
Architectural VPN Vulnerabilities, Disclosure Fatigue, and
Structural Failures

William J. Tolley

Hampden-Sydney College

Breakpointing Bad

william@breakpointingbad.com

Everett Morse

Hampden-Sydney College

morsee29@hsc.edu

Gabriel Hogan

Washington & Lee University

ghogan@mail.wlu.edu

Jeffrey Knockel

Bowdoin College

j.knockel@bowdoin.edu

Jedidiah R. Crandall

Arizona State University

Breakpointing Bad

jed@breakpointingbad.com

Abstract
This experience paper recounts seven years of disclosure and re-

testing of an architectural VPN vulnerability first reported in 2019.

The flaw, rooted in predictable tunnel behavior, still allows blind

in-path adversaries to infer and disrupt encrypted traffic on fully

updated devices in 2025. Our experience shows that repeated CVEs

and patch cycles create the illusion of progress while the underlying

risk persists. We distill lessons about the limits of patch-based

disclosure, the absence of ownership for architectural flaws, and

the resulting risks to high-threat users, and propose a framework

for tracking long-lived, cross-vendor vulnerabilities.

1 Introduction: Unacknowledged and
Unresolved Vulnerabilities

This paper draws on seven years of coordinated disclosure, vendor

engagement, and re-testing surrounding a class of architectural

VPN vulnerabilities first reported in 2019. These vulnerabilities

allow blind in/on-path adversaries—attackers who can observe and

inject packets but cannot decrypt their contents—to infer inter-

nal VPN IP addresses, identify the existence of active encrypted

connections, and inject or reset TCP streams without needing to

decrypt any traffic [47]. These attacks exploit fundamental archi-

tectural behaviors, including metadata exposure, predictable NAT

and routing logic, and uniform tunnel response behavior, rather

than implementation flaws or cryptographic weaknesses.

The vulnerability class was first disclosed on the oss-security

mailing list [46] and later assigned CVE-2019-9461 [28] and CVE-

2019-14899 [27]; subsequent peer-reviewed work characterized

both client- and server-side variants [47]. Vendors treated the

client-side variant as a patchable defect and the server-side vari-

ant as “out of scope.” Over the following years, partial fixes ap-

peared, newCVEswere issued, and the same behavior resurfaced [4–

6, 16, 18, 27, 29]. No party claimed ownership of the underlying

architectural condition.

These observations are less a new vulnerability discovery than

evidence of a governance failure. Current disclosure infrastructure,

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Free and Open Communications on the Internet 2026(1), 48–57
© 2026 Copyright held by the owner/author(s).

especially the CVE system, cannot track cross-vendor, architectural

flaws. Once a CVE is closed, persistent risks vanish from public view,

giving the appearance of progress while exploitability endures. For

the Internet-freedom community, which routinely promotes VPNs

and related tools to users under surveillance, this gap translates

directly into human risk.

The remainder of this paper reflects on lessons drawn from

long-term disclosure, mitigation attempts, and re-evaluation. We

examine how architectural vulnerabilities interact with existing

reporting workflows, trace recurring patterns of fragmentation and

responsibility shifting, and assess whether modern VPN deploy-

ments meaningfully mitigate the original attack primitives.

Contributions. This paper makes three primary contributions.

First, we present an experience report documenting seven years

of disclosure and vendor interaction surrounding an architectural

VPN vulnerability. Second, we demonstrate through re-testing on

fully updated Android systems in 2025 that core attack primitives

remain exploitable across OpenVPN, WireGuard, and proprietary

VPN protocols despite multiple CVEs and patch cycles. Third, we

distill lessons about the limits of patch-based disclosure and propose

a complementary framework for tracking long-lived, cross-vendor

architectural vulnerabilities.

2 Background: The Nature of Architectural
Attacks

Before turning to the disclosure timeline, we briefly summarize the

technical background of the architectural VPN vulnerabilities that

motivated this study.

Architectural VPN vulnerabilities, such as blind in/on-path traf-

fic inference attacks, differ fundamentally from traditional secu-

rity flaws. Unlike memory-safety, cryptographic, or configuration

bugs [1, 9, 11, 21, 24, 32], these attacks exploit stable and predictable

design properties of VPNs: namely, traffic metadata exposure (e.g.,
packet size, timing, and direction), deterministic NAT behavior, and

tunnel routing assumptions.

The adversary model in these attacks assumes a passive observer

with the ability to inject spoofed traffic. Positioned between the

client and VPN server, such an adversary may be a local network

operator (e.g., a malicious access point), a surveillance node at an

ISP or exchange, or a state-aligned infrastructure provider [50].

These adversaries do not require packet decryption; they operate

solely on metadata and system-level behavior.

48

https://creativecommons.org/licenses/by/4.0/


Architectural VPN Vulnerabilities, Disclosure Fatigue, and Structural Failures Free and Open Communications on the Internet 2026(1)

Under this model, adversaries can reliably carry out the following

types of attacks:

• DNS Hijacking: Redirecting or spoofing DNS queries with-

out access to their plaintext contents.

• TCP Injection and Reset: Brute-forcing ephemeral port

and sequence space to infer and terminate encrypted TCP

sessions.

• Client Activity Surveillance: Using fine-grained metadata

analysis to infer user activity patterns despite encrypted

tunnels [51].

At a high level, the attack operates by sending carefully crafted

spoofed packets into the VPN tunnel and observing the system’s

reaction. If a probe matches an active flow, due to predictable NAT

assignment or routing logic, the endpoint often produces a distinct

encrypted response (e.g., reset, retransmission, or measurable tim-

ing/size differences). By observing these responses externally, an

adversary can infer whether a connection to a given destination

exists and identify internal VPN-assigned IPs; furthermore, by itera-

tively probing and observing sequence/ack behavior, the adversary

can discover the correct sequence and acknowledgment window

and subsequently inject, hijack, or terminate an active TCP session.

These techniques have been demonstrated effective across a

range of VPN implementations (e.g., OpenVPN, WireGuard, IPSec)

and operating systems, including those configured with strong

cryptographic defaults [47]. Crucially, the attack does not rely on

timing jitter [41], amplification effects [34], or reflection behavior

such as IPID-based inference [2, 14, 19, 25]; rather, it succeeds by

exploiting stable, predictable infrastructure design.

Because these vulnerabilities arise from architectural constraints

rather than implementation bugs, and therefore exhibit systemic be-

havior across platforms and vendors as discussed in Section 4, they

are not easily patched. Comprehensive mitigations would require

cross-layer redesigns with substantial usability and deployment

trade-offs. This places them outside the scope of most traditional

vulnerability-disclosure processes, which are calibrated to track

discrete software flaws rather than long-lived, systemic conditions.

The persistence of these behaviors across protocols and plat-

forms became a central theme of our seven-year disclosure experi-

ence, detailed in Section 3, and the lessons derived from it, discussed

in Section 4.

2.1 Vendor Response Dynamics
The long-term reporting history for this class of vulnerabilities

reflects a wide range of vendor responses, shaped in part by the

difficulty of categorizing and resolving architectural issues. Across

documented disclosure efforts, vendor behavior ranged from re-

sponsive and transparent to opaque or inconclusive [13, 47]. These
contrasts are not evaluations of individual vendors, but observations
of how existing disclosure workflows fragment responsibility for cross-
layer flaws.While limited client-side mitigations emerged for spe-

cific systems and configurations, the underlying architectural con-

dition—particularly the server-side variant—remained unacknowl-

edged and unpatched across all tested platforms.

Responses to the client-side vulnerability varied substantially.

Google issued multiple Android patches and addressed the issue

under CVE-2019-9461, CVE-2019-14899, and later CVE-2024-49734

following re-disclosure [27–29]. Apple initially claimed a fix in

iOS 13.6 [6], and later released additional networking changes in

iOS 17.2.1 [7]. Because Apple’s networking stack is not externally

inspectable, independent verification of architectural changes is

inherently limited. In contrast, WireGuard acknowledged the ar-

chitectural nature of the issue and proposed configuration-level

mitigations that reduced exposure in some environments [18], while

OpenBSD issued an early patch adjusting default interface filtering

rules [17].

