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Abstract: Privacy in the Web has become a major con-
cern resulting in the popular use of various tools for
blocking tracking services. Most of these tools rely on
manually maintained blacklists, which need to be kept
up-to-date to protect Web users’ privacy efficiently. It
is challenging to keep pace with today’s quickly evolv-
ing advertisement and analytics landscape. In order to
support blacklist maintainers with this task, we iden-
tify a set of Web traffic features for identifying privacy-
intrusive services. Based on these features, we develop
an automatic approach that learns the properties of
advertisement and analytics services listed by exist-
ing blacklists and proposes new services for inclusion
on blacklists. We evaluate our technique on real traffic
traces of a campus network and find in the order of 200
new privacy-intrusive Web services that are not listed
by the most popular Firefox plug-in Adblock Plus. The
proposed Web traffic features are easy to derive, allow-
ing a distributed implementation of our approach.
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1 Introduction
Advertisement and analytics Web services are embed-
ded in many Web sites [48] and track the user be-
havior across sites to generate exhaustive user profiles.
They use the gathered user data to estimate the gen-
der, age, credit worthiness, health state, etc. of a per-
son [3, 16, 25, 28, 39]. User profiles are then used for
customized advertisements or simply sold [18]. There-
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fore, in principal any party can get access to the col-
lected personal information. This can have severe con-
sequences for individuals [25] and organizations. For ex-
ample, individuals can experience higher prices based on
their profile [33], can be rejected by an insurance com-
pany [50], or not be invited to a job interview [3, 39].

Corporations face the problem that third-party Web
services can learn about “hot topics” in organizations.
Web services collecting corporate interest profiles can
use their knowledge to predict business processes, in-
cluding but not limited to strategic trading on the stock
market, or they could simply sell uncovered business se-
crets to the organization’s competitors. Assuming that
an organization uses a fixed public IP address range for
its Web access, privacy-intrusive third parties do not
even need user identifiers because they can identify or-
ganizations based on the source IP addresses of requests
[27]. This puts also third parties that are no trackers per
se, e.g., content distribution networks or services hosting
popular Web utilities, in the position to track the Web
activities of an organization if no mitigation measures
are in place.

It is a major challenge to protect individuals
and corporations against privacy-intrusive Web ser-
vices. Prevention measures have to find a good trade-
off between privacy protection and usability. Rigorous
default-block policies, e.g., not allowing any JavaScripts,
are efficient [43] but break functionality on many Web
sites. In order to maintain the functionalities of Web
sites, default-block policies need fine-grained excep-
tion rules, which many users are unwilling to cre-
ate. As a consequence, most privacy-protecting browser
plug-ins (such as Adblock [40], Adblock Plus [41], or
Ghostery [42]), as well as corporate Web security gate-
ways operate with a default-accept policy and rely on
blacklists to identify privacy-intrusive HTTP requests
to be blocked. This is much more comfortable for users
as the maintainers of the blacklists usually try to ensure
that Web site functionality remains intact. However this
approach also comes with drawbacks:

– The advertisement and analytics sector is a very
dynamic, fast-growing business sector with exist-
ing trackers disappearing and new trackers coming.
Manually maintaining blacklists requires consider-
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able effort to keep up with changes in the tracking
landscape and blacklists risk to miss new privacy-
intrusive services.

– It is often not clear which criteria blacklist maintain-
ers use to decide if a service should be blacklisted.
For example, Adblock Plus has received money from
multiple large Web services to be white-listed [9].

As a step towards addressing these problems, we
propose a novel approach for identifying new privacy-
intrusive services based on HTTP traffic statistics. Our
work can be applied to distributed collected data as well
as in a local network: (i) to identify new blacklist can-
didates, blacklist maintainers can use our methodology
in a global fashion by applying the proposed classifier
to traffic statistics downloaded from a crowd-sourced
database; (ii) companies can apply our model on their
local HTTP traffic to verify that a provided blacklist
indeed blocks relevant services and enhance provided
blacklists according to their preferences.

This paper provides the following contributions:

1. A comprehensive analysis of HTTP traffic statistics
that are suitable to identify privacy-intrusive ser-
vices.

2. A classifier for identifying privacy-intrusive Web
services. The classification of a 24 h trace of a cam-
pus network with 15 k clients showed a precision as
well as recall of around 84% when classifying popu-
lar Web services.

3. An exhaustive evaluation of our automated ap-
proach. We have applied our proposed classifier to
complement the manually maintained blacklists of
a popular privacy-protecting browser extension. By
learning using Adblock Plus blacklists and HTTP
traffic traces, both from August 2013, our classi-
fier identified >400 new Web services that exhibit
typical characteristics of privacy-intrusive services.
Around 200 of these services are advertisement and
analytics services in the traditional sense, while
most remaining services are in the gray area, i.e., it
depends on user or organization preferences if cor-
responding services should be regarded as a privacy
risk or not.1 As of February 2015, the Adblock Plus
community indeed identified 70 of these services too
and added them to their blacklists.

1 For example, some users extensively use social services, while
others try hard to avoid revealing any information to social net-
works.

We believe that especially popular privacy-
protecting browser plugins such as Adblock, Adblock
Plus, or Ghostery can benefit from our automatic iden-
tification process to identify new privacy-intrusive Web
services.

Our work is structured as follows: Section 2 gives
background information on user profiling and corre-
sponding protection measures. Section 3 presents our
experimental design and Section 4 our dataset. We an-
alyze properties of blacklisted services in Section 5. In
Section 6, we develop a classifier. We present our exper-
imental results in Section 7 and discuss a global and a
local usage scenario of our technique in Section 8. Fi-
nally, Section 9 presents related work, and Section 10
concludes our study.

2 Background
In this section, we give a brief introduction to the two
main mechanisms causing information on visited Web
sites to be leaked to third parties (Section 2.1) and dis-
cuss prevention measures (Section 2.2). A more com-
plete overview of techniques, policies, protective mea-
sures, and risks involved in Web tracking can be found
in Mayer and Mitchell’s survey paper [32].

2.1 User profiling by third-party Web
services

Modern Web pages consist of dozens to hundreds of em-
bedded objects [8, 45] which have to be fetched before
a Web page can be displayed, such as images, videos, or
JavaScript objects. Many of these objects are not loaded
from the visited Web service (the first party) but from
other Web services (third parties) [32]. For example, im-
ages and videos are often fetched from dedicated con-
tent distribution networks (CDN) with high-bandwidth
links, and advertisements or analytics objects from com-
panies specialized on advertising. Third parties can typ-
ically infer user behavior via two main mechanisms: with
the HTTP Referer header, or by uploading information
via embedded scripts.

Referer header
HTTP requests contain a Referer header which identi-
fies the Web page linking to or embedding the requested
resource of the third-party Web service [17]. For exam-
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Fig. 1. HTTP data flow between a Web page on example.org and
two third parties, a content delivery network (CDN_X), and a
tracking service (Tracker_Y ). The URL of the currently visited
Web page is transferred to any third party over the Referer field
in the HTTP header (mechanism M1). Most tracking services
additionally employ scripts to collect data in the user’s browser
and send them back using HTTP request parameters (mechanism
M2). Cookies, transmitted with every HTTP request as shown in
M2, are the basic mechanism for re-identifying users.

ple, request M1 in Figure 1, shows how a content distri-
bution network (CDN) providing an image embedded in
a Web site can learn the address of the currently loaded
Web page through the Referer header. Sending Referer
headers is the default behavior on all modern browsers,
therefore any third party (including but not limited to
advertisement and analytics) can passively learn which
Web pages are visited by a user.

