image steganography [33, 50], more research into modi-
fication resistance is necessary, which will require new approaches
in cryptography, machine learning, and/or coding theory. Assem-
blage failed on two platforms known for censorship — WeChat and
Rednote - for this reason, making the need especially acute.

Bootstrapping. Our results in Section 4 show that generative
steganography is already feasible for deployment, both in terms
of rendezvous locations and efficiency. But, an inherent limitation

Free and Open Communications on the Internet 2026(1)

Tushar M. Jois, Cora Rowena Ruiz, and Gabriel Kaptchuk

Table 3: Performance of rateless error coding using the average image sizes of vectors generated by the bedroom-256, cat-256,
celebahq-256, and church-256 models. Data sizes (bytes) are presented as x + s, where x is the mean and s is the standard
deviation. The average number of vectors required to send a message K and number of extra vectors generated h are also
provided, based on the capacity x — s in Table 2 for each model. Runtimes (sec) are computed for each message operation over
these generated vectors. For some runtimes, we only provide the mean % as the standard deviations are very small (~ 107° sec).

Operation bedroom-256 [29] cat-256 [30] celebahq-256 [31] church-256 [32]
offline()

Data Length 2408.60 + 38.50 bytes 2424.33 + 41.41 bytes 2403.06 + 46.47 bytes 2421.73 + 47.84 bytes
Compressed Data Length 1328.43 + 20.88 bytes 1333.46 + 22.62 bytes 1322.80 + 22.33 bytes 1332.96 + 24.31 bytes

Vectors Generated
offline() Runtime

K=6h=3
88.22 + 0.41 sec

K=13,h=7
194.05 + 3.96 sec

K=5h=3
72.79 + 8.88 sec

K=4h=2
60.86 + 3.23 sec

send()

Raptor Encoder Setup Runtime
Raptor Encode Runtime

send() Runtime

1.66 x 107% sec
1.30 X 107> sec

27.52 + 0.34 sec

1.95 x 1074 sec
1.59 X 107 sec

63.06 + 2.03 sec

1.68 X 104 sec
9.97 x 107 sec

21.52 £ 2.25 sec

1.70 X 10~ sec
9.27 X 107 sec

18.41 + 0.36 sec

receive()

Raptor Decoder Setup Runtime
Raptor Decode Runtime

receive() Runtime

5.64 X 107 sec
1.51 x 107% sec

27.27 £ 0.39 sec

5.82 X 107 sec
1.46 x 10~% sec

55.68 + 0.65 sec

6.12 X 1072 sec
1.33 x 10% sec

21.34 £ 2.16 sec

6.05 X 107¢ sec
1.55 x 10™* sec

19.07 + 0.23 sec

of most generative steganographic schemes is that it assumes the
sender and receiver share a symmetric key. Public-key steganog-
raphy has been shown in the theoretical literature [60], and even
through some generative models [44, 68], but currently does not
efficiently support channels common on the Internet like images
and text, so we do not use it in Assemblage. Indeed, bootstrapping
shared state was a problem even in the original Collage work [10].

We argue that, despite these limitations, there are still situa-
tions where Assemblage would be viable. First, consider situations
where users transit between censored and uncensored regions. For
instance, a journalist may be traveling on assignment to a more
repressive environment, and can take the shared secret with them
(either on disk or as a seed phrase) so they can instantiate As-
semblage when needed to communicate with the outside world.
Next, many users are in environments where censorship is active in
waves [1]; a user can establish the shared secret when tensions are
lower, and use Assemblage when censorship is reactivated. Finally,
we could also utilize a hybrid approach: a one-time-use signaling
channel [59] could establish the shared secret, and Assemblage
could then be used for any subsequent communication.

