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Privacy-Preserving Interdomain Routing at Internet Scale
Abstract: The Border Gateway Protocol (BGP) com-
putes routes between the organizational networks that
make up today’s Internet. Unfortunately, BGP suffers
from deficiencies, including slow convergence, security
problems, a lack of innovation, and the leakage of sen-
sitive information about domains’ routing preferences.
To overcome some of these problems, we revisit the idea
of centralizing and using secure multi-party computa-
tion (MPC) for interdomain routing which was proposed
by Gupta et al. (ACM HotNets’12). We implement two
algorithms for interdomain routing with state-of-the-art
MPC protocols. On an empirically derived dataset that
approximates the topology of today’s Internet (55 809
nodes), our protocols take as little as 6 s of topology-
independent precomputation and only 3 s of online time.
We show, moreover, that when our MPC approach is
applied at country/region-level scale, runtimes can be
as low as 0.17 s online time and 0.20 s pre-computation
time. Our results motivate the MPC approach for inter-
domain routing and furthermore demonstrate that cur-
rent MPC techniques are capable of efficiently tackling
real-world problems at a large scale.
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1 Introduction
Interdomain routing is the task of computing routes be-
tween the administrative domains, called “Autonomous
Systems” (ASes), which make up the Internet. While
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there is a variety of intradomain routing designs (e.g.,
RIP, OSPF, IS-IS) to compute routes within an organi-
zational network, there is only one interdomain routing
algorithm: the Border Gateway Protocol (BGP). BGP
stitches together the many (over 55 000) ASes that the
Internet is composed of and can thus be regarded as
the glue that holds together today’s Internet. BGP was
specifically designed to meet the particular demands
of routing between Internet domains, allowing each AS
the freedom to privately and freely implement arbitrary
routing policies, i.e., the expressiveness to both (i) se-
lect a route from the routes learned from its neighboring
ASes according to its own local business and operational
considerations and (ii) decide whether to advertise or
not advertise this route to each of its neighboring ASes.
Importantly, ASes’ routing policies can leak sensitive in-
formation about their business relationships with other
ASes and are therefore often kept private.

BGP achieves the dual goals of policy freedom and
policy privacy through an iterative, distributed route
computation. At each stage of the computation, a do-
main (AS) chooses which routes to use (among the
routes being advertised to it by its neighbors), and then
chooses to which neighboring ASes the resulting routes
should be advertised. This process is repeated until con-
vergence, thus allowing each domain to make its own
policy-induced choices, without needing to explicitly re-
veal these choices to other domains. However, as pointed
out in [1, 2] (and the references within), while BGP
computation does not force domains to explicitly reveal
policies, much information about routing policies can be
inferred by passively observing routing choices.

While BGP has served the Internet admirably, it
has many well-known drawbacks ranging from slow con-
vergence to inability to deal with planned outages. Thus,
we should explore alternative methods for interdomain
routing. As suggested in [3], the use of secure multi-
party computation (MPC) offers an intriguing possibil-
ity: executing the route computation centrally (among a
few mutually distrustful parties) while using MPC to re-
tain policy privacy. However, while the MPC technology
provides ASes with provable privacy guarantees, scal-
ing this approach to current Internet infrastructure sizes
with over 55 000 ASes is a significant challenge. Specif-
ically, the computation in [3] already requires 0.13 s for
a toy example of only 19 ASes and would hence require
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several hundreds of seconds for today’s Internet, even
when assuming a low number of neighbors per AS. Our
paper is devoted to the cryptographic paradigms, proto-
cols, optimizations, and concrete tools necessary to com-
pute interdomain routes at Internet scale in a privacy-
preserving way.

1.1 Centralizing BGP

The vision of (logically) centralizing interdomain rout-
ing can be regarded as the interdomain-level analogue
of the software-defined networking (SDN) approach
to routing within an organization (i.e., intradomain
routing), which is revolutionizing computer networking.
SDN intradomain routing decouples route-computation
from the forwarding of data packets. Specifically, route-
computation is delegated to a software-implemented,
centralized “controller”, which installs the resulting for-
warding rules in the decentralized switching hardware.
Thus, with SDN, altering the routing scheme (e.g., to be
more efficient, more resilient to failures, provide quality-
of-service assurances, etc.) only involves changing the
controller software, as opposed to replacing the hard-
ware and software of multiple proprietary network de-
vices (routers, switches, etc.). However, reaping these
benefits in the context of interdomain routing involves
overcoming two grand challenges: (1) preserving privacy
of the business-sensitive routing policies of the many in-
dependent organizations that take part in the compu-
tation, and (2) computation at very large scale (out-
putting a routing configuration spanning tens of thou-
sands of organizations).