Embedded scripts
Many third parties request the developer of the first-
party Web site to embed a JavaScript program. The
third party’s program executes inside the user’s browser
with the same permissions as the first party’s domain.
This enables the third party to collect detailed informa-
tion on the user’s browsing activity, e.g., the position of
the mouse pointer on the screen [54] and the browsing
history [35], or to reconstruct unique user identifiers [2].
The collected information is then uploaded to the third
party’s Web server, see example M2 in Figure 1. Em-
bedding a script requires active involvement in the Web
site delivery process, thus these scripts are typically only
used by advertisement and analytics services.

2.2 Protection against tracking

The simplicity of techniques allowing to collect informa-
tion about a user’s browsing behavior begs the question
if there aren’t similarly simple counter-measures. In par-
ticular, if disabling the corresponding functionality at
the user’s browser could fix the problem. Of course, Ref-
erer headers can be suppressed. Unfortunately removing
the Referer header simplifies cross-site request forgery
attacks [17]. In addition, some Web sites check Referer
headers to prevent others from deep linking their Web
pages, or to prevent bandwidth stealing. Similarly, the
execution of JavaScript can be blocked [43]. However,
blocking script execution has severe drawbacks on Web
site functionality. Consequently, successful application
of Referer header removal and script blocking require a
user to perform elaborate control over which sites can
receive Referer headers, respectively which scripts may
be executed [1, 43].

A more user friendly approach appears to be the
targeted blocking of requests to advertisement and an-
alytics services, such as employed by Adblock Plus [41].
This targeted approach is implemented with centrally
maintained blacklists, in case of Adblock Plus by a set
of community maintained blacklists.

3 Experimental design
In this section, we present the objective of our study in
Section 3.1 and outline the applied procedure in Sec-
tion 3.2. Further, we introduce the analyzed traffic fea-
tures in Section 3.3 and discuss the granularity at which
we identify Web services in Section 3.4.

3.1 Objective

Our aim is to simplify the maintenance of blacklists of
tracking services. Towards this goal, we present a ma-
chine learning approach for the automated identifica-
tion of privacy-intrusive services, i.e., we classify Web
services into two classes: (i) privacy-intrusive and (ii)
not privacy-intrusive (other). While advertisement and
analytics services are the classic example of privacy-
intrusive services that many users and organizations
want to block, there are also services that are in a gray
area because they provide benefits to some people. As
such individual preferences are difficult to generalize,
we focus on advertisement and analytics services while
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Fig. 2. Overview of our study.

developing our method. Our work is guided by the fol-
lowing goals:

1. We aim to find a large amount of privacy-intrusive
services with minimal manual effort.

2. We prefer features with limited privacy impact to
facilitate a collaborative detection approach.

3. We favor a lightweight process using features that
are easy to derive to enable a quick adaption to the
fast-changing service landscape.

3.2 Procedure

Our work is based on the observation that many ad-
vertisement and analytics services show different traffic
properties than regular services. In order to find robust
traffic features and training methods that can be used
to classify privacy-intrusive services, we perform a study
whose procedure is depicted in Figure 2 and outlined in
the following.

Feature extraction and analysis
We first introduce traffic features and conduct an initial
analysis.

1. We develop Web service traffic features for dis-
tinguishing privacy-intrusive from other services in
Section 3.3. The granularity at which we identify
Web services is discussed in Section 3.4.

2. In order to gain deeper insights into typical traf-
fic patterns, we extract real-world feature statis-
tics from HTTP traffic observed in a large campus
network (see Section 4.1) and classify the Web ser-
vices using existing blacklists (see Section 4.3). To
identify informative features and find correlations,
we further calculate information gain and gain ra-
tio, correlate all features pairwise (see Section 5.1)
and investigate the empirical cumulative distribu-
tion functions (ECDF) (see Section 5.2). We use the
existing Adblock Plus blacklists for labeling in this
step as the aim is to get an overview of the traffic
properties of all services in our dataset.

Development of a classifier
After the initial feature analysis conducted in step 2,
we focus on building a classifier. As we do not know a
priori of which quality Adblock Plus’ blacklists are, we
use randomly selected, manually labeled Web services
for developing the classifier.

3. To identify a suitable machine learning approach,
we compare the classification performance of dif-
ferent machine learning (ML) methods using leave-
one-out cross-validation (see Section 6.1).

4. Next, we identify the most suitable feature subset
for the selected classifier by an exhaustive parame-
ter search and measure the performance of the clas-
sifier (see Section 6.2).

Applying the classifier
We manually labeled services for the development of the
classifier. Still, for use in practice, it would be preferable
to avoid manual labeling. We show that this is indeed
possible in the last two steps.

5. We train the classifier using the existing Adblock
Plus blacklists as reference.

6. Finally, we compare the classification of our classi-
fier against Adblock Plus’ blacklists and discuss the
results (see Section 7).

3.3 HTTP traffic features

Based on observations during preliminary work [19], we
know that privacy-intrusive Web services are usually ac-
cessed by many users across several domains, and there-
fore include a higher diversity of client IP addresses and
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Table 1. HTTP traffic features for this study. All features are
aggregated per Web service. Note that basic counts are not nor-
malized in this work for presentation purposes.

A: Basic counts

1 number of HTTP requests #requests
2 sent bytes (HTTP request bytes) #sentBytes
3 received bytes (HTTP response

bytes)
#recBytes

4 number of client IP addresses #clients
5 domains in HTTP Referer #referers

B: Average per request to service

1 sent bytes per request #sentBytes/req
2 received bytes per request #recBytes/req
3 Referers per request #referers/req

C: Average per client accessing service

1 requests per client #requests/client
2 sent bytes per client #sentBytes/client
3 received bytes per client #recBytes/client
4 Referers per client #referers/client

D: Compound features

1 % 3rd party requests %3rdPartyReq
2 % 3rd party sent bytes %3rdPartyBytes
3 % requests containing Cookie(s) %cookies
4 received/sent bytes ratio #rec/SentBytes

Referer domains than requests to regular Web services.
Furthermore, we have noticed that especially analytics
services barely deliver large responses. Hence, we ex-
pect that privacy-intrusive services have small response
sizes as compared to regular services. With these ob-
servations in mind, we develop statistical features for
Web service classification (see Table 1). The features
are aggregated per Web service. We count the number
of HTTP requests to the service, the sent/received bytes
from/to the service, the IP addresses (clients) accessing
the service, and the number of Referers (A.1-5). Fur-
thermore, we calculate the average sent/received bytes
and the #referers per HTTP request issued to the ser-
vice (B.1-3) and per client accessing the service (C.2-4).
We also calculate the average number of HTTP requests
per client (C.1). Finally, we take a look at the ratio of
the number of third-party requests to the total number
of requests going to the service (D.1). We compute a
similar ratio for bytes in third-party request to the to-
tal number of sent bytes (D.2). We determine the ratio
of requests to the service that have at least one Cookie
over the total number of requests (D.3) and the ratio of
received to sent bytes (D.4).

Please note that to apply our model to a different
dataset, the basic counts (A.1-5) need to be normalized
by their corresponding total. As this results in tiny frac-
tions that are difficult to interpret, we do not normalize
the counts in this work for presentation reasons.

Since we introduced several variations of features
measuring similar properties, we expect that an auto-
matic classifier only requires a subset of the proposed
features. However, we examine all 16 features in order to
understand which specific features are most significant
for classifying privacy-intrusive Web services.

3.4 Granularity of analysis

Our approach relies on traffic statistics of Web services.
There are different possible levels of granularity for col-
lecting such statistics.

