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Abstract: The I owe you (IOU) credit network Ripple
is one of the most prominent alternatives in the bur-
geoning field of decentralized payment systems. Ripple’s
path-based transactions set it apart from cryptocurren-
cies such as Bitcoin. Its pseudonymous nature, while
still maintaining some regulatory capabilities, has moti-
vated several financial institutions across the world to
use Ripple for processing their daily transactions. Nev-
ertheless, with its public ledger, a credit network such
as Ripple is no different from a cryptocurrency in terms
of weak privacy; recent demonstrative deanonymization
attacks raise important concerns regarding the privacy
of the Ripple users and their transactions. However, un-
like for cryptocurrencies, there is no known privacy solu-
tion compatible with the existing credit networks such
as Ripple.
In this paper, we present PathShuffle, the first path
mixing protocol for credit networks. PathShuffle is fully
compatible with the current credit networks. As its es-
sential building block, we propose PathJoin, a novel pro-
tocol to perform atomic transactions in credit networks.
Using PathJoin and the P2P mixing protocol DiceMix,
PathShuffle is a decentralized solution for anonymizing
path-based transactions. We demonstrate the practical-
ity of PathShuffle by performing path mixing in Ripple.
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1 Introduction
Decentralized cryptocurrencies such as Bitcoin [46] and
Ethereum [28] as well as credit networks such as Rip-
ple [11] and Stellar [12] provide financial settlement solu-
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tions that are revolutionizing the finance industry glob-
ally. Their use of pseudonymous identities and transac-
tions, their ability to settle transactions worldwide at a
small consistent fee, and their potential to monetize ev-
erything regardless of jurisdiction [47] have been pivotal
to their success.
Credit Networks. In a credit network [27, 29, 34] such as
Ripple [11] and Stellar [12], users extend trust to others
in terms of I Owe You (IOU) credit. This enables trans-
actions between two connected users by appropriately
settling IOU credit across the trust path connecting
them. From a practical perspective, this endows credit
networks with a unique capability of performing same
and cross-currency settlement transactions between fiat
currencies, cryptocurrencies and even user-defined cur-
rencies at a very low cost in few seconds [24].

Ripple has gained unprecedented traction over the
last years and several financial institutions worldwide
are adopting Ripple in their transaction backbone [5,
10, 26, 32, 37, 50, 56]. Ripple, however, is not lim-
ited to banks or fiat currencies. Ripple supports cross-
currency transactions where the payer and payee spec-
ify the amount of IOU to be transacted in their own
preferred currency, including cryptocurrencies such as
Bitcoin. Therefore, all merchants accepting Bitcoin pay-
ments can now accept payments through Ripple [7].
Moreover, Ripple supports user-defined currencies, such
as Goodwill [47], a currency traded in exchange for so-
cially valuable services (e.g., an interesting forum post).
Currently, the Ripple network caters to over 200 thou-
sand user wallets and serves a daily transaction volume
over $1 million [8].

Besides Ripple, Stellar is a second example of a
credit network that has been deployed in practice. How-
ever, Stellar is still at an early stage and has not been
widely adopted yet [13]. For the sake of concreteness,
we focus on the Ripple network in this work, but we
note that all our techniques apply to credit networks in
general, including Stellar.
Privacy Challenges and Related Work. While the Rip-
ple network offers a multitude of benefits and capabil-
ities to the financial industry, the public nature of its
transaction ledger exposes its individual users, groups,
organizations, and companies to the same severe privacy
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attacks as already observed in Bitcoin [15, 17, 36, 40, 41,
48, 57]. A recent study [45] makes this privacy concern
justifiable by showing that a significant portion of Rip-
ple transactions today can be easily deanonymized such
that everybody can determine who paid what to whom.

Moreno-Sanchez et al. [44] show the first solution
that prevents deanonymization in credit networks. Their
solution leverages trusted hardware to enforce strong
privacy guarantees by accessing the credit network by
means of a data-oblivious algorithm hiding the access
pattern. Although this solution provides strong privacy
guarantees, it is not compatible with the current trust
philosophy of Ripple.

Recently, Malavolta et al. [38] propose an alter-
native solution to the same problem by completely
avoiding the ledger. Instead, every user logs the credit
changes on her own credit links and transactions are
jointly performed by users in the path from sender to
receiver. Although this approach also enforces strong
privacy guarantees, a setting without ledger breaks com-
patibility with the current ledger-based Ripple network.

In the realm of Bitcoin and other cryptocurrencies,
several solutions [17, 18, 20, 21, 30, 31, 35, 39, 42, 51,
52, 61–64] have been proposed to overcome similar pri-
vacy issues: These solutions (e.g., Zerocoin [42] and Ze-
rocash [18]) are tailored to the specifics of blockchain-
based cryptocurrencies. Given the fundamental differ-
ences between credit networks and cryptocurrencies
(see Section 2.1), it remains an interesting future work
to study whether it is feasible to adapt the underlying
ideas of these strong solutions to credit networks.

For example, it is conceivable that simple central-
ized mixing protocols such as Mixcoin [21] and Blind-
coin [61], which do not rely on smart contracts, can
be adapted to Ripple with non-trivial modifications. In
these solutions, the mixing server can steal coins from
the users, although such theft is accountable. In this
work, instead, we instead strive for a solution where
no theft is possible in the first place, and all existing
theft-resistant mixing protocols for cryptocurrencies ei-
ther rely on multi-input-multi-output transactions [39,
51, 52] or on script-based smart contracts [30, 31, 35, 64],
none of which are supported in credit networks such as
Ripple. Therefore, none of the privacy-enhancing tech-
nologies proposed for cryptocurrencies are directly appli-
cable to path-based transactions in the Ripple network.
Contributions. We present PathShuffle, the first mixing
protocol for path-based transactions in credit networks.
Our contribution consists of the following parts.

– We introduce path mixing, our approach for anony-
mous transactions in credit networks. Our key ob-
servation is that IOU transaction paths that share
a common node can be mixed.

– We propose PathJoin, a protocol to perform multi-
input-multi-output transactions, which enables that
n users transfer credit atomically from their in-
put to their output wallets, thereby solving a stan-
dard fairness problem in mixing. PathJoin combines
functionality available in Ripple and a distributed
signature scheme. Atomic multi-input-multi-output
transactions are interesting on their own for other
applications, e.g., crowdfunding.

– We propose PathShuffle, the first decentralized path
mixing protocol for credit networks. PathShuffle
combines the DiceMix [52] P2P (message) mixing
protocol with PathJoin, our novel protocol to per-
form atomic transactions in Ripple. In doing so,
PathShuffle is asymptotically as efficient as the most
efficient P2P Bitcoin mixing protocol in the liter-
ature [52]: it requires five rounds to perform set-
tlement transactions anonymously over intersecting
paths independently on the number of users partici-
pating in the path mixing, and 5 + 3f rounds in the
presence of f disrupting users.

– Finally, we demonstrate with our proof-of-concept
implementation that PathShuffle is fully compati-
ble with Ripple. In particular, we have successfully
carried out a mixing transaction in the real Ripple
network. Moreover, PathShuffle can be generally
applicable to other credit networks such as Stellar.

Organization. The rest of the paper is organized as fol-
lows. Section 2 gives the required background on credit
networks, their anonymity issues, and multi-input-multi-
output transactions. Section 3 defines path mixing and
its desired properties. Section 4 describes the key ideas
underlying our solution. Section 5 describes PathJoin
and Section 6 gives the details of PathShuffle. Fi-
nally, Section 7 concludes this work.

2 Background

2.1 Ripple as a Credit Network

Credit Networks. A credit network is a weighted, di-
rected graph G = (V,E), where V is a set of wallets
(user accounts) and E is a set of I Owe You (IOU) credit
links between wallets. A credit link (u1, u2) ∈ E is la-



PathShuffle: Credit Mixing and Anonymous Payments for Ripple 112

beled with a dynamic non-negative scalar value αu1,u2

denoting the amount of unconsumed credit that u1 has
extended to u2 (i.e., u1 owes αu1,u2 to u2). The avail-
able credit on an edge is lower-bounded by 0. Moreover,
every credit link can additionally have an upper bound
if adopted by the wallet owner.

A credit network is equipped with four operations:
chgLink modifies the amount of IOU in a credit link;
testLink allows to check the credit available in a single
link; pay allows to transfer IOU between two wallets
only across credit paths connecting those two wallets;
test checks the available IOU along credit paths con-
necting two wallets.

A wallet can be used as an intermediate hop in
a credit path to forward IOU from the incoming link
to the outgoing link. This operation is called rippling
(see [14] for details). In case a wallet wants to avoid un-
expected (or even malicious) credit balances shifts, rip-
pling can be deactivated. We use such feature of credit
networks in one of our protocols.
The Ripple Network. The Ripple network is an instan-
tiation of a generic credit network as defined above.

As in cryptocurrencies, a wallet in Ripple is associ-
ated with a verification key and its corresponding sign-
ing key. The wallet is then labeled with an encoding
of the hashed verification key. A Ripple transaction con-
tains a single sender and a single receiver. A transaction
is valid when signed using the sender’s signing key.