Other vendors declined to engage meaningfully. NordVPN did

not acknowledge the vulnerability across multiple disclosure at-

tempts, and neither its WireGuard-based NordLynx protocol nor

its later proprietary protocol, NordWhisper, resisted the same infer-

ence attacks [35]. OpenVPN responded early in the original disclo-

sure process but ultimately took no mitigating action [37]. Detailed

validation results for these findings are presented in Section 5.

Taken together, these interactions indicate that the persistence

of the vulnerability reflects a disclosure ecosystem unable to assign

or sustain ownership for architectural conditions that span prod-

ucts and platforms. The client-side variant has seen only partial,

platform-specific mitigation, while the server-side attack remains

unmitigated and untracked across all examined systems. A detailed

timeline of vendor interactions and disclosure outcomes is provided

in Section 3.4.

2.2 Structural Gaps in the Vulnerability
Ecosystem

From these vendor interactions, several broader lessons emerge

about the structure of vulnerability disclosure itself. The failures

documented in vendor triage patterns are not merely anecdotal or

organizational, but point to deeper limitations in how architectural

vulnerabilities are handled within existing disclosure systems.

These varied responses underscore a core challenge: architec-

tural vulnerabilities do not map cleanly onto conventional triage

processes. Traditional vulnerability workflows, centered around

CVEs, vendor advisories, and patch rollouts, are optimized for dis-

crete implementation errors with bounded scope and clear product

ownership. Architectural flaws, by contrast, often span multiple

abstraction layers, emerge from systemic interactions, and per-

sist across vendor boundaries. They evade patch closure logic not

because they are technically obscure, but because no single stake-

holder owns the full exploit surface or bears responsibility for the

conditions that make the vulnerability possible.

In several cases documented in prior work [47], vendors treated

the issue as “out of scope” or “non-actionable,” even when provided

with detailed proofs-of-concept. Some implemented partial miti-

gations narrowly scoped to specific platforms or configurations,

while others deferred entirely, citing external causes such as OS-

level routing logic. This is not a failure of individual vendors but

a failure of the vulnerability ecosystem itself, one that is struc-

turally incapable of accommodating flaws not tied to a single patch,

product, or protocol.

The proposed Internet Freedom vulnerability registry responds

to this systemic limitation. Rather than relying on one-off dis-

closures or vendor-specific timelines, it aims to create a persis-

tent, multi-stakeholder tracking model for long-lived vulnerabili-

ties, including those that are architectural in nature. It provides a

venue for documenting cross-vendor patterns, partial mitigations,49



Free and Open Communications on the Internet 2026(1) William J. Tolley, Everett Morse, Gabriel Hogan, Jeffrey Knockel, and Jedidiah R. Crandall

re-emergent behaviors, and affected threat models over time. Cru-

cially, it centers risk around user impact, especially for high-risk

populations operating in censored or adversarial environments,

rather than code changes or release cycles. By treating design-level

flaws as persistent features of the security landscape rather than

transient bugs, the Internet Freedom registry offers a framework for

long-term accountability, coordinated mitigation, and transparency

that conventional systems struggle to provide.

3 Seven Years of Disclosure: An Experience
Report

The following chronology summarizes how the structural gaps

discussed above manifested in practice. Figure 1 provides a con-

solidated view of the disclosure history covered in this section,

including initial reports, CVE assignments, vendor responses, and

subsequent re-validation.

This section traces the disclosure and response process over

nearly seven years, involving repeated reporting, varied vendor

engagement, a peer-reviewed publication, and ongoing experimen-

tation. Rather than relitigating technical details, the goal is to il-

lustrate how existing disclosure mechanisms repeatedly failed to

resolve or contain an architectural vulnerability over time.

3.1 Initial Disclosure and Assigned CVEs
(2018–2019)

The vulnerability class was first disclosed to major VPN providers

and operating system vendors in late 2019. Public and vendor at-

tention focused almost entirely on the client-side variant, in which

a local network adversary could infer active connections or disrupt

encrypted TCP streams. Two CVEs were assigned at the time: CVE-

2019-9461 (affecting Android) and CVE-2019-14899 (affecting Linux

and other Unix-like systems).

Importantly, these CVEs captured only client-side manifestations

of the attack. The more general server-side variant, where blind

in/on-path adversaries exploit correct-but-predictable NAT and

routing behavior, was explicitly deemed ineligible for CVE assign-

ment. In correspondence with MITRE [30], we were informed that

CVE identifiers apply to specific software implementation mistakes,

not to cross-vendor architectural behaviors or attackmethodologies,

particularly where no single codebase or patchable defect can be

identified. Under this interpretation, MITRE stated that CVE-2019-

14899 itself should not have been assigned, despite being scoped to

the client-side attack. As a result, the server-side attack surface was

left untracked despite being disclosed concurrently and remaining

exploitable in practice.

At the time, the issue was publicly disclosed through blogs, press

reports, and conference presentations [8, 12, 23, 26, 42–45, 47].

Some vendors issued partial mitigations focused on interface fil-

tering or packet validation (e.g., OpenBSD [17], WireGuard [18],

DD-WRT [15], Oracle [38], Fortinet [20]), while others deferred,

minimized, or dismissed the issue entirely (e.g., OpenVPN [37], Pro-

tonVPN [40], Mullvad [33], Private Internet Access [39]). These

early exchanges set the pattern for what followed: limited, incon-

sistent mitigations and no durable ownership of the underlying

architectural condition.

3.2 Peer-Reviewed Publication and Vendor
Re-engagement (2021)

In prior work, we presented both client- and server-side variants of

the attack in a peer-reviewed paper at USENIX Security 2021 [47],

emphasizing that the vulnerabilities were not implementation-

specific but instead arose from cross-layer design decisions common

across VPN architectures.

Following the publication, we again contacted vendors with addi-

tional technical material and a refined proof-of-concept. Responses

were mixed. Some vendors claimed the issue had been resolved,

despite continued evidence of exploitability. Others reopened triage

discussions but failed to implement effective mitigations. Given the

multi-year timescale of this vulnerability, institutional memory is

not maintained across disclosure rounds; reports re-enter vendor

intake pipelines rather than being carried forward through a con-

sistent point of contact or engineering team, effectively restarting

the process.

3.3 Re-reporting and New CVEs (Post-2021)
Between 2020 and 2024, we repeatedly re-tested across devices

and operating systems, marking a shift from the initial 2019–2021

disclosure cycle to sustained longitudinal evaluation in which the

same architectural flaws resurfaced. Notably, no new CVEs were

assigned between CVE-2019-14899 and CVE-2024-49734 despite

continued reporting during this period. CVE-2024-49734 was even-

tually assigned following confirmation of a working attack on a

fully updated Pixel 8 Pro, addressing a report originally submitted

in December 2021; this multi-year delay is reflected in the Janu-

ary 2025 Android Security Bulletin [5] and corresponding Android

networking code history [3]. Despite intervening patch attempts,

the same attack pattern remained effective.

Following this disclosure, we conducted further testing and con-

firmed that the vulnerability remains exploitable on a Pixel 10 Pro

XL running Android 16 with October 2025 security updates. The

same inference primitives—internal IP discovery, connection-state

inference, and sequence/acknowledgmentwindow scanning—remain

viable despite CVE-2024-49734 having been formally closed. These

findings were re-submitted to the Android Security Team, which

acknowledged continued exploitability and confirmed that a new

CVE assignment is pending.