To overcome these challenges we combine knowl-
edge of the two research areas of networking and secure
computation. We use a state-of-the-art secure two-party
computation framework and outsource the route com-
putation to two computational parties CP1 and CP2,
who are managed by two different operators, which we
assume do not collude. To protect the privacy of their
business relations, the ASes secret share their routing
preferences with these two computational parties, such
that no party gets any information about the routing
preferences between the ASes. The computational par-
ties run our secure interdomain routing computation
protocols to determine the routes for each AS in the
network. The computation results are sent back to each
AS, which can then reconstruct the plain text output
of the algorithm. More specifically, the CPs only send a
small message to the ASes which contains their next hop
for a specific destination, while the communication- and

round-intensive MPC protocol is run between the CPs.
An example setting with 6 ASes is depicted in Fig. 1.
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Fig. 1. Example setting with 6 ASes that secret share their inputs
with 2 computational parties CP1 and CP2. Thin arrows corre-
spond to 1 round of communication with small messages, while
the bold arrow symbolizes the execution of a secure computation
protocol with many rounds and high bandwidth.

1.2 Outline and Our Contributions

After motivating a centralized approach and the use of
MPC for interdomain routing in §1.3, we provide an
overview of related work for BGP and MPC in §1.4
and §2. Finally, we present our contributions:

Interdomain routing algorithms for
MPC (§3). Interdomain routing is a long-standing
research topic for which several efficient algorithms ex-
ist. When transferred to the MPC domain, however, the
complexity of the algorithms changes drastically, since
data-dependent optimizations of the algorithms are not
possible in MPC. In this paper, we select two interdo-
main routing algorithms, which provide different capa-
bilities for setting routing policies: one approach is based
on neighbor relations and the other approach is based
on neighbor preferences. The neighbor relations-based
routing algorithm is due to [4] and uses business rela-
tions between ASes to perform routing decisions (§3.1).
The neighbor preferences-based routing algorithm was
used in the MPC protocol of [3] and allows ASes to rank
neighbors based on their preferences and give export
policies which specify whether a route to a neighbor i
should be disclosed to a neighbor j (§3.2). We imple-
ment these algorithms in a centralized setting, which
allows for consistency checks of the ASes’ inputs and
thereby prevents malicious ASes from providing incon-
sistent input information (cf. §6.2).

Construction and optimization of Boolean
circuits for BGP (§4). We convert the neighbor rela-
tion BGP algorithm of [4] and the neighbor preference
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BGP algorithm of [3] into a distributed secure computa-
tion protocol between two parties to provide privacy. We
explain challenges facing the implementations of these
functionalities as a Boolean circuit, optimized for both
low multiplicative depth (the number of AND gates on
the critical path of the circuit) and low multiplicative
size (the total number of AND gates) for evaluation with
the GMW protocol [5] implemented in the ABY frame-
work [6]. We provide details on several building blocks,
how we optimize them, and the techniques we use to
achieve high performance so as to be able to process
real-world data.

Benchmarks and evaluation (§5). We bench-
mark both implementations on a recent empirically
derived BGP dataset with more than 50 000 ASes
with maximal degree 5 936 and almost 240 000 con-
nections between them. We propose to exclude stub
nodes from the computation as further optimization
and evaluate complex Boolean circuits with several mil-
lion AND gates. The neighbor relation algorithm re-
quires about 6 s of topology-independent precomputa-
tion time and an online time of about 3 s on two mid-
range cloud instances, that are comparable to off-the-
shelf desktop computers. The neighbor preference algo-
rithm takes about 13 s of topology-independent precom-
putation time and 10 s online time. We argue that while
the online runtimes alone are not sufficient to provide
adequate response to network failures, it allows the pre-
computation of routes for many failure scenarios, which
would enable almost instantaneous failure recovery.