Assume that u1 wants to transfer β IOU to un and
that u1 and un are connected through a path of the
form u1 – . . . – ui – . . . – un. In the path finding algo-
rithm, links are considered as undirected. However, the
transaction is performed by updating the credit on each
link depending on its direction as follows: Links in the
direction from u1 to un are increased by β, while reverse
links are decreased by β. A transaction is successful if
no link is reduced to a value less than 0 and no link ex-
ceeds the pre-defined upper bound on the link (if other
than∞). A transaction can be split among several paths
such that the sum of credit available on all paths is at
least β. Such a transaction contains one sender and one
receiver but several paths from sender to receiver, along
with the amount of IOU to be transferred in each path.
We refer to [16, 45] for a more detailed description.

Ripple transactions are collected by Ripple valida-
tors. These publicly known validators run the Ripple
Consensus Algorithm [54] to agree on the set of valid
transactions. A transaction accepted by a majority of
the validators is then applied in the Ripple network.

A new wallet in the Ripple network needs to receive
IOU on a credit link to interact with other wallets. The
Ripple network solves this bootstrapping problem by in-
troducing gateways. A gateway is a well-known reputed
service with a wallet in the Ripple network that sev-
eral wallets can trust to create and maintain a credit
link in a correct and consistent manner. To bootstrap,
a user can send funds to the gateway (outside of the
Ripple network) and the wallet of the gateway will ex-
tend credit to the wallet of the user (in the Ripple net-
work). As gateways wallets are highly connected nodes,
the thereby created credit link allows the new wallet to
interact with the rest of the Ripple network.
Comparison with Cryptocurrencies. Bitcoin [46] is a
decentralized cryptocurrency that supports online de-
centralized payments for the first time. Following the
Bitcoin philosophy, several competitor cryptocurrencies
have been created [1]. As Bitcoin and other cryptocur-
rencies, the Ripple network is a ledger-based consensus
system that allows to transfer funds between different
wallets. However, there are conceptual differences be-
tween cryptocurrencies and the Ripple network.

Most importantly, Ripple is not a currency by it-
self; it is a system that allows users to perform trans-
actions in several existing currencies, using IOU rela-
tions. While cryptocurrencies such as Bitcoin allow to
exchange funds between any two wallets in the system,
a transaction in the Ripple network requires the exis-
tence of a path with enough credit between the sender
and the receiver wallets.1

Additionally, Bitcoin supports a payment with mul-
tiple senders and receivers and has a built-in script lan-
guage. Ripple, instead, does not define any script lan-
guage and transactions are limited to a single sender
and a single receiver.

2.2 Deanonymization Attacks in the
Ripple Network

Recently, Moreno-Sanchez et al. [45] showed that the
public nature of the Ripple ledger can be used to defeat
the anonymity supposedly provided by the pseudony-

1 Technically, Ripple has its own native currency (XRP) to sup-
port direct payments without a credit path between two wallets.
This currency is used to organize transactions fees for non-XRP
transactions and other fees used to prevent DoS attacks in the
Ripple network. In the following, we focus on path-based trans-
actions and discuss direct XRP payments in Appendix A.
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mous identities in the Ripple network. In the following,
we present a brief overview of the two proposed heuris-
tics to identify wallets that belong to the same user.

First, the authors studied the interaction of users
with online currency exchanges in order to deposit (or
withdraw) cryptocurrencies to (or from) the Ripple net-
work. In a deposit operation, a user pays to an online
exchange a certain amount of bitcoins in the form of a
Bitcoin transaction, and the online exchange issues the
corresponding Bitcoin IOU to the user in the form of a
Ripple transaction. The authors showed that it is possi-
ble to link Bitcoin and Ripple wallets belonging to the
same user by examining such interactions in the publicly
available Bitcoin and Ripple ledgers: The sender wallet
in the Bitcoin transaction and the receiver wallet in the
Ripple transaction belong to the same user, and the re-
maining two wallets belong to the online exchange.

Second, they studied the interactions among wal-
lets in the Ripple network that implement the hot-cold
wallet mechanism: A cold wallet is used as a reserve of
IOU (with signing keys securely stored on offline hard-
ware) while a hot wallet is used to perform the daily
transactions (with signing keys in memory). Once the
hot wallet runs out of IOU, the cold wallet is used to
top it off. The authors observed that a cold wallet can
be identified by examining the network topology as it
only has outgoing links, while the associated hot wal-
lets can then be identified by examining the transaction
patterns: The cold wallet only sends IOU to hot wallets.
Therefore, this technique can be used to link wallets be-
longing to the same user by examining the correlation
between transactions and the credit network topology.

The results of carrying out the two aforementioned
heuristics can be leveraged to deanonymize the user own-
ing a set of Ripple (and possibly cryptocurrency) wallets.
Overall, these results have attracted the attention of the
Ripple community [3]. Towards mitigating this privacy
breach, we observe that the heuristics rely primarily on
the fact that the attacker can easily link the sender and
the receiver of a Ripple transaction. In this work, we pro-
vide a protocol that breaks this linkability. This clearly
reduces the applicability of the above heuristics; never-
theless, it is interesting to study the effectiveness of our
protocol empirically as Ripple users start to use it.

2.3 CoinJoin: Coin Mixing in Bitcoin

CoinJoin [39] is a method in Bitcoin to join several trans-
actions into a single one: Instead of having n transac-
tions, each one transferring funds from an account ini

to an account outi, all these transfers are combined in
one single transaction.

The key feature of a CoinJoin transaction is the
atomicity: Either all transfers happen or none of them
happens. This all-or-nothing property is crucial in sev-
eral approaches for coin mixing [51, 52], because it guar-
antees fairness, which can be illustrated by a simple ex-
ample: Say Alice and Bob would like to mix one bitcoin
to gain some anonymity; Alice is supposed to send her
bitcoin to a freshly generated address of Bob and vice
versa. The obvious question is “who sends first?”, be-
cause the receiver of the first transaction may just keep
the money and refuse to send.

In Bitcoin (and similar cryptocurrencies), CoinJoin
is a very natural idea, because a transaction can have
several inputs and outputs. However, none of the cur-
rently deployed credit networks offer a similar function-
ality. In order to build such functionality, we observe
that anonymous transactions in Ripple can be achieved
by mixing the paths used in a set of transactions.

3 Path Mixing in Credit Networks
In this section, we first present path mixing, our ap-
proach to improve anonymity in credit networks. We
then describe the communication model, the security
and privacy goals, and the threat model.

3.1 Path Mixing

Assume that each user has a pair of wallets, that we
denote by input and output wallets. Furthermore, as-
sume that users participating in the path mixing proto-
col have agreed beforehand on mixing β IOU.
Functionality. In this setting, a path mixing protocol
transfers β IOU from every input wallet to every output
wallet so that an adversary controlling the network and
some of the participating users cannot determine the
pair of input and output wallets belonging to an honest
user. We denote this as a successful path mixing. Other-
wise, no IOU must be transferred from any input wallet
and the path mixing is unsuccessful.
Compatibility. The path mixing protocol must only re-
quire functionality already available in credit networks.
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3.2 Setup and Communication Model

We assume that users communicate to each other
through a bulletin board. Additionally, we assume the
bounded synchronous communication setting, where
time is divided in fixed epochs: Messages broadcast by a
user are available to all other users within the epoch and
absence of a message from a user in an epoch indicates
that the user is offline.

This bulletin board can seamlessly be deployed in
practice using already deployed Internet Relay Chat
(IRC) servers with appropriate extensions (see [52] for
details). The bulletin board can be alternatively imple-
mented by a reliable broadcast protocol [25, 58] at an
increased communication cost.

We assume that users participating in the path mix-
ing protocol have a verification/signing key pair (e.g.,
key pair for the input wallet). Moreover, we assume that
each user knows other users’ public verification keys and
that all users have agreed on mixing a fixed amount β
IOU prior to start executing the path mixing protocol.

Finally, we assume that there is a bootstrapping
mechanism in place for users to know other users willing
to carry out the path mixing protocol. A malicious
bootstrapping mechanism could hinder the anonymity
of an honest user by peering him with other users under
the attacker’s control. Although this is an important
threat in practice, we consider it orthogonal to our work.
Note that the fees needed to carry out the path mixing
limit the number of mixings that the attacker can join.

In practice, we envision that the bulletin board en-
abling the communication between users also offers a
service for users to register. The users could be then
grouped together to carry out the path mixing proto-
col following a transparent mechanism (e.g., based on
public randomness). Nevertheless, since it is an orthog-
onal problem, any bootstrapping mechanism with the
desired properties could be used in our work.

3.3 Security and Privacy Goals

Unlinkability. If the path mixing is successful, it should
not be possible for the attacker to determine which out-
put wallet belongs to which honest user.
Correct Balance. No matter whether the path mixing
is successful, the total credit available to a user should
not change (except for possible transaction fees).
Termination. If the bulletin board is honest, the path
mixing terminates successfully for all honest users.

3.4 Threat Model

We assume that the attacker controls an arbitrary num-
ber f of users participating in the path mixing protocol.

For unlinkability and correct balance we assume
that the attacker also controls the bulletin board (and
thus the network). The anonymity set of an honest
user is the set of all honest users. Thus, in order to
achieve any meaningful anonymity guarantee, we need
that f < n − 1. In other words, we do not consider
the n − 1 attack [55] in this work. Finally, for termina-
tion, we assume that the bulletin board is honest. Note
that termination as a liveness property is not achievable
against a malicious bulletin board which can just block
all network traffic.

