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Secure and scalable match: overcoming the
universal circuit bottleneck using group
programs
Abstract: Confidential Content-Based Pub-
lish/Subscribe (C-CBPS) is an interaction model that
allows parties to exchange content while protecting
their security and privacy interests. In this paper we
advance the state of the art in C-CBPS by showing
how all predicate circuits in NC1 (logarithmic-depth,
bounded fan-in) can be confidentially computed by a
broker while guaranteeing perfect information-theoretic
security. Previous work could handle only strictly shal-
lower circuits (e.g. those with depth O(

√
log2 n)). We

present three protocols—UGP-Match, FSGP-Match
and OFSGP-Match—based on 2-decomposable ran-
domized encodings of group programs for circuits in
NC1 . UGP-Match is conceptually simple and has a
clean proof of correctness but its running time is a
polynomial with a high exponent and hence impracti-
cal. FSGP-Match uses a “fixed structure” construction
that reduces the exponent drastically and achieves ef-
ficiency and scalability. OFSGP-Match optimizes the
group programs further to shave off a linear factor.
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1 Introduction

1.1 Motivation

Publish/subscribe systems are an efficient means of
routing relevant information from publishers or content
generators to subscribers or consumers. The efficiency
of publish/subscribe models comes from the fact that
subscribers typically receive only a subset of the total
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messages published. The process of selecting messages
for reception and processing is called filtering. There are
two common forms of filtering: topic-based and content-
based. In this paper we focus on Content-Based Pub-
lish/Subscribe systems (CBPS) where messages are only
delivered to a subscriber if the attributes or metadata
of those messages match predicates defined by the sub-
scriber. The subscriber is responsible for specifying his
preferences as a predicate over the attributes of the con-
tent produced by the publisher. For the purposes of this
paper we will assume that the predicate is expressed as
a circuit and we will use the terms predicate and circuit
interchangeably. There is a third party, the broker, who
is responsible for matching the subscriber’s predicate to
the metadata produced by the publisher and, in case of a
match, forwarding the associated data to the subscriber,
see Figure 1 for the basic interaction pattern. The loose
coupling between subscribers and publishers enabled by
the broker allows for greater scalability. CBPS is an in-
credibly useful means of disseminating information and
can be viewed as an abstraction for a variety of different
applications ranging from forwarding of e-mail to dis-
tributed event management to query/response systems
built on top of databases.

Publisher Subscriber 

Broker Encrypted Metadata 

E(m) Encrypted Predicate 

E(P) If P(m) = 1  

    then forward data 

              from publisher 

              to subscriber  

Fig. 1. The C-CBPS interaction model

Scalability of CBPS systems and the distributed co-
ordination of a mesh of brokers are natural concerns.
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But, in recent times, with the proliferation of online so-
cial networks and new forms of social media an even
more pressing concern has come into focus, namely con-
fidentiality. Publisher confidentiality refers to the notion
that the publisher would like to keep his content se-
cure from the broker, e.g., the stock exchange would like
to keep ticker/price information private to prevent re-
selling. Subscriber confidentiality is the notion that sub-
scribers would like to keep their preferences private, e.g.
a hedge fund would not wish to reveal their interest in
a particular stock. The widespread development of web
and mobile apps has created a proliferation of third-
parties involved in the business of handling user pref-
erences and routing content, e.g. iPhone and Android
apps, Facebook and Twitter apps. But even in earlier
times, there has always been the need for preserving
the privacy of both the publisher and the subscriber.
For example, a database server must not learn what in-
formation was requested by a client, and yet have the
assurance that the client was authorized to have the in-
formation that was sent; a mail relay must be able to for-
ward the relevant emails without learning the contents
of the email or the subscribers of a mail-list. This mo-
tivates the need for a Confidential Content-Based Pub-
lish/Subscribe (C-CBPS) scheme such as the one illus-
trated in Figure 1, where the publisher’s metadata and
the subscriber’s predicate are encrypted and the broker
performs the matching operation without decryption.

1.2 Our Results

The problem of securing the privacy of publishers and
subscribers is recognized as a challenging and impor-
tant problem. Practical C-CBPS systems can handle
the confidentiality of exact matches and some minor
variants [30]. Sophisticated schemes handling more ex-
pressive subscriber predicates are too slow in practice.
It has been hard to attain practicality and expressivity.

Reusing the technology of group programs [6] in the
context of decomposable randomized encodings [1] we
build on [13] to obtain both - a theoretical advance on
the state of the art, and a fast protocol with real-world
potential. We have two main contributions in this paper.
– We present an information-theoretically secure

protocol, UGP-Match employing universal group
programs to match any predicate in NC1 , i.e.
logarithmic-depth bounded fan-in circuits [4, 6].
UGP-Match demonstrates the theoretical possibil-
ity of attaining NC1 but is not practical.

– We then show how a “fixed structure” construction
gets us substantially closer to creating a practical
and real-world protocol, FSGP-Match, to achieve
fast and secure matching of any predicate in NC1 .
FSGP-Match is identical to UGP-Match in security
guarantees but is much faster. Finally, we gain addi-
tional efficiency by using an innovative optimization
to contract group programs further in our fastest
protocol, OFSGP-Match.

Our schemes provide us with a high level of expres-
sivity (NC1 ) and in the strongest model of security
(information-theoretic). The above C-CBPS protocols
can be converted to use shared seeds and pseudoran-
dom number generators (PRNGs) rather than shared
randomness. In case PRNGs are used, the resulting pro-
tocols are easily seen to be secure in the computational
setting based on the unpredictability of the PRNGs.

We have built prototypes of our protocols and char-
acterized its performance.

The focus of this paper is on achieving a secure
match algorithm that is scalable. Therefore we con-
centrated on bounded depth predicates, i.e. predicates
in NC1 . But we also have additional asymptotic and
complexity-theoretic improvements which are not prac-
tical. For completeness we mention them here but we
do not present the proofs or constructions in this pa-
per. One, using universal branching programs we can
give an information-theoretically secure (C-CBPS) pro-
tocol for matching any predicate in NL(nondeterministic
logspace). Second, using randomized encodings we can
give a computationally secure (C-CBPS) protocol to
match any predicate in P (polynomial time).

1.3 Related Work

Several practical CBPS systems have been built for
supporting a variety of distributed applications. Siena
[9] is one of the most well known; Gryphon [5] and
Scribe [12] are others. Work on the security aspects,
namely C-CBPS in the systems community is less than
a decade old. A C-CBPS system supporting only equal-
ity matches is presented in [32] and a system supporting
extensions to inequality and range matches is presented
in [30]. Both these systems are in the setting of com-
putational security. However, neither of these systems
satisfy our confidentiality model since they allow the
broker to see that the encrypted predicates from two
different subscribers are identical.
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As mentioned earlier, C-CBPS is a special case of
SMC and there is a large body of literature on SMC
within the cryptographic community [15, 16, 22]. The
special case of 2-party SMC, known as Secure Func-
tion Evaluation (SFE), is an important subcase [24]
that is (different from but) closely related to the C-
CBPS model. Research in SMC started nearly 3 decades
ago with the path-breaking work of Yao, [40], and is
broadly divided into two classes of protocols – those that
are computationally secure (i.e. conditioned on certain
complexity-theoretic assumptions) and those that are
information-theoretically (or unconditionally) secure.

In the computational setting the initial work of Yao
[40] and Goldreich, Micali and Wigderson [17] has led
to a large body of work [15, 16, 22]. In the past decade
a number of practical schemes based on garbled circuits
and oblivious transfer have emerged for the honest-but-
curious adversarial model: Fairplay [7], Tasty [18] and
VMCrypt [28]. But these schemes are for SMC and are
inefficient and impractical when restricted to the special
case of C-CBPS because of the need to handle Univer-
sal circuits [25]. Again, as mentioned before, the recent
breakthrough in FHE [14] holds out hope for more effi-
cient protocols for SMC but practical protocols are yet
to be realized.

On the information-theoretic front the works of
BenOr, Goldwasser and Wigderson [8] and Chaum, Cré-
peau and Dåmgard [10] proved completeness results for
SMC. There have been additional improvements [11] us-
ing the subsequently developed notion of randomized
encodings [2, 3]. The seminal work of Feige, Kilian and
Naor [13], which lays the groundwork of this paper, is
considered an interaction model. The FKN model (de-
tailed in Definition 11, Subsection 2.3) is closely related
to, but different from the C-CBPS model. For the FKN
model [13] there are demonstrated protocols for predi-
cates in NC1 and also in NL. Though NC1 ⊆ NL [4, 29]
the NC1 protocol is the one we build on in this paper
to achieve scalable and secure matching in the C-CBPS
model.