Deployment and future directions (§6). Our
aim is to demonstrate the practical feasibility of using
MPC for interdomain routing. However, we view our
work only as a first stepping stone that should serve
as a basis for further research. We first explain our
assumptions about the network in §6.1. To spawn in-
terest, we list promising directions for further enhanc-
ing robustness and measures against misconfigurations
in §6.2 and discuss security against stronger adversaries
in §6.3. Of course, transitioning to MPC of interdomain
routes is an extremely challenging undertaking that in-
volves cooperation of tens of thousands of independent
financial and political entities, alongside significant de-
ployment and operational challenges. We argue, how-
ever, that our approach can also yield significant ben-
efits (e.g., in terms of privacy, security, and ability to
innovate) when applied at a country/region-level scale.
In addition, we show that even when applying our ap-
proach to high-density networks in fairly compact areas,
namely, the German interdomain network, runtimes de-
crease to 0.20 s pre-computation time and 0.17 s online

time (cf. Fig. 4). We discuss the possibility of deploy-
ment and related issues of our approach in §6.4.

1.3 Why MPC for Interdomain Routing?

In the following section, we list some of the benefits that
centralizing BGP via MPC can offer.

Better convergence and resilience to disrup-
tion. As opposed to BGP’s inherently decentralized
and distributed computation model, which involves
communication between tens of thousands of ASes,
in our scheme interdomain routes are computed by
only two computational parties. BGP can take sec-
onds to minutes to converge [7–9]. In the interim pe-
riod, BGP’s path exploration can have adverse implica-
tions for performance. Indeed, a huge fraction of VoIP
(e.g., Skype’s) performance issues are the result of bad
BGP convergence behavior [10]. Worse yet, BGP’s long
path exploration can even lead to intermittent con-
nectivity losses. By centralizing computation and thus
avoiding the long distributed (and asynchronous) path-
exploration process, convergence time is reduced sig-
nificantly. We demonstrate that our approach, despite
harnessing MPC machinery, is much faster to compute
global routing configurations than today’s decentralized
convergence process and, consequently, faster to recover
from network failures and to adapt to changes in ASes’
routing policies.

Less congestion. BGP permits ASes great expres-
siveness in specifying local routing policies at the poten-
tial cost of persistent global routing instability. However,
as shown in [11], under natural economic assumptions
(the so called “Gao-Rexford Conditions”) BGP conver-
gence to a stable routing configuration is guaranteed.
Unfortunately, even under these conditions, convergence
might take exponential time (in the number of ASes)
due to the exchange of an exponential number of mes-
sages between ASes [12]. Our scheme, in contrast, guar-
antees fast convergence to the desired routing outcomes
as our communication overhead is polynomial (linear
time in the size of the network).

Enhanced privacy. Many ASes regard their rout-
ing policies as private and do not reveal them voluntar-
ily, as routing policies are strongly correlated to business
relationships with neighboring ASes. BGP seemingly of-
fers policy freedom and policy privacy, as each AS is
free to choose which routes to use and which routes to
advertise to others, without having to explicitly reveal
its routing policies. However, BGP’s privacy guarantees
are limited, and are even fictitious. Monitoring selected
BGP routes, in particular when done from multiple van-
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tage points, can reveal much information about ASes’
routing policies, e.g., their local preferences over BGP
routes (see, e.g. [MK06, GZ11] and references within).
In addition, AS business relationships can be recon-
structed from publicly available datasets [CAI]. We refer
the reader to [2] for an illustration of how monitoring
the BGP convergence process can yield much informa-
tion about ASes’ routing policies.

Using MPC for interdomain routing can remedy this
situation by provably providing strong privacy guaran-
tees that cannot be achieved under today’s routing on
the Internet. Our scheme guarantees that no informa-
tion about routing policies and inter-AS business rela-
tionships, other than that implied by the routing out-
come, is leaked. In fact, each node (AS) learns only
its “next hop” node in the final routing outcome with
respect to a destination, and not even the full route.
We also hide the entire convergence process, which po-
tentially leaks information. As a side note, even with
multiple vantage points, inferring routing policies is no
easy task. While our scheme would not completely re-
move this kind of leakage, it would definitely decrease it
compared to routing using BGP, where the ASes broad-
cast their full routing table. Furthermore, it is unclear
whether all information about the policy preferences can
be gained using only the next hop as information.

Enhanced security. BGP’s computation model,
which is distributed across all ASes, enables ASes to
launch devastating attacks against the protocol, which
can result in Internet outages [13]. By outsourcing BGP
computation to a few parties, attacks on BGP that
manipulate its decentralized computation, e.g., propa-
gating bogus AS-level routes to neighboring nodes, are
eliminated. We point out that centralizing interdomain
routing is also compatible with the ongoing efforts to de-
ploying the Resource Public Key Infrastructure (RPKI)
— a centralized certification infrastructure for issuing
cryptographic public keys to ASes and for mapping IP
addresses to owner ASes, thus preventing ASes from suc-
cessfully announcing IP prefixes that do not belong to
them (“prefix hijacking”). By outsourcing BGP compu-
tation, verifying routing information through the RPKI
can be executed efficiently in a centralized manner.