4 Towards a Path Mixing Solution
In this section we first show a straw man approach for
path mixing to illustrate the challenges we have to over-
come. Then, we overview our approach, a decentralized
path mixing protocol.
A Straw Man Path Mixing Approach. Path mixing can
be achieved following a straw man approach as shown
in Fig. 1. Assume that all users participating in the
path mixing trust a third-party server to carry out the
required operations on their behalf. Further assume that
the server is a gateway in the Ripple network and that
there exists a path from every input wallet to the gate-
way’s wallet with a capacity of at least β IOU.

In this setting, first every user can send her output
wallet to the gateway using an authenticated, private
channel (e.g., TLS). An example of the protocol at this
step is shown in Fig. 1a. Second, every user can transfer
β IOU in the Ripple network from her input wallet to
the gateway’s wallet. Finally, the gateway, working as
a mixing proxy, creates a credit link from each output
wallet to the gateway’s wallet with a credit upper limit
of β IOU. In this manner, now every user can perform a
transaction for up to β IOU using the gateway’s wallet
as the first hop in the transaction path (see Fig. 1b).

For every user i, the gateway must create a credit
link from the output wallet VKout [i] to its own wallet
of the form vkgw ← VKout [i] (i.e., VKout [i] owes credit
to vkgw) to ensure unlinkability against an attacker ob-
serving the communication and the Ripple ledger.

To see that, assume for a moment that the gate-
way creates the credit link of the form vkgw → VKout [i].
Such operation must be confirmed with a signature by
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(a) Credit network before the transactions are carried
out in the straw man approach
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(b) Credit network after carrying out the straw man
path mixing

Fig. 1. An illustrative example of the straw man approach for path mixing to mix 10 IOU among five users. Solid arrows depict
credit links between two wallets. Single values on edges denote the current balance and no upper limit. Values a/b on the links denote:
a current balance and b upper limit. After finishing the straw man protocol, user A can perform a transaction for up to 10 IOU using
Aout and vkgw as the first hops in the transaction path.

the user i (see Section 5). Now, user i must submit the
signed operation to the Ripple network. If a network at-
tacker associates the signed message to the IP address
of user i, he directly learns that VKout [i] belongs to user
i. As the attacker also knows the input wallet belonging
to user i, he trivially breaks the unlinkability property.
Drawbacks. In this straw man approach, the server is
trusted for unlinkability and correct balance properties.
First, the server must be trusted not to reveal the pair
of input and output wallets belonging to a user. Second,
after receiving the credit from the users’ input wallets,
the server is trusted not to steal it and instead create
the credit link with the output wallets and set up the
correct credit upper limit in each credit link.
Decentralized Path Mixing. We overcome the afore-
mentioned drawbacks by designing a decentralized path
mixing protocol, where the users jointly transfer credit
from their input wallets to their output wallets without
requiring any third-party mixing proxy. For that, the de-
centralized path mixing protocol must provide the two
main functionalities provided by the trusted server in
the straw man approach (see Fig. 2): Atomic transac-
tions and creating a set of output wallets in an anony-
mous manner. In the following, we give an overview for
each of the functionalities.

4.1 Atomic Transactions in Ripple

Assume a generic setting with a set of n input wallets
VKin [ ] and a set of m output wallets VKout [ ]. Moreover,
assume that instead of a fixed amount of credit β, each

Decentralized path mixing
(PathShuffle, Section 6)

Atomic transactions
(PathJoin, Section 5)

Creating a set of
wallets anonymously

(DiceMix, Section 6.1)

Shared wallets
(Distributed threshold signature

scheme, Appendix B)

Fig. 2. Schema for a decentralized path mixing protocol. Boxes
represent the functionalities denoted by the name in bold. Each
functionality is implemented by the protocol in parentheses and
it is described in the annotated section. An arrow a → b denotes
that protocol a depends on b.

input wallet must transfer βin [i] IOU and each output
wallet must receive βout [j] IOU. Although the sets of
input and output wallets might not be of the same size
(i.e., n might not be equal to m), naturally the IOU to
be transferred must be equal to the IOU to be received
(i.e.,

∑
i βin [i] =

∑
j βout [j]). In such setting, PathJoin,

our novel protocol to enforce atomic transactions fully
compatible with Ripple, must ensure that either all the∑

i βin [i] IOU are transferred from input to output wal-
lets or no IOU is transferred.
Using a Shared Wallet. It is possible to create a wallet
shared among the users such that only when all users
agree, a transaction involving the shared wallet is per-
formed. This effectively allows to add one synchroniza-
tion round: Each user i first transfers βin [i] IOU to a



PathShuffle: Credit Mixing and Anonymous Payments for Ripple 116

vks
in

Ain

Bin

Cin

Din

Ein

vkgw

vks
out

Zout

Yout

20

10

30

15

5

40

25

35

20

50

0

0/25

0/55

(a) Credit network after the set up of the shared wallets and
the output wallets has been carried out
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(b) Credit network after PathJoin has been carried out with-
out any disruptive user

Fig. 3. An illustrative example of an atomic transaction using PathJoin. The input wallets Ain , Bin , Cin , Din and Ein transfer 20,
10, 30, 15 and 5 IOU correspondingly. The output wallets Yout and Zout receive 55 and 25 IOU, respectively. Solid arrows depict credit
links between two wallets. Single values on edges denote the current balance and no upper limit. Values a/b on the links denote: a
current balance and b upper limit. After a successful execution of PathJoin, it is possible to perform a transaction from the output
wallets (e.g., from Yout for up to 55 IOU using vks

out , and vkgw as the first hops in the transaction path).

shared wallet and only when
∑

i βin [i] IOU are collected,
they are sent to the output wallets. This, however, does
not solve the fairness problem either. Once all the IOU
are collected in the shared wallet, a (malicious) user
could collaborate with the rest to create and sign a trans-
action to one of the output wallets and then disconnect.
In this manner, the IOU to be transferred to the rest of
output wallets are locked in the shared wallet.
Solution: Two Shared Wallets. The idea underlying
our approach for an atomic transaction is to use two
synchronization rounds via two shared wallets (say vks

in
and vks

out).
An example is depicted in Fig. 3: Five users with in-

put wallets VKin [ ] := {Ain ,Bin ,Cin ,Din ,Ein} would like
to transfer βin [ ] := {20, 10, 30, 15, 5} into two output wal-
lets VKout [ ] := {Yout ,Zout}. These two output wallets
must receive βout [ ] := {55, 25}. To achieve that, in the
first round users jointly create a credit link from each
input wallet (VKin [i]) to vks

in with βin [i] IOU on them.
Moreover, users jointly create a credit link from each of
the output wallets (VKout [j]) to vks

out with no IOU on
them but an upper limit of βout [j]. At this point, credit
at each VKout [j] cannot be issued as part of a transac-
tion because vks

out does not have incoming credit yet
(see Fig. 3a). The second synchronization round can be
then used to overcome that. All users jointly create a
transaction from vks

in to vks
out for a value of

∑
i βin [i]

IOU. Then, vks
out gets enough credit that can be used

by each of the output wallets VKout [j] (see Fig. 3b).

4.2 Creating the Set of Output Wallets
Anonymously

The possibility of performing atomic transactions on its
own does not provide a complete path-mixing solution.
Assume an atomic transaction from n input wallets to
n output wallets, where each wallet transfers a fixed
amount of IOU β. Even then, a naive path mixing where
each user publishes her output wallet in a manner that
can be linked to her identity, clearly violates unlinkabil-
ity in the presence of a network attacker. In order to
overcome this challenge, users need to jointly come up
with a set of their output wallets such that the owner of
a given output wallet is not leaked to the rest of users.

Several P2P mixing protocols proposed in the liter-
ature [23, 51, 52] implement a permutation that ensures
the aforementioned property as required in our decen-
tralized path mixing protocol. Among them, we decide
to use DiceMix [52] due to its efficiency, but in principle
we could have used any P2P mixing protocol.

5 PathJoin: Enabling Atomic
Transactions in Ripple

Here we describe the details of PathJoin, our novel pro-
tocol for atomic transactions in credit networks. It can
be seen as the counterpart of CoinJoin for Ripple.
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Conventions for the Pseudocode. We write Arr[i] for
arrays where i is the index. We denote the full array (all
its elements) as Arr[ ].

Our protocols are supposed to terminate in the pres-
ence of malicious disruptive users, so they cannot just
halt when some users send invalid messages or omit mes-
sages, but have to handle those cases explicitly (as also
done in DiceMix [52], which we use as a framework for
our protocols). Message x is broadcast using “broad-
cast x”. The command “receive X[p] from all p ∈ P

where X(X[p]) missing C(Poff )” attempts to receive a
message from all users p ∈ P . The first message X[p]
from user p that fulfills predicate X(X[p]) is accepted
and stored as X[p]; all further messages from p are ig-
nored. When a timeout is reached, the command C is
executed, which has access to a set Poff ⊆ P of users
that did not send a (valid) message.