Regarding the granularity at which we identify Web
services, the first option is to collect statistics at the
granularity of hosts, as they are contained in the head-
ers of HTTP requests. However, this will not work well
for Web services using a large number of subdomains
for serving content, as for example youtube.com. The
second option is to identify such services and aggregate
subdomains depending on the number of requests being
sent to them or the number of clients visiting them. But
this would result in different levels of granularity. In con-
trast, we aim for an approach that is easily comprehensi-
ble. Therefore, we collect statistics at the granularity of
second-level domains (SLD). For example, we aggregate
requests to the third-level domains www.example.com
and static.example.com to the SLD example.com and
only collect statistics for example.com. There are top
level domains that are subdivided, e.g., .uk or .au. We
identify corresponding domains using the ICANN sec-
tion of the public suffix list (http://publicsuffix.org/)
and use the third-level domain as the “effective SLD”.
One could further aggregate SLDs, e.g., if they are
owned by the same company. But we prefer to avoid
further aggregation as this would make it difficult to
compare to existing blacklists, which often operate at
the granularity of “effective SLD” or even more fine-
grained levels.

Regarding temporal granularity, we operate for this
work at the granularity of days, meaning that we ana-
lyze our 24 h dataset as a whole, but our methodology
is applicable to different time spans too.

http://publicsuffix.org/
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Table 2. Overview of the 24-h trace collected in August 2013 on
a campus network.

up down #req. #dom. #clients

Trace’13 75GB 3.4TB 60M 103 k 15 k

4 Dataset
Next, we introduce the large packet traces that we use
for evaluation in Section 4.1, discuss how we protect user
privacy during our study in Section 4.2, and present
the reference blacklist Adblock Plus and our manual
classification methodology in Section 4.3.

4.1 Experimental data

4.1.1 Overview

We use 24 h of HTTP traffic recorded at the upstream
router of a university campus for our analysis. The trace
was created in August 2013, we refer to is as Trace’13.
The network is used by faculty staff of the university
and students. We only analyze HTTP connections2 ini-
tiated by IP addresses (clients) within the campus net-
work to Web servers in the Internet, i.e., the HTTP ac-
tivity of the clients in the university network. Baseline
data on Trace’13, which covers the HTTP activity of
15 k clients, is shown in Table 2. About 4 k clients solely
issued requests with user agents unrelated to interactive
browsing. We assume that these were mainly idle work-
stations (e.g., downloading software updates) or servers.

The packet traces were recorded in tcp-
dump/libpcap format [52]. To extract the HTTP traffic
statistics, we use the Bro IDS [38] with a custom policy.

4.1.2 Subsets

For the evaluation of our approach, we compile
two subsets of Trace’13: Services ≥ 100 clients and
Services ≥ 5 clients. The subscript indicates the mini-
mum number of clients visiting the Web services in the
corresponding dataset. For instance, Services ≥ 5 clients

contains all Web services that have been visited by at

2 We focus on TCP port 80 HTTP connections as most HTTP
traffic uses this port [31].
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Fig. 3. Subsets of Trace’13. The 1.2 k most popular services
represented by Services ≥ 100 clients account for more than
70% of all requests. Services ≥ 5 clients contains 13 k services
accounting for almost 90% of all requests and transmitted bytes.
65% of all services are only visited by a single client.

least 5 client IP addresses in the analyzed university
network. Figure 3 shows statistics for these subsets.

We use two subsets to analyze if the classification
model significantly changes when less popular services
are incorporated. We focus for our analysis on the 13 k
services visited by at least five clients, mainly for two
reasons: (i)We do not expect our HTTP traffic statistics
to be significant for Web services that are only visited
by few users. (ii) We need to manually label some ser-
vices to establish ground truth, which inevitably means
that we see the domains accessed by users in our HTTP
traces. Only inspecting services visited by at least 5
clients helps to protect the privacy of users in the ana-
lyzed network (see next section).

4.2 Protecting user privacy during analysis

Respecting the privacy of users when working with
traces of real network traffic is of fundamental impor-
tance. We conduct our experiments according to a code
of ethics protecting the privacy of users. In particular,
we perform our analysis on an isolated system, never
manually inspect payload or visited URLs of individ-
ual client IP addresses, anonymize client IP addresses
prior to analysis, and only collect statistics per Web
service and not per client, i.e., we refrain from building
any client profiles. Still, even the SLD of a visited Web
service could be considered privacy-sensitive, e.g., when
a user accesses a private Web server from within the
analyzed network. To mitigate this possibility, we only
manually classify Web services accessed by at least 5
client IP addresses while establishing ground truth for
our evaluation. Therefore, we do not become aware of
Web services that could be very specific for one user
in the analyzed network unless the user employs five
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Table 3. Number of visited services listed by Adblock Plus.

ABPexact ABPpartial

Services ≥ 100 clients 354 643
Services ≥ 5 clients 1171 2667

or more different IP address while accessing the pri-
vate service. We think that five is a reasonable trade-
off between user privacy and restrictions for analysis as
this threshold allows us to conduct our analysis on a
dataset containing the 13 k most popular Web services
(Services ≥ 5 clients).

4.3 Web service labeling

We rely on two data sources for Web service labeling,
Adblock Plus blacklists and manual labeling, as we will
discuss in this section.

4.3.1 Adblock Plus blacklists

We employ the blacklists coming with the popular anti-
advertisement and analytics tool Adblock Plus [41] from
August 2013. Specifically, we use the Adblock Plus fil-
ters EasyList (advertisement) and EasyPrivacy (ana-
lytics) as well as a specific EasyList for our region,
all available on https://easylist.adblockplus.org/en/. To
the best of our knowledge, these blacklists are manu-
ally maintained by a community of users. We use Ad-
block Plus blacklists, because Adblock Plus shows good
blocking performance according to comparative bench-
marks [21] and it is the most popular Firefox plug-in
with 20M users as of February 20153 .

Adblock Plus contains rules for blocking and hiding
elements. Hiding does in general not prevent a request
from being issued, therefore we focus on blocking rules.
Adblock Plus defines blocking rules on second-level do-
main, third-level domain, URL and path granularity,
while we identify services on second-level domain gran-
ularity. This raises the question, how to map domains
of different granularity for Web service labeling during
learning and performance evaluation.

For comparing to Adblock Plus, we distinguish two
cases:

3 https://addons.mozilla.org/en-US/firefox/extensions/?sort=
users

1. ABPexact: The entire second-level domain is
blocked by Adblock Plus.

2. ABPpartial: The SLD appears in a blocking rule
but the rule can be more specific, i.e., only block a
subdomain or an URL containing the SLD.

In other words, if Adblock Plus lists the Web ser-
vice example.org/ad, then the service example.org is in
ABPpartial, but not in ABPexact. Table 3 shows how
many Web services are labeled as privacy-intrusive ac-
cording to ABPexact and ABPpartial.

4.3.2 Manual labeling

As we do not know how complete Adblock Plus’ black-
lists are, we also conduct manual labeling on random
samples of the Web services. We label services by vis-
iting their company Web sites with a Web browser. If
the corresponding Web site offers tracking or advertise-
ment services, we label the service as advertisement and
analytics, otherwise we label the service as other.

For most services, it is straightforward to find the
company’s Web site as there are two main cases: (i)
the second level domain (SLD) hosts the company Web
site (e.g., the SLD criteo.com is used for advertisement
and analytics and the company Web site is reachable at
www.criteo.com); (ii) companies that use a dedicated
SLD for advertisement and analytics often forward to
their Web site when the root directory of their advertise-
ment and analytics SLD is visited (e.g., visiting chart-
beat.net forwards to chartbeat.com, which is the com-
pany Web site) or they include a link to their company
Web site (e.g., quantserve.com contains a link to the
company Web site quantcast.com).

However, there are services for which finding the
company Web site is more difficult, e.g., because the
root directory of a SLD is just a blank page, visiting
the SLD results in a “404 - Not Found”, or no TCP
connection can be established at all. In such and simi-
lar cases, we check DNS registration data, and search for
the domain and terms listed on the loaded Web page to
find the company Web site. For example, establishing
an HTTP as well as HTTPS connection to revsci.net
results in a timeout. But checking DNS registration
data using whois shows that the admin email contact
is associated with the domain audiencescience.com. A
Web search for “revsci.net audiencescience.com” further
leads to a page on www.audiencescience.com that ex-
plains how to embed a tag from revsci.net. Thus, we
conclude that www.audiencescience.com is the company

https://easylist.adblockplus.org/en/
 https://addons.mozilla.org/en-US/firefox/extensions/?sort=users
 https://addons.mozilla.org/en-US/firefox/extensions/?sort=users
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Fig. 4. Feature evaluation for Services ≥ 5 clients with respect to target class ABPexact.