Freedom to adapt and innovate. The compu-
tational parties can easily update to new and more ad-
vanced protocols, thus offering more complex function-
ality, such as new security solutions, multiple paths per
destination prefix, multicast routing, fast failover in re-
sponse to network failures, etc.

‘What if’ analysis. Due to our low runtimes, we
can precompute paths for cases of failure, i.e., simulate

the removal of nodes and therefore significantly reduce
the recovery times for these cases. This is possible since
the network topology is known publicly and therefore
topology changes can be simulated.

1.4 [3] and other Related Works

The innovative idea of using MPC for BGP was first
proposed in [3]. The aim of that paper was to illus-
trate benefits and challenges of this approach, and to
explore generic cryptographic schemes towards its real-
ization. We take an important step forward, providing
a more concrete cryptographic approach that is tailored
to interdomain routing, and thus leads to significant im-
provements, and show that we achieve reasonable per-
formance in a real topology of today’s Internet.

Even though [3] outsources the route computation
to few mutually distrustful parties, it does not utilize
this approach to the fullest extent possible. In terms of
functionality, the internal protocol of [3] that the clus-
ters execute is very close to the BGP protocol. That
is, the computational parties get the secret shares of
routing preferences of all ASes, and then simulate an
execution of the BGP protocol on “virtual” ASes with
these shared preferences: The clusters run several iter-
ations until convergence, where in each iteration, each
virtual AS (i) selects a route from the routes learned
from neighboring ASes and (ii) decides whether or not
to advertise this route to each of its neighbors based on
a set of export policies. These decisions, however, incur
a high overhead in cryptographic computations since, in
order to hide the policy that is applied, all policies have
to be applied once per iteration. In order to securely
evaluate the routing algorithm, [3] uses the MPC proto-
col of [14], which provides passive security in the case of
a honest majority, i.e., if t < n/2 of the n parties have
been corrupted.

In this paper, we follow up on the work of [3] and
suggest the use of a second established interdomain rout-
ing algorithm that avoids these computation-heavy poli-
cies using a simpler routing strategy based on business
relations [4], given in §3.1. We compare the performance
of this algorithm to the preference-based algorithm that
was used in [3] and which we outline in §3.2. In addition,
we use the secure computation protocol of Goldreich-
Micali-Wigderson [5] for secure evaluation of the algo-
rithms, since it provides security in case of no honest
majority. Also, [15] recently showed that the protocol of
[5] scales better to a larger number of parties than the
protocol of [14].
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Other related works proposed privacy-preserving
graph algorithms, but did not consider the more com-
plex BGP algorithm: [16] proposes STRIP, a proto-
col for vector-based routing that computes the short-
est path based on the Bellman-Ford algorithm. In their
protocol the routers forward encrypted messages along
the possible paths that accumulate the costs along the
path using additively homomorphic encryption. This ap-
proach requires many messages until it converges and
the routers need to implement costly public-key encryp-
tion whereas in our solution all cryptographic operations
are outsourced to the two mutually distrustful compu-
tational parties. [17] provides privacy-preserving graph
algorithms with security against passive adversaries for
all pairs shortest distance and single source shortest dis-
tance. [18] provides data-oblivious graph algorithms for
secure computation, such as breadth-first search, single-
source single-destination shortest path, minimum span-
ning tree, and maximum flow, the asymptotic complex-
ities of which are close to optimal for dense graphs. [19]
introduces an outsourced secure computation scheme
that is secure against active adversaries and uses it
to compute Dijkstra’s shortest path algorithm. [20] in-
troduces a framework that compiles high-level descrip-
tions into programs that combine secure computation
and ORAM and gives speed-ups for Dijkstra’s shortest
path algorithm. However, the complexities of these al-
gorithms that hide the topology of the graph are too
high to scale to the size of the Internet consisting of
thousands of nodes.

2 Preliminaries
We provide preliminaries on secure multi-party compu-
tation (§2.1), modeling the BGP protocol (§2.2), and
detail the input data for our protocols (§2.3) next.

2.1 Secure Multi-Party Computation

Secure multi-party computation was introduced in the
1980s [5, 21]. These works show that multiple comput-
ing devices can carry out a joint computation of any
function on their respective inputs, without revealing
any information about the inputs (except for what is
logically learned from the output).