The protocol of Feige, Kilian and Naor [13] in the
FKN model is rendered impractical when used for the
case of C-CBPS because of the need (for the broker) to
compute universal circuits [33]. We explain this briefly:
the FKN model involves the broker computing a known
public function f(P,m) given the encrypted version of
m, data from the publisher, and the encrypted version
of P, data from the subscriber. C-CBPS is the special
case where f(P,m) = P(m), i.e., P is a predicate (or
the encoding of one) and f is a universal function that
simulates P on m. The need for universal circuits poses

a barrier - both theoretical and practical. Though, some
optimizations for universal circuits have been discov-
ered [25], the current state of the art is that the sub-
scriber is restricted to predicates of strictly sublogarith-
mic depth [31, 33] - more specifically, the predicate is
constrained by the condition d ∗ (log2 s) = O(log2 n)
where d is the depth and s the size of the (bounded
fanin) subscriber predicate. In general, since s can be
as large as 2d this means that d is restricted to be
O(

√
log2 n). In this paper we show how to bypass the

need for a universal circuit and achieve d = Ω(log2 n)
i.e. we can match any NC1 predicate in the C-CBPS
interaction model. We show how carefully constructed
2-decomposable randomized encodings [19–21] can be
used to securely and efficiently simulate arbitrary cir-
cuits of logarithmic depth.

2 Preliminaries

2.1 Adversarial Model

There are 3 parties in our C-CBPS model – the bro-
ker, the publisher and the subscriber. The publisher and
subscriber have a shared random string r known only
to the two of them. Meta-data m is private to the pub-
lisher and predicate P is private to the subscriber. The
publisher and subscriber each have a separate and pri-
vate channel to the broker. They are to each send a sin-
gle message to the broker from which the broker should
be able to correctly, securely and efficiently compute
the value of P(m) but learn absolutely nothing else.
We work in the information-theoretic security model
where we don’t make any constraining assumptions on
the computational resources available to the broker.
However, the publisher and subscriber are restricted to
be polynomial-time probabilistic Turing machines. In
fact, given the shared randomness they are determin-
istic polynomial-time Turing machines. And in keeping
with Kerckhoffs’s principle [23] it is assumed that the
broker knows the details of the algorithm/protocol be-
ing used, i.e., it knows everything except for P, m and
r. This adversarial model is captured in Figure 2.

2.2 Measure

We denote the length of the meta-data m as n = |m|. In
the case of the predicate P the relevant measure is the
depth and we parameterize it as a multiple of log2 n, to
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Publisher 
knows m, does not 

learn P or P(m) 

Subscriber 
knows P, does not 

learn m or P(m) 

Broker Encrypted Metadata 

Er(m) Encrypted Predicate 

Er(P) If P(m) = 1  

    then forward data 

              from publisher 

              to subscriber  

 

learns only P(m), does not  

learn P, m or r 

 

Shared randomness 

r 

Fig. 2. Adversarial model

be precise we denote the depth of P by κ log2 n where
n is the parameter that asymptotically goes to infin-
ity while κ is a constant. The reason for parameterizing
in this way is that the obvious parameterization of the
size of P, in terms of the number of gates, is not rele-
vant as it is still an open problem to handle arbitrary
polynomial-sized predicate circuits in the information
theoretic setting. We remind the reader that the defin-
ing contribution of this paper is showing how to handle
circuits in NC1 , i.e. logarithmic-depth circuits.

As we will see from the subsequent sections of this
paper, the broker will get two (sub)sequences of group
elements each from the publisher and subscriber that
he will interlace and multiply together to obtain P(m).
We denote by L the length of the sequence that the bro-
ker composes from the shares he receives. The efficiency
question, thus, becomes given an n and a κ what is the
smallest L that a given protocol achieves. In what fol-
lows we will see that, in the case of the protocol based
on Valiant’s universal circuit [33], L = nΩ(κ log2 n) which
is non-polynomial. In general the goal of this paper is
to achieve L which will be a polynomial in n but the
lower the degree of the polynomial the more efficient
the protocol. We will show that UGP-Match achieves
L = n20κ+2 log2 n. With FSGP-Match we bring this
down to L = 4n2κ+2 and then finally with OFSGP-
Match we bring it down to L = 2n2κ+1. We point out
that these upper bounds are exact, i.e. we can analyze
these constructions down to the exact constant and so
do not need to employ the big-oh notation. For conve-
nience we present our results in the form of a table.

Protocol Complexity(L) In words
Universal Circuit nΩ(κ log2 n) (super-poly-time)
UGP-Match O(n20κ+2 log2 n) (poly-time)
FSGP-Match 4n2κ+2 ”
OFSGP-Match 2n2κ+1 ”

Table 1. Complexities of the universal circuit approach and our 3
secure match protocols.

2.3 Terminology and Propositions

We set up some terminology and definitions; we also
state some basic propositions that will be needed later.
The notation for permutations is standard [38] while the
notation for group programs follows [13]. We begin with
a formal definition of the C-CBPS model.

Definition 1 (C-CBPS). The 3 parties in the C-CBPS
model and their states of knowledge are captured in Fig-
ure 2. There is a single round of communication where
the publisher and subscriber each send a private mes-
sage (Er(m) and Er(P), respectively) to the broker who
is then able to efficiently compute P(m) such that
Correctness: ∀m,P, and r, given the encrypted mes-
sages Er(m),Er(P) the broker computes P(m) correctly
all the time.
Security: ∀m,P, and r, given the encrypted messages
Er(m), Er(P) the broker learns nothing whatsoever
about m,P (other than the value of P(m)).

We will develop some group-theoretic notation that is
fairly standard. The notation is presented for the sake
of completeness and is relevant when reading Appendix
B.1 and Subsection 4.4. We use the language of mul-
tiplicative groups. For our purposes a group is a set of
elements with a binary operation and inverses. We let G
denote a generic multiplicative group. We will need G to
be a non-solvable group (see Lemma 30 in Appendix B)
and so we take it to be S5 the symmetric group of per-
mutations of a 5-element set, which is the smallest non-
solvable group (see [39]). We will use the standard and
implicit one-line notation (derived from Cauchy’s two-
line notation [38]) to represent a permutation. The per-
mutation σ ∈ S5 is represented as (σ(1), σ(2), . . . , σ(5))
where σ(i) stands for the position that i ∈ S5 gets
mapped to. σ can also be viewed as a function that
maps i to σ(i). The identity 1S5 = (12345). We use
the standard product of permutations defined as their
composition as functions, i.e., σ · π is the function that
maps i to σ(π(i)), (note that the rightmost permutation
is applied to the argument first, in keeping with the con-
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vention for function composition). Also, note that per-
mutation groups Sk are not abelian for k ≥ 3 and in
particular S5 is not abelian. A permutation g ∈ S5 is
said to be a cycle if its graph consists of exactly one
cycle of length 5. For example, (53412) is a cycle be-
cause its graph is the cycle 1 → 5 → 2 → 3 → 4 → 1.
When we use the product-of-cycles notation then we
will explicitly have a subscript “cycle” at the end. For
example (24513) = (124)(35)cycle represents the per-
mutation 1→ 2, 2→ 4, 3→ 5, 4→ 1, 5→ 3 with graph
1 → 2 → 4 → 1, 3 → 5 → 3. As usual, g−1 denotes
the inverse of the permutation g ∈ S5. Given cycles
g = (g1, g2, . . . , g5)cycle and h = (h1, h2, . . . , h5)cycle,
rotator ρ(g, h) denotes the permutation g1 → h1, g2 →
h2, ..., g5 → h5 (see Lemma 26 in Appendix B). Given
two permutations g, h γ(g, h) = ghg−1h−1 denotes their
commutator. For the rest of this paper we will use the
following fixed constants: α = (23451) and β = (35421).
The meticulous reader can verify that α−1 = (51234),
β−1 = (54132), γ(α, β) = (35214), γ−1(α, β) = (43152)
and ρ(α, β) = (13542), ρ−1(α, β) = (15243).

Our protocols involve group programs, i.e., se-
quences of group elements and their products, motivat-
ing:

Definition 2 (Value of sequence). Given a sequence S
of group elements g1, g2, . . ., gL, the value of the se-
quence Value(S) is defined to be the product of the se-
quence elements in order, i.e.