This pattern reflects a broader systemic issue across disclosure

cycles. When vulnerabilities fall outside conventional patch do-

mains, such as the server-side variant or related attacks like port

shadowing [31] and tunnel cracking [49], they may receive CVE

identifiers without meaningful remediation. When considered in-

scope, patches tend to be narrowly scoped, with new CVEs assigned

each time the same architectural behavior resurfaces. The result-

ing record suggests technical progress without materially reducing

exploitability, illustrating how architectural vulnerabilities evolve

administratively rather than technically.

3.4 Vendor Coordination and Divergent
Responses

Vendor coordination around this class of vulnerabilities proved

inconsistent and short-lived. Each actor operated within its own

50



Architectural VPN Vulnerabilities, Disclosure Fatigue, and Structural Failures Free and Open Communications on the Internet 2026(1)

disclosure and patch workflow, producing fragmented outcomes

rather than collective resolution.

Google participated in multiple patch cycles following the orig-

inal report and a subsequent re-disclosure, including live testing,

and issued CVE-2024-49734 in response. Despite mitigation at-

tempts associated with CVE-2019-9461, CVE-2019-14899, and CVE-

2024-49734, the vulnerability remains reproducible on fully up-

dated Android 16 systems. Continued exploitability corresponds

to an additional CVE currently pending based on our continued

re-testing [5, 27–29].

Apple stated that the issue was addressed in iOS 13.6, noting

that “a routing issue was addressed with improved restrictions” [6].

Using the same unmodified probing methodology described in prior

work [47], the original attack sequence continued to succeed on

subsequent iOS releases. Starting with iOS 17.2.1, however, the

attack no longer succeeded [7]. Due to the closed nature of Apple’s

networking stack, deeper validation of whether the underlying

architectural condition was resolved remains infeasible.

OpenVPN was among the earliest vendors contacted in 2019.

The company ultimately declined to accept responsibility for the

vulnerability, stating publicly that it had found no flaws in the Open-

VPN software itself and characterizing the issue as a consequence

of operating system behavior rather than the VPN implementa-

tion [37].

WireGuard responded promptly and acknowledged the archi-

tectural nature of the issue. The maintainer proposed configuration-

level mitigations that reduced exposure to the client-side attack in

some environments but did not fully eliminate the vulnerability and,

by design, could not address the server-side variant. The project

remained communicative throughout the process and publicly doc-

umented its response.

NordVPN was contacted at least four times between 2019 and

2024 regarding both client- and server-side variants and declined

to engage. Although NordLynx is based on WireGuard, NordVPN

did not adopt its mitigations. Their later protocol, NordWhisper,

promoted as a circumvention tool, also remains vulnerable to the

same inference primitives [35].

Across all tested systems, the server-side variant, where blind

in/on-path adversaries can inject spoofed packets that are indistin-

guishable from legitimate encrypted traffic, remains unacknowl-

edged and unmitigated. Because the vulnerability originates in core
networking behavior, meaningful remediation ultimately depends
on operating-system vendors such as Google and Apple. When those
platforms leave the underlying tunnel semantics unchanged, down-
stream projects, including WireGuard, OpenVPN, and commercial
VPN providers, cannot fully resolve the issue regardless of configuration-
level mitigations. No vendor has proposed a viable solution or in-

cluded this variant in formal remediation guidance. The persistence

of this untracked attack surface underscores how architectural flaws

fall outside the scope of conventional patch ownership.

3.5 Narrative Gaps and the Absence of
Authority

Disclosure without a clear authority leaves a vacuum that is quickly

filled by vendors and secondary commentary, often before peer-

reviewed publication can establish an accurate technical record.

In the case of CVE-2019-14899 [27], vendor statements and media

coverage displaced the original disclosure, shaping public percep-

tion early and persistently. ProtonVPN characterized the issue as

“a narrow guessing attack” unsuitable for mass surveillance [40];

OpenVPN disclaimed responsibility by attributing the behavior to

operating-system design [37]; and Mullvad framed the vulnerability

as largely irrelevant under default configurations [33]. These fram-

ings were amplified by blogs and security podcasts [22], becoming

the dominant narrative despite diverging from the underlying tech-

nical evidence. This episode illustrates a broader pattern: when

architectural vulnerabilities lack an authoritative, persistent refer-

ence point, their credibility and perceived severity are determined

less by technical analysis than by narrative control, underscoring

the need for stronger civil-society participation to provide indepen-

dent validation and continuity.

4 Lessons Learned from Long-Term Disclosure
In this section, we distill recurring patterns and insights drawn from

the seven years of disclosure activity surrounding this vulnerability

class. Each lesson reflects a specific obstacle observed repeatedly

across vendors, systems, and time. Together, they describe a cycle

in which architectural flaws are discovered, acknowledged, patched

in narrow contexts, and then forgotten, only to reappear under

new names or CVE identifiers. The goal is not to assign blame, but

to understand how current vulnerability processes systematically

erase persistence and prevent collective learning. These lessons

ground the framework proposed in Section 6, translating repeated

failure into concrete design requirements for how long-lived vul-

nerabilities should be tracked and communicated.

Why This Vulnerability Is Systemic. We use the term systemic to
emphasize that this vulnerability does not arise from a single faulty

implementation, configuration mistake, or protocol bug. Instead, it

emerges from widely shared design assumptions about how VPN

tunnels interact with operating-system networking stacks: expo-

sure of traffic metadata (e.g., packet size, timing, and direction),

predictable NAT behavior, and tunnel routing and response se-

mantics under adversarial probing. These properties are present

across protocols, platforms, and vendors, and therefore cannot be

eliminated by patching any single codebase. As a result, the vulner-

ability persists even as specific implementations change, making it

a recurring feature of the ecosystem rather than an isolated defect.

4.1 Lesson 1: Architectural Flaws Defy CVE
Closure

Architectural vulnerabilities are not easily routed through con-

ventional triage pipelines. They are too general to be tied to a

single product, too persistent to be closed with a patch, and too

cross-cutting to belong to any single team. Vulnerability tracking

systems like CVE do not accommodate long-tail re-emergence or

design-level risks. Once a vulnerability is cataloged and assigned,

its “resolved” status becomes the default, regardless of whether it

remains exploitable in practice.

51



Free and Open Communications on the Internet 2026(1) William J. Tolley, Everett Morse, Gabriel Hogan, Jeffrey Knockel, and Jedidiah R. Crandall

4.2 Lesson 2: Vendor Turnover Erases
Institutional Memory

Over multi-year timelines, disclosure efforts must often be restarted

from scratch. Engineering and security teams change, institutional

context disappears, and previously acknowledged issues resurface

as new reports. Each re-reporting round repeats triage, verification,

and internal coordination, but rarely builds cumulative knowledge.

4.3 Lesson 3: Media Narratives Shape Disclosure
Outcomes

As discussed in Section 3.5, media coverage and secondary commen-

tary reshaped the vulnerability’s framing in ways that undermined

both peer review and coordinated response. Some reviewers echoed

misconceptions from non-technical sources, while vendors cited

public narratives as justification for limited action. The credibility

of design-level vulnerabilities can hinge less on evidence than on

how they are represented in public discourse.

4.4 Lesson 4: Partial Mitigations Decay Over
Time

Even when mitigations are implemented, they often fail to persist

across releases or vendor forks. Patches scoped to specific builds,

configurations, or client variants tend to regress in subsequent

updates. The result is an illusion of progress that masks continued

exploitability.

4.5 Lesson 5: Internet-Freedom Users Need
Persistent Visibility Tools

For users in censored or adversarial environments, transient dis-

closure cycles provide little protection. Long-lived, architectural

vulnerabilities require ongoing visibility, tracking mechanisms that

capture persistence and partial remediation rather than binary

“fixed” or “unfixed” states.

5 Illustrative Evidence: Persistence of
Architectural Vulnerabilities

To ground the preceding lessons empirically, we re-tested the VPN

inference attacks first disclosed in 2019 and formalized in prior

work [47]. We evaluated whether client-side attack primitives for

inference, hijacking, or disruption remain exploitable on modern

mobile devices and VPN implementations, using NordVPN where

applicable due to its integration of multiple protocols in a widely

deployed consumer application.