More concretely, consider n parties P1, . . . , Pn that
hold private inputs x1, . . . , xn and wish to compute some
arbitrary function (y1, . . . , yn) = f(x1, . . . , xn), where
the output of Pi is yi. MPC enables the parties to com-

pute the function using an interactive protocol, where
each party Pi learns exactly yi, and nothing else. Natu-
ral applications of MPC include voting, digital auctions,
survey computations, set operations, and many more.

The security of the protocol is preserved even in
the presence of some adversarial entity that corrupts
some of the participating parties, combines their tran-
scripts and coordinates their behaviors. Usually, there
are two types of adversaries that are considered. A semi-
honest adversary (also known as “honest-but-curios” or
“passive”), follows the protocol specification but may
attempt to learn secret information about the private
information of the honest parties from the messages it
receives. A malicious adversary (also known as “active”)
may, in addition, deviate from the protocol specification
and follow any arbitrary behavior. In our setting (as well
as in [3]), we assume that the computing parties are
semi-honest. Our basic variant of the protocols assumes
that the ASes are semi-honest as well (and may collude
with some of the computing parties). In the more in-
volved variant of our protocols (unlike [3]), we tolerate
even malicious behavior of the ASes (cf. §6.2).

In this work, we use MPC in an outsourcing sce-
nario, where many ASes secret-share their private in-
puts to two computational parties, who run the secure
computation on these inputs. The outputs are then sent
back to the ASes, who reconstruct the plaintext output.

Despite the immense potential of MPC, it is a
great challenge to implement it in practice. The afore-
mentioned constructions of MPC are purely theoretical,
and protocols for secure computation can require many
rounds of interaction and the transformation of massive
data between the computing parties. A very productive
line of research, e.g., [6, 20, 22–25], has been devoted
to positioning MPC as a practical tool and off-the-shelf
solution for a wide variety of problems, and to minimize
the complexity of the current schemes. Using these re-
cent breakthroughs, the benefits of MPC can be utilized
in some real-life applications [26, 27]. Still, its deploy-
ment is somewhat insufficient and far beneath its true
potential. Our work is a new real-life large-scale appli-
cation of MPC, which is interesting in its own right.

An important building block for secure computation
is oblivious transfer (OT), where a sender inputs two `-
bit messages (m0,m1) and a receiver inputs a selection
bit s ∈ {0, 1} and obliviously receives one message ms.
OT guarantees that the sender does not learn the re-
ceiver’s choice s, while the receiver only learns ms and
nothing about m1−s. OT can be computed efficiently
using OT extension [28, 29].
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Boolean sharing. The MPC techniques we use to
implement our protocols rely on Boolean sharing, where
a value is XOR secret-shared and processed using a cir-
cuit that operates on bits. The parties emulate compu-
tation of the circuit gate-by-gate, where in each gate the
parties compute shares of the gate’s output wire using
the shares of the inputs. The computation of the outputs
of an AND gate requires interaction. Consequently, the
round complexity of the protocol depends on the depth
of the circuit, resulting in high latency for circuits with
high depth. We use the protocol by Goldreich-Micali-
Wigderson (GMW) [5], which falls into this category.
The main advantage of the GMW protocol is that it
allows to precompute all (symmetric) cryptographic op-
erations in a setup phase that is independent of both
the function that is being evaluated and the inputs to
the function. Each AND gate needs as precomputation
two Oblivious Transfers (OTs) [28, 29] on random in-
puts, which are used to precompute a multiplication
triple that consists of random bits a0, a1, b0, b1, c0, c1 for
which c0 ⊕ c1 = (a0 ⊕ a1) ∧ (b0 ⊕ b1) holds, cf. [29]. We
heavily utilize this precomputation. In our setting, the
setup phase is independent of the topology of ASes and
their routing preferences and hence can be easily eval-
uated by multiple machines in parallel. The remainder
of the protocol is an online phase that consists solely
of bit operations. Moreover, the GMW protocol allows
to efficiently evaluate the same sub-circuit in parallel,
similar to Single Instruction Multiple Data (SIMD) in-
structions in a CPU. Finally, the GMW protocol also
allows for highly efficient instantiation of multiplexers
using vector ANDs [6], which reduce the cost for eval-
uating a `-bit multiplexer to the cost of evaluating a
single AND gate and, in our experiments, reduce the
number of required OTs by a factor between 3 and 45.
We describe how this optimization is applied to our use
case in §4.2.1. More detailed, an `-bit vector AND (or
multiplexer) is evaluated using a vector multiplication
triple, which consists of two random bits a0, a1 ∈ {0, 1}
and four random `-bit strings b0, b1, c0, c1 ∈ {0, 1}` with
c0[i]⊕c1[i] = (a0⊕a1)∧(b0[i]⊕b1[i]) for 1 ≤ i ≤ `, where
[i] denotes the i-th bit of a string. Similar to a regular
multiplication triple, a vector multiplication triple can
be generated using two OTs on random inputs [6].