Communities. In Section 3.3, we discuss suitable tasks and vectors
for Assemblage, and provide further analysis in Section 4.1. But,
for Assemblage to blend in, we must better understand our cover
distribution: Al image communities. The primary question: how
do we create authentic-looking Al community accounts, posts, and
metadata? We provide some initial results towards that question in
this work. But, another question here is how online communities
will be impacted if they were used as a drop location. While we
would hope for solidarity, we cannot expect it, especially since this
system may lead to additional scrutiny on the community’s posts.

40

Moreover, we found that some communities have restrictions on
which accounts can post (e.g., based on account age, posting history,
or relationship to existing community members).

The answers to the above questions require future research. We
propose working with the members of Al image communities more
explicitly, such as through a need-finding study. Any deployment
would have to work within - not around - these human factors
considerations if we wish to achieve the most capable deployment.

Concluding thoughts. We emphasize that we do not make value
judgments about the nature of the Al-generated content commu-
nities. Opinions are mixed on the societal benefits of Al image
generation [8, 45, 49] and if its outputs constitute art [13, 34]; we do
not settle this debate here. In any case, it is clear that communities
around sharing Al images are popular, and our results show As-
semblage is resilient and efficient. So, as long as these communities
exist, we can repurpose Al through generative steganography to
chip away at censorship.

Acknowledgments

The authors would like to thank Tasnim Hanaif and Ana Stanisavlje-
vic for their work implementing a prototype that applied perceptual
hashing to Pulsar offline states.

This work is supported by PSC-CUNY Research Awards from the
City University of New York and the U.S. Department of Education
under the TREAD program at the City College of New York. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily those of the sponsors.

References

[1] Access Now. 2024. Shrinking democracy, growing violence: Internet shutdowns
in 2023. https://www.accessnow.org/wp-content/uploads/2024/05/2023-KIO-

https://www.accessnow.org/wp-content/uploads/2024/05/2023-KIO-Report.pdf
https://www.accessnow.org/wp-content/uploads/2024/05/2023-KIO-Report.pdf

Assemblage: Chipping Away at Censorship with Generative Steganography

[10]

[11]

[12

[13]

[14]

[15]

[17]

[18

[19

[20]
[21]

[22
[23]

[24

[25]

Report.pdf. Online; accessed 1 Sept 2024.

Atlas Art. 2025. Telegram Atlas Al Art. @atlasart_collection.

Deviant Art. 2000. Deviant Art - AT Art. https://www.deviantart.com/tag/ai.
Tuomas Aura. 1996. Practical invisibility in digital communication. In Informa-
tion Hiding: First International Workshop Cambridge, UK, May 30-June 1, 1996
Proceedings 1. Springer, 265-278.

Michael Backes and Christian Cachin. 2005. Public-Key Steganography with
Active Attacks. In TCC 2005 (LNCS, Vol. 3378), Joe Kilian (Ed.). Springer, Berlin,
Heidelberg, 210-226. https://doi.org/10.1007/978-3-540-30576-7_12

Shumeet Baluja. 2017. Hiding Images in Plain Sight: Deep Steganography. In
Neural Information Processing Systems. http://www.esprockets.com/papers/
nips2017.pdf

Luke A Bauer, James K Howes, Sam A Markelon, Vincent Bindschaedler, and
Thomas Shrimpton. 2024. Leveraging generative models for covert messaging:
Challenges and tradeoffs for" dead-drop" deployments. In Proceedings of the
Fourteenth ACM Conference on Data and Application Security and Privacy. 67-78.
Oliver Bendel. 2023. Image synthesis from an ethical perspective. AI & SOCIETY
(2023), 1-10.

Flavio Bertini, Rajesh Sharma, and Danilo Montesi. 2022. Are social networks
watermarking us or are we (unawarely) watermarking ourself? Journal of Imaging
8,5 (2022), 132.

Sam Burnett, Nick Feamster, and Santosh Vempala. 2010. Chipping Away at
Censorship Firewalls with User-Generated Content. In USENIX Security 2010.
USENIX Association, 463-468.