Web site corresponding to the SLD revsci.net. To be
conservative, we treat a service as false positive dur-
ing our evaluation in Section 7.1 if we remain uncertain
about its class. We manually labeled several hundred
Web services.

5 Properties of blacklisted Web
services

As a first evaluation step, we statistically analyze prop-
erties of blacklisted Web services in this section. To get
an intuition how well the features introduced in Sec-
tion 3.3 perform for identifying advertisement and ana-
lytics services, we calculate information gain and Pear-
son correlation in Section 5.1 and analyze feature distri-
butions in Section 5.2. We use the classification provided
by the Adblock Plus blacklists in this section, as this al-
lows us to analyze the properties of much more services
than when labeling services manually.

5.1 Information gain and Pearson
correlation

In order to calculate the information gain and the gain
ratio [47], we first apply an entropy-based discretiza-
tion [15]. Entropy-based discretization takes continuous
features together with the classification as input and
splits the domain of continuous features to minimize
the classification entropy. As a result, highly informa-
tive continuous features are split into multiple intervals,
while non-informative features are not split at all, re-

sulting in a single discrete level. This has the advantage
that continuous features are not only discretized but
features with low value for classification are addition-
ally removed from the initial feature space [11].

Figure 4a shows the features remaining after apply-
ing an entropy-based discretization with ABPexact as
target class on the y-axis. The feature #referers/client
has been identified as non-informative and is therefore
not listed in the figure. The x-axis shows the information
gain and the gain ratio with respect to ABPexact for
the 15 remaining features. The corresponding Pearson
correlation is shown in Figure 4b. The Pearson correla-
tion coefficient r measures the linear correlation between
two variables. The coefficient r takes values between −1
(perfect negative correlation) and +1 (perfect positive
correlation). A value of r = 0 stands for no correlation.

We see in Figure 4 that %3rdPartyReq and %3rd-
PartyBytes are the most informative features. Both of
these features target third-party requests and these fea-
tures are nearly perfectly correlated. The feature #ref-
erers is the third-most informative feature. This fea-
ture is correlated with the features #clients (r=0.58)
and #requests (r=0.32). The features #recBytes/client,
#recBytes/req and #rec/sentBytes are all related to the
amount of data a Web service transmits in responses
to clients. This subset of features is again correlated
(r=0.40, r=0.64, r=0.90) as shown in rows 4-6 of Fig-
ure 4b. Basic byte and request counts only provide little
information with respect to ABPexact, as we can see in
Figure 4a.
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Fig. 5. Feature distributions for Services ≥ 5 clients. The solid red lines show the conditional probabilities for a service being an adver-
tisement and analytics service according to ABPexact given certain feature values x. The dashed green and dotted blue lines show the
empirical cumulative distribution functions (ECDF) for advertisement and analytics services and other services according to ABPexact,
respectively. Other services are all services that are not advertisement and analytics. 9% of the services are in ABPexact, i.e., the prior
probability is P (C = AA) = 0.09. As a rule of thumb, the larger the area between the two ECDFs, the more discriminating power
has the feature. Note that some features have a log-scale which deforms the area. Bytes are measured in KB. Features selected for our
model (see Section 6.2) are marked by a gray background.

5.2 Distributions

In a second step, we discuss typical feature values for ad-
vertisement and analytics (AA) services, again labeled
according to ABPexact. Figure 5 shows (i) the empirical

cumulative distribution functions (ECDF) separately
for AA and all other services and (ii) the conditional
probabilities that a service is an AA service given cer-
tain feature values. The ECDF P (X ≤ x) evaluated at
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a value x tells the ratio of services having a feature value
smaller or equal to x. For example, evaluating %3rdPar-
tyReq in Figure 5 for x = 10% tells that about 50% of
all other services receive at most 10% third-party re-
quests, while the vast majority of AA services receive
more than 10% third-party requests.

P (C = AA|X = x) is the conditional probability
that a service is an AA service given a certain feature
value x, as calculated by a naive Bayes classifier from the
feature distributions. As a rule of thumb, a naive Bayes
classifier will classify a Web service as advertisement
and analytics if the service’s feature values are rather in
regions with a high conditional probability. That is, if
the feature values xi, where i ∈ {1, . . . , 15} indexes the
features, are in regions with a high P (C = AA|Xi = xi).

The features %3rdPartyReq and %3rdPartyBytes
show similar feature distributions. Third-party requests
and bytes account for a high percentage of requests go-
ing to advertisement and analytics services, while about
half of all other services receive less than 10% third-
party requests and bytes. This explains why we found
in Figure 4a that these features are highly informative.

The feature #referers shows that there are more
different Referers in HTTP requests to advertisement
and analytics services than to most other services. That
is, advertisement and analytics services are embedded
(or linked to) by more services than most other ser-
vices. This result is in-line with previous work [48] that
investigated the most prominent trackers and showed
that they are embedded on a large number of popu-
lar Web sites. As the red solid line indicates, especially
in the region between 102 and 103 Referers, there are
many more advertisement and analytics services than
other services. Similarly, the feature #clients shows a
trend that advertisement and analytics services receive
requests from more clients than other services.

The features #recBytes/client, #recBytes/req and
#rec/sentBytes relate to the amount of bytes that a ser-
vice transmits back to clients. We can see on all three
plots that advertisement and analytics services usually
provide fewer bytes to clients than other services. The
probability for a service being advertisement and ana-
lytics is highest for small values of these features. When
averaged per number of clients or sent bytes, this trend
becomes well visible. Still, the distributions of these
three features are quite similar as the Pearson corre-
lation in Figure 4b already suggested.

It might at first seem counter-intuitive that the me-
dian advertisement and analytics service has smaller val-
ues for#requests/client and#sentBytes/client than the
median other service, as it should be expected that ad-

vertisement and analytics services collect a lot of data.
However, advertisement and analytics services collect
their data from a large client base and tracking a user
may require as little as one request per page load. Most
other Web services are visited by only few clients and
a client that is browsing on a first party can easily
cause hundreds to thousands of HTTP requests to a
first party.

There are few services that almost have a ratio of 1
for the feature #referers/req. A ratio of 1 would indicate
that every request going to the service has a different
Referer. Advertisement and analytics services show a
trend towards a higher ratio than other services. Inter-
estingly, the results for the feature %cookies show that
around 30% of all services barely receive requests with
Cookies.

6 Constructing a classifier
In this section, we test several popular machine learning
techniques to determine which classifier works best (Sec-
tion 6.1) and we evaluate if a reduction of the feature
set can improve the classification results (Section 6.2).
We use subsets of manually labeled data for these steps
to avoid any bias possibly caused by Adblock Plus’ clas-
sification.

6.1 Selecting a machine learning
technique

For selecting a suitable machine learning tech-
nique, we randomly sample 1% of the services in
Services ≥ 5 clients, manually classify the selected Web
services as described in Section 4.3.2, and perform leave-
one-out cross-validation using the Orange data mining
tool set [11]. The target class for our analysis is adver-
tisement and analytics services, i.e., a true positive is a
correctly identified service that offers advertisement or
analytics functionalities.

We consider the popular machine learning tech-
niques naive Bayes with locally weighted regression
(LOESS), logistic regression, a support vector machine
(SVM) with a radial basis function kernel, and a classifi-
cation tree with information gain for attribute selection.
For background information on these machine learning
approaches, we refer the reader to Hastie et al. [20] and
Bishop [7].
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Table 4. Comparison of classifiers using leave-one-out cross-
validation with the fifteen features analyzed in Section 5. The
columns show classification accuracy (CA), area under the re-
ceiver operating characteristic curve (AUC), F1-measure (F1),
precision (Prec.), and recall for naive Bayes, logistic regression,
SVM, and classification tree as classifiers. The maximum values
are highlighted.

(a) Random sample of 127 services from Services ≥ 5 clients.

CA AUC F1 Prec. Recall

Naive Bayes 85% 91% 61% 50% 79%
Logistic regression 85% 80% 24% 50% 16%
SVM 84% 77% 9% 33% 5%
Classification tree 86% 79% 57% 52% 63%

(b) Random sample of 122 services from Services ≥ 100 clients.

CA AUC F1 Prec. Recall

Naive Bayes 84% 92% 83% 78% 89%
Logistic regression 81% 90% 79% 77% 81%
SVM 83% 90% 82% 75% 91%
Classification tree 80% 77% 77% 74% 81%

The results of our comparison are shown in Table 4.
naive Bayes and classification tree show the best results.
For reference, we also show the classification perfor-
mance on a random subset from Services ≥ 100 clients.
In this dataset, the performance of the evaluated ma-
chine learning techniques is quite similar, with naive
Bayes and logistic regression showing the best results.

The good performance of naive Bayes compared to
the more advanced methods is not obvious. A naive
Bayes classifier builds upon the “naive” assumption that
features are conditionally independent given the class,
which clearly does not hold for the features we provided
as input, as the analysis in Section 5.1 showed. Still, the
good performance of naive Bayes compared to the more
advanced approaches is in-line with prior work report-
ing that “it (Bayes) performs surprisingly well in many
domains containing clear attribute dependences” [13].
There are multiple explanations for the high classifi-
cation accuracy in the presence of correlated features.
First, inaccurate probability estimations have no or lim-
ited impact as long as the maximum probability is as-
signed to the correct class; second, dependences between
attributes cancel each other out if they are evenly dis-
tributed in the classes [13, 55].

For the remainder of our work we use naive Bayes
because of (i) its good performance and (ii) the simplic-
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Fig. 6. F0.5-measure for all feature subsets measured on a ran-
dom sample of 127 services from Services ≥ 5 clients. The x-axis
shows the size of the subsets and the y-axis the maximum, me-
dian, and minimum F0.5-measure. Details on the best subset
consisting of five features are listed in Table 5.

ity of its classification model, which allows us to analyze
and discuss classification results in detail.

6.2 Feature reduction

So far, we used all features that the entropy-based dis-
cretization in Section 5.1 has identified as being infor-
mative. But some of the features are highly correlated
while others have a small information gain and gain ra-
tio as can be seen in Figure 4. Including such features in
the classification model increases the risk for overfitting
the classifier and also makes the model more complex to
understand. We measure in this step the classification
performance for all possible feature subsets to empiri-
cally determine the best feature set.

We use the F0.5-measure to evaluate classification
performance. A Fβ-measure combines the precision and
recall of a classifier to measure its classification per-
formance. The F0.5-measure is the typical value used
to weight precision higher than recall. In other words,
we are aiming towards a low false positive rate when
identifying privacy-intrusive services. We perform an ex-
haustive search by building all 33 k subsets of the 15
features and conducting leave-one-out cross- validation
with naive Bayes on a random sample of 127 services
from Services ≥ 5 clients. In this sample, 9 services are
in ABPexact and 29 in ABPpartial.

Figure 6 shows the results of the parameter search.
Subsets not identifying any privacy-intrusive services
are not shown in the Figure, since they have an un-
defined F0.5-measure. We see that using five features
results in the highest F0.5-measure. The detailed per-
formance of the corresponding features is shown in Ta-
ble 5. We want to point out that the five selected fea-
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Table 5. Performance of the best feature set measured using
leave-one-out cross-validation against manually labeled data.

Selected features

%3rdPartyReq, #referers, #rec/sentBytes, #referers/req,
%cookies

Classification performance

Dataset F0.5 Precision Recall

1% of Services ≥ 5 clients
(feature selection)

0.78 0.81 0.68

10% of Services ≥ 100 clients
(evaluation)

0.84 0.83 0.85

tures, which we are going to use for the remainder of this
work, are actually only slightly correlated as Figure 4b
shows.

After selecting the features using a random sample
from Services ≥ 5 clients, we use a disjoint manually la-
beled random sample from Services ≥ 100 clients to eval-
uate precision and recall. For this dataset, precision and
recall are 83% and 85%, respectively, resulting in a F0.5-
measure of 84%. This sample consists of 122 services,
38 services are in ABPexact and 64 in ABPpartial.

7 Complementing Adblock Plus’
blacklists

In the previous section, we built our classifier using man-
ually labeled data. But for use in practice, it would
be preferable to avoid any need for manual labeling.
Therefore, in Section 7.1, we evaluate how many new
privacy-intrusive Web services our classifier can iden-
tify by learning from existing Adblock Plus blacklists,
i.e., without manual labeling. In Section 7.2, we con-
clude the evaluation by discussing factors that influence
the recall of our classifier.

7.1 Newly identified services

We train a naive Bayes classifier using the five features
identified in Table 5 and Adblock Plus blacklists from
August 2013, which corresponds to the up-to-date Ad-
block Plus blacklist at the time of recording the ana-
lyzed traffic. Then we apply our classifier to the data
we just learned from. We point out that this does not
correspond to traditional machine learning evaluation

Table 6. Complementing Adblock Plus’ blacklists.

(a) Comparison to Adblock Plus. Services that are identified by
our classifier are shown in the left columns, services that are not
identified by our classifier but that are listed by Adblock Plus are
shown in the two rightmost columns.
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methodology. However, our aim is not to statistically
evaluate the classifier but to find services that Adblock
Plus misses without manually labeling a training set.

Our aim is to build a conservative classifier, there-
fore we use the Adblock Plus category ABPexact for
training, which only contains exact domain matches (see
Section 4.3.1). For the evaluation of our classifier, we
later compare the identified services with ABPpartial.
Hence, we only claim that our classifier has identified a
new privacy-intrusive second level-domain, if no subdo-
main has already been blocked by Adblock Plus.

We conduct the described analysis separately for
Services ≥ 5 clients and Services ≥ 100 clients. The re-
sults are listed in Table 6a. In Services ≥ 100 clients,
our detector identifies 421 privacy-intrusive services. 86
of these are not listed by ABPpartial. Manual verifica-
tion of these services (see Table 6b) shows that indeed
more than 60% are distinct advertisement and analyt-
ics services. In Services ≥ 5 clients, our detector iden-
tifies 1081 privacy-intrusive services, 410 of these are
not listed by ABPpartial. We randomly sample 10% of
the newly identified services and classify them manu-
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ally. We find that 46% of the services in this random
sample are indeed advertisement and analytics services
not listed by ABPpartial. Therefore, we estimate that
our approach identifies in the order of 200 new adver-
tisement and analytics services.

At the same time, our classifier misses 627 services
that were originally marked as advertisement and ana-
lytics services in the learning set. As the Web landscape
is very diverse, it is not surprising that our automated
classifier, which is only based on high-level HTTP traf-
fic statistics, can not compete with a manually compiled
blacklist in terms of recall.

We also compare our classification results to Ad-
block Plus blacklists as of February 2015. We find
that 70 services that our approach would have iden-
tified in 2013 but that were not listed by ABPpartial at
that time, have in the meantime been added to Ad-
block Plus. Further, our classifier finds a number of
Web site utility services as well as shopping and auc-
tion platforms. We analyze the corresponding services
in Services ≥ 100 clients and find that they differ espe-
cially regarding the feature #referers/req from the av-
erage Web service. Many of these services have a higher
value for this feature than the average Web service. The
reason why so many Web shopping sites match the con-
ditions applied by our detector is that these Web ser-
vices host advertisements or other elements related to
their online shops and these objects are included by
other Web sites. Also many Web site utility services
such as flattr.com and user centric services such as gra-
vatar.com behave in terms of our statistics similar to
advertisement and analytics services. While Flattr ex-
plicitly state on their blog that they do not use the
collected data to track users, we found no such state-
ment for Gravatar and thus do not know whether they
exploit their good vantage point for user tracking. Yet,
these services also provide utility which may be useful
to some users. Consequently, different users may have
different opinions about the privacy trade-off of each of
these services.

Note however that services offering Web site util-
ity functionality do not always stand out so clearly: the
popular online social networks (OSNs) Google, Face-
book and Twitter all provide some kind of “like-button”,
which they also use to track users. Our classifier cannot
detect these OSN trackers because their request mix is
dominated by clients interacting directly with these ser-
vices.
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Fig. 7. Histogram of #clients accessing a service vs. number
of advertisement and analytics services listed by ABPexact and
identified by our classifier for dataset Services ≥ 5 clients. Every
histogram bin relies on 2.1k services.

7.2 Impact of service popularity on recall

As our classifier misses a large number of services that
were in the original learning set, we investigate recall
with respect to the number of clients (#clients) access-
ing a service and the number of other services embed-
ding a service’s content (#referers).

Figure 7 shows the distribution for #clients. The
figure shows that most listed Adblock Plus services can
be found among the Web services accessed by many
clients. At the same time, our classifier also identifies
most privacy-intrusive services among the popular Web
services. The distribution for #referers is very similar.
We conclude that our methodology will mainly iden-
tify privacy-intrusive services accessed by many clients
and being present on many Web sites, while unpopular
privacy-intrusive services are less likely to be identified.

8 Use cases
We envision two main use cases for the application of
our method: global and local use.

8.1 Global use

As our method solely relies on high-level Web service
statistics, having a centralized repository of traffic
statistics for every Web service, aggregated from con-
tributions of volunteers, is sufficient to perform both
the machine learning phase as well as the subsequent
application of the classifier on individual Web services.
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For example, the Mozilla Lightbeam project aims
at building exactly such a centralized repository with
the help of a browser plug-in [34]. With its current data
format (data_format.v1.2.md4), the Lightbeam plug-
in collects all relevant features except for byte counts,
but it does no longer transmit data to the Lightbeam
database as of January 2015. Further, also anti-virus
software vendors that collect statistics on Web sites vis-
ited by their users could collect corresponding service
features.

In order to find new candidates for blacklists, a
blacklist maintainer could (i) regularly download ag-
gregated Web service statistics from a corresponding
crowd-sourced database, (ii) train a classifier by using
the downloaded statistics and an existing blacklist as
reference5 , and (iii) apply the classification model to
the downloaded statistics to find new candidates.

Required statistics are calculated per Web service
and per Web service and user (to count the number of
users visiting a Web service), but no statistics need to
be calculated per individual user. This has the advan-
tage that there is no need to store the mapping between
a global user identifier and the visited services. That
is, a browser plug-in that submits statistics to a cor-
responding crowd-sourced database can use a different
user identifier for every Web service and the informa-
tion that a crowd-sourced database needs to provide
to calculate our features is not sufficient to build user
browsing profiles.

8.2 Local use

As second use case, organizations can collect traffic
statistics from their own proxy servers or egress gate-
ways. Then, they can either build a classifier by learning
the required feature distributions from their own traffic
or by using feature distributions collected in a different
network, as the ones we present. All that is required
to train a naive Bayes classifier are the distributions
and the prior probability as presented in Figure 5. The
benefit of applying our technique locally is that an orga-

4 https://github.com/mozilla/lightbeam/blob/master/doc/
data_format.v1.2.md, Last updated: 2014-05-08
5 In order to train a classifier, statistics about traffic to black-
listed and other Web services need to be available. If all known
blacklisted services have been blocked and statistics on black-
listed services are no longer available, one can alternatively use
probability distributions recorded earlier or in a different net-
work, as the ones we present in Figure 5.

nization can identify privacy-intrusive services that are
specific to their traffic and not listed on general black-
lists.

9 Related Work
Mayer and Mitchell provide a survey [32] of policies,
technologies, and risks involved in Web tracking. In ad-
dition, we discuss selected works related to ours in the
rest of this section.

HTTP traffic characterization
The characterization of HTTP traffic, especially with
respect to accessed Web sites, downloaded objects, and
implications on caching is a long-lived and well-explored
topic [4, 5, 8, 10, 14, 22, 31]. In contrast, we aim at
identifying privacy-intrusive Web services.

Traffic classification using machine learning
Applying machine learning for classifying network traf-
fic is not new. Karagiannis et al. [23] analyze traffic pat-
terns at the social, functional, and application level al-
lowing them to classify 80-90% of the traffic with more
than 95% accuracy. However, while one of their cate-
gories is “Web”, they do not distinguish different types
of Web services. Salgarelli et al. [49] discuss how to re-
produce traffic classification results and how to evaluate
classifier performance. Bernaille et al. [6] apply machine
learning to classify traffic only based on the first five
packets of a TCP connection. Among other categories,
they distinguish between HTTP and HTTPS, but they
do no further classify Web services. Kim et al. [24] com-
pare several classification methods and show how differ-
ent approaches can be combined to achieve better per-
formance. In contrast to these works, we focus on Web
traffic and apply machine learning to identify unlisted
advertisement and analytics services.

Tracking and privacy
Web tracking and privacy received considerable atten-
tion in the scientific community over the past years, cov-
ering general problems related to tracking [25], charac-
terizing the information leakage to third parties [26, 27],
characterizing the third parties themselves [48], and cor-
responding mitigation strategies [26, 27, 48]. All of these
approaches are based on active measurement towards a

https://github.com/mozilla/lightbeam/blob/master/doc/data_format.v1.2.md
https://github.com/mozilla/lightbeam/blob/master/doc/data_format.v1.2.md
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limited number of top Web sites, focusing on the largest
Web trackers. In contrast, we utilize machine learning to
automatically pin-point a large amount of Web trackers,
thus complementing existing blacklists and leading to a
better understanding of the overall tracker landscape.

Tran et al. [54] use JavaScript tainting to find track-
ers of privacy-relevant information, and can pin-point
one tracking Web site in addition to the services listed
by Ghostery. In contrast, our machine learning approach
reveals more than 400 new sites showing tracker-like be-
havior, and based on a random sample we estimate that
46% are indeed traditional advertisement and analytics
services.

The advertisement ecosystem
Recently, researchers started investigating the eco-
nomics behind Web advertisement, including modeling
the user’s value to advertisement companies [18] and ex-
tracting pricing information from the real-time bidding
process for advertisement placement [36].

Evading trackers
Different solutions exist to evade trackers, including
blocking of JavaScript execution [43], blocking the ac-
cess to certain URLs or domains [12, 41, 42, 46], shar-
ing Internet-facing IP addresses [12, 53], or suppressing
referer headers using a browser plug-in6 . Not all ap-
proaches are sufficient on their own. Our machine learn-
ing technique aims at complementing the blacklists used
by various tools that selectively block Web requests.

Predictive blacklisting
There is a large body of related work on predictive
blacklisting. Predictive blacklisting strategies intend to
forecast attack sources, such as URLs for phishing at-
tacks [44]. Zhang et al. [56] present an approach called
highly predictive blacklisting, which applies a page
rank-style algorithm to identify malicious IP addresses.
Their approach has been integrated in DShield, a pop-
ular community-based firewall log correlation system.
Ma et al. [29] propose a machine learning approach to
detect malicious Web sites from suspicious URLs. The

6 For example, see https://addons.mozilla.org/en-US/firefox/
search/?q=referer (accessed: 2015-05-14) for Mozilla Fire-
fox and https://chrome.google.com/webstore/search/referer?
_category=extensions (accessed: 2015-05-14) for Chrome .

classification of the Web sites is based on host-based
and lexical features, such as WHOIS, domain name, IP
address and geographic properties. They achieve a clas-
sification accuracy of 95-99%.

Pao et al. [37] distinguish between malicious and
benign Web sites by estimating the conditional Kol-
mogorov complexity of URL strings. Ma et al. [30] gen-
erate personalized, predictive blacklists for individual
networks by correlating previous attacks captured in a
honeynet. Finally, Soldo et al. [51] propose a blacklist-
ing recommendation system which is based on a time-
series model that accounts for temporal dynamics and
two neighborhood-based models.

Unlike related work, we focus on privacy-intrusive
Web services such as advertisement services and track-
ers which do not perform severe attacks. Hence, we do
not necessarily need to prevent any access to such ser-
vices, but can allow for some accesses in order to investi-
gate the HTTP traffic to/from the investigated service.
Therefore, our methodology fundamentally differs from
related work on predictive blacklisting.

Other work
The Mozilla Lightbeam browser plug-in [34] collects
connection data and visualizes third parties in an inter-
active graph. Lightbeam does not support classification
of Web sites yet. However, our approach could work on
the collected data to identify trackers (see Section 8).

10 Conclusion
In this work, we investigate which statistical HTTP
traffic features and classifiers are suitable to identify
privacy-intrusive services. We find a naive Bayes clas-
sifier with a set of five features to work best, achiev-
ing a precision and recall of up to 83% and 85%, re-
spectively. By training our classifier on existing Ad-
block Plus blacklists, we find more than 400 new possi-
bly privacy-intrusive services. Manual verification shows
that around 200 of the suggested services are indeed tra-
ditional advertisement and analytics services. Among
the other services, we mainly find shopping sites pro-
viding advertisement content, as well as Web site and
user utility services. The Web site and user utility ser-
vices often only provide marginal functionalities such as
a global avatar. It is an open question if these services
should be classified as privacy-intrusive.

https://addons.mozilla.org/en-US/firefox/search/?q=referer
https://addons.mozilla.org/en-US/firefox/search/?q=referer
https://chrome.google.com/webstore/search/referer?_category=extensions
https://chrome.google.com/webstore/search/referer?_category=extensions
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We evaluate our technique using traffic traces cap-
tured on a central gateway of a large campus network.
Organizations can directly profit from our results by
implementing our approach in a similar way. Our ap-
proach can also work with data collected in a distributed
fashion, hence, we believe that also individual users can
profit from our results.

Acknowledgement
This work was partially supported by the Zurich Infor-
mation Security Center. It represents the views of the
authors.

References
[1] J. Abbatiello. RefControl – Firefox Add-on. https://addons.

mozilla.org/de/firefox/addon/refcontrol. Accessed: 2015-02-
14.

[2] G. Acar, C. Eubank, S. Englehardt, M. Juarez,
A. Narayanan, and C. Diaz. The web never forgets: Per-
sistent tracking mechanisms in the wild. In Proc. CCS ’14,
pages 674–689, 2014.

[3] L. Andrews. Facebook Is Using You. New York Times
(2012-02-04), http://www.nytimes.com/2012/02/05/
opinion/sunday/facebook-is-using-you.html. Accessed:
2015-02-14.

[4] M. F. Arlitt and C. L. Williamson. Web server workload
characterization: the search for invariants. In Proc. SIG-
METRICS ’96, pages 126–137, 1996.

[5] P. Barford, A. Bestavros, A. Bradley, and M. Crovella.
Changes in web client access patterns: Characteristics and
caching implications. World Wide Web, 2(1-2):15–28, 1999.

[6] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and
K. Salamatian. Traffic classification on the fly. SIGCOMM
Comput. Commun. Rev., 36(2):23–26, Apr. 2006.

[7] C. M. Bishop. Pattern recognition and machine learning.
Springer, 2006.

[8] M. Butkiewicz, H. V. Madhyastha, and V. Sekar. Under-
standing website complexity: Measurements, metrics, and
implications. In Proc. IMC ’11, pages 313–328, 2011.

[9] R. Cookson. Google, Microsoft and Amazon pay to get
around ad blocking tool. Financial Times (2015-02-01),
http://www.ft.com/cms/s/0/80a8ce54-a61d-11e4-9bd3-
00144feab7de.html. Accessed: 2015-02-15.

[10] M. E. Crovella and A. Bestavros. Self-similarity in world
wide web traffic: evidence and possible causes. IEEE/ACM
Trans. Netw., 5(6):835–846, 1997.

[11] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hoče-
var, M. Milutinovič, M. Možina, M. Polajnar, M. Toplak,
A. Starič, M. Štajdohar, L. Umek, L. Žagar, J. Žbontar,
M. Žitnik, and B. Zupan. Orange: Data mining toolbox in
python. Journal of Machine Learning Research, 14:2349–

2353, 2013.
[12] Disconnect | Online Privacy & Security. https://disconnect.

me/.
[13] P. Domingos and M. Pazzani. On the optimality of the

simple bayesian classifier under zero-one loss. Machine
learning, 29(2-3):103–130, 1997.

[14] F. Douglis, A. Feldmann, B. Krishnamurthy, and J. Mogul.
Rate of change and other metrics: a live study of the world
wide web. In Proc. USENIX Symp. on Internet Technologies
and Systems, Dec. 1997.

[15] U. M. Fayyad and K. B. Irani. Multi-interval discretization
of continuous-valued attributes for classification learning. In
Proc. 13th Int. Joint Conf. on Artificial Intelligence, pages
1022–1027, 1993.

[16] M. Fertik. The Rich See a Different Internet Than the
Poor. Scientific American Volume 308, Issue 2, http:
//www.scientificamerican.com/article/rich-see-different-
internet-than-the-poor/. Accessed: 2015-02-14.

[17] R. Fielding and J. Reschke. Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content. RFC 7231.

[18] P. Gill, V. Erramilli, A. Chaintreau, B. Krishnamurthy,
K. Papagiannaki, and P. Rodriguez. Follow the money: Un-
derstanding economics of online aggregation and advertising.
In Proc. IMC ’13, pages 141–148, 2013.

[19] D. Gugelmann, B. Ager, and V. Lenders. Towards classifying
third-party web services at scale. In Proc. CoNEXT Student
Workshop ’14, pages 34–36, 2014.

[20] T. Hastie, R. Tibshirani, and J. Friedman. The elements of
statistical learning, volume 2. Springer, 2009.

[21] R. Hill. Comparative benchmarks against widely used
blockers: Top 15 Most Popular News Websites. https:
//github.com/gorhill/httpswitchboard/wiki/Comparative-
benchmarks-against-widely-used-blockers:-Top-15-Most-
Popular-News-Websites. Accessed: 2015-02-13.

[22] S. Ihm and V. S. Pai. Towards understanding modern web
traffic. In Proc. IMC ’11, pages 295–312, 2011.

[23] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc:
multilevel traffic classification in the dark. SIGCOMM Com-
put. Commun. Rev., 35(4):229–240, 2005.

[24] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos,
and K. Lee. Internet traffic classification demystified: Myths,
caveats, and the best practices. In Proc. ACM CoNEXT ’08,
pages 11:1–11:12, 2008.

[25] B. Krishnamurthy. I know what you will do next summer.
SIGCOMM Comput. Commun. Rev., 40(5):65–70, 2010.

[26] B. Krishnamurthy, D. Malandrino, and C. E. Wills. Mea-
suring privacy loss and the impact of privacy protection in
web browsing. In Proc. 3rd Symp. on Usable Privacy and
Security (SOUPS ’07), pages 52–63, 2007.

[27] B. Krishnamurthy, K. Naryshkin, and C. E. Wills. Privacy
leakage vs. protection measures: the growing disconnect. In
Proc. Web 2.0 Security and Privacy Workshop, 2011.

[28] T. Libert. Privacy implications of health information seeking
on the web. Commun. ACM, 58(3):68–77, 2015.

[29] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond
blacklists: Learning to detect malicious web sites from sus-
picious urls. In Proc. 15th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, KDD ’09, pages
1245–1254, 2009.

https://addons.mozilla.org/de/firefox/addon/refcontrol
https://addons.mozilla.org/de/firefox/addon/refcontrol
http://www.nytimes.com/2012/02/05/opinion/sunday/facebook-is-using-you.html
http://www.nytimes.com/2012/02/05/opinion/sunday/facebook-is-using-you.html
http://www.ft.com/cms/s/0/80a8ce54-a61d-11e4-9bd3-00144feab7de.html
http://www.ft.com/cms/s/0/80a8ce54-a61d-11e4-9bd3-00144feab7de.html
https://disconnect.me/
https://disconnect.me/
http://www.scientificamerican.com/article/rich-see-different-internet-than-the-poor/
http://www.scientificamerican.com/article/rich-see-different-internet-than-the-poor/
http://www.scientificamerican.com/article/rich-see-different-internet-than-the-poor/
https://github.com/gorhill/httpswitchboard/wiki/Comparative-benchmarks-against-widely-used-blockers:-Top-15-Most-Popular-News-Websites
https://github.com/gorhill/httpswitchboard/wiki/Comparative-benchmarks-against-widely-used-blockers:-Top-15-Most-Popular-News-Websites
https://github.com/gorhill/httpswitchboard/wiki/Comparative-benchmarks-against-widely-used-blockers:-Top-15-Most-Popular-News-Websites
https://github.com/gorhill/httpswitchboard/wiki/Comparative-benchmarks-against-widely-used-blockers:-Top-15-Most-Popular-News-Websites


An Automated Approach for Complementing Ad Blockers’ Blacklists 298

[30] X. Ma, J. Zhu, Z. Wan, J. Tao, X. Guan, and Q. Zheng.
Honeynet-based collaborative defense using improved highly
predictive blacklisting algorithm. In 8th World Congr. on In-
telligent Control and Automation, WCICA ’10, pages 1283–
1288, 2010.

[31] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On
dominant characteristics of residential broadband internet
traffic. In Proc. IMC ’09, pages 90–102, 2009.

[32] J. R. Mayer and J. C. Mitchell. Third-party web tracking:
Policy and technology. In Proc. SP ’12, pages 413–427,
2012.

[33] J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris. De-
tecting price and search discrimination on the internet. In
Proc. HotNets-XI ’12, pages 79–84, 2012.

[34] Mozilla | Lightbeam for Firefox. https://www.mozilla.org/
en-US/lightbeam/. Accessed: 2015-04-28.

[35] L. Olejnik, C. Castelluccia, and A. Janc. Why johnny can’t
browse in peace: On the uniqueness of web browsing history
patterns. In Proc. HotPETs ’12, 2012.

[36] L. Olejnik, T. Minh-Dung, and C. Castelluccia. Selling off
privacy at auction. In Proc. NDSS ’14, 2014.

[37] H.-K. Pao, Y.-L. Chou, and Y.-J. Lee. Malicious url detec-
tion based on kolmogorov complexity estimation. In Proc.
Int. Conf. on Web Intelligence and Intelligent Agent Tech-
nology, WI-IAT ’12, pages 380–387, 2012.

[38] V. Paxson. Bro: a system for detecting network intruders in
real-time. Computer Networks, 31(23-24):2435–2463, 1999.

[39] D. Peck. They’re Watching You at Work. The Atlantic
(2013-11-20), http://www.theatlantic.com/magazine/
archive/2013/12/theyre-watching-you-at-work/354681/.
Accessed: 2015-02-14.

[40] Adblock. https://getadblock.com.
[41] Adblock Plus. https://adblockplus.org.
[42] Ghostery. https://www.ghostery.com.
[43] NoScript. https://noscript.net.
[44] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta.

Phishnet: Predictive blacklisting to detect phishing attacks.
In Proc. INFOCOM ’10, pages 1–5, 2010.

[45] R. Pries, Z. Magyari, and P. Tran-Gia. An http web traffic
model based on the top one million visited web pages. In
Proc. EURO-NGI Conf. Next Generation Internet (NGI),
pages 133–139, 2012.

[46] Electronic Frontier Foundation | Privacy Badger. https:
//www.eff.org/de/node/73969. Accessed: 2015-02-13.

[47] J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kaufmann Publishers Inc., 1993.

[48] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
defending against third-party tracking on the web. In Proc.
NSDI ’12, 2012.

[49] L. Salgarelli, F. Gringoli, and T. Karagiannis. Comparing
traffic classifiers. SIGCOMM Comput. Commun. Rev.,
37(3):65–68, 2007.

[50] L. Scism and M. Maremont. Insurers Test Data Pro-
files to Identify Risky Clients. Wall Street Jour-
nal (2010-11-19), http://www.wsj.com/articles/
SB10001424052748704648604575620750998072986. Ac-
cessed: 2015-02-14.

[51] F. Soldo, A. Le, and A. Markopoulou. Blacklisting rec-
ommendation system: Using spatio-temporal patterns to
predict future attacks. J. on Selected Areas in Commun.,

29(7):1423–1437, 2011.
[52] Tcpdump/Libpcap. http://www.tcpdump.org.
[53] Tor | Anonymity Online. https://www.torproject.org.
[54] M. Tran, X. Dong, Z. Liang, and X. Jiang. Tracking the

trackers: Fast and scalable dynamic analysis of web content
for privacy violations. In Proc. Conf. on Applied Cryptogra-
phy and Network Security, ACNS ’12, pages 418–435, 2012.

[55] H. Zhang. The Optimality of Naive Bayes. In Proc. FLAIRS
’04, 2004.

[56] J. Zhang, P. A. Porras, and J. Ullrich. Highly predictive
blacklisting. In Proc. USENIX Security ’08, 2008.

https://www.mozilla.org/en-US/lightbeam/
https://www.mozilla.org/en-US/lightbeam/
http://www.theatlantic.com/magazine/archive/2013/12/theyre-watching-you-at-work/354681/
http://www.theatlantic.com/magazine/archive/2013/12/theyre-watching-you-at-work/354681/
https://getadblock.com
https://adblockplus.org
https://www.ghostery.com
https://noscript.net
https://www.eff.org/de/node/73969
https://www.eff.org/de/node/73969
http://www.wsj.com/articles/SB10001424052748704648604575620750998072986
http://www.wsj.com/articles/SB10001424052748704648604575620750998072986
http://www.tcpdump.org
https://www.torproject.org

	An Automated Approach for ComplementingAd Blockers' Blacklists
	1 Introduction
	2 Background
	2.1 User profiling by third-party Web services
	2.2 Protection against tracking

	3 Experimental design
	3.1 Objective
	3.2 Procedure
	3.3 HTTP traffic features
	3.4 Granularity of analysis

	4 Dataset
	4.1 Experimental data
	4.1.1 Overview
	4.1.2 Subsets

	4.2 Protecting user privacy during analysis
	4.3 Web service labeling
	4.3.1 Adblock Plus blacklists
	4.3.2 Manual labeling


	5 Properties of blacklisted Web services
	5.1 Information gain and Pearson correlation
	5.2 Distributions

	6 Constructing a classifier
	6.1 Selecting a machine learning technique
	6.2 Feature reduction

	7 Complementing Adblock Plus' blacklists
	7.1 Newly identified services
	7.2 Impact of service popularity on recall

	8 Use cases
	8.1 Global use
	8.2 Local use

	9 Related Work
	10 Conclusion