All tests were conducted after the assignment of CVE-2024-49734

on fully patched platforms. Annotated PCAP traces and minimal

reproduction scripts, provided to support verification while limit-

ing unnecessary exposure, are available in a public artifact reposi-

tory [48].

5.1 Experimental Setup
The experiments were conducted using a Pixel 10 Pro XL running

Android 16 with all October 2025 security updates applied. The

device was connected to a WiFi access point controlled by the

attacker, simulating an in/on-path adversary with the ability to

observe and inject packets on the local network.

Our goal was to determine whether the core client-side attack

primitives first described in prior work [47] remain exploitable on

fully patched systems. Specifically, for each tested tool we evaluate

whether a blind in/on-path adversary can (1) discover the VPN-

assigned internal IP address of the device, (2) infer the existence of

an active encrypted TCP connection to an external destination, and

(3) disrupt that connection via TCP sequence/acknowledgment ma-

nipulation. A tool is considered vulnerable if any of these primitives

succeeds.

The experiments replicated the attack methodology described in

prior work [47], including:

• Scanning common private subnets (e.g., 10.0.0.0/8) to infer
VPN-assigned internal IPs

• Sending spoofed SYN/ACK probes from external IPs to can-

didate VPN IPs and ports

• Inferring active connections based on response behavior (e.g.,
silent drops vs. encrypted RSTs)

• Performing sequence number window scans to trigger ses-

sion resets

Across all tests, the attacker position, network topology, and

probing strategywere held constant; only the VPN or circumvention

tool under test was varied. No traffic decryption was attempted;

all results were derived from metadata analysis and observable

side-channel behavior at the tunnel boundary.

5.2 Tool-Specific Results
We evaluated six widely used VPN and circumvention tools under

identical adversarial conditions, using default configurations and

routing all traffic through an attacker-controlled gateway. Where

applicable, tools were tested via their integration within the Nord-

VPN Android client in addition to their upstream reference imple-

mentations, reflecting common real-world deployment.

Across all tested tools, we observed successful internal IP infer-

ence, connection-state detection, and TCP reset injection, indicating

that the attack primitives remain viable in practice.

OpenVPN. The attack was fully successful against both the refer-

ence OpenVPN client and NordVPN’s OpenVPN-based implemen-

tation. In NordVPN’s Android client, we inferred the VPN-assigned

internal IP, identified active ephemeral ports, and successfully trig-

gered TCP connection resets using forged RST packets.

WireGuard. The attack remained viable against the reference

WireGuard implementation as well as NordVPN’sWireGuard-based

integration, NordLynx. Spoofed packets within the TCP sequence

window consistently triggered encrypted resets.

NordWhisper. Despite being marketed for use in restricted envi-

ronments [35], NordWhisper failed to resist connection inference or

disruption. We confirmed successful attacks across multiple trans-

port layers, indicating that obfuscation did not extend to tunnel

endpoint behavior or metadata exposure.

Orbot: Tor on Android. The attack was successful against Orbot,

which uses VPN-style tunneling to encapsulate Tor traffic. We

inferred active connections to the Tor network and triggered session

resets via spoofed probes. These results raise concerns about the

reliability of Orbot under adversarial network conditions.

52



Architectural VPN Vulnerabilities, Disclosure Fatigue, and Structural Failures Free and Open Communications on the Internet 2026(1)

Lantern. We observed consistent success in triggering resets and

fingerprinting active sessions. Port prediction was straightforward,

and no evidence of metadata obfuscation or injection resistance

was present.

Psiphon. Despite being positioned as a censorship circumven-

tion tool, Psiphon failed to block spoofed resets or conceal session

metadata. Obfuscation at higher protocol layers did not prevent

TCP-layer disruption.

Rationale and Limitations. Our central claim is not that any single

implementation is uniquely flawed, but that the underlying attack

primitives persist at the operating system and tunnel-behavior level.

Differences in implementation may affect exposure in specific cases,

but the presence of widely deployed configurations in which infer-

ence and disruption remain possible is sufficient to demonstrate

that this vulnerability class persists in practice.

5.3 Persistence of Attack Primitives
Across all tools, the core attack primitives, internal IP discovery,

ephemeral port inference, and TCP sequence window probing, re-

mained effective. These behaviors were consistent regardless of

VPN protocol or application-layer obfuscation, confirming that the

root causes lie not in application bugs but in fundamental design

assumptions about tunnel behavior.

Mitigations such as strict interface scoping, policy-based routing,

or stateful response filtering were inconsistently applied, often dis-

abled by default, or absent altogether. In multiple cases, previously

discussed mitigations did not appear to be present in current builds,

raising the possibility that they were either incomplete, ineffective,

or not retained across versions.

5.4 Risks to At-Risk Users
These findings are especially concerning for users in high-risk envi-

ronments. Tools like Orbot, Lantern, and Psiphon are regularly rec-

ommended in digital security trainings and circumvention guides,

where they are assumed to protect users against surveillance and

traffic correlation. However, our results show that adversaries do

not need to decrypt traffic to extract sensitive information—they

only require local network position and the ability to spoof.

Blind inference attacks allow an adversary to determine whether

a device is accessing a censored service, and in some cases, forcibly

terminate that session. In authoritarian contexts, such capabilities

can be used to punish users for forbidden behavior, track politi-

cal activity, or deny access to vital information. These attacks do

not require malware, privilege escalation, or sophisticated tooling

(only packet injection and a basic understanding of tunnel routing

behavior).

5.5 Accountability Gaps in Internet Freedom
Security Models

Beyond individual user risk, these results raise broader questions

for the Internet Freedom community itself. Many of the tools we

tested are routinely promoted by civil society groups, open-source

coalitions, and international aid organizations as trusted defenses

against censorship and surveillance. However, these endorsements

are rarely accompanied by systematic evaluations of long-term

exploitability or metadata exposure risk.

The tools in question may offer application-layer obfuscation or

encryption, but they still rely on tunnel architectures that remain

vulnerable to packet injection and inference attacks. As a result,

the security posture they project often exceeds what is technically

delivered.

This disconnect points to a critical gap: there is no sustained

mechanism for tracking the security status of architectural vulner-

abilities across circumvention tools, nor is there infrastructure for

incorporating attack persistence into tool vetting or threat model-

ing. The Internet Freedom community’s reliance on patch cycles

and protocol audits, rather than adversary-aligned testing, leaves

users vulnerable to attack classes that are never explicitly acknowl-

edged.

These findings validate the central claim of this paper: architec-

tural vulnerabilities must be treated as systemic and long-lived. For

the Internet Freedom community in particular, there is an urgent

need for a persistent, community-driven reporting framework. A

framework that foregrounds human risk and prioritizes architec-

tural transparency over version-level fixes.

These empirical findings reinforce the broader lessons drawn

from our disclosure experience and motivate the framework de-

scribed in Section 6.

5.6 Ethical Considerations
The attack class examined in this paper has been publicly doc-

umented since 2019, including CVE assignments and prior peer-

reviewed publication; our experiments re-test this known vulnera-

bility on current platforms without introducing new exploit tech-

niques or undisclosed attack surfaces. All testing was conducted in

environments under the authors’ control, did not affect uninvolved

users or systems, and vendors were notified of re-testing results

where applicable; the pending CVE in Section 3 reflects continued

exploitability of a previously disclosed issue rather than a new

discovery.

6 A Framework for the Internet Freedom
Community

Building on the seven years of disclosure activity and subsequent

re-testing described above, this section proposes a framework to

address the recurring structural failures observed in practice.

The failures outlined in previous sections, persistent vulnera-

bilities, inadequate triage mechanisms, misleading CVE coverage,

and the continued risk posed to high-risk users, demonstrate the

need for a better standard for describing and reporting systemic,

architectural vulnerabilities. Our experimental findings in Section 5

confirm that the attack primitives first disclosed in 2019 remain ex-

ploitable in 2025, despite multiple CVEs and vendor patches. These

results underscore the central challenge: there is no infrastructure

for tracking persistent, cross-vendor design-level risk.