5.1 Building Blocks

Digital Signatures. We require a digital signature
scheme (KeyGen, Sign, Verify) unforgeable under chosen-
message attacks (UF-CMA). The algorithm KeyGen re-
turns a private signing key sk and the correspond-
ing public verification key vk. On input message m,
Sign(sk,m) returns σ, a signature on message m using
signing key sk. The verification algorithm Verify(vk, σ,m)
outputs true iff σ is a valid signature for m under the
verification key vk.

In practice, we rely on the existing signature scheme
available in the credit network. The Ripple network sup-
ports ECDSA on the secp256k1 elliptic curve or EdDSA
on Curve25519. We use EdDSA due to its support for
simple distributed signatures, which will be required by
our protocol.
Ripple Network Operations. We use the following op-
erations available in the Ripple network.

(vk, sk) ··= AccountGen( ) Generate wallet keys
tx ··= CreateTx(vk1, vk2, v) Create path-based transaction

tx ··= CreateLink(vk1, vk2, v) Create link vk1 → vk2 (limit v)
tx ··= ChangeLink(vk1, vk2, v) Modify link vk1 → vk2 by v
{v,⊥} ··= TestLink(vk1, vk2) Query IOU on link vk1 → vk2

{0, 1} ··= Apply(tx, σ) Apply signed tx to network

A transaction tx becomes valid when is signed by the ap-
propriate wallet’s signing key. A tx from CreateTx and
ChangeLink must be signed by sk1 (i.e., the signing key of
wallet vk1), whereas a tx from CreateLink must be signed
by sk2. Finally, a tx from TestLink does not require a sig-

nature. A transaction tx is applied to the Ripple network
after invoking Apply(tx, σ) with the correct signature.
Shared Wallet. We manage a shared wallet
using an interactive distributed signature scheme
(SAccountCombine, SSign, Verify) that is fully compati-
ble with the Ripple network. In a distributed signature
scheme, every user creates a fresh pair of verification
and signing keys, publishes the verification key, and com-
bines the fresh verification keys from all users to derive
the shared wallet’s verification key. Every user then uses
her fresh signing key to generate her signature (share)
on a message m (e.g., a transaction agreed among all
users). The combination of all these signature shares re-
sults in a new signature on the message m verifiable un-
der the shared wallet’s verification key. In the following,
we summarize the required functionalities. We detail the
distributed signature scheme in Appendix B.

A shared wallet is created as follows. First, each
user locally creates a fresh EdDSA Ripple wallet (vk∗,
sk∗), using AccountGen, that constitutes her share for the
shared wallet vks. The shared wallet can be then calcu-
lated as vks ··= SAccountCombine(VK∗[ ]), where VK∗[ ]
denotes the array containing one verification key share
vk∗ for each user.

Note that it is possible to construct only the verifi-
cation key of a shared wallet but not the corresponding
signing key. Instead, users can jointly create a signa-
ture σ on a message m verifiable by the shared wal-
let’s verification key vks. For that, each user invokes
(Pmal , σ) ··= SSign(P,my,VKin [ ], skin ,VK∗[ ], sk∗,m, sid),
where P is the set of users participating in the protocol
except the invoking user, VKin [ ] is the list of input wal-
lets from all users, skin is the secret key for the invoking
user’s input wallet, VK∗[ ] is the list of verification key
shares for the shared wallet’s verification key vks from
all users, sk∗ denotes the signing key share of the invok-
ing user and sid is an identifier of the current session. If
the signature σ cannot be created due to misbehaving or
faulty users, the functionality SSign returns a set Pmal
containing such users. Otherwise, it returns an empty
set along with σ.

5.2 PathJoin

Assumptions. We assume that each user has an input
wallet VKin [i] with an arbitrary amount of βin [i] IOU.
We assume that all input wallets have a credit link with
a common wallet (i.e., vkgw). In practice, gateways can
play the role of such common wallet as they are highly
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connected nodes in the Ripple network. Moreover, we
assume that there is only one IOU currency (e.g., USD)
over the credit links in the Ripple network, as other-
wise unlinkability can be trivially broken: Input and
output wallets using a distinct currency belong to the
same user. Finally, for clarity of exposition, we assume
that Apply(tx, σ) returns immediately after tx is applied
to the Ripple network. In practice, a tx is applied in a
matter of seconds [54].

In multiple steps of the protocol, each user will sub-
mit to the Ripple network a copy of the same correctly
signed transaction. This does not have negative secu-
rity implications: The transaction is only applied once
to the Ripple network since every transaction contains
a sequence number to avoid replay attacks.

Under these assumptions, the PathJoin protocol
works as described below. A detailed pseudocode for
the protocol is presented in Algorithm 1.
Phase 1: Create and Connect Input Shared Wallet.
The users jointly create a shared input wallet, that we
denote by vks

in . We require that only transactions start-
ing at vks

in can be performed. For that, the rippling op-
tion (see Section 2.1) must be disabled at each credit
link with vks

in wallet.
Then, users jointly create a credit link from each

input wallet VKin [i] to vks
in . Such credit links are then

signed by all users using their signing key shares for the
input shared wallet. If a user generates a wrong partial
signature, the honest users consider her to be malicious.
Otherwise, these credit links along with their signatures
are submitted to the Ripple network.

Additionally, each user p locally creates and signs a
transaction that issues βin [p] credit to the recently cre-
ated link VKin [p]→ vks

in . Such signature is then broad-
cast to every other user in the protocol, what allows
them to apply the funding transactions in the Ripple
network. If some user refuses to fund such a credit link,
the honest users consider her to be malicious.
Phase 2: Create and Connect Output Shared Wallet.
The shared output wallet vks

out is created in the same
manner as the shared input wallet vks

in . However, trans-
actions that use vks

out as intermediate hop must be al-
lowed in this case and for that, the rippling option must
be enabled for the credit links of vks

out . Then, for each
output wallet j, users jointly create a credit link from
each VKout [j] to vks

out with an upper limit of βout [j].
Moreover, the users jointly create a link vkgw → vks

out
with no IOU on it. These links will later allow to transfer
up to βout [j] IOU from the wallet VKout [j].

The details of creating the links and verifying the
corresponding signatures are similar to the previous case
involving the input shared wallet. As before, users en-
sure that only links from known output wallets are cre-
ated. If during this phase some user generates an invalid
signature, the honest users consider her to be malicious.
Phase 3: Final Transaction. At this point, the vks

out
wallet does not have any incoming credit and thus no
transaction from an output wallet through vks

out can be
performed yet. To solve this situation, the users jointly
create a transaction transferring

∑
j βout [j] IOU from

vks
in to vks

out . This transaction is possible using the n
available paths through each of the users’ input wallets.
If some user does not sign such transaction, the honest
users consider her to be malicious.

Interestingly, this transaction makes credit to flow
from vks

in to vks
out so that the credit link between vkgw

and vks
out has now

∑
j βout [j] IOU. This fact enables

now transactions from each output wallet to the rest of
the credit network.
Correctness. The final transaction ensures that exactly
βin [p] are transferred through the input wallet of the
user p (i.e., VKin [p]). Moreover, the upper limit on the
links from each output wallet to vks

out ensures that wal-
let VKout [j] has only access to βout [j] IOU. This demon-
strates the correctness of PathJoin.

5.3 Security Analysis

In this section, we first describe the notion of atomicity.
We then argue that PathJoin achieves atomicity.
Atomicity. A path mixing protocol is atomic if either β
IOU are transferred from input wallets to output wallets
or no IOU is transferred.

In the following, we argue that PathJoin achieves
atomicity. In order to see that, we make the following
observations. First, the creation and set up of the shared
wallets do not involve the credit to be transferred. Sec-
ond, the deactivation of rippling option on vks

in credit
links ensures that only transactions starting at vks

in are
accepted by the Ripple network. This prevents a mali-
cious user from stealing honest user’s credit using vks

in
as intermediate wallet, e.g., by means of a transaction
with path: VK[malicious] – vks

in – VK[honest] – vkgw –
VK[malicious]. (Circular transactions are accepted and
used in the Ripple network. For example, a transaction
of the form VK[p] – vkgw1

– . . . – vkgw2
– VK[p], where . . .

denotes an arbitrary set of wallets, can be used by user
p to exchange IOU from gateway 1 to gateway 2.)
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Algorithm 1. PathJoin
procedure PJ(P,my,VKin [ ], skin ,βin [ ],VKout [ ],βout [ ], sid)

. Create shares for shared wallets and broadcast them
(VK∗in [my], sk∗in) ··= AccountGen()
(VK∗out [my], sk∗out) ··= AccountGen()
broadcast (VK∗in [my],VK∗out [my],

Sign(skin , (VK∗in [my],VK∗out [my], sid)))
receive (VK∗in [p],VK∗out [p], σ[p]) from all p ∈ P

where Verify(VKin [p], σ[p], (VK∗in [p],VK∗out [p]))
missing Poff do return Poff

. Create shared wallets
vks

in ··= SAccountCombine(VK∗in [ ],my, P )
vks

out ··= SAccountCombine(VK∗out [ ],my, P )
. Create credit links VKin [p]→ vks

in
for all p ∈ P ∪ {my} do

LINKin [p] ··= CreateLink(VKin [p], vks
in ,∞)

(σin [p], Pmal) ··= SSign(P,my,VKin [ ], skin ,VK∗in [ ],
sk∗in ,LINKin [p], (sid, 0, p))

if Pmal 6= ∅ then return Pmal

Apply(LINKin [p], σin [p])