Value(S) =
L∏
i=1

gi = g1g2 . . . gL.

Definition 3 (Blinding). Given a sequence S of group
elements g1, g2, . . ., gL, BS(S) is used to denote the
distribution over sequences of the form

g1 · r1, r
−1
1 · g2 · r2, . . . , r

−1
L · gL,

generated by choosing each ri, ∀i1 ≤ i ≤ L−1 uniformly
and independently from G. We overload the term BS(S)
to also refer to a specific sequence selected according to
the distribution BS(S) and the context should be suffi-
cient to resolve any ambiguity. The ri are referred to as
blinders and blinding S refers to the act of selecting a
sequence according to the distribution BS(S).

Lemma 4 (Blinding Lemma). Given a sequence of
group elements, S, of length L, the blinded sequence
BS(S) has the following two properties:
Preserves value: V alue(BS(S)) = V alue(S)
Uniform distribution: BS(S) is uniformly distributed
over the space of all sequences of group elements of

gi
1 

gi
0 

xki 

Group Program Element Selects: 

    gi
1 if bit xki = 1 

    gi
0 if bit xki = 0 

g1
1 

g1
0 

xk1=1 

Group Program evaluates to: 

 α  if  f (x1, x2, …xn ) = 1 

 I   if  f (x1, x2, …xn ) = 0 

g2
1 

g2
0 

xk2=0 

gL
1 

gL
0 

xkL=1 

g3
1 

g3
0 

xk3=0 α = (2 3 4 5 1) 

I = (1 2 3 4 5) 
Group Program α-computing f (x1, x2, …xn )  

Fig. 3. The form of a Group Program

length L with the same value, i.e. for any sequence
S′ = g′1, g

′
2 . . . g

′
L we have that

Pr(BS(S) = S′|Value(S′) = Value(S)) = 1
|G|L−1

where the probability is measured over the random
choices of the blinders.

The proof is presented in Appendix A.
The following definition, of a group program, is cen-

tral to this paper and is presented in visual form in Fig-
ure 3.

Definition 5 (Group Program). Let α be an element
of S5. A group program of length L is (g0

1, . . ., g0
L), (g1

1,
. . . ,g1

L), (k1, . . ., kL) where for any i ∈ {0, 1, . . . , L}
and j ∈ {0, 1}: gji ∈ S5 and ki ∈ {1, . . . , n}. We say
that this program α-computes f : {0, 1}n → {0, 1} if ∀x,

f(x) = 1⇒
∏̀
i=1

g
xki

i = α

f(x) = 0⇒
∏̀
i=1

g
xki

i = 1S5 ;

which we write compactly as ∀x :
∏`
i=1 g

xki

i = αf(x).

We will consider predicates represented as n-input, sin-
gle output (bounded fan-in) circuits of AND(∧ two-
input), OR(∨ two-input) and NOT(¬ single input)
gates. Our definition of the depth of a circuit is slightly
non-standard in that we ignore NOT(¬) gates. This is
because of the Barrington Transform (to be elaborated
below) which transforms a circuit into a group program
whose length depends only on the depth of the circuit
in terms of AND(∧) and OR(∨) gates.
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Definition 6 (Depth of a Circuit). The depth of a cir-
cuit is defined to be the number of AND and OR gates
in the longest path from an input to the output. (NOT
gates do not count towards depth).

In his seminal paper [6], on the way to showing that
NC1 is computable by fixed-width branching programs,
Barrington showed that any logarithmic-depth circuit
can be transformed into a polynomial-length group pro-
gram [34, 36] - a transformation we term the Barrington
Transform:

Theorem 7 (Barrington Transform). Any circuit of
depth d can be transformed into a group program of
length 4d that α-computes the same function as the cir-
cuit.

For the sake of completeness we present the proof in
Appendix B.1. The proof, presented as a series of lem-
mas, details the Barrington Transform showing how to
transform a circuit into a group program [34, 35].

Corollary 8. The Barrington Transform transforms
any n-input single output circuit of depth C log2 n into
a group program of length n2C .

The above corollary follows directly from Theorem 7.
We use an extension of randomized encodings [1, 3,

19] (that played a significant role in the breakthrough
showing the feasibility of cryptography in NC0 [2]):

Definition 9 (Randomized encoding). Function f(x)
has a randomized encoding f̂(x, r), where r is a ran-
dom string, if there exist two efficiently computable (de-
terministic, polynomial-time) algorithms REC and SIM
such that
Correctness: ∀x, r, given f̂(x, r) REC recovers f(x),
i.e. REC(f̂(x, r)) = f(x) .
Security: ∀x, given f(x) and r′ (random coins), SIM
produces a distribution identical to f̂(x, r), i.e., the dis-
tribution of SIM(f(x), r′) is identical to the distribution
of f̂(x, r).

Randomized encodings generalize naturally, in the con-
text of 2-party secure computation, to 2-decomposable
randomized encodings or 2-DREs, a definition implicit
in prior works including [13]. A stronger definition of
decomposable randomized encodings has appeared be-
fore [20, 21]. We believe that the following is the first
explicit definition:

      Alice 
         knows x 

does not learn y 

          or f(x,y) 

      Bob 
         knows y 

    does not learn x 

           or f(x,y) 

Carol 

Encrypted data 

Er(x) 
Encrypted data 

Er(y) 

 learns only f(x,y) 

    does not learn 

           x or y 

f is publicly known 

 

Shared randomness 

r 

Fig. 4. FKN model

Definition 10 (2-DRE). A function f(x, y) is said to
have a 2-decomposable randomized encoding (2-DRE)
〈f̂1(x, r), f̂2(y, r)〉, where r is a (shared) random string,
if there exist two efficiently computable (i.e. determinis-
tic and polynomial-time) algorithms REC and SIM such
that
Correctness: ∀x, y, r, given 〈f̂1(x, r), f̂2(y, r)〉 REC re-
covers f(x, y), i.e., REC(〈f̂1(x, r), f̂2(y, r)〉) = f(x, y).
Security: ∀x, y, given f(x, y) and r′ (ran-
dom coins), SIM produces a distribution identi-
cal to 〈f̂1(x, r), f̂2(y, r)〉, i.e., the distribution of
SIM(f(x, y), r′) is identical to the distribution of
〈f̂1(x, r), f̂2(y, r)〉.

We rely crucially on the model and construction pre-
sented in [13]. We define the FKN model and show how
protocols for it are essentially equivalent to 2-DREs:

Definition 11 (FKN model). The three parties in the
FKN model and their states of knowledge are captured
in Figure 4. There is a single round of communication
where Alice and Bob each send a private message (Er(x)
and Er(y), respectively) to Carol who is then able to
efficiently compute the publicly known function f(x, y)
such that
Correctness: ∀x, y, and r, given the encrypted mes-
sages Er(x), Er(y) Carol computes f(x, y) correctly all
the time.
Security: ∀x, y, r, given encrypted messages
Er(x), Er(y) Carol learns nothing (whatsoever about
x, y) other than f(x, y).

The phrase "learns nothing" in the definition above
is from [13] and denotes that the protocol is per-
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fect zero-knowledge, i.e. given random coins and
f(x, y), Carol can simulate perfectly the distribution
< Er(x), Er(y) > in deterministic polynomial-time.

Lemma 12 (Equivalence of FKN and 2-DRE). There
is a 1-1 isomorphism between protocols for the FKN
model and 2-DREs.

Proof. We will first see that a 2-DRE of the function
f(x, y) gives rise to a protocol for the FKN model.
Let Alice compute and send f̂1(x, r) to Carol while
Bob computes and sends f̂2(y, r) to Carol. From the
Correctness property it follows that Carol can run
REC(〈f̂1(x, r), f̂2(y, r)〉) to compute f(x, y) correctly all
the time. And from the Security property we get that
Carol learns nothing but the value f(x, y).

Similarly, given a protocol for the FKN model that
computes the publicly known function f(x, y) it is easy
to see that the Correctness and Security properties carry
over by setting Er(x) = f̂1(x, r) and Er(y) = f̂2(x, r).

We present the definition of a universal function below.

Definition 13 (Universal Function). A universal
function UF has two inputs x and y where y is the en-
coding of a function for which x is a suitable input. The
output of UF(x, y) is defined to be y(x).