This section proposes such a framework, tailored to the needs

of the Internet Freedom community.

The framework outlined here is not presented as a definitive so-

lution, but as a practical starting point shaped by experience. After

years of encountering the same coordination failures, incomplete

53



Free and Open Communications on the Internet 2026(1) William J. Tolley, Everett Morse, Gabriel Hogan, Jeffrey Knockel, and Jedidiah R. Crandall

fixes, and vanishing records, it is clear that traditional disclosure

alone cannot keep pace with how architectural vulnerabilities affect

real users.

Importantly, this is not a call to create an entirely new ecosys-

tem, but a model for augmenting existing disclosure infrastructure

with elements that prioritize user risk, contextual threat modeling,

and long-term architectural persistence. It is not another layer of

bureaucracy for security professionals and tool developers, but a

practical format to capture and track vulnerabilities that currently

escape our reporting systems.

At its core, this proposal is a commitment to recognizing, track-

ing, and addressing long-lived architectural vulnerabilities through

sustained collaboration with the users most affected by them, and

to treating transparency and persistence as shared responsibilities

rather than afterthoughts.

6.1 Motivation and Scope
Unlike traditional CVEs, which are tied to specific software bugs,

this framework is designed to track the lifecycle of architectural

and behavioral vulnerabilities, particularly those relevant to cen-

sorship circumvention, anonymity preservation, and adversarial

network conditions. These issues often emerge not as implementa-

tion defects, but as consequences of how systems are composed or

deployed across platforms, protocols, and layers.

An Internet Freedom-specific reporting format would serve as a

persistent, cross-vendor ledger of structural risks, recording attack

methodologies, affected configurations, known partial mitigations,

and temporal verification status. Instead of tracking patch closure,

it would track exploitability, user relevance, and the structural

origins of the risk. Most importantly, it would treat threat surface

characteristics through the lens of who is most at risk and not just

what code was changed.

These observations informed the following design principles,

derived directly from the obstacles encountered during disclosure.

6.2 Core Design Principles
We propose five core principles for such a framework:

1. Persistent Cross-Vendor Tracking. All vulnerabilities would be

tracked across protocols, platforms, and products under a shared

identifier (e.g., Internet Freedom-ARCH-2025-001). Entries would

stay visible and current as long as the risk remains reproducible,

regardless of vendor-specific claims of resolution or shifting product

versions.

2. Human-Centered Impact Ratings. Vulnerabilities would be

scored not solely by exploitability or CVSS-like metrics, but by

harm potential to vulnerable users. An attack that allows a state-

level adversary to infer connections to a censored news site is more

urgent to a journalist than a memory safety bug that requires root

access. This framework centers severity around those realities. In

practice, human-centered impact need not take the form of a fine-

grained numerical score. Instead, entries could use a small number

of coarse impact tiers (e.g., Low, Moderate, High, Critical) derived

from clearly defined questions: Does the attack enable identifica-

tion of tool usage? Does it allow inference of access to specific

services? Does it enable disruption, blocking, or punishment of

user behavior? Does it expose users to physical, legal, or political

harm? By anchoring severity to concrete consequences rather than

abstract exploitability metrics, ratings can remain consistent across

diverse vulnerability classes while better reflecting real-world risk

to high-threat populations.

3. Verification and Retesting Hooks. Each entry would include a

history of re-verification efforts, third-party confirmations, and up-

dated proofs-of-concept. Timestamped observations would capture

re-emergence or persistent viability. Entries could optionally link to

PCAPs, test scripts, and minimal configs to facilitate independent

reproduction. This supports scientific rigor while discouraging the

closure bias that currently follows CVE assignments.

4. Structured Media and Advocacy Interface. Rather than allow

narratives to be shaped by incomplete or inaccurate coverage, each

entry would include a layperson-oriented impact summary, share-

able quotes and caveats, and a vendor status matrix. This empowers

security trainers, advocates, and journalists to relay both the exis-

tence and context of a vulnerability clearly.

5. Transparency and Public Access. The registry would be open

and searchable, with simple public interfaces and optional APIs for

integration into risk dashboards and secure configuration guides. A

user running a tool like Orbot or Lantern should be able to quickly

check whether its current configuration is vulnerable to known

metadata-based attacks.

6.3 Use Case Alignment and Generalizability
Although motivated by the VPN-based attack revisited in this paper,

this framework generalizes to a wide class of Internet Freedom-

relevant vulnerabilities. These include:

• Timing analysis of encrypted messaging and transport (e.g.,
Signal, Tor bridges, MPTCP)

• Protocol-level fingerprinting and traffic correlation of cir-

cumvention tools (e.g., Lantern, Psiphon, Orbot)
• Behavioral side-channels in mobile OS traffic shaping, sensor

co-activation, or captive portal logic

• Metadata leaks from DNS-over-HTTPS fallbacks or incon-

sistent tunneling

• Protocol downgrade attacks that reintroduce known weak-

nesses under edge case routing

• Persistent network side-channels such as IPID-based infer-

ence and sequence-window probing

These categories all exhibit the same traits: they operate across

traditional product boundaries, defy patch-based remediation, and

are rediscovered again and again due to the lack of institutional

memory or shared tracking.

6.4 Relationship to Existing Infrastructure
This framework does not seek to replace the Common Vulnerabili-

ties and Exposures (CVE) system, but it does challenge its suitability

for tracking the types of vulnerabilities that matter most to the In-

ternet Freedom community. CVE is fundamentally optimized for

vendor-acknowledged implementation flaws: memory corruption,

input validation, misconfiguration. It is not built to track cross-layer

behavioral risks, like how VPN tunnels handle spoofed packets

54



Architectural VPN Vulnerabilities, Disclosure Fatigue, and Structural Failures Free and Open Communications on the Internet 2026(1)

across NAT boundaries, or how Tor behaves on Android in the

presence of captive portal logic.

Even when architectural flaws are acknowledged, the CVE sys-

tem rarely provides a usable path for continued visibility or user-

oriented threat modeling. CVE entries are frequently abstract, ven-

dor-scoped, and tied to specific software versions. For users and

advocates trying to determine whether a given tool or configuration

remains vulnerable, CVE offers little actionable context.

Recent events have only deepened these concerns. In April 2025,

funding for the CVE program was nearly withdrawn by the U.S.

government, prompting a short-term extension but exposing the

system’s structural fragility [36]. In response, the European Union

launched the EU Vulnerability Database (EUVD) as a parallel effort

to ensure more resilient and transparent vulnerability tracking [10].

These developments do not suggest CVE is obsolete, but they do

make clear that it is incomplete. Our proposed framework builds

alongside these systems, not on top of them. It aims to fill the

gaps CVE cannot: tracking long-lived architectural flaws, enabling

adversary-aligned verification, and giving users, not vendors, a way

to assess their own risk.

6.5 Call for Community Participation
No framework like this can succeed in isolation. It must be owned,

iterated on, and refined by those who understand the problem

best: researchers, educators, advocacy organizations, community

VPN projects, and security trainers working directly with high-risk

users.

We invite collaboration from organizations with deep expertise

in Internet Freedom tool evaluation and deployment. These groups

already maintain infrastructure for testing censorship, monitoring

throttling, and building privacy-preserving tools. This framework

is a natural extension of that mission: a living ledger of structural

risks that persist across vendors, protocols, and platforms.

The goal is not to impose a standard, but to create a vocabulary

for harms that are otherwise ignored—a shared language for archi-

tectural failure that resists dismissal as a mere quirk of routing. As

discussed in Section 3.5, the absence of trusted, persistent framing

has allowed such vulnerabilities to be distorted, minimized, or qui-

etly dismissed, undermining both vendor response and academic

review. This registry offers an alternative: a stable, community-

grounded frame for architectural risk that cannot be overwritten

by vendor statements or media spin.