John W Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. 1998.
A digital fountain approach to reliable distribution of bulk data. ACM SIGCOMM
Computer Communication Review 28, 4 (1998), 56-67.

Christian Cachin. 2000. An Information-Theoretic Model for Steganography.
Cryptology ePrint Archive, Report 2000/028. https://eprint.iacr.org/2000/028
Eva Cetinic and James She. 2022. Understanding and creating art with Al: Review
and outlook. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 18, 2 (2022), 1-22.

Ching-Yun Chang and Stephen Clark. 2010. Practical linguistic steganography
using contextual synonym substitution and vertex colour coding. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 1194-1203.

Marc Chaumont. 2019. Deep Learning in steganography and steganalysis from
2015 to 2018. arXiv:1904.01444 [cs.CR]

DemandSage. 2025. Reddit User Statistics 2025. https://www.demandsage.com/
reddit-statistics.

DemandSage. 2025. Telegram User Statistics 2025. https://www.demandsage.
com/telegram-statistics.

Jinyang Ding, Kejiang Chen, Yaofei Wang, Na Zhao, Weiming Zhang, and Nenghai
Yu. 2023. Discop: Provably Secure Steganography in Practice Based on “Distribu-
tion Copies”. In 2023 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 2238-2255. https://doi.org/10.1109/SP46215.2023.10179287
Discord. 2022. Discord Discover - ai Art. https://discord.com/servers/ai-art-
1016879474928795718.

Discord. 2022. Discord Discover - Night Cafe Lounge. https://discord.com/
servers/nightcafe-lounge-943306099019370566.

Discord. 2023. Discord Discover - Al Hub by Weights. https://discord.com/invite/
aihub.

Discord. 2025. About Discord - Our Mission. https://discord.com/company.
Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2013.
Protocol misidentification made easy with format-transforming encryption. In
ACM CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.).
ACM Press, 61-72. https://doi.org/10.1145/2508859.2516657

Facebook. 2025. ThreatExchange GitHub repository. https://github.com/
facebook/ThreatExchange/tree/master/pdq.

FastCompany. 2024. With Its New App, DeviantArt Finally Has A Mobile Place For
Those 65 Million Monthly Visitors. https://www.fastcompany.com/deviantart-

app.
David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. PoPETs 2015, 2
(April 2015), 46-64. https://doi.org/10.1515/popets-2015-0009

Jessica Fridrich, Miroslav Goljan, and Dorin Hogea. 2002. Attacking the outguess.
In Proceedings of the ACM Workshop on Multimedia and Security, Vol. 2002.
Claire Fu and Meaghan Tobin. 2025. Red Note, a Chinese app, is dominating down-
loads, thanks to TikTok users. https://www.nytimes.com/2025/01/17/us/politics/
red-note-a-chinese-app-is-dominating-downloads-thanks- to- tiktok-users.
Google. 2022. ddpm-bedroom-256. https://huggingface.co/google/ddpm-
bedroom-256.

Google. 2022. ddpm-cat-256. https://huggingface.co/google/ddpm-cat-256.
Google. 2022. ddpm-celebahq-256. https://huggingface.co/google/ddpm-
celebahq-256.

Google. 2022. ddpm-church-256. https://huggingface.co/google/ddpm-church-
256.

41

(33]

(34]
(35]

(36]

(37]

NN
D=

~
&

(44

[45

[49

[50

[61

Free and Open Communications on the Internet 2026(1)

Sam Gunn, Xuandong Zhao, and Dawn Song. 2024. An undetectable watermark
for generative image models. arXiv preprint arXiv:2410.07369 (2024).