Similarly, universal circuits are circuits that simulate
circuits given their encodings:

Definition 14 (Universal Circuit). A universal circuit
UC has two inputs x and y where y is the encoding of
a circuit for which x is a suitable input. The output of
UC(x, y) is defined to be y(x), in other words the uni-
versal circuit outputs the result obtained from simulating
circuit y on input x. (Universal circuits are the circuit
equivalent of universal Turing Machines).

Our central idea is to bypass universal circuits so we
will not be utilizing this definition except to explain (in
Section 3) how we gain efficiency by avoiding them.

One can naturally apply the notion of a 2-DRE to
a universal function (UF) f(x, y) = y(x).

And analogous to the correspondence expressed in
Lemma 12 we have the following correspondence.

Lemma 15 (C-CBPS ≡ 2-DRE of UF). There is a 1-
1 isomorphism between protocols for the C-CBPS model
and 2-DREs of Universal Functions.

 Group Program Element Selects: 

 α if bit xki = 1 

  1 if bit xki = 0 

(α, 1)-preserving Group Program 

evaluates to: 

 α  if  f (x1, x2, …xn ) = 1 

 I   if  f (x1, x2, …xn ) = 0 

α = (2 3 4 5 1) I = (1 2 3 4 5) 
(α, 1)-preserving Group Program α-

computing f (x1, x2, …xn )  

1 

xki 

α 

g1 1 

xk1 

α 
g2 1 

xk2 

α 
g2 1 

xkL 

α 
gL+1 

Fig. 5. (α, 1)-preserving Group Program

Proof. The proof is very similar to that of Lemma 12
and so we provide only the key aspects of the corre-
spondence as the details are straightforward. x, y corre-
spond to m,P respectively. f̂1(x, r), f̂2(y, r) correspond
to Er(m),Er(P) respectively. And the Correctness and
Security properties carry over in a direct way.

We now present some definitions that clarify the “fixed
structure” construction alluded to earlier, and how it
relates to 2-DRE of universal functions. The following
definition of a (α, 1)-preserving group program is pre-
sented in visual form in Figure 5.

Definition 16 ((α, 1)-preserving group programs).
An (α, 1)-preserving group program of length L is
(g1, g2, . . . , gL+1), (k1, k2, . . . , kL) where for any i:
gi ∈ S5 and ki ∈ {1, . . . , n}. We say that this (α, 1)-
preserving group program α-computes f : {0, 1}n →
{0, 1} if ∀x,

f(x) = 1⇒ (
∏̀
i=1

gi · αxki )gL+1 = α

f(x) = 0⇒ (
∏̀
i=1

gi · αxki )gL+1 = 1S5 ;

which we can write compactly as ∀x : (
∏`
i=1 gi ·

αxki )gL+1 = αf(x).

Definition 17. (Index sequence of (α, 1)-
preserving group program) Given (g1, g2, . . . , gL+1),
(k1, k2, . . . , kL), an (α, 1)-preserving group program of
length L, its index sequence is (k1, k2, . . . , kL).

Analogous to Theorem 7 we have

Theorem 18. ((α, 1)-preserving Barrington Trans-
form) Any circuit of depth d can be transformed into
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a (α, 1)-preserving group program of length 4d that α-
computes the same function as the circuit.

For the sake of completeness we present the proof in
Appendix B.2.

The definition of a fixed structure group program
given below is crucial to improving the efficiency of the
ideas presented in this paper and making them practi-
cal.

Definition 19 (Fixed structure group program). If a
class of functions (say, the class of n-input single output
functions computable by circuits of depth κ log2 n) can
all be transformed into (α, 1)-preserving group programs
with the exact same index sequence (and hence the exact
same length) then the resulting class of group programs
is said to have a fixed structure. In a slight abuse of
language we refer to the class itself as a fixed structure
group program.

3 Overview
Before explaining the bottleneck that this paper has
overcome we first briefly sketch the protocol for the
FKN model presented in [13] for publicly known func-
tions f(x, y) computable as logarithmic-depth circuits.
The group program equivalent of f is computed (us-
ing Barrington’s Transform [6]) by both Alice and Bob
from the corresponding circuit. Each of them instanti-
ates their share of the group program based on their
respective input (x for Alice and y for Bob). Then each
of them blinds their share in coordinated fashion using
the shared randomness. Finally, each of Alice and Bob
sends their respective blinded shares to Carol who puts
them together to form the final blinded sequence whose
value she computes to obtain f(x, y). See Figure 6.

What [13] essentially demonstrate is the construc-
tion of a 2-DRE f̂ of f , as elaborated in Lemma 12.
Of course, the notion of 2-decomposable randomized
encodings arose much later in the work of Ishai and
Kushilevitz [19–21], but it gives us a convenient lan-
guage to think about such protocols. The individual
shares, constructed and, sent to Carol by Alice and Bob
are just the two parts of the 2-DRE, namely f̂1(x, r)
and f̂2(y, r). REC guarantees that Carol is able to learn
f(x, y) while SIM guarantees that she learns nothing
beyond that.

Now, we explain the universal circuits bottleneck
that we claim to have overcome. Recall that in our (C-

g1
1 

g1
0 

x1=1 

g2
1 

g2
0 

y2=0 

Gn
1 

Gn
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x 
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Alice Bob 

rigi ri+1
-1  ri+1 gi+1ri+2

-1 

Coordinated blinding 

f 

Carol 

r 

Blinded shares 

   1 if f(x,y) = 0 

   α if f(x,y) = 1 ={ 

Fig. 6. Protocol for FKN model, see [13].

CBPS) setting f is not just any function but it is a
universal function where f(x, y) = y(x). The term uni-
versal comes from the fact that f is effectively simu-
lating y on x and so the natural question arises - how
efficiently can this simulation be done? In other words,
given that we are restricted to have only polynomial-
size group programs, what restriction does this put on
the class of functions represented by y? The best known
construction of universal circuits is due to Valiant [33]
who shows that if y were a circuit of size s and depth d
then it must satisfy d log s = O(logn) (for the resulting
Barrington Transform to produce a polynomial-length
group program). Observe that this constraint on d and
s automatically prevents y from representing circuits in
NC1 because s ≥ d and hence d is forced to be o(logn).
Sanders, Young and Yung [31] who utilize Valiant’s uni-
versal circuits construction, mention that y could be the
class of functions represented by circuits of depth

√
logn

and size 2
√

logn - note that this is believed to be a strict
subset of the class of predicates in NC1 .

Our main contribution is in showing how we can
bypass the universal circuits bottleneck and instead use
group programs to improve the efficiency of simulation.
We present two main constructions. The first, UGP-
Match, which is primarily of theoretical interest, shows
how we can handle all of NC1 by encoding the sub-
scriber’s predicate as a group program (using the Bar-
rington Transform) and constructing a universal group
program using the Barrington Transform (again). This
construction has a conceptually clean proof but it is im-
practical since the double invocation of the Barrington
Transform results in a final group program whose length
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is a very high-degree polynomial in n. Our second con-
struction, FSGP-Match, which is potentially practical,
uses a fixed structure construction to avoid one invo-
cation of the Barrington Transform. Rather than con-
struct a universal group program using the Barrington
Transform we directly construct a fixed structure group
program. By avoiding the inefficiencies arising from use
of the Barrington Transform we obtain a final group
program whose length is a relatively low-degree polyno-
mial in n. In this second construction of FSGP-Match
we need a special group program - the selector group
program - which we construct by applying the Barring-
ton Transform to a selector circuit. Lastly, we present
our most efficient construction OFSGP-Match by di-
rectly building the selector group program and bypass-
ing the use of the Barrington Transform yet again. We
also describe our Java-based implementation and pro-
vide performance results that point to the potential of
our techniques for real-world applications. Unlike our
proofs (which are in the information-theoretic setting)
the implementation reuses randomness providing guar-
antees dependent on the cryptographic strength of the
pseudo-random generator, in the computational model.