Ultimately, this proposal is the product of lived experience with

a vulnerability that refused to disappear; it translates that persis-

tence into a model for sustained visibility and accountability. We

recognize that this framework will evolve as the community en-

gages with it; its value lies less in completeness than in resisting

the institutional amnesia that allows architectural flaws to persist.

7 Recommendations and Call to Action
The failures described throughout this paper are not isolated events

but recurring patterns that will continue unless the community com-

mits to collective accountability. The following recommendations

translate these observations into actionable steps for the groups

most directly positioned to intervene. Each builds on the same

principle: persistent vulnerabilities require persistent attention.

For Researchers
Systemic, architectural vulnerabilities demand long-term thinking

and tactical persistence. We urge researchers in Internet Freedom

contexts to resist the closure bias embedded in CVE-driven work-

flows. Track vulnerabilities across versions, beyond vendor patches

and publication timelines, and document patterns that re-emerge

even after supposed resolution. Adopting a shared reporting frame-

work, such as the standard proposed in Section 6, will provide

visibility and enable the collective tracking of architectural risk

across projects and institutions. This work lays the groundwork

for shared visibility, even when vendor engagement is absent or

inconsistent.

For the Internet Freedom Community
Security trainers, tool developers, and advocacy organizations must

treat systemic behavior as a threat surface. The tools we recom-

mend—VPNs, proxies, and tunnels—may expose users to metadata

inference and protocol-level surveillance even when patches are

up to date. Threat models must reflect this. We call on the Internet

Freedom community to adopt user-centered reporting standards

that prioritize harm potential, elevate architectural flaws, and treat

persistent design weaknesses as active threats rather than back-

ground noise. Doing so will enable more accurate recommendations

and strengthen user trust in the tools we endorse.

For Vendors
If your product is used in adversarial environments, your security

model must reflect that reality. Threats like spoofed traffic, side

channels, and tunnel-based fingerprinting are not edge cases, they

are core risks for journalists, dissidents, and rights defenders. We

urge vendors to be transparent about architectural limitations, to

support long-term tracking of design-level risks, and to collabo-

rate openly with civil society actors working on real-world harm

reduction.

8 Conclusion
After seven years of disclosure, testing, and re-engagement, the con-

tinued viability of VPN-based inference attacks reveals a structural

failure rather than a sequence of isolated lapses. Architectural risks

cross layers, evade clear ownership, and remain exploitable across

updates, leaving critical threats—such as server-side injection and

tunnel-based fingerprinting—untracked and poorly understood.

This failure has direct consequences for users who rely on VPNs

and circumvention tools in adversarial environments, including

journalists, dissidents, and civil-society actors. For these commu-

nities, architectural vulnerabilities are not abstract deficiencies in

process but ongoing threats to safety and anonymity.

To address this gap, this paper proposes a complementary frame-

work for tracking persistent, behavioral, and architectural vulnera-

bilities that resist the patch-and-close model. Rather than replacing

CVE, the framework augments it by emphasizing longitudinal track-

ing, cross-vendor analysis, and user-centered risk reporting. The

Internet Freedom community is uniquely positioned to lead this

effort by building the shared institutional memory that current

systems lack, ensuring that long-lived threats remain visible, ac-

countable, and actionable.

55



Free and Open Communications on the Internet 2026(1) William J. Tolley, Everett Morse, Gabriel Hogan, Jeffrey Knockel, and Jedidiah R. Crandall

Acknowledgments
This material is based upon work supported by the National Science

Foundation under Grant No. CNS-2452885. We thank the anony-

mous reviewers and our shepherd for their constructive feedback,

which improved the clarity and quality of this work. We also thank

Beau Kujath, Mohammad Taha Khan, and Narseo Vallina-Rodriguez

for their contributions to the original work on blind in/on-path VPN

attacks, and the Open Technology Fund for support during earlier

phases of this research, including William’s time as an Information

Controls Fellow.

References
[1] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, and et al. Imperfect

forward secrecy: How Diffie-Hellman fails in practice. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (CCS), pages
5–17. ACM, 2015.

[2] Geoffrey Alexander, Antonio M. Espinoza, and Jedidiah R. Crandall. Detecting

TCP/IP connections via IPID hash collisions. In Proceedings on Privacy Enhancing
Technologies, volume 2019 (4), pages 311–328. Sciendo, 2019.

[3] Android Open Source Project. Handle v4-mapped v6 address in struct parsing,

2025. Commit e72c61380c52a4450970556e5936c5ec03fd66fb.

[4] Android Security Team. Pixel update bulletin — September, 2019.

[5] Android Security Team. Android security bulletin — January, 2025.

[6] Apple Inc. About the security content of iOS 13.6 and iPadOS 13.6, 2020. https:

//support.apple.com/en-us/103112.

[7] Apple Inc. About the security content of iOS 17.2.1 and iPadOS 17.2.1, 2025.

https://support.apple.com/en-us/120877.

[8] BleepingComputer. New linux vulnerability lets attackers hijack vpn

connections. https://www.bleepingcomputer.com/news/security/new-linux-

vulnerability-lets-attackers-hijack-vpn-connections/, 2019.

[9] Check Point Software Technologies. sk182336 - preventative hotfix for CVE-

2024-24919. https://support.checkpoint.com/results/sk/sk182336, 2024.

[10] Thomas Claburn. Splintering bug tracking: Europe launches its own CVE-style

vulnerability database. https://www.theregister.com/2025/04/18/splintering_cve_

bug_tracking/, 2025.

[11] Codenomicon and Google. CVE-2014-0160: Heartbleed vulnerability in openssl.

https://www.heartbleed.com/, 2014.

[12] Jedidiah R. Crandall, Beau Kujath, and William J. Tolley. Blind in/on-path attack

disclosure faq. https://breakpointingbad.com/2020/08/12/VPN-FAQ.html, 2020.

[13] Jedidiah R. Crandall, Beau Kujath, and William J. Tolley. Vintage protocol non-

sense: Annoying the tcp stack to uncover tunneled vpn connections. https:

//breakpointingbad.com/2020/05/25/Vintage-Protocol-Nonsense.html, 2020.

[14] Joshua J. Daymude, Antonio M. Espinoza, Holly Bergen, Benjamin Mixon-Baca,

Jeffrey Knockel, and Jedidiah R. Crandall. A taxonomy and comparative analysis

of ipv4 identifier selection correctness, security, and performance. ACM Comput.
Surv., 58(6), December 2025.

[15] DD-WRT Forum. Cve-2019-14899: Suggested vpn vulnerability mitigation. https:

//forum.dd-wrt.com/phpBB2/viewtopic.php?t=322428&start=60, 2019.

[16] Theo de Raadt. Re: Vpn leak vulnerability (cve-2019-14899). https://marc.info/

?l=openbsd-tech&m=157580561114203, 2019.

[17] Theo de Raadt. Re: VPN leak vulnerability (CVE-2019-14899). https://marc.info/

?l=openbsd-tech&m=157580561114203, 2019. OpenBSD tech@ mailing list post,

December 8, 2019.

[18] Jason A. Donenfeld. Regarding “inferring and hijacking vpn-tunneled tcp connec-

tions”. https://lists.zx2c4.com/pipermail/wireguard/2019-December/004679.html,

2019.

[19] Roya Ensafi, Jeffrey Knockel, Geoffrey Alexander, and Jedidiah R. Crandall. De-

tecting intentional packet drops on the internet via tcp/ip side channels. In

Passive and Active Measurement (PAM), pages 109–118. Springer, 2014.
[20] Fortinet PSIRT. Psirt note: Cve-2019-14899 – inferring and hijacking vpn-

tunneled tcp connections. https://community.fortinet.com/t5/FortiClient/PSIRT-

Note-CVE-2019-14899-Inferring-and-hijacking-VPN-tunneled/ta-p/192058,

2019.