Aaron Hertzmann. 2018. Can computers create art?. In Arts, Vol. 7. MDP], 18.
Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840-6851.
Nicholas J. Hopper, John Langford, and Luis von Ahn. 2002. Provably Secure
Steganography. In CRYPTO 2002 (LNCS, Vol. 2442), Moti Yung (Ed.). Springer,
Berlin, Heidelberg, 77-92. https://doi.org/10.1007/3-540-45708-9_6

Amir Houmansadr, Thomas J. Riedl, Nikita Borisov, and Andrew C. Singer. 2013.
I want my voice to be heard: IP over Voice-over-IP for unobservable censorship
circumvention. In NDSS 2013. The Internet Society.

Han Hu, Yujin Huang, Qiuyuan Chen, Terry Yue Zhuo, and Chunyang Chen.
2023. A first look at on-device models in i0S apps. ACM Transactions on Software
Engineering and Methodology 33, 1 (2023), 1-30.

Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley,
and Luc Van Gool. 2018. Ai benchmark: Running deep neural networks on
android smartphones. In Proceedings of the European Conference on Computer
Vision (ECCV) Workshops. 0-0.

Imgur. 2025. Imgur - Our Journey. https://imgurinc.com/.

Imgur. 2025. Imgur #aiart. https://imgur.com/t/aiart.

Tushar M. Jois, Gabrielle Beck, and Gabriel Kaptchuk. 2024. Artifact for "Pulsar:
Secure Steganography for Diffusion Models". https://doi.org/10.5281/zenodo.
13324377

Tushar M. Jois, Gabrielle Beck, and Gabriel Kaptchuk. 2024. Pulsar: Secure
Steganography for Diffusion Models. In ACM CCS 2024, Bo Luo, Xiaojing Liao,
Jun Xu, Engin Kirda, and David Lie (Eds.). ACM Press, 4703-4717. https://doi.
org/10.1145/3658644.3690218

Gabriel Kaptchuk, Tushar M. Jois, Matthew Green, and Aviel D. Rubin. 2021.
Meteor: Cryptographically Secure Steganography for Realistic Distributions. In
ACM CCS 2021, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, 1529-1548.
https://doi.org/10.1145/3460120.3484550

Amelia Katirai, Noa Garcia, Kazuki Ide, Yuta Nakashima, and Atsuo Kishimoto.
2024. Situating the social issues of image generation models in the model life
cycle: a sociotechnical approach. Al and Ethics (2024), 1-18.

Weixin Liang, Yaohui Zhang, Mihai Codreanu, Jiayu Wang, Hancheng Cao, and
James Zou. 2025. The Widespread Adoption of Large Language Model-Assisted
Writing Across Society. arXiv preprint arXiv:2502.09747 (2025).

Petar Maymounkov. 2002. Online codes. Technical Report. Technical report, New
York University.

Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian
Goldberg. 2012. SkypeMorph: protocol obfuscation for Tor bridges. In ACM CCS
2012, Ting Yu, George Danezis, and Virgil D. Gligor (Eds.). ACM Press, 97-108.
https://doi.org/10.1145/2382196.2382210

Jonas Oppenlaender, Johanna Silvennoinen, Ville Paananen, and Aku Visuri. 2023.
Perceptions and realities of text-to-image generation. In Proceedings of the 26th
International Academic Mindtrek Conference. 279-288.

Yinyin Peng, Donghui Hu, Yaofei Wang, Kejiang Chen, Gang Pei, and Weiming
Zhang. 2023. Stegaddpm: Generative image steganography based on denois-
ing diffusion probabilistic model. In Proceedings of the 31st ACM International
Conference on Multimedia. 7143-7151.

Jonathan Prokos, Neil Fendley, Matthew Green, Roei Schuster, Eran Tromer,
Tushar M. Jois, and Yinzhi Cao. 2023. Squint Hard Enough: Attacking Perceptual
Hashing with Adversarial Machine Learning. In USENIX Security 2023, Joseph A.
Calandrino and Carmela Troncoso (Eds.). USENIX Association, 211-228.
Reddit. 2017. /r/AiArt. https://www.reddit.com/r/aiArt.

Reddit. 2017. /r/AIArtwork. https://www.reddit.com/r/AlArtwork.