. Fund credit links VKin [p]→ vks
in

for all p ∈ P ∪ {my} do
LINK′in [p] ··= ChangeLink(VKin [p], vks

in , βin [p])
σ′in ··= Sign(skin ,LINK′in [my])
broadcast σ′in
receive σ′in [p] from all p ∈ P

where Verify(VKin [p], σ′in [p],LINK′in [p])
missing Poff do return Poff

for all p ∈ P ∪ {my} do
Apply(LINK′in [p], σ′in [p])

. Verify VKin [p]→ vks
in link for every participant

Pmal ··= ∅
for all p ∈ P do

v ··= TestLink(VKin [p], vks
in)

if v = ⊥ ∨ v < βin [p] then Pmal ··= Pmal ∪ {p}
if Pmal 6= ∅ then return Pmal

. Create credit links VKout [p]→ vks
out

for i ··= 1, . . . , |VKout [ ]| do
LINKout [i] ··= CreateLink(VKout [i], vks

out , βout [i])
(σout [i], Pmal) ··= SSign(P,my,VKin [ ], skin ,VK∗out [ ],

sk∗out ,LINKout [i], (sid, 1, i))
if Pmal 6= ∅ then return Pmal

Apply(LINKout [i], (σout [i]))
. Create link vkgw → vks

out
LINKgw ··= CreateLink(vkgw, vks

out ,∞)
(σgw, Pmal) ··= SSign(P,my,VKin [ ], skin ,VK∗out [ ],

sk∗out ,LINKgw, (sid, 2))
if Pmal 6= ∅ then return Pmal

Apply(LINKgw, σgw)
. Final transaction
tx ··= CreateTx(vks

in , vks
out ,

∑
p∈P

βin [p])
(σtx , Pmal) ··= SSign(P,my, sk∗in ,VKin [ ], skin ,VK∗in [ ],

sk∗in , tx, (sid, 3))
if Pmal 6= ∅ then return Pmal

Apply(tx, σtx)
return ∅ . Success!

Third, the transaction from vks
in to vks

out sends all
the credit at once. Thus, either all users contribute the
expected credit for the transaction or none of them do.
Moreover, this transaction is created and submitted to
the Ripple network only if there is a link from each out-
put wallet to vks

out with the expected credit upper limit.
In this manner, it is ensured that credit in the output
wallets can be used later to perform a transaction to
any other wallet in the credit network.

Note that the transaction from vks
in to vks

out is the
last step of the protocol. Thus, whenever the current
run of the protocol is disrupted by a malicious user,
the credit on the links between the VKin [ ] and vkgw
is not used and can be reused in another invocation
of PathJoin. Finally, the links between VKin [ ] and vks

in
might stay funded after disruption is detected. However,
this credit is created only for the purpose of running the
protocol and it does not have value outside of it.

5.4 Extensions and Applications

Other Credit Networks. We have focused the descrip-
tion of PathJoin to the Ripple network since it is cur-
rently the most widely deployed credit network. Never-
theless, the same protocol can be used to achieve atomic
transactions in other credit networks provided that they
offer all the functionality required by PathJoin. For in-
stance, PathJoin can be also deployed in the Stellar net-
work. The Stellar network provides functionality to cre-
ate links, set their upper limit and perform path-based
transactions [4]. Moreover, Stellar implements a mech-
anism to enable and disable the rippling option as in
Ripple [2]. Finally, Stellar supports the same digital sig-
nature schemes as Ripple and thus shared wallets can
also be implemented in Stellar.
Crowdfunding Application. In this work, we use atomic
transactions as a building block to achieve anonymous
transactions. Nevertheless, we note that atomic transac-
tions become of interest on its own for other scenarios.
For example, they can enable a crowdfunding transac-
tion in a credit network. Interestingly, the example de-
picted in Fig. 3 is indeed a crowdfunding transaction
where the five input wallets are used to fund the two
output wallets. PathJoin ensures that either every user
participating in the crowdfunding transfers the expected
amount of IOU into the crowdfunding wallets (e.g., Yout
and Zout) or none of the users transfers any IOU.
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6 PathShuffle: A Decentralized
Path Mixing Protocol

We use PathJoin as a building block to create PathShuf-
fle, our fully-fledged path mixing protocol. What is left
is to come up with a set of fresh output wallets anony-
mously, i.e., without revealing which output wallet be-
longs to which input wallet (or to which network iden-
tity, which is in turn linkable to the input wallet). We
use DiceMix for this purpose.

6.1 Building Block: DiceMix

We require a P2P mixing protocol that given a set of
n users, each having a Ripple wallet, allows them to
agree on the set of all their wallets anonymously so that
it is not revealed which wallet belong to which user.
To achieve this, we use DiceMix [52], because it is the
most efficient P2P mixing protocol in our setting. While
other P2P mixing protocols [23, 51] require a number of
communications rounds linear in the number of users
and at least quadratic in the presence of misbehaving
users, DiceMix runs in a constant number of rounds
independently on the number of participating users and
it grows only to a linear number of rounds in the number
of misbehaving users. We refer the reader to [52] for
more details.
Interface. Consequently, we specify PathShuffle in the
framework of DiceMix. To do so, we need to specify two
operations Gen() and Confirm(. . . ), which depend on
the application that uses DiceMix as a building block
(PathShuffle in our case). First, Gen() specifies how to
generate the messages to be used in consequent steps of
the DiceMix protocol. We implement Gen() by invoking
the wallet generation algorithm of Ripple to generate
a fresh output wallet (vkout , skout), and we return the
verification key vkout as the message to be mixed.

Second, the purpose of the operation
Confirm(P,VKout [ ],my, VKin [ ], skin , sid, runid) is to
confirm the result of the message mixing, i.e., the
anonymized set VKout [ ]. The operation has access to
the set P of users, their verification keys VKin [ ] (those
associated with the input wallets), the identity my of the
user and her signing key skin (associated with his verifi-
cation key VKin [my]); the parameters sid and runid are
session and run identifiers, respectively, used to properly
distinguish between different sessions and confirmation
tries (see Ruffing et al. [52] for details). We implement
Confirm(. . . ) by directly invoking PathJoin.

Contract. The operation Gen() must generate, after
each invocation, a new random message with enough
entropy to be unpredictable. In our case, this require-
ment is met by the Ripple wallet generation algorithm.

The operation Confirm(. . . ) must meet certain nat-
ural requirements to ensure proper and secure function-
ing of DiceMix. First, Confirm(. . . ) must ensure that
it terminates only when all users call it with the same
anonymized message set VKout [ ]. This holds in our case:
PathJoin will fail if the messages (i.e., the output wal-
lets) are different, because then it is impossible for users
to agree on which wallets must be connected to the
shared wallet.

Second, in case confirmation fails because some user
refuses to confirm, Confirm(. . . ) must return the set
of misbehaving or faulty users that did not allow the
atomic transaction. This ensures that DiceMix can ex-
clude these users, discard the messages and re-try with
new messages generated by Gen().2

Confirm(. . . ) can assume that it obtains the cor-
rect set of anonymized messages. This ensures that, in
our context, the output wallet of every user is present
in this set, and thus every user who refuses to sign the
different transactions required in PathJoin can safely be
reported as misbehaving or faulty to DiceMix. (And in-
deed, we have designed PathJoin with this requirement
in mind. As specified in Section 5, PathJoin returns the
set of users who refuse to participate in the mixing.)

6.2 PathShuffle

Assumptions. As PathShuffle uses PathJoin as building
block, we make the same assumptions here. Addition-
ally, we assume that during the bootstrapping process
(see Section 3.2), the users participating in the PathShuf-
fle protocol have agreed on sid, an identifier for the cur-
rent execution of PathShuffle; and β, the amount of IOU
(in some currency) to be mixed in the path mixing.
Description. The PathShuffle protocol works as defined
in Algorithm 2. Additionally, we have depicted an ex-
ample of execution in Fig. 4, where five users run the
PathShuffle protocol to mix 10 IOU.

The PathShuffle protocol starts by having each
user i invoking Start-DiceMix(P,my,VKin [], skin , sid),
where P is the set of protocol participants except the
invoking user, who is identified by my, VKin [] is an ar-
ray of the verification keys associated with input wal-

2 Discarding the old messages is necessary for unlinkability [52].
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(a) Credit network after the set up of the shared wallets and
output credit has been issued
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(b) Credit network after carrying out PathShuffle without any
disruptive user

Fig. 4. An illustrative example of PathShuffle to mix 10 IOU among five users. Solid arrows depict credit links between two wallets.
Single values on edges denote the current balance and no upper limit. Values a/b on the links denote: a current balance and b upper
limit. After a successful path mixing, user A can perform a transaction for up to 10 IOU using vks

out and vkgw as first hops in the
transaction path.

lets, skin is the secret key for the input wallet of the
user invoking the function, and sid is the session identi-
fier agreed among the users. Whenever functions Gen()
or Confirm(. . .) are invoked, they are executed as de-
scribed in Section 6.1.

Assume that a user wishes to anonymously pay for
a service in the Ripple network. For that, the user first
executes PathShuffle to transfer IOU into a fresh Ripple
wallet of her own. This ensures that even if a round in
PathShuffle is disrupted, the intended payee’s wallet is
not disclosed. After the credit has been transferred into
an output wallet of the user, she can use it to anony-
mously pay for the service in the Ripple network.