4 Protocols and Proofs

4.1 UGP-Match

As explained in Section 3 the main idea in the UGP-
Match construction is to use the Barrington Transform
to encode the predicate P (which is representable as a
circuit in NC1 ) as a polynomial-length group program
that indexes into the metadata bits m. The (publicly
known) circuit f in the protocol for the FKN model
[13] (see Figure 6) is chosen to be such that at the low-
est level it first selects the appropriate group program
element based on the index and value of the correspond-
ing bit in m and having selected all the group program
elements it then multiplies them together using a stan-
dard divide and conquer or balanced binary tree based
approach, see Figure 7. In a nutshell, UGP-Match uses
the protocol from [13] for the FKNmodel, with f being a
circuit that takes as input the metadata m and the pred-
icate P encoded as a group program and outputs the
result of simulating P on m. We present UGP-Match
more formally below. We refer to the circuit represent-
ing f as the UGP-Match Circuit. We refer to the final
group program that the broker assembles as the Uni-
versal Group Program because it is essentially a Group

1 

UGP 

Multiplier 

Selector 

n n2κ(2*25 + lg n) 

m 
P 

clog n 

5*2κlog n 

log n + loglog n 

O(n20κ+2) 

Barrington Transform 

Barrington Transform 

Fig. 7. UGP-Match Circuit

Program that simulates the group program representing
P.

UGP-Match
1. The publisher and subscriber register with the bro-

ker the precise form of their inputs. In particular the
publisher must specify the number n of bits of m
the metadata (if there are fewer relevant bits, the
remaining bits can be padded with dummy bits).
And the subscriber specifies L = n2κ the length of
the group program (in terms of number of group
element pairs (not bits) along with the bit of m
that each group element pair is dependent on). Ev-
erybody is coordinated on the choice of the non-
solvable group - S5 - in which to carry out their
computations. In order to optimize the group pro-
gram size we encode the group elements in unary
using 5× 5 = 25 bits.

2. The broker now computes the UGP-Match Circuit
f (essentially a Select block followed by a divide-
and-conquer Multiply block, see Figure 7). It then
applies the Barrington Transform to create the cor-
responding group program. Each group element pair
in this group program is dependent either on a sub-
scriber bit or on a publisher bit. The broker hands
back the entire group program to both the publisher
and the subscriber.

3. The publisher and subscriber know which pairs be-
long to each. They have already coordinated their
pre-shared randomness. Depending on the value of
their individual bit they pick the corresponding el-
ement of the pair and then blind it appropriately.
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They then give their respected blinded elements to
the broker.

4. The broker puts all the blinded elements together
in the right sequence and multiplies them. If he gets
α he forwards along the (encrypted) data from the
publisher to the subscriber, else he withholds it.

Theorem 20. Given metadata of size at most n

and predicate of depth at most κ lgn, UGP-Match is
an information-theoretically secure protocol for the C-
CBPS model with complexity O(n20κ+2 log2 n).

Proof. The proof that UGP-Match is correct and se-
cure follows directly from the proof in [13] for the FKN
model.

All that remains to do is to bound the complex-
ity of UGP-Match. We now provide a detailed descrip-
tion of the UGP-Match Circuit f . See Figure 7. This
circuit takes in as input m and the bit-representation
of the group program obtained from applying the Bar-
rington Transform (see Theorem 7) to P. The group
program is a sequence of L = n2κ group program ele-
ments each of which is two group elements and an in-
dex (into m. We represent the group elements which
are permutations of S5 in unary, e.g., we would rep-
resent the permutation (23451) as the bit sequence
00010 00100 01000 10000 00001 (the spacings are placed
for convenience of reading). We note that this is not the
most economical representation in terms of bit-length
but what we are ultimately looking to minimize is the
length of the final group program, i.e. the depth of the
UGP-Match Circuit and for that purpose this represen-
tation is close to optimal. Each of the indices in binary
is represented using lgn bits. The UGP-Match Circuit
is a Select block followed by a divide-and-conquer Mul-
tiply block. In the Select block, corresponding to each
group program index the value of the bit of m is ex-
tracted using a mux (multiplexer, see [37]) which is a
circuit of depth lgn + lg lgn. The corresponding group
program element is then selected using a circuit of depth
2. Multiplying two group program elements takes a cir-
cuit of depth 5 and hence the Multiply block has depth
(5×2κ) lgn (recall that the group program P has length
n2κ). Thus the total depth of the UGP-Match Circuit
is (10κ + 1) lgn + lg lgn + 2. The Barrington Trans-
form (see Theorem 7) of UGP-Match Circuit gives us
a final group program under the FKN model of length
Õ(n20κ+2).

Corollary 21. UGP-Match is an efficient and secure
protocol for matching any predicate in NC1 .

4.2 Fixed Structure Group Programs
(FSGP)

We now state and prove the key lemma concerning fixed
structure group programs.

Lemma 22 (FSGP yield 2-DRE of UF). Fixed struc-
ture group programs are convertible to 2-DREs of uni-
versal functions with no loss of efficiency.

Proof. The conversion of a fixed structure program to a
2-DRE of a universal function is fairly straightforward
involving instantiation and coordinated blinding.

Consider a class of predicates P convertible to
fixed structure group programs. Let (g1, g2, . . . , gL+1),
(k1, k2, . . . , kL) be the fixed structure group program,
i.e., a (α, 1)-preserving group program with a fixed in-
dex sequence (the index sequence is the same inde-
pendent of the specific function that the group pro-
gram is computing though the interstitial group ele-
ments (g1, g2, . . . , gL+1) would depend on the specific
function). We now need to demonstrate two functions
f̂1(m, r) and f̂2(P, r) satisfying the requirements of Def-
inition 10, with the additional constraint of universality,
namely that f(m,P) = P(m).

Given a specific instance of metadata m the func-
tion f̂1 first selects α or 1 as appropriate for each of the
index sequence pairs; note that this is done independent
of the specific predicate P. Then f̂1 blinds the resulting
sequence using the randomness r. Similarly, depending
on the specific predicate P f̂2 converts to the fixed struc-
ture group program and gets a specific instantiation of
the interstitial group elements (g1, g2, . . . , gL+1). Then
this sequence is blinded by f̂2 using r. Observe that the
fixed structure is crucial for the construction of f̂1 so
that it is independent of P.

It remains to prove Correctness and Security as per
Definition 10. First, the existence of REC and Cor-
rectness follows because of the appropriate cancelation
of the blinders and so P(m) can be recovered exactly
from multiplying the elements of the final assembled
group program. Next, the existence of SIM and Secu-
rity - observe that independent of the specific instance
the broker receives shares of the same form from both
publisher and subscriber and by Lemma 4 (Blinding
Lemma) these shares are uniformly distributed over all
possible sequences with same final value and therefore
SIM can generate the outputs with the same distribu-
tion as f̂1 and f̂2 by generating all but one element of
the sequence completely and uniformly at random, then
generating the last element so that the value of the se-
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quence is the given final value, and then splitting the
group program into the two parts corresponding to f̂1

and f̂2.

Observe that an implication of the above Lemma is that
the fixed structure of the group program implicitly en-
codes a universal function.

The below corollary follows from the two lemmas,
Lemma 22 and 15.

Corollary 23. Fixed structure programs yield secure
C-CBPS protocols with no loss of efficiency.

4.3 FSGP-Match

With Lemma 22 and Corollary 23 in hand, all we need
to do is to demonstrate a fixed structure group program
of the right complexity. We give an intuitive description
of the main idea. Applying the (α, 1)-preserving Bar-
rington Transform to the predicate P yields an (α, 1)-
preserving group program but not a fixed structure
group program because the index sequence would vary
depending on the predicate P. So, then we substitute
each instance of a group program pair in this group pro-
gram by a fixed (α, 1)-preserving group program block
we call the Fixed Selector Group Program. This creates
a fixed structure. And by padding appropriately we can
fix the length to be independent of the inputs as well. It
remains to describe the Fixed Selector Group Program.
The Fixed Selector Group Program is obtained by ap-
plying an (α, 1)-preserving Barrington Transform to the
Fixed Selector Circuit. Figure 8 is a visual description
of the Fixed Selector Circuit. The Fixed Selector Cir-
cuit is an OR of ANDs. It has one AND gate for each
bit of the metadata m as input. The other input to the
AND gate is a “new” bit under the control of the sub-
scriber. Since the subscriber knows the predicate P it
knows exactly which bit of the input (m) it needs in
that particular block (based on the index of the group
program pair that the block is replacing). Once the sub-
scriber instantiates these bits approrpriately and blinds
then the Fixed Selector Group Program is just a block
with a fixed index sequence since all the dependence on
the predicate P is factored into the interstitial group
elements. Thus the overall index sequence is fixed. Note
that for blocks in the padding the subscriber can set
all new bits to 0 thus effectively reducing the padding
part of the group program to a no-op, something that
evaluates to 1.

m1 
m2 

mn m1 s1 
s2 

sn 

si are new selector 

bits instantiated by  

subscriber. 