Telegram Robots, Art Al Art, and Pictures. 2025. Telegram Robots and Art.
https://t.me/images_pictures.

Amin Shokrollahi. 2006. Raptor codes. IEEE transactions on information theory
52, 6 (2006), 2551-2567.

Gustavus J. Simmons. 1983. The Prisoners’ Problem and the Subliminal Channel.
In CRYPTO’83, David Chaum (Ed.). Plenum Press, New York, USA, 51-67. https:
//doi.org/10.1007/978-1-4684-4730-9_5

Sinorbis. 2025. WeChat Statistics. https://blog.sinorbis.com/wechat-statistics.
Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising diffusion
implicit models. arXiv preprint arXiv:2010.02502 (2020).

Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy. 2024. Commu-
nication Breakdown: Modularizing Application Tunneling for Signaling Around
Censorship. Proceedings on Privacy Enhancing Technologies (2024).

Luis von Ahn and Nicholas J. Hopper. 2004. Public-Key Steganography. In
EUROCRYPT 2004 (LNCS, Vol. 3027), Christian Cachin and Jan Camenisch (Eds.).
Springer, Berlin, Heidelberg, 323-341. https://doi.org/10.1007/978-3-540-24676-
320

Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir Houmansadr, and Nikita
Borisov. 2012. CensorSpoofer: asymmetric communication using IP spoofing for
censorship-resistant web browsing. In ACM CCS 2012, Ting Yu, George Danezis,
and Virgil D. Gligor (Eds.). ACM Press, 121-132. https://doi.org/10.1145/2382196.
2382212

https://www.accessnow.org/wp-content/uploads/2024/05/2023-KIO-Report.pdf
@atlasart_collection
https://www.deviantart.com/tag/ai
https://doi.org/10.1007/978-3-540-30576-7_12
http://www.esprockets.com/papers/nips2017.pdf
http://www.esprockets.com/papers/nips2017.pdf
https://eprint.iacr.org/2000/028
https://arxiv.org/abs/1904.01444
https://www.demandsage.com/reddit-statistics
https://www.demandsage.com/reddit-statistics
https://www.demandsage.com/telegram-statistics
https://www.demandsage.com/telegram-statistics
https://doi.org/10.1109/SP46215.2023.10179287
https://discord.com/servers/ai-art-1016879474928795718
https://discord.com/servers/ai-art-1016879474928795718
https://discord.com/servers/nightcafe-lounge-943306099019370566
https://discord.com/servers/nightcafe-lounge-943306099019370566
https://discord.com/invite/aihub
https://discord.com/invite/aihub
https://discord.com/company
https://doi.org/10.1145/2508859.2516657
https://github.com/facebook/ThreatExchange/tree/master/pdq
https://github.com/facebook/ThreatExchange/tree/master/pdq
https://www.fastcompany.com/deviantart-app
https://www.fastcompany.com/deviantart-app
https://doi.org/10.1515/popets-2015-0009
https://www.nytimes.com/2025/01/17/us/politics/red-note-a-chinese-app-is-dominating-downloads-thanks-to-tiktok-users
https://www.nytimes.com/2025/01/17/us/politics/red-note-a-chinese-app-is-dominating-downloads-thanks-to-tiktok-users
https://huggingface.co/google/ddpm-bedroom-256
https://huggingface.co/google/ddpm-bedroom-256
https://huggingface.co/google/ddpm-cat-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-celebahq-256
https://huggingface.co/google/ddpm-church-256
https://huggingface.co/google/ddpm-church-256
https://doi.org/10.1007/3-540-45708-9_6
https://imgurinc.com/
https://imgur.com/t/aiart
https://doi.org/10.5281/zenodo.13324377
https://doi.org/10.5281/zenodo.13324377
https://doi.org/10.1145/3658644.3690218
https://doi.org/10.1145/3658644.3690218
https://doi.org/10.1145/3460120.3484550
https://doi.org/10.1145/2382196.2382210
https://www.reddit.com/r/aiArt
https://www.reddit.com/r/AIArtwork
https://t.me/images_pictures
https://doi.org/10.1007/978-1-4684-4730-9_5
https://doi.org/10.1007/978-1-4684-4730-9_5
https://blog.sinorbis.com/wechat-statistics
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1007/978-3-540-24676-3_20
https://doi.org/10.1145/2382196.2382212
https://doi.org/10.1145/2382196.2382212