2.2 Modeling BGP

We now give an overview on important aspects of mod-
eling BGP, as discussed in [11, 30, 31] (and references
therein). Throughout this work the terms AS, domain,
vertex or node are used interchangeably.

2.2.1 The AS-Level Graph

The AS-level topology of the Internet is modeled as a
network graph G = (V,E) where vertices represent ASes
and edges represent connections between them. Each
edge is annotated with one of two business relationships:
customer-provider, or peering. A customer-provider edge
is directed from customer to provider; the customer
pays its provider for transmitting traffic to/from the cus-
tomer. A peering edge represents two ASes that agree to
transit traffic between their customers at no cost. We as-
sume that these relationships are symmetric, i.e., if AS a
is a peer of AS b, then b is also a peer of a and if AS c is
a customer of AS d, then d is a provider of c. ASes with
customers are Internet Service Providers (ISPs). We call
an AS with no customers a “stub AS”.

2.2.2 Routing Policies

ASes’ routing polices reflect their local business and
performance considerations. Consequently, routing poli-
cies are considered sensitive information as revelation of
an AS’s routing policy can potentially leak information
about its business relationships with others to its com-
petitors (or other relevant information). We use the stan-
dard model of routing policies from [11, 30]. Each AS a
computes routes to a given destination AS dest based on
a ranking of simple (loop-free) routes between itself and
the destination, and an export policy, which specifies, for
any such route, the set of neighbors to which that route
should be announced. We next present a specific model
of routing policies that is often used to simulate BGP
routing (see, e.g., [4, 31, 32]).

Ranking. AS a selects a route to dest from the set
of paths it learns from its neighbors ASes according to
the following ranking of routes:
– Local preference. Prefer outgoing routes where

the “next hop” (first) AS is a customer over outgo-
ing routes where the next hop is a peer over routes
where the next hop is a provider. This captures
the intuition that an AS is incentivized to select
revenue-generating routes through customers over
free routes through peers over costly routes through
providers. Optionally, an AS can have preferences
within each group of neighbors, i.e., it can prefer a
certain provider over another one.

– Shortest paths. Break ties between multiple
routes with the highest local preference (if exist)
in favor of shorter routes (in terms of number of
ASes on them). Intuitively, this implies that an AS
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breaks ties between routes that are equally good
from a business perspective, in favor of routes that
offer better performance.

– Arbitrary tie breaking. Break ties between mul-
tiple remaining routes (if exist) arbitrarily.

Export policies. The following simple export policy
captures the idea that an AS is willing to transit traffic
between two other ASes if and only if one of these ASes
is a paying customer: AS b announces a path via AS c

to AS a iff at least one of a and c is a customer of b.

2.2.3 BGP Convergence

BGP computes routes to each destination independently
and so, henceforth, we consider route computation with
respect to a single destination AS dest. In BGP, each
AS repeatedly uses its ranking function to select a sin-
gle route from the set of routes it learns from its neigh-
bors, and then announces this route to the set of neigh-
bors dictated by its export policy. This goes on until
BGP computation converges to a stable routing out-
come where no AS wishes to change its route. Observe
that as an AS can only select a single route offered to it
by a neighbor. The set of selected routes upon conver-
gence must form a tree rooted in the destination dest,
referred to as the routing tree to AS dest. Under the
routing policies specified in §2.2.2, BGP is guaranteed
to converge to a unique stable routing tree [11] given
the arbitrary tie-breaking strategy.

2.3 BGP Input Data

It is our goal to simulate the algorithms under realis-
tic conditions and show its practicality on real-world
data. To this end, we use the network topology and AS
business relationships provided in the CAIDA dataset
from November 2016 [33]. This dataset is empirically
generated and provides us with both a realistic network
topology, which we can use as public input, as well as
inferred business relationships between domains, which
we use to simulate the private inputs of the ASes. We fur-
thermore compare properties of the most recent dataset
with the available historic data for every month starting
from 1998 and depict this information in Fig. 6 in Ap-
pendix A. We evaluate our protocols on datasets from
the past 10 years for full topologies and recent subgraphs
thereof to show how our implementations scale and pro-
vide detailed results in §5.