Either none or  

exactly one of the  

si will be selected 

OR of ANDs 

1 + lg n 

Fig. 8. Fixed Selector Circuit

FSGP-Match
1. The publisher and subscriber register with the bro-

ker the precise form of their inputs. In particular the
publisher must specify the number n of bits of m
the metadata (if there are fewer relevant bits, the
remaining bits can be padded with dummy bits).
And the subscriber specifies D = 2κ lgn the maxi-
mal depth of the predicate P.

2. The broker now computes the form of the fixed
structure group program by applying the (α, 1)-
preserving Barrington Transform to any circuit
of depth D to create the corresponding (α, 1)-
preserving group program. Again, only the form of
the group program is relevant at this stage, not the
values of the specific interstitial group elements or
indices in the index sequence. It then replaces each
group program pair with the Fixed Selector Group
Program and returns the entire composite group
program back to the publisher and subscriber. At
this point the values of the interstitial group ele-
ments do not matter but the index sequence, which
is fixed, does matter. The program is an (α, 1)-
preserving group program with indices that index
into the metadata bits.

3. The publisher selects one of α or 1 depending on the
value of the corresponding metadata bit for each
group program pair, blinds them and sends back
to the broker. The subscriber, applies the (α, 1)-
preserving Barrington Transform to the specific in-
stance P to get the concrete values for the inter-
stitial group elements, appropriately sets the “new”
bits for the Fixed Selector Group Program blocks,
and blinds the entire sequence and sends to the bro-
ker.
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4. The broker puts all the blinded elements together
in the right sequence and multiplies them. If he gets
α he forwards along the (encrypted) data from the
publisher to the subscriber, else he withholds it.

Theorem 24. Given metadata of size at most n and
predicate of depth at most κ lgn, FSGP-Match is
an information-theoretically secure protocol for the C-
CBPS model with complexity 4n2κ+2.

Proof. FSGP-Match is obtained by applying the (α, 1)-
preserving Barrington Transform to the predicate P to
yield an (α, 1)-preserving group program where each in-
stance of a group program pair is substituted by the
Fixed Selector Group Program. It is clear that FSGP-
Match produces a fixed structure group program and
hence it follows from Lemma 22 that it is correct and
secure.

All that remains to do is to bound the complexity
of FSGP-Match. Recall that group program pair in the
group program (of length n2κ is substituted by the Fixed
Selector Group Program. The Fixed Selector Group cir-
cuit (see Figure 8) has depth 1 + lgn and hence the re-
sulting Fixed Selector Group Program has length 4n2

which means that the final group program has a length
4n2 × n2κ = 4n2κ+2.

4.4 OFSGP-Match

Rather than constructing the fixed structure by taking
the Barrington Transform of the Fixed Selector Circuit
we directly construct an optimized Fixed Selector Group
Program. See Figure 9.

Theorem 25. Given metadata of size at most n and
predicate of depth at most κ lgn, OFSGP-Match is

Optimized Fixed Structure Group Program formed by concatenating above  

subsequences, one for each bit, with either no bit, or exactly 1 bit selected. 

Interstitial group elements can be combined. Length is 2n. 
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ρ-1(α-1, α) 1 
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α 
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Group program subsequence 

when xi is not selected. ρ(α-1, α) 

ρ(α2, α) 1 ρ-1(α2, α) 

Fig. 9. Optimized Fixed Selector Group Program

an information-theoretically secure protocol for the C-
CBPS model with complexity 2n2κ+1.

Proof. The proof is similar to the proof of Theorem
24. Instead of converting a Fixed Selector Circuit to
a group program we directly construct an optimized
(α, 1)-preserving Fixed Selector Group Program. Cor-
responding to the i-th AND gate of the Fixed Selector
Circuit we create a subsequence of the group program
consisting of two copies of group elements (α or 1S5)
indexed by the i-th bit of the metadata m, surrounded
by (3) interstitial elements on either side.

For the sake of completeness we show explicitly that
the group program subsequences when concatenated
will compute to the value corresponding exactly to the
one selected bit.

In the case when the bit xi is not selected then it
is easy to see that the resulting subsequence 1S5 · αxi ·
ρ−1(α−1, α) · αxi · ρ(α−1, α) = 1S5 independent of the
value of whether bit xi is 0 or 1.

And, when xi is selected then by the choice of the
rotator (see Lemma 26) we have that the resulting sub-
sequence ρ−1(α2, α) · α2xi · ρ(α2, α) = αxi .

The Optimized Fixed Selector Group Program (see
Fig. 9) has length 2n which means that the final group
program has a length 2n× n2κ = 2n2κ+1.

5 Implementation
We have made available two open-source implementa-
tions of OFSGP-Match. Our first prototype in Scheme
language, based on the jScheme interpreter for integra-
tion with Java programs, allowed us to explore vari-
ous design alternatives. For example, we explored dif-
ferent representations for S5, and alternative construc-
tions of the UGP-Match to simulate Group Programs.
We ported the OSFGP-Match portion to work with
JavaScript for delivery over the Web [26]; we make use
of the BiwaScheme interpreter and a random number
generator from the Stanford Javascript Cryptographic
Library. The Scheme code is short (∼115 lines exclud-
ing the pre-computed tables), and serves as a pedagogic
illustration.

We have released a faster and extensible implemen-
tation of OFSGP-Match in Java [27], which is suitable
for integration with enterprise applications, e.g., confi-
dential inter-agency information sharing. We describe
this implementation next.
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Fig. 10. Confidential Publish/Subscribe Example using OFSGP-Match

Operations in S5: We use a byte to represent each
of the 120 elements in S5; although 7 bits would suffice,
byte-based operation is more convenient. Our mapping
uses 0 to encode identity in the group, which is con-
venient when preparing a sequence of bytes (e.g., for
padding), since Java clears byte arrays upon allocation.
For speed, we have implemented the inverse and multi-
plication operations as table look-ups. We generate ran-
dom sequences in S5 for FKN blinding.

Group Program Construction: We apply Bar-
rington’s transform to generate Group Programs in
S5. We implement a number of modular primitives
including inversion (NOT), conjunction (AND), con-
catenation, pin (input bit), constant, and BitOpBlock
(a block of bit-wise operations to operate on bit vec-
tors). We have selected low-depth constructions of cir-
cuit building-blocks including IDENTITY, NOT, AND,
OR, NAND, NOR, XOR, SELECT (IF-THEN-ELSE),
ADD, SUBTRACT, EQUAL, SHIFT-LEFT, SHIFT-
RIGHT, LESSER, LESSER-OR-EQUAL, GREATER,
and GREATER-OR-EQUAL, and we generate the cor-
responding Group Programs. These functions are called
by the expression parser, which we describe below. Our
Java implementation generates the Group Program di-

rectly from the Boolean expression, with no explicit step
(seen in the Scheme prototype) that outputs intermedi-
ate circuits.

Representation/Parsing of Metadata and In-
terests: For extensibility, we make use of XML Schema
and instances to represent metadata from publishers
and interests from subscribers. We use the Java Ar-
chitecture for XML Binding (JAXB) for mapping Java
classes to XML representations. JAXB is useful when
the specification is complex and changing, and man-
ual synchronization of XML Schema with Java classes
is time consuming and error-prone. JAXB’s xjc tool
generates Java code—to marshal objects into XML and
to unmarshal XML into objects—directly from XML
Schema.

Each metadata instance must include a RECORDTYPE
field. Currently, we support the following types of fields
in the metadata: enumerations, fixed-length strings, and
signed integer types including bytes, short, int, and long.
Support for other types such as variable length strings,
floating-point numbers, and more complex data types
is the subject of future work. For each metadata in-
stance (in XML), the parser generates a bit vector; it
determines the size and structure of the bit vector from
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the XML Schema. It computes the field sizes (in bits)
required for each enumerated type, integer type, and
fied-length string type; it also generates indices for enu-
merated field values in the metadata instances.

Each subscriber interest expression is tree-
structured with a root EXPR element, which includes
an operator field and child EXPR elements recursively;
leaf EXPR elements specify either a field name or a field
code in the operator field, and include a type field and
a value field. The parser processes the expression by
invoking Group Program construction functions corre-
sponding to the operator field of each non-leaf element,
and creating Group Programs corresponding to bit-
vectors for enumeration codes or constants specified in
leaf elements.