[21] Fortinet PSIRT. Heap buffer overflow in SSLVPN pre-authentication (CVE-2023-

27997). https://fortiguard.fortinet.com/psirt/FG-IR-23-097, 2023.

[22] Steve Gibson and Leo Laporte. VPN-geddon denied (security now! #744). https:

//www.grc.com/sn/sn-744.htm. Podcast episode recorded December 10, 2019.

[23] HackerNoon. Military grade encryption won’t save you, or your business. https:

//hackernoon.com/military-grade-encryption-wont-save-you-9a3d32zs, 2019.

[24] Ivanti. April security advisory: Ivanti connect secure, policy secure & zta

gateways (CVE-2025-22457). https://forums.ivanti.com/s/article/April-Security-

Advisory-Ivanti-Connect-Secure-Policy-Secure-ZTA-Gateways-CVE-2025-

22457, 2025.

[25] Jeffrey Knockel and Jedidiah R. Crandall. Counting packets sent between arbitrary

internet hosts. In 4th USENIX Workshop on Free and Open Communications on
the Internet (FOCI 14), San Diego, CA, August 2014. USENIX Association.

[26] LWN.net. Vpn hijacking on linux (and beyond) systems. https://lwn.net/Articles/

806546/, 2019.

[27] MITRE. CVE-2019-14899: Inferring and hijacking VPN-tunneled tcp connections.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14899, 2019.

[28] MITRE. CVE-2019-9461: Android VPN routing information disclosure. https:

//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9461, 2019.

[29] MITRE. CVE-2024-49734: Connectivityservice side-channel information disclo-

sure. https://nvd.nist.gov/vuln/detail/CVE-2024-49734, 2024.

[30] MITRE CVE Team. Email correspondence regarding cve eligibil-

ity for in/on-path vpn attacks. Archived correspondence. https:

//git.breakpointingbad.com/Breakpointing-Bad-Public/FOCI-2026-

Artifact/src/branch/main/correspondence, 2019. Available in the FOCI

2026 artifact repository.

[31] Ben Mixon-Baca, Ron Deibert, and Miles Kenyon. Vulnerabilities in VPNs: The

port shadows attack and the case for greater transparency. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2024(3):373–391, 2024.

[32] Lizzie Moratti and Dani Cronce. TunnelVision: How attackers can decloak

routing-based VPNs for a total VPN leak. https://www.leviathansecurity.com/

blog/tunnelvision, 2024.

[33] Mullvad VPN. A closer look at VPN vulnerability CVE-2019-14899. https://

mullvad.net/en/blog/closer-look-vpn-vulnerability-cve-2019-14899, 2019.

[34] Marcin Nawrocki, Mattijs Jonker, Thomas C. Schmidt, and Matthias Wählisch.

The far side of DNS amplification: Tracing the DDoS attack ecosystem from

the internet core. In Proceedings of the 2021 ACM SIGCOMM Conference, pages
704–717, New York, NY, USA, 2021. Association for Computing Machinery.

[35] NordVPN. Introducing the nordwhisper protocol — a step towards a more open

internet. https://nordvpn.com/blog/nordwhisper-protocol/, 2025.

[36] Kate O’Flaherty. CVE program faces uncertain future after funding cut—what it

means and what to do next. Forbes, 2025.
[37] OpenVPN Inc. Response to CVE-2019-14899. https://archive.today/0ub9s, 2019.

Archived version of now-deleted official statement originally available at https:

//openvpn.net/security-advisory/no-flaws-found-in-openvpn-software/.

[38] Oracle Corporation. Oracle critical patch update advisory – october 2020. https:

//www.oracle.com/security-alerts/cpuoct2020verbose.html, 2020.

[39] Private Internet Access. Private internet access updates linux desktop client to

prevent against cve-2019-14899. https://www.privateinternetaccess.com/blog/

private-internet-access-updates-linux-desktop-client-to-prevent-against-cve-

2019-14899/, 2019.

[40] ProtonVPN. Statement on CVE-2019-14899. https://protonvpn.com/blog/

statement-on-cve-2019-14899/, 2019.

[41] Haya Shulman. Pretty bad privacy: Pitfalls of DNS encryption. In 13th Workshop
on Privacy in the Electronic Society (WPES), pages 191–200. ACM, 2014.

[42] Slashdot. New linux vulnerability lets attackers hijack vpn connections.

https://linux.slashdot.org/story/19/12/05/2022205/new-linux-vulnerability-

lets-attackers-hijack-vpn-connections, 2019.

[43] TechRadar. Vpn connections could be hacked due to linux security

flaw. https://www.techradar.com/news/vpn-connections-could-be-hacked-due-

to-linux-security-flaw, 2019.

[44] The Hacker News. New linux bug lets attackers hijack encrypted vpn connections.

https://thehackernews.com/2019/12/linux-vpn-hacking.html, 2019.

[45] The Register. Tricky vpn-busting bug lurks in ios, android, linux distros, macos,

freebsd, openbsd, say university eggheads. https://www.theregister.com/2019/

12/06/vpnbusting_bug_spotted/, 2019.

[46] William J. Tolley, Beau Kujath, and Jedidiah R. Crandall. [CVE-2019-14899]

inferring and hijacking VPN-tunneled tcp connections. https://seclists.org/oss-

sec/2019/q4/122, 2019. oss-security mailing list, December 4, 2019.

[47] William J. Tolley, Beau Kujath, and Jedidiah R. Crandall. Blind in/on-path attacks

and applications to VPNs. In 30th USENIX Security Symposium (USENIX Security
21). USENIX Association, 2021.

[48] William J. Tolley, Everett Morse, Gabriel Hogan, Jeffrey Knockel, and Jedidiah R.

Crandall. Foci 2026 artifact: Vpn architectural vulnerability evaluation. https:

//git.breakpointingbad.com/Breakpointing-Bad-Public/FOCI-2026-Artifact, 2026.

Artifact repository.

[49] Mathy Vanhoef and Lennert Wouters. Tunnelcrack: Exploiting tunnel misconfig-

urations to leak VPN client traffic. In Proceedings of the 32nd USENIX Security
Symposium, 2023.

[50] Diwen Xue, Benjamin Mixon-Baca, S. S. Valdik, Anna Ablove, Beau Kujath,

Jedidiah R. Crandall, and Roya Ensafi. TSPU: Russia’s decentralized censorship

system. In Proceedings of the 22nd ACM Internet Measurement Conference (IMC
’22). Association for Computing Machinery, 2022.

[51] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis, J. Alex Halderman,

Jedidiah R. Crandall, and Roya Ensafi. OpenVPN is open to VPN fingerprinting.

In 31st USENIX Security Symposium (USENIX Security 22). USENIX Assoc, 2022.