Free and Open Communications on the Internet 2026(1)

[62] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister,
Steven Cheung, Frank Wang, and Dan Boneh. 2012. StegoTorus: a camouflage
proxy for the Tor anonymity system. In ACM CCS 2012, Ting Yu, George Danezis,
and Virgil D. Gligor (Eds.). ACM Press, 109-120. https://doi.org/10.1145/2382196.
2382211

X. 2006. Generative Al https://x.com/i/communities/1601841656147345410.

X. 2025. X User Statistics 2025. https://www.demandsage.com/telegram-
statistics.

Zeyi Yang. 2022. There’s no Tiananmen Square in the new Chinese image-making
AL MIT Technology Review.

Zhongliang Yang, Shuyu Jin, Yongfeng Huang, Yujin Zhang, and Hui Li. 2018. Au-
tomatically Generate Steganographic Text Based on Markov Model and Huffman
Coding. arXiv:1811.04720 [cs.CR]

Ece Yildirim. 2025. ChatGPT delays rollout of image generator for free users
because it’s too "popular’. Quartz.

Xin Zhang, Kejiang Chen, Jinyang Ding, Yuqi Yang, Weiming Zhang, and Nenghai
Yu. 2024. Provably secure public-key steganography based on elliptic curve
cryptography. IEEE Transactions on Information Forensics and Security 19 (2024),
3148-3163.

Summer Zhen. 2024. Asia Hedge funds eye Chinese tech leading Al charge in
2025. Reuters.

[63]
[64]

[65

[66]

[67

[68]

[69]

A Styles of Generated Images

Generating images in styles that are popular within the receiving
channel is similar to having correct metadata: shaping how the
image is perceived by aligning it with community norms. In our
preliminary analysis of these communities, the two most dominant
observed styles were “cinematic fantasy” and “realistic parody”.
We provide representative examples in Figure 6. Cinematic fantasy
pieces are heavily genre-driven, often featuring folk and storybook
creatures and places in dramatic illustration. In contrast, realistic
parody applies a photorealistic lens to fictitious scenarios, visual-
izing comically absurd situations grounded in reality. This style is
notably reactive to culture and trends, leaning into ironic messag-
ing or social and political commentary. More research is necessary
to definitively identify trends and more closely match art styles.

42

Tushar M. Jois, Cora Rowena Ruiz, and Gabriel Kaptchuk

(a) A man in a futuristic city facing a portal to a magical
realm done in a cinematic illustrative style.

(b) An anachronistic birthday party with famous his-
torical figures and a fictitious cat generated in a photo-
realistic style.

Figure 6: Examples of popular art styles observed across in-
vestigated channels: (a) cinematic fantasy and (b) realistic
parody. These are sourced from the communities, and do not
contain steganographic content.

https://doi.org/10.1145/2382196.2382211
https://doi.org/10.1145/2382196.2382211
https://x.com/i/communities/1601841656147345410
https://www.demandsage.com/telegram-statistics
https://www.demandsage.com/telegram-statistics
https://arxiv.org/abs/1811.04720

	Abstract
	1 Introduction
	2 From Collage to Assemblage
	3 Assemblage design
	3.1 Vector layer
	3.2 Message layer
	3.3 Rendezvous

	4 Evaluation
	4.1 Candidate Platforms
	4.2 Performance

	5 Discussion and Future Work
	Acknowledgments
	References
	A Styles of Generated Images