Algorithm 2. PathShuffle
procedure PathShuffle(P,my,VKin [ ], skin , sid)

return Start-DiceMix(P,my,VKin [ ], skin , sid)
procedure Gen()

(vkout , skout) ··= AccountGen() . stores skout for latter use
return vkout

procedure Confirm(P,VKout [ ],my,VKin [ ], skin , sid, runid)
for all p ∈ P do

βin [p] ··= β

for all p ∈ P do
βout [p] ··= β

Pmal ··= PathJoin(P,my,VKin [ ], skin ,βin [ ],VKout [ ],
βout [ ], (sid, runid))

. Return set of malicious users; ∅ means success.
return Pmal

6.3 Security and Privacy Analysis

In this section, we first argue how PathShuffle achieves
the application requirements of correct confirmation
and correct exclusion required by DiceMix, as described
in [52, Section IV.B.2]. These two properties are nec-
essary to ensure termination. We then discuss how
PathShuffle achieves the security and privacy goals for
a path mixing protocol as defined in Section 3.3.

6.3.1 Requirements Imposed by DiceMix

Correct Confirmation. PathShuffle must ensure that if
a honest user invokes Confirm(. . .) on input (among
others) the list of anonymously published fresh output
wallets and is successful (i.e., returns an empty set Pmal),
then all honest users have invoked Confirm(. . .) on the
same list of output wallets.

To prove that, we first we observe that PathShuf-
fle only invokes PathJoin to implement Confirm(. . .).
Second, we observe that PathJoin requires that users
jointly agree on each of the steps of the PathJoin proto-
col by creating a distributed signature on messages that
are deterministically derived from the input. This only
succeeds if every user has the same list of output wallets.
Therefore, PathJoin fulfills correct confirmation.
Correct Exclusion. Assuming that the bulletin board
is honest, PathShuffle must ensure that if Confirm(. . .)
returns a set of malicious users Pmal for a honest user
p, then it returns the same set for any other honest user
p′ and the set Pmal does not contain any honest user.
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We may assume that Confirm(. . .) is called with
the same arguments by every honest user, and VKout [ ]
represents the correct set of output wallets, i.e., it con-
tains the output wallets of all honest users. This is guar-
anteed by DiceMix [52].

Observe that PathShuffle only invokes PathJoin
to implement Confirm(. . .). First, we prove that
Confirm(. . .) returns the same set Pmal for every honest
user. Since the bulletin board is honest by assumption,
all honest users receive the same broadcasts. Obverse
that all honest users call PathJoin with the same ar-
guments. By code inspection of PathJoin, the set Pmal
depends only on these broadcast messages (even when
Pmal is determined within SSign(. . .)), and on the re-
sult of calls to TestLink(. . .) with the same arguments
for every honest user. Since all honest users receive the
same broadcasts, and we assume that the credit network
reaches consensus on the result of TestLink(. . .), the set
Pmal is the same for every user honest.

Next we prove that Pmal does not contain an hon-
est user. Since the bulletin board is honest, the network
is reliable and messages from all honest users reach all
honest users. Given that, it is easy to verify that an hon-
est user p accepts all messages sent by another honest
user p′ and thus p′ /∈ Pmal for the set Pmal returned by
user p.

6.3.2 Security and Privacy Goals for Path Mixing

Unlinkability. Since PathShuffle fulfills the contract
with DiceMix, this building block ensures that the out-
put wallets are published without leaking the relation
between a single output wallet and its owner. More-
over, a look at the pseudocode of the confirmation step
(i.e., the PathJoin protocol) shows that operations on
PathJoin are totally independent on who is the owner
of each output wallet: Each input wallet transfers β
IOU and each output wallet receives β IOU. Therefore,
PathJoin does not leak the owner of any output wal-
let. (Actually DiceMix is designed such that the con-
firmation operation run by some user is not given the
information which of the messages belongs to this user.
Therefore, PathJoin cannot possibly leak this relation.)
This proves that PathShuffle achieves unlinkability.
Termination. Since PathShuffle fulfills the contract with
DiceMix, termination property of DiceMix carries over
to PathShuffle.
Correct Balance. The DiceMix protocol does not per-
form any operation involving the credit of the users.

DiceMix ensures for each user that Confirm(. . .) (i.e.,
PathJoin) is only called if the list of output wallets con-
tains her own output wallet. Thus if the PathJoin suc-
ceeds, the same amount β of IOU that is taken from
her input wallet is transferred to her output wallet. If
PathJoin fails, no IOU is transferred at all. This proves
correct balance.

6.4 Performance Analysis

In PathShuffle, we use the DiceMix protocol as defined
in the original paper [52]. However, in our work we have
implemented the functionality for Confirm(. . .) in a dif-
ferent manner. Instead of a single round collecting signa-
tures from each user as in [52], PathShuffle implements
the Confirm(. . .) functionality using the PathJoin pro-
tocol. Thus, in this section we restrict our analysis to
PathJoin and the performance analysis for the core of
DiceMix described in [52] carries over in our work.
Implementation. We have implemented PathJoin in
JavaScript by modifying the current Ripple code [49]. In
particular, we have implemented the shared wallet man-
agement by modifying the elliptic library, an implemen-
tation of the EdDSA digital signature scheme supported
in Ripple. Moreover, we have used the API provided by
the ripple-lib library [9] to implement the submission of
transactions to the Ripple network. Our source code is
publicly available [43] under the MIT license.
Implementation-level Optimizations. For readability,
we have specified Algorithm 1 in sequential steps. How-
ever, several of these steps can be carried out in par-
allel, improving thereby the overall performance of the
PathJoin protocol. First, both shared wallets vks

in and
vks

out can be created in parallel. Second, the creation of
links between vks

in and input wallets and the creation of
links between vks

out and output wallets are independent
operations and can be fully parallelized. Thus, it is pos-
sible to perform a single SSign(. . . ) invocation to jointly
sign the create link transactions for all of these links.

Additional optimizations are possible to reduce the
number of communication rounds. In particular, the
SSign(. . . ) procedure requires two broadcast rounds
(see Appendix B): One round to broadcast the random-
ness chosen by each user, and a second round to broad-
cast the signature share from each user. As the random-
ness is chosen independently of the message to be signed,
this broadcast can be integrated with a previous commu-
nication round in the protocol. In this manner, a call to
SSign(. . . ) costs only one extra communication round.
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Communication. A protocol based on DiceMix needs
(c+3)+(c+1)f communications rounds, where c is num-
ber of communication rounds required by Confirm(. . . )
and f is the number of disrupting users.

In our case c = 2, so PathShuffle needs 5 + 3f com-
munication rounds. As mentioned above, broadcast of
random elements (e.g., shares for vks

in and vks
out and ran-

domness for each of the invocations of SSign(. . . )) can be
carried out before PathJoin is invoked. Then, one com-
munication round is required for each of the two times
SSign(. . . ) is invoked (see Appendix B for details): First
to jointly sign the creation of the links VKin [i] → vks

in ,
vkgw → vks

out , and VKout [j] → vks
out ; and second to

jointly sign the final transaction that transfers IOU from
vks

in to vks
out . Note that, as the credit links created in

PathJoin are deterministically defined from the input of
the protocol, the signatures on the funding transactions
for the links VKin [i] → vks

in can be broadcast the first
time SSign(. . . ) is invoked.
Computation. In this test we measure the computa-
tion time required by each user on a computer with an
Intel i7, 3.1 GHz processor and 16 GB RAM. Given
the aforementioned implementation-level optimizations,
we have studied the running time for a single run of
SAccountCombine(. . .) and SSign(. . .) algorithms. This
thus simulates the creation of a single shared wallet and
the signature of a transaction involving a shared wal-
let. We have observed that even with 50 participants,
SAccountCombine(. . .) takes 537± 66.8 milliseconds and
SSign(. . .) takes 45 ± 3.57 milliseconds using our unop-
timized implementation. It is important to note that it
takes approximately 5 seconds for a transaction to be
applied into the current Ripple network [54]. Thus, the
overall running time of PathShuffle even considering the
computation time required for DiceMix is mandated by
the time necessary for the Apply operations at each com-
munication round of PathJoin.
Time. We observe that each communication round in
the confirmation algorithm requires to submit (possibly
several parallel) transactions to the Ripple network. It
takes approximately 5 seconds for a transaction to be
applied to the current Ripple network. Therefore, we
expect that this mandates the time per communication
round. Altogether, we expect the protocol to run in un-
der 20 s with a reasonable number of 50 non-disruptive
users: Confirmation takes 2 · 5 s and the required func-
tionality from DiceMix needs about 8 s to complete [52].
Scalability. The time to execute DiceMix is dominated
by its communication cost, as it requires each user to
send n · |m| bits, where n is the number of users and

|m| is the number of bits of the mixed message (e.g.,
a Ripple wallet in our case). Nevertheless, it has been
shown that DiceMix can scale up to a moderate number
of users (e.g., 50 users) [52].