56

https://support.apple.com/en-us/103112
https://support.apple.com/en-us/103112
https://support.apple.com/en-us/120877
https://www.bleepingcomputer.com/news/security/new-linux-vulnerability-lets-attackers-hijack-vpn-connections/
https://www.bleepingcomputer.com/news/security/new-linux-vulnerability-lets-attackers-hijack-vpn-connections/
https://support.checkpoint.com/results/sk/sk182336
https://www.theregister.com/2025/04/18/splintering_cve_bug_tracking/
https://www.theregister.com/2025/04/18/splintering_cve_bug_tracking/
https://www.heartbleed.com/
https://breakpointingbad.com/2020/08/12/VPN-FAQ.html
https://breakpointingbad.com/2020/05/25/Vintage-Protocol-Nonsense.html
https://breakpointingbad.com/2020/05/25/Vintage-Protocol-Nonsense.html
https://forum.dd-wrt.com/phpBB2/viewtopic.php?t=322428&start=60
https://forum.dd-wrt.com/phpBB2/viewtopic.php?t=322428&start=60
https://marc.info/?l=openbsd-tech&m=157580561114203
https://marc.info/?l=openbsd-tech&m=157580561114203
https://marc.info/?l=openbsd-tech&m=157580561114203
https://marc.info/?l=openbsd-tech&m=157580561114203
https://lists.zx2c4.com/pipermail/wireguard/2019-December/004679.html
https://community.fortinet.com/t5/FortiClient/PSIRT-Note-CVE-2019-14899-Inferring-and-hijacking-VPN-tunneled/ta-p/192058
https://community.fortinet.com/t5/FortiClient/PSIRT-Note-CVE-2019-14899-Inferring-and-hijacking-VPN-tunneled/ta-p/192058
https://fortiguard.fortinet.com/psirt/FG-IR-23-097
https://www.grc.com/sn/sn-744.htm
https://www.grc.com/sn/sn-744.htm
https://hackernoon.com/military-grade-encryption-wont-save-you-9a3d32zs
https://hackernoon.com/military-grade-encryption-wont-save-you-9a3d32zs
https://forums.ivanti.com/s/article/April-Security-Advisory-Ivanti-Connect-Secure-Policy-Secure-ZTA-Gateways-CVE-2025-22457
https://forums.ivanti.com/s/article/April-Security-Advisory-Ivanti-Connect-Secure-Policy-Secure-ZTA-Gateways-CVE-2025-22457
https://forums.ivanti.com/s/article/April-Security-Advisory-Ivanti-Connect-Secure-Policy-Secure-ZTA-Gateways-CVE-2025-22457
https://lwn.net/Articles/806546/
https://lwn.net/Articles/806546/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-14899
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9461
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-9461
https://nvd.nist.gov/vuln/detail/CVE-2024-49734
https://git.breakpointingbad.com/Breakpointing-Bad-Public/FOCI-2026-Artifact/src/branch/main/correspondence
https://git.breakpointingbad.com/Breakpointing-Bad-Public/FOCI-2026-Artifact/src/branch/main/correspondence
https://git.breakpointingbad.com/Breakpointing-Bad-Public/FOCI-2026-Artifact/src/branch/main/correspondence
https://www.leviathansecurity.com/blog/tunnelvision
https://www.leviathansecurity.com/blog/tunnelvision
https://mullvad.net/en/blog/closer-look-vpn-vulnerability-cve-2019-14899
https://mullvad.net/en/blog/closer-look-vpn-vulnerability-cve-2019-14899
https://nordvpn.com/blog/nordwhisper-protocol/
https://archive.today/0ub9s
https://openvpn.net/security-advisory/no-flaws-found-in-openvpn-software/
https://openvpn.net/security-advisory/no-flaws-found-in-openvpn-software/
https://www.oracle.com/security-alerts/cpuoct2020verbose.html
https://www.oracle.com/security-alerts/cpuoct2020verbose.html
https://www.privateinternetaccess.com/blog/private-internet-access-updates-linux-desktop-client-to-prevent-against-cve-2019-14899/
https://www.privateinternetaccess.com/blog/private-internet-access-updates-linux-desktop-client-to-prevent-against-cve-2019-14899/
https://www.privateinternetaccess.com/blog/private-internet-access-updates-linux-desktop-client-to-prevent-against-cve-2019-14899/
https://protonvpn.com/blog/statement-on-cve-2019-14899/
https://protonvpn.com/blog/statement-on-cve-2019-14899/
https://linux.slashdot.org/story/19/12/05/2022205/new-linux-vulnerability-lets-attackers-hijack-vpn-connections
https://linux.slashdot.org/story/19/12/05/2022205/new-linux-vulnerability-lets-attackers-hijack-vpn-connections
https://www.techradar.com/news/vpn-connections-could-be-hacked-due-to-linux-security-flaw
https://www.techradar.com/news/vpn-connections-could-be-hacked-due-to-linux-security-flaw
https://thehackernews.com/2019/12/linux-vpn-hacking.html
https://www.theregister.com/2019/12/06/vpnbusting_bug_spotted/
https://www.theregister.com/2019/12/06/vpnbusting_bug_spotted/
https://seclists.org/oss-sec/2019/q4/122
https://seclists.org/oss-sec/2019/q4/122
https://git.breakpointingbad.com/Breakpointing-Bad-Public/FOCI-2026-Artifact
https://git.breakpointingbad.com/Breakpointing-Bad-Public/FOCI-2026-Artifact


Architectural VPN Vulnerabilities, Disclosure Fatigue, and Structural Failures Free and Open Communications on the Internet 2026(1)

A Timeline of VPN Vulnerability Disclosure

2019 2020 2021 2022 2023 2024 2025 2026

2019
Vulnerability
discovery

2019
Disclosure
to vendors

2019
CVE-2019-9461
(Android)

2019
CVE-2019-14899
(Linux)

2020
Apple iOS 13.6
first patch

2020
Testing post-mitigation
Attack still viable

Late 2020-2021
Comprehensive testing
Client & server variants

2021
USENIX Security
Publication

Post-2021
Vendor
re-engagement

2021-2022
Apple: iOS 17.2.1 fix claimed

2022-2024
Testing proves vulnerabilities
persist

2023-2024
Google acknowledges
vulnerability persists

2024
Testing & reporting
Vulnerability persists

Oct 2024
CVE-2024-49734
assigned

Jan 2025
Google patches Android
(4th patch attempt)

Oct 2025
Re-testing on Pixel 10 Pro XL
Attack still successful

2026
Forthcoming patch
from Google

2026
CVE from Google
forthcoming

2026
Testing on latest build
Attack STILL successful

Seven Years of Architectural VPN Vulnerability Disclosure

N
ar
ra
ti
ve

/T
es
ti
ng

C
V
E
/P

at
ch

/P
ub

lic
at
io
n

Disclosure

CVE Assignment

Patch/Mitigation

Testing/Verification

Publication

Key Finding: Despite multiple CVEs and patches,
the same attack primitives remain exploitable

on fully updated systems in 2026

Figure 1: Seven-year timeline of the architectural VPN vulnerability, showing the divergence between formal disclo-
sure/mitigation events and persistent exploitability across operating system versions.

57


	Abstract
	1 Introduction: Unacknowledged and Unresolved Vulnerabilities
	2 Background: The Nature of Architectural Attacks
	2.1 Vendor Response Dynamics
	2.2 Structural Gaps in the Vulnerability Ecosystem

	3 Seven Years of Disclosure: An Experience Report
	3.1 Initial Disclosure and Assigned CVEs (2018–2019)
	3.2 Peer-Reviewed Publication and Vendor Re-engagement (2021)
	3.3 Re-reporting and New CVEs (Post-2021)
	3.4 Vendor Coordination and Divergent Responses
	3.5 Narrative Gaps and the Absence of Authority

	4 Lessons Learned from Long-Term Disclosure
	4.1 Lesson 1: Architectural Flaws Defy CVE Closure
	4.2 Lesson 2: Vendor Turnover Erases Institutional Memory
	4.3 Lesson 3: Media Narratives Shape Disclosure Outcomes
	4.4 Lesson 4: Partial Mitigations Decay Over Time
	4.5 Lesson 5: Internet-Freedom Users Need Persistent Visibility Tools

	5 Illustrative Evidence: Persistence of Architectural Vulnerabilities
	5.1 Experimental Setup
	5.2 Tool-Specific Results
	5.3 Persistence of Attack Primitives
	5.4 Risks to At-Risk Users
	5.5 Accountability Gaps in Internet Freedom Security Models
	5.6 Ethical Considerations

	6 A Framework for the Internet Freedom Community
	6.1 Motivation and Scope
	6.2 Core Design Principles
	6.3 Use Case Alignment and Generalizability
	6.4 Relationship to Existing Infrastructure
	6.5 Call for Community Participation

	7 Recommendations and Call to Action
	8 Conclusion
	References
	A Timeline of VPN Vulnerability Disclosure