A possible way of deploying our solutions could be
with the help of a Regional Internet Registry (RIR) or
on smaller, regional scale. Starting from the original
CAIDA topology, we created subgraphs using the Ge-
oLite database [34] for each of the 5 RIRs and Germany
as an example of a regional topology (cf. §6.4).

3 Centralized BGP Algorithms
We consider two centralized algorithms for computing
interdomain routes: an algorithm based on business re-
lations (§3.1) and an algorithm that ranks neighbors
based on preferences (§3.2). We first outline the pseudo-
code for these algorithms, which can be considered as
the “code of the trusted party” in terms of secure com-
putation and then show how to reduce the complexity of
the route computation by removing stub-nodes (§3.3).

3.1 Centralized Algorithm with Neighbor
Relations

We present the algorithm from [4] for computing the
BGP routing tree for the routing policies described
in §2.2.2. The algorithm gets as input the AS-topology
G = (V,E), where each outgoing edge (u, v) ∈ E is asso-
ciated with one of three labels: customer (v is a customer
of u), peer (u and v are peers) or provider (v is a provider
of u). The algorithm also receives as input the destina-
tion AS dest ∈ V . The output of the algorithm is, for
each AS, the next hop on the routing tree to destination
dest. As shown in [4], the induced routing tree generated
by this algorithm agrees with the BGP outcome for the
routing policies described in §2.2.2.

The algorithm computes for each AS its next hop on
the routing tree using the following three-stage breadth-
first search (BFS) on the AS graph:

1. Customer routes. A partial routing tree is con-
structed by performing a BFS “upwards” from root
node dest using only customer edges.

2. Peer paths. Next, single peering edges connect new
ASes to the ASes already added to the partial rout-
ing tree from the first stage of the algorithm.

3. Provider paths. The computed partial routing
tree is traversed with a BFS, and new ASes are it-
eratively added to the tree using provider edges.
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– Public inputs: (V, dest, ddepth), where V = {v1, . . . , vn}
represents the set of vertices (ASes), dest ∈ V is the
destination node, and ddepth is a bound on the depth of
the customer-provider hierarchy, i.e., the longest route
in the AS-graph in which each edge is from customer to
provider. We use 10 as a very conservative upper bound
on this depth. The topology of the AS-graph is assumed
to be public knowledge. That is, for every v ∈ V the list
of its neighbors Adj[v] ⊆ V is public. We discuss hiding
the topology in §6.5.

– Private inputs: Every AS v ∈ V inputs a private
list typev, where for every u ∈ Adj[v], typev[u] ∈
{customer, peer, provider}.

– Outputs: Upon completion of the algorithm, every AS
v ∈ V obtains its next hop in the routing tree next[v].

1: Initialize a vector next of size |V |, that stores the next hop
in the routing tree to node dest, where for every v ∈ V

set next[v] = DUMMY, where DUMMY 6∈ V is an unconnected
node. Set next[dest] = dest.

2: Initialize a Boolean vector fin of size |V |, that indicates
if a route to dest was found, and set all the elements to
false. Set fin[dest] = true.

3: Initialize a distance vector dist of size |V | that holds the
number of hops to dest. Set all elements to ∞, except for
dist[dest] = 0.

BFS of customers:
4: for ddepth iterations do:
5: for all v ∈ V do: . in parallel
6: for all u ∈ Adj[v] do: . for all neighbors of v

7: if fin[u] = true and fin[v] = false and
typev [u] = customer then

8: next[v]←− u

9: dist[v] ←− dist[u] + 1
10: fin[v] ←− true

BFS of peers:
11: for all v ∈ V do: . in parallel
12: for all u ∈ Adj[v] do: . for all neighbors of v

13: if fin[u] = true and fin[v] = false and
typev [u] = peer and dist[v] > dist[u] + 1 then

14: next[v]←− u

15: dist[v] ←− dist[u] + 1
16: fin[v] ←− true

BFS of providers:
17: for ddepth iterations do:
18: for all v ∈ V do: . in parallel
19: for all u ∈ Adj[v] do: . for all neighbors of v

20: if fin[u] = true and fin[v] = false and
typev [u] = provider and dist[v] > dist[u] + 1 then