In PathJoin, the execution time is dominated by
the Apply(. . .) operations. Although PathJoin requires a
number of credit links linear in the number of users,
their corresponding operations can be parallelized so
that only 5 seconds are needed per synchronization
round. Overall, given the synchronization required for
the broadcasts in DiceMix and the interaction with the
Ripple network in PathJoin, we expect that PathShuffle
provide anonymity guarantees to moderate size groups
of users.
Compatibility. We have simulated a run of PathShuffle
without disruption in the currently deployed Ripple net-
work. In particular, we have successfully recreated the
scenario depicted in Fig. 4. As a proof-of-concept, users
are simulated by our JavaScript implementation in a sin-
gle machine. The mixed IOU are denominated in PSH,
a user-defined currency created for the purpose of this
experiment. We describe in (Table 1, Appendix C) the
mapping between wallets in Fig. 4 and the same wallets
in the Ripple network. Furthermore, detailed informa-
tion about the Ripple nodes and the transactions3 in-
volved in the test can be found using the Ripple Charts
and Ripple RPC tools.
Generality. In our exposition of the PathShuffle pro-
tocol, we have focused on the Ripple network given
that is currently the most widely deployed credit net-
work. However, PathShuffle can be used to perform path
mixing in other credit networks. We make two obser-
vations. First, the DiceMix protocol is application ag-
nostic and can be executed in any application scenario
as long as the Gen(. . .) and Confirm(. . .) achieve the
expected requirements. Second, as we described in Sec-
tion 5.4, PathJoin requires operations inherent to credit
networks. Thus, the PathShuffle protocol is compatible
with other credit networks (e.g., Stellar).

6.5 Practical Considerations

Handling Fees. Every wallet in a path might charge
some fee as a reward for allowing a transaction. Thus,
the amount of IOU received by the receiver might be
lower than the amount sent by the sender. However,

3 See https://tinyurl.com/zc3yu8l, https://tinyurl.com/hb9722d

https://tinyurl.com/zc3yu8l
https://tinyurl.com/hb9722d
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PathShuffle requires that in the transaction from vks
in

to vks
out at least n · β IOU are received by vks

out .
Nevertheless, this is not a burden to deploy

PathShuffle in the Ripple network since it allows to
check in real time the fees associated to a given pay-
ment path. Therefore, it is possible to set the necessary
IOU between every input wallet and vks

in so that at least
n · β IOU are received by vks

out in the final transaction
of PathShuffle.
Funding New Wallets. Ripple applies reserve require-
ments to each new wallet in order to prevent spam or
malicious usage [6]. At the time of writing, Ripple ap-
plies a base reserve of 20 XRP and an additional reserve
of 5 XRP for each of the credit links associated to the
wallet. PathShuffle can handle this reserve.

A XRP payment allows the direct exchange of XRP be-
tween two wallets. A payment of β XRP from the sender
wallet to the receiver wallet is performed as follows. If
the XRP balance of sender wallet is at least β, then β

XRP are reduced from the sender wallet’s balance and β
XRP are added to the receiver wallet’s balance.

Using XRP direct payments, shared wallets can be
funded using any wallet belonging to the users. For ex-
ample, each user can send its corresponding share of XRP
reserve to each of the shared wallets. However, fresh out-
put wallets from a user cannot be funded directly from
the user input wallet, as this would break the unlinka-
bility property we are after with PathShuffle.

Instead, since XRP payments are similar to Bitcoin
payments, we envision that it is possible to create a
transaction in Ripple, similar to a CoinJoin transaction,
to anonymously send necessary XRP from input to out-
put wallets. Alternatively, users could send the neces-
sary XRP to the gateway, and trust it to fund all their
output wallets. This is feasible because gateways are al-
ready trusted for the bootstrapping of credit links and
the necessary monetary amount for funding a wallet is
very small.4

If none of these options is available, and in order to
maintain full compatibility with the current Ripple pro-
tocol, we propose a more elaborate XRP mixing protocol
(see Appendix A) at the cost of increased communica-
tion complexity.
Censorship. A PathShuffle transaction is clearly dis-
tinguishable from other Ripple transactions. However,
PathShuffle transactions cannot be easily blocked. As in

4 At the time of writing, 20 XRP are necessary and they are
worth about 13 US cents.

Bitcoin, the rules for whether to apply a transaction into
the Ripple network are publicly available. Potentially,
every user can run one Ripple validator, a server that
receives Ripple transactions from clients and forwards
them to other validators to be added in the next run of
the Ripple consensus. Therefore, if a validator secretly
blocks a PathShuffle transaction, such transaction could
still be added if sent to other validators. Alternatively,
PathShuffle transactions could be explicitly blocked in
the Ripple consensus rules, but this rule modification
must be made public, thereby allowing to circumvent it
and eventually starting a cat-and-mouse game.

7 Summary
In this work, we present PathJoin, a novel protocol to
perform atomic transactions in the Ripple network. The
atomicity provided by PathJoin is of special interest not
only for path mixing protocols, but also for several other
applications such as crowdfunding.

We use PathJoin and DiceMix, the most efficient
P2P mixing protocol existing in the literature, to build
PathShuffle, a practical decentralized path mixing pro-
tocol for credit networks. PathShuffle requires only five
communication rounds independently on the number of
users and 5 + 3f in the presence of f misbehaving users.

We have implemented PathShuffle and carried out
a path mixing transaction among five users in the cur-
rently deployed Ripple network, thereby demonstrating
the practicality of PathShuffle to provide anonymous
transactions in credit networks.
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A PathShuffle: Mixing XRP
The XRP currency in Ripple serves the purpose to pro-
tect the network from abuse and DoS attacks. A Ripple
wallet needs to hold XRP for two reasons: the wallet is
considered active only if it has a certain amount of XRP;
moreover, the issuer of any transaction must pay a trans-
action fee in XRP.

As opposed to path-based transactions, XRP can be
transferred directly from one wallet to another without
a path. Assume that a user with wallet u wants to pay
β XRP to some wallet v and that u has at least β XRP
in her XRP balance. Then β XRP are removed from the
XRP balance of u and added to the XRP balance of v.
Notice that this type of transaction does not require the

existence of any (direct or indirect) credit line between
the sender and the receiver of the transaction.

A.1 Key Ideas

The key challenge for mixing XRP is to send funds atom-
ically from n input wallets to n output wallets, essen-
tially emulating a multi-input-multi-output transaction
not natively supported by Ripple.
Naively Using Two Shared Wallets. A naive approach
consists in using two shared wallets to perform the mix-
ing of n XRP payments in a similar manner to what we
defined for shuffling n path-based payments (see Sec-
tion 5). There is however an important subtlety that
appears when using XRP payments: a payment from an
input wallet to the wallet vks

in implies actual sending
of XRP. However, when XRP are sent to vks

in and a user
disconnects, the XRP in vks

in are stuck, preventing the
shuffling from finishing and forcing other users to lose
their XRP. Thus, ensuring correct balance is a challenge
in this scenario.
Use of Recovery Transactions. It is possible to create
in advance (not yet applied) transactions from vks

in to
every user’s input wallet. Then, the user knows she can
get her XRP back from vks

in if the mixing is not completed
by submitting this recovery transaction to the Ripple
network. Given that, she can safely send XRP from her
input wallet’s to vks

in .
Chaining and Tagging Recovery Transactions. How-
ever, recovery transactions introduce a different prob-
lem: When the recovery transaction is created for the
second user, she can use it to steal the XRP from vks

in pre-
viously sent by the first user. To overcome this problem,
we need to enforce an ordering for recovery transactions.

In the Ripple network, every transaction has a se-
quence number associated to it. A transaction with se-
quence number s performed by a given wallet is only
valid if the last transaction performed by the same wal-
let has sequence number s−1. Using sequence numbers,
it is possible to ensure that recovery transactions are ex-
ecuted in the correct order: The first user gets a recovery
transaction with sequence number 1 and the second user
gets recovery transaction with sequence number 2. This,
however, does not totally solve the correct balance prob-
lem yet: The second user can only recover his XRP if the
first one submits her recovery transaction. Otherwise,
all XRP are locked at vks

in .
We can fully solve the correct balance problem as

follows. The first user gets a recovery transaction with
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Fig. 5. The transactions in an example run of XRPJoin protocol
to mix 5 XRP among three participants.

sequence number 1 and tagged with her identifier, i.e.,
the verification key of her input wallet. The second user
gets two recovery transactions: One recovery transaction
with sequence number 1 that returns the first user’s XRP
to her wallet, and a second recovery transaction with
sequence number 2, that returns her own XRP; both re-
covery transaction are tagged with her identifier. This
mechanism ensures that the second user recovers her
own XRP even if the first user is going offline. Moreover,
this mechanism ensures termination: given that transac-
tions are tagged, a misbehaving user maliciously recov-
ering his XRP can be easily detected.

A.2 Protocol Overview

Here we give an overview of a protocol XRPJoin that
emulates atomic multi-input-multi-output XRP transac-
tions, similar to what PathJoin does for path-based IOU
transaction. By replacing PathJoin in PathShuffle by
XRPJoin, one obtains a P2P protocol for XRP mixing.