We include examples of metadata and interests for
two domains – intelligence reports and stock tickers. De-
velopers can specify XML Schema for other domains as
needed for their particular applications, and generate
parsing code using xjc.

OFSGP-Match: We have implemented functions
for the steps of the OFSGP-Match protocols performed
by the publisher, subscriber and broker.

The publisher parses the metadata instance to gen-
erate a bit vector of n bits, and produces a pair of group
elements from S5 for each bit for use with the selector.
Then it replicates the sequence of 2n bytes n2κ/2 times.
It then blinds the total sequence using the FKN proto-
col to send to the broker for a secure match. A separate
blinded sequence is prepared for each subscription.

The subscriber parses the interest expression to gen-
erate a Group Program. References to metadata bits
(from the publisher) are replaced with selector blocks,
and the resulting Group Program is canonicalized to a
form where alternating elements are from publisher and
subscriber by multiplying subscriber elements together
as applicable. The sequence is padded to a fixed max-
imum length. The resulting sequence is blinded using
the FKN protocol to send to the broker, once for each
match.

The broker interleaves the sequences from the pub-
lisher and subscriber and then multiplies them to evalu-
ate a match. It is a match if the result equals α, a given
5-cycle in S5, and the content item is passed along to
the subscriber. If the result is identity in S5, then it is
not a match. Any other result is an error condition.

End-to-end Publish/Subscribe Example: An
end-to-end example of confidential publish/subscribe
using OFSGP-Match is illustrated in Figure 10 show-
ing steps at a publisher, a subscriber, and a broker. In
this example, the metadata from the publisher is an in-

telligence report anticipating an important cyber threat
in the Asia-Pacific region within days; the subscription
is an interest in intelligence reports that match any ur-
gent events or cyber threats that are not of low impor-
tance. The software release includes XML files for the
interest and metadata, and a test to invoke and time
the publisher, subscriber and broker functionality. For
randomness, we use SHA1PRNG from the Java security
library.

Our implementation of OFSGP-Match is reusable.
A complete application system using this OFSGP-
Match implementation must include functionality for:
(i) securely exchanging seeds for the PRNG between
each publisher and each subscriber for each subscrip-
tion, (ii) preparing blinded instances of the publisher
portion of the OFSGP from the metadata, one instance
for each subscription, (iii) preparing multiple blinded
instances of the subscriber portion of the OFSGP from
the interest expression, one instance for each match, (iv)
protocol fields that allow the broker to know whether
the blinded OFSGP sequences from a publisher and a
subscriber have been prepared with the same shared se-
cret, and can hence be evaluated, (v) low-watermark
thresholds at the broker and signaling to the subscriber
to ensure that adequate prepared interests are available
for matching with arriving publications, (vi) integrity
checks for the protocol data units, and (vii) client-server
network protocols.

6 Performance
We present measurements for the example presented in
Figure 10. In this case, a metadata length of n = 32 bits
and a circuit depth of d = 5 (i.e., κ = 1) suffice. The bro-
ker performs 2n2κ+1 = 65536 group multiplications per
match. The publisher produces a blinded sequence of
length 32768 bytes per subscription and the subscriber
produces a blinded sequence of length 32769 bytes for
each metadata item to be matched. The time required
for each step in OFSGP-Match for a typical run is shown
in Table 2. The system used for the test is a laptop with
a Intel Core i3-4005U processor (2 cores with 2 threads
each) runing at 1.7GHz, and 6GB of memory. The op-
erating system is Microsoft Windows 8.1 and the Java
platform is Oracle Java SDK version 1.8.

We characterize the anticipated performance of a
complete system numerically using a parametric model.
In addition to the parameters, n, d, and κ, we define
Wp, the network throughput between the publisher and
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Fig. 11. End-to-end time from new content arrival to delivery
of content to all matching subscriptions: plaintext vs. OFSGP-
Match

the broker in bits/s, Ws, the network throughput be-
tween the subscriber and the broker in bits/s, D, the
content size in bytes, Ns, the number of subscriptions,
Rp, the arrival rate of new content items for publica-
tion, and Fm, the average fraction of subscriptions that
match an item. For our calculations, we assume that the
publisher, broker, and subscriber perform only sequen-
tial (not parallel) computation.

We note that the metadata for each content item
needs to be prepared once at the publisher. Then the
prepared metadata needs to be blinded Ns times. We
note that the time taken by the PRNG dominates the
cost. For OFSGP-Match,Ns blinded sequences of length
n2κ+1 each are sent to the broker, along with the content
item of size D bytes. In contrast, for the plaintext case,
only the content item and n bits of metadata need to
be sent.

Operation Time (ms)
Metadata preparation at publisher 22
Random sequence at publisher 23

Blinding at publisher 4
Interest preparation at subscriber 10
Random sequence at subscriber 17

Blinding at subscriber 3
Evaluation at broker 1

End-to-end run 80

Table 2. Time taken for OFSGP-Match operations.

The broker needs to perform Ns matches for each
new content item (which is small for the confidential
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Fig. 12. Total traffic load in bits/sec between publisher, broker,
and subscriber using OFSGP-Match

match as measured, and negligible for the plaintext
match). The broker must deliver the content item of
size D bytes to subscribers corresponding to each of the
Fm matching subscriptions in both the plaintext and
confidential matching cases.

The subscriber needs to prepare each interest (sub-
scription) once. For each match, the subscriber must
generate Rp blinded sequences (each of length 1+n2κ+1

bytes) in every second and transmit them to the broker
to keep up with the content arrival rate. The subscriber
can choose to prepare and transmit a block of blinded
sequences for multiple future matches. If content arrives
too fast, if the subscriber has to manage a large num-
ber of subscriptions, or if the network between the sub-
scriber and broker is slow, those factors will respectively
dominate the cost at the subscriber.

Assuming subscriptions have been prepared and
sent to the broker, we can calculate the end-to-end time
from the arrival of the new content item at the publisher
to its delivery to all subscribers with matching subscrip-
tions if the parameters are known. We can also calculate
the traffic load generated by the publisher, subscriber,
and broker.

We consider a numerical example, with n = 32 and
κ = 1 for which we have actual measurements; we let
Wp = Ws = 108bits/s, D = 106 bytes, and Fm = 0.2.
We vary Ns from 0 to 100 in steps of 10 and plot the
end-to-end time in Figure 11. We note that the end-to-
end time in the case of the plaintext publish/subscribe
system as well as in the case of a confidential system
based on OFSGP-Match is linear; the cost of confiden-
tial matching is higher by a small constant factor.
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Now for the case Ns = 100, we vary Rp in the range
0.01 to 10, and we compute and plot the traffic load in
bits between the publisher and the subscriber, the sub-
scriber and the broker, the broker and each subscriber,
and the total load from the broker to all subscribers
in Figure 12. We use a logarithmic scale for both axes
of the plot. We note that the load due to the delivery
of matching content (which is the same for the plain-
text case and the confidential case) is far greater than
the overhead for confidential matching in our example.
Since the exact complexity of OFSGP-Match is known,
it is easy to calculate the performance for other values
of the parametric model.

Based on this performance characterization, we
can see that OFSGP-Match can support a confidential
content-based publish/subscribe system in limited, but
useful, settings. We note that the operations at the pub-
lisher, subscriber, and broker are all “embarassingly”
parallel, which motivates the use of OFSGP-Match in
cloud computing applications.

7 Conclusion
We showed how all predicate circuits in
NC1 (logarithmic-depth, bounded fan-in) can be con-
fidentially computed by a broker while guaranteeing
perfect information-theoretic security in a Confiden-
tial Content-Based Publish/Subscribe System. We pre-
sented three protocols—UGP-Match, FSGP-Match and
OFSGP-Match—based on 2-decomposable randomized
encodings of group programs for circuits in NC1 .

On the theoretical front we achieved a level of ex-
pressivity that had not been previously attained and
on the practical front we made a substantial advance
towards a practical scheme with low-degree polynomial
complexity. Our protocols have the benefit of being con-
ceptually clean and simple, and we can capture their ex-
act complexity without needing to employ the big-Oh
notation, see Table 1.

We have made two implementations publicly
available—one in JavaScript for delivery over the web
[26] and another more capable solution in Java [27] for
enterprise applications. Using a parametric model based
on measurements from one of these implementations,
we characterized the anticiapted performance of a con-
fidential publish/subscribe system using OFSGP-Match
relative to a cleartext baseline. A future parallel or dis-
tributed implementation can provide further speed-ups.
An open question is how to design a faster protocol that

can potentially scale to wireline speeds of edge networks,
while preserving the expressivity and guarantees that
OFSGP-Match provides.
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A Blinding Lemma
For the sake of completeness we repeat the statement of
Lemma 4 and follow it up with the proof.