21: next[v]←− u

22: dist[v] ←− dist[u] + 1
23: fin[v] ←− true

24: return next

Algorithm 1. Neighbor Relation Routing [4]

We proceed with a detailed pseudo-code of the above al-
gorithm. Implementing this algorithm involved several
decisions that will mitigate the conversion to a secure
protocol, and careful selection of data-structures. E.g.,
variables with Boolean values are preferred when possi-
ble, since these simplify the conversion to the Boolean
circuit. Also, sometimes further optimizations of the al-
gorithm (like breaking a loop according to some condi-
tion), are avoided as to not reveal information about
the internal state. Note that all nodes are processed in
parallel, i.e., the state is read once for all nodes and
updated at the end of each iteration.

We distinguish between public and private algo-
rithm inputs. We assume public inputs are global knowl-
edge and do not reveal sensitive information. Private
inputs describe the privacy-sensitive input of each AS.

A formal description of the algorithm is given
in Alg. 1. The state of the algorithm consists of three
vectors, each of size |V |: next, fin and dist. The vector
next stores nodes, where for every node v ∈ V , next[v]
stores the next hop in the routing tree to the node dest.
The vector fin is a Boolean vector, where fin[v] stores
whether the route from v to dest is already determined.
The vector dist is a vector of integers, where dist[v] stores
the number of hops in the current route between v and
dest (this helps us to break ties between multiple routes
with the highest local preference, if exist, in favor of
shorter routes). It is easy to see that this pseudo-code
is a concrete implementation of the algorithm presented
in [4], and thus we conclude that the routes computed by
this algorithm agree with the outcome of BGP (where
the preferences of the ASes are according to §2.2.2).

3.2 Centralized Algorithm with Neighbor
Preferences

The algorithm in §3.1 can be extended such that it
allows the ASes to specify preferences for each neigh-
bor route and freely choose an individual export policy.
In [3], such an algorithm was proposed, that behaves
similar to the one in [4], but is computationally more
complex due to the added degree of freedom.

We can emulate the behavior of Alg. 1 by grouping
each neighbor relation to a certain range of preferences:
we ensure that customers have a higher preference than
all other nodes, and that providers have lower prefer-
ence than others. The advantage of this algorithm is,
that within each neighbor relation we can have a pre-
ferred node, e.g. a favorite provider. In addition, this
algorithm allows a node to freely specify his export pol-
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– Public inputs: Same as in Alg. 1.
– Private inputs: Every AS v ∈ V inputs a private list

of preferences prefv, where for every u ∈ Adj[v], prefv[u]
corresponds to the preference for u, and a private bit-
matrix pubv of size |Adj[v] + 1|× |Adj[v]| that specifies the
export policy, i.e., if a route to a neighbor is published to
other neighbors.

– Outputs: Same as in Alg. 1.

1: Initialize a vector next of size |V |, that stores the next
hop in the routing tree to node dest. For every v ∈ V set
next[v] = DUMMY, where DUMMY 6∈ V is an unconnected node.
Set next[dest] = dest.

2: Initialize a Boolean vector fin of size |V |, that indicates
if a route to dest was found, and set all the elements to
false. Set fin[dest] = true.

3: for all v ∈ V do: Initialize pubv[DUMMY, u] = true for all
u ∈ Adj[v] and prefv [DUMMY] = 0.

BFS:
4: for 2ddepth + 1 iterations do:
5: for all v ∈ V do: . in parallel
6: for all u ∈ Adj[v] do: . for all neighbors of v

7: if fin[u] = true and pubu[next[u], v] = true and
prefv [next[v]] < prefv [u] then

8: next[v]←− u

9: fin[v] ←− true

10: return next

Algorithm 2. Neighbor Preference Routing [3]

icy, i.e., to choose whether he wants to disclose a certain
route to a neighbor or not. The pseudo-code of the algo-
rithm is given in Alg. 2. We use a preference bit-length
of ρ = 4 for good expressiveness in practice.

3.3 Removing Stub ASes

To reduce the complexity of the route-computation, our
protocols are only run on the subgraph of the AS-graph
that is induced by the non-stub ASes (i.e., by the ISPs).
Stubs (by definition) have no customers, and so should
never transit traffic between other ASes. Hence, in our
scheme MPC is used to compute routes between ISPs
(that form the core of the Internet). Then, stubs select
an ISP through which to connect to the Internet accord-
ing to their local routing policies. We point out that:

1. As stubs are roughly 