In the following, we describe the protocol steps by
means of an example. For simplicity, assume that there
are three participants Alice, Bob, and Carol with Ripple
wallets Ain , Bin , and Cin , willing to mix 5 XRP. In this
setting, XRPJoin works as depicted in Fig. 5. In detail:

1. Create Shared Wallets. The users jointly generate
two shared wallets vks

in and vks
out using a distributed

signature scheme as in Appendix B.
2. Create Transactions. The users jointly create a

transaction transferring 15 XRP from vks
in to vks

out .
Moreover, they create transactions sending 5 XRP
from vks

out to every participant’s output wallet.
These transactions are all signed by all participants
using the distributed signature algorithm. As vks

in
and vks

out do not have any funds at this point, all
of these transactions cannot be accepted into the
Ripple ledger yet.

3. Transfer Input XRP to vks
in. The main idea of this

step is that every user first creates a transaction
to recover her funds from the vks

in . After the trans-
action is correctly signed by every other user, she
sends her funds to vks

in . In detail:
(a) The users jointly create a recovery transaction

sending 5 XRP from vks
in to Ain . The transaction

is tagged with Ain and has sequence number
1. It is partially signed (using the distributed
signature scheme) by all users except Alice, and
it is not submitted to the Ripple network.

(b) Alice creates a transaction sending 5 XRP from
Ain to vks

in , and broadcasts it to the other users.
All of the users submit the transaction to the
Ripple network. (Note that Alice could also sub-
mit the recovery transaction created in the pre-
vious step. However, other users will see the tag
and blame Alice of misbehavior.)

(c) The users jointly create two recovery transac-
tions with sequence numbers 1 and 2, sending
5 XRP from vks

in to Ain and to Bin , respectively.
Both transactions are tagged with Bin . They are
partially signed (using the distributed signature
scheme) by all users except Bob, and they are
not submitted to the Ripple network.

(d) Bob creates a transaction sending 5 XRP from
Bin to vks

in , and broadcasts it to the other users.
All of the users submit the transaction to the
Ripple network.

(e) The users jointly create three recovery transac-
tions with sequence numbers 1, 2, and 3, sending
5 XRP from vks

in to Ain , Bin , and Cin , respec-
tively. All three transactions are tagged with
Cin . They are partially signed (using the dis-
tributed signature scheme) by all users except
Carol, and they are not submitted to the Ripple
network.

(f) Carol creates a transaction sending 5 XRP from
Cin to vks

in , and broadcasts it to the other users.
All of the users submit the transaction to the
Ripple network.

4. Perform Payments or Blame. The users continue
depending on the outcome of step 3.
(a) If step 3 has been successful, then the wallet

vks
in holds 15 XRP. The users submit the transac-

tions generated in step 2 of the protocol, so that
every output wallet receives 5 XRP. The users
wait for the Ripple network to confirm the trans-
action from vks

in to vks
out and the transactions

from vks
out to each of the output wallets. If they

are confirmed, then the protocol was successful.
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If instead a malicious user submits one of her re-
covery transactions to the Ripple network and
this is confirmed before the transaction from
vks

in to vks
out , then the other users will blame

and exclude her, and a new run of the protocol
with fresh output addresses is started (following
the execution pattern of PathShuffle). Note that
the recovery transactions are tagged such that
it is obvious to the honest users who signed and
submitted the recovery transaction.

(b) If step 3 has not been successful, then at least
one malicious user has refused to send a mes-
sage (or has sent an unexpected message). This
is detectable and the honest users will blame
the malicious user and exclude her, and a new
run of the protocol with fresh output addresses
is started (following the execution pattern of
PathShuffle). Moreover, the honest users can
use their recovery transactions (in the right or-
der) to recover their funds from vks

in .

B Handling Shared Accounts
using Distributed Signatures

A wallet vks can be shared among a set of n users so
that only when all users agree, a transaction involving
the shared wallet vks is performed. We use a distributed
signature scheme to achieve this functionality.
Distributed Signature Scheme. Currently Ripple sup-
ports two digital signature schemes ECDSA and Ed-
DSA [19]. Although there exist distributed versions for
ECDSA [59], we choose EdDSA as it is similar to the
Schnorr signature scheme [53] and thus offers a simpler
and more efficient distributed variant [22, 33].

In our specific setting, a distributed signature
scheme has a verification algorithm (that of EdDSA)
and two algorithms SAccountCombine and SSign. The
SAccountCombine algorithm takes as input the tuple
(VK∗[ ],my, P ), where VK∗[ ] is the set of shares from
the user, my is the invoking user’s identifier and P is
the set of other users to be included in the shared wal-
let. Then, the SAccountCombine algorithm returns the
combined public key vks for the shared wallet.

The SSign algorithm takes as input the tuple
(P,my,VKin [ ], skin ,VK∗[ ], sk∗,m, sid), where P , my and
VK∗[ ] are defined as before, VKin [ ] is a set of verification
keys associated to the users, skin is the signing key for
the user’s VKin [my], sk∗ is the secret key for the user’s

Algorithm 3. A distributed signature scheme for EdDSA
procedure SAccountCombine(VK∗[ ],my, P )

return
∑

p∈P∪{my} VK∗[p]

procedure SSign(P,my,VKin [ ], skin ,VK∗[ ], sk∗,m, sid)
k

$←− Zq

R[my] ··= gk

broadcast (R[my],Sign(skin , (R[my], sid)))
receive (R[p], σ[p], σ′[p]) from all p ∈ P

where Verify(VKin [p], σ[p], (R[p], sid))
missing Poff do

return (⊥, Poff )
r ··=

∑
p∈P∪{my} R[p]

vks ··= SAccountCombine(VK∗[ ],my, P )
h ··= H(r, vks,m)
S[my] ··= k + h · sk∗

broadcast S[my]
receive S[p] from all p ∈ P

where g8S[p] = R[p]8 · (VK∗[p])8h

missing Poff do
return (⊥, Poff )

σ ··= (r,
∑

p∈P∪{my} S[p])
return (σ, ∅)

share, m is the message to be signed and sid is the ses-
sion identifiers for the current session. Then, the SSign
algorithm returns a signature σ on message m verifiable
with the shared public key vks if no user disrupts the
protocol or a set Pmal with the malicious users.

We describe the details of SAccountCombine and
SSign in Algorithm 3. The protocol relies on a simple
additive secret sharing, and is adapted to the specifics
of EdDSA on the employed elliptic curve, e.g., the co-
factor 8 [19]. Our description, here, follows the same
notation as the rest of the paper (see Section 4). In par-
ticular, we stress that the algorithms Sign and Verify are
defined as in the rest of the paper, i.e., they belong to
the signature algorithm used by the input wallet, which
is not necessarily EdDSA.

Note that this distributed signature scheme is vul-
nerable to a related-key attack pointed out by Horster,
Michels, and Petersen [33]. A malicious rushing peer p
can choose his verification key share VK∗[p] such that
he can create a signature valid under the combined veri-
fication key vks without the help of the other users; how-
ever, she cannot provide a partial signature under her
verification key share. This attack is typically avoided by
forcing everybody to prove the knowledge of the discrete
logarithm of the verification key share VK∗[p], e.g., us-
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ing a zero-knowledge proof or an ordinary signature on
p valid under the verification key share VK∗[p] [33, 60].

In our specific use of distributed signatures in
PathJoin, we do not need this (additional) proof. A ma-
licious user performing this attack will be caught by
the honest users before she can do any damage; the
malicious user cannot provide a valid partial signature
for any of the transactions that create the links from
the user’s input wallets to the input shared wallet vks

in
(see Algorithm 1). Therefore, the malicious user will be
detected and excluded by honest users and the protocol
run will be aborted. At this point, although the attacker
indeed controls the shared wallet vks

in , it is not worth
any IOU as honest users do not issue any credit.

C Testing PathShuffle in the
Ripple Network

In Table 1, we describe the Ripple wallets that we have
used in our simulation of PathShuffle within the cur-
rently deployed Ripple network. In particular, we show
the mapping between wallets in the example depicted
in Fig. 4 and the corresponding wallets in our experi-
ment in the Ripple network.

Figure wallets Ripple network wallets

Ain rMDvFAhSPYEaUNxqrqo88xCwiZXG9P3LNK
Bin rBnkLfFPvabAhEXnBH76UMoyygGUQeYZA3
Cin rhgJUmYMAwQjq5mtnRyFE74fu8sKPf1Nmn
Din rs6MgypVJgpdDuFk5X8mwoywHezN1gh91Y
Ein rDWuswR94qHuFD6GsGWxtujpZkSg3sNZnX

Aout rK2ByNQvPQBEe1r2WHasY53Z7Tj9ZJrjr8
Bout r9euchAFnRqYJDBngmKD4tXhuLEAcHtCRK
Cout rz2TRTy1Y7b4t1ZEaG98s7brwwTXmi97f
Dout rE6sMibroiWdZADCUqPmEemFeaohVJYWuR
Eout rhjY2JshgYCgkhDVK3jSfZhiqQ3ZKsWUU8

vks
in rM3U73YQWd4ewijyEsieDWaLf2ektvMmoK

vks
out r3AJt7VUhK8e9BaBemKydfmHuLPZx2ibZd

vkgw rPBCgQXeXvcPhUzto8YhGoDYG9n9V6owRR

Table 1. Mapping between wallets in Fig. 4 and the same
wallets in the Ripple network for our compatibility test.
The hash for the final transaction from vks

in to vks
out is

21BCE61D6843F23D9A02D745AB788CFF679C6E99ECF70D
56C141ACB8560AA370.
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