Lemma (Blinding Lemma). Given a sequence of group
elements, S, of length L, the blinded sequence BS(S) has
the following two properties:
Preserves value: V alue(BS(S)) = V alue(S)
Uniform distribution: BS(S) is uniformly distributed
over the space of all sequences of group elements of
length L with the same value, i.e. for any sequence
S′ = g′1, g

′
2 . . . g

′
L we have that

Pr(BS(S) = S′|Value(S′) = Value(S)) = 1
|G|L−1

where the probability is measured over the random
choices of the blinders.

Proof. It is easy to see that blinding preserves the value
of the sequence because the blinders, the ri, cancel out
when the elements of the blinded sequence are multi-
plied together.

Now, we need to show the uniform distribution
property. First, observe that the space of all sequences
S′ such that Value(S) = Value(S′) has size exactly
|G|L−1. This is because we can pick the first L− 1 ele-
ments, g′1, g′2, . . . , g′L−1 of S′ arbitrarily from the group
(in |G|L−1 ways) but having done that then (because
these elements are chosen from a group) there is ex-
actly one value for the n-th element gL namely g−1

L−1 ·
g−1
L−2 ·. . .·g

−1
1 ·Value(S) such that Value(S′) = Value(S).

Hence, to compute Pr(BS(S) = S′) we just need to
compute the probability that the first L− 1 elements of
the two sequences (BS(S) and S′) match because the
condition, that Value(S′) = Value(S) along with the
already proven fact that Value(BS(S)) = Value(S′) im-
plies that the L-th elements must automatically match
if the first L− 1 match.

Let BS(S) = b1, b2, . . . , bL. Then we have argued
that

Pr((b1 = s′1) ∧ (b2 = s′2) ∧ · · · ∧ (bL = s′L)|
(Value(S′) = Value(S)))

= Pr((b1 = s′1) ∧ (b2 = s′2) ∧ · · · ∧ (bL−1 = s′L−1)|
(bL = s′L))

= Pr((b1 = s′1) ∧ (b2 = s′2) ∧ · · · ∧ (bL−1 = s′L−1))

= Pr(b1 = s′1)× Pr((b2 = s′2)|(b1 = s′1))
× Pr((b3 = s′3)|(b1 = s′1) ∧ (b2 = s′2))
× . . .
× Pr((bn−1 = s′n−1)|(b1 = s′1) ∧ (b2 = s′2) ∧ . . .
. . . ∧ (bL−1 = s′L−1))

But, by the definition of blinding, the above is

Pr(r1 = s−1
1 · s

′
1)× Pr(r2 = s−1

2 · s
−1
1 · s

′
1 · s′2)

× · · · × Pr(rL−1 =
L−1∏
i=1

s−1
i

L−1∏
i=

s′i)

= 1
|G| ×

1
|G| × · · · ×

1
|G|

= 1
|G|L−1 .

But this means that BS(S) is uniformly distributed
over the space of all sequences of group elements with
the same value since the space of all such sequences is
of size exactly |G|L−1, as has been argued earlier.

B Barrington Transform

B.1 Barrington Transform

We present the proof of Theorem 7 based on the treat-
ment in [34, 35]. Note that the statement of the theo-
rem is true for any cycle and not just the specific cycle
α = (23451).

We present the proof as a series of lemmas.

Lemma 26 (Rotator lemma). Given two cycles α, β ∈
S5 any rotator ρ(α, β) has the property that

α = ρ−1(α, β) · β · ρ(α, β)

Proof. Let
α = (α1, α2, . . . , α5)cycle
β = (β1, β2, . . . , β5)cycle

Then, remember that their rotator is defined as

ρ(α, β) := (α1 → β1, α2 → β2, ..., α5 → β5).

Observe that the definition of the rotator depends on
the representation-specific order of the elements of the
cycles of α and β and thus there can be multiple ro-
tators for the same α and β. For example, it is possi-
ble that representing α as (α2, α3, . . . , α5, α1)cycle could
give rise to a different rotator ρ(α, β).
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Though the rotator is representation-dependent and
(potentially) not unique, nevertheless it is easy to see by
explicit calculation that

α = ρ−1(α, β) · β · ρ(α, β)

Lemma 27 (The cycle does not matter). Let α, β ∈
S5 be two cycles. Let f : {0, 1}n → {0, 1}. Then f is α-
computable with length ` if and only if f is β-computable
with length `.

Proof. Suppose that (g0
1 , ..., g

0
` )(g1

1 , ..., g
1
l )(k1, ...k`) β-

computes f ; we claim that (ρ−1(α, β)g0
1 , g

0
2 , . . . , g

0
`ρ(α, β))

(ρ−1(α, β)g1
1 , g

1
2 , . . . , g

1
`ρ(α, β)) (with the same indices

ki) α-computes f . To see this, note that it follows from
Lemma 26 that

∏̀
i=1

g
xki

i = 1S5 ⇒

ρ−1(α, β)
l∏
i=1

g
xki

i ρ(α, β) = ρ−1(α, β) · ρ(α, β) = 1S5 ,

∏̀
i=1

g
xki

i = β ⇒

ρ−1(α, β)
l∏
i=1

gxki

i ρ(α, β) = ρ−1(α, β) · β · ρ(α, β) = α.

Lemma 28 (f ⇒ 1− f). If f : {0, 1}n → {0, 1} is α-
computable by a group program of length `, so is 1− f .

Proof. First apply the previous lemma to α−1-compute
f . Then multiply last group elements g0

` and g1
` in the

group program by α. (Note that α−1 = (51234).)

Lemma 29 (f, g ⇒ f ∧ g). If f is α-computable with
length ` and g is β computable with length ` then (f ∧g)
is (γ(α, β))-computable with length 4`.

Proof. Remember that commutator γ(α, β) = α ·
β · α−1 · β−1. Concatenate 4 programs: (α-computes
f , β-computes g, α−1-computes f , β−1-computes g).
(f(x)=1)∧ (g(x)=1)⇒ concatenated program evaluates
to (α · β · α−1 · β−1 = γ(α, β)); but if either f(x) = 0
or g(x) = 0 then the concatenated program evaluates
to 0. For example, if f(x) = 0 and g(x) = 1 then the
concatenated program gives 1 · β · 1 · β−1 = 1.

It only remains to see that we can apply the previous
lemma while still computing with respect to a cycle. The
following lemma critically relies on the non-solvability
of S5 [35].

Lemma 30. ∃α, β cycles such that γ(α, β) = α·β ·α−1 ·
β−1 is a cycle.

Proof. Let α := (23451), β := (35421), we can check
αβα−1β−1 = γ = (35214) is a cycle.

The proof of the theorem follows by induction on d using
previous lemmas.

B.2 (α, 1)-preserving Barrington
Transform

The proof of Theorem 18 is basically the same as the
proof of Theorem 7 with minor modifications to account
for the fact that we are now transforming the circuit
into an (α, 1)-preserving group program. We present the
proof as a series of lemmas below.

Lemma 31 (The cycle does not matter). Let α, β ∈
S5 be two cycles, let f : {0, 1}n → {0, 1}. Then f is α-
computable with length ` if an only if f is β-computable
with length `.

Proof. The proof is similar to that of Lemma 27.
Let α, β, ρ(α, β) ∈ S5 be as in that lemma.
Suppose that (g1, g2, . . . , gL+1) (k1, k2, . . . , kL) β-
computes f then it follows, in straightforward fashion
that (ρ−1(α, β)g1, g2, . . . , gL+1ρ(α, β)) (k1, k2, . . . , kL)
α-computes f .

Lemma 32 (f ⇒ 1− f). If f : {0, 1}n → {0, 1} is α-
computable by a group program of length `, so is 1− f .

Proof. First apply the previous lemma to α−1-compute
f . Then multiply the last group element gL in the group
program by α.

Lemma 33 (f, g ⇒ f ∧ g). If f is α-computable with
length ` and g is β computable with length ` then (f ∧g)
is (γ(α, β) = α ·β ·α−1 ·β−1)-computable with length 4`.

Proof. The proof is identical to that of Lemma 29.

The proof of the theorem follows by induction on d using
previous lemmas. and Lemma 30.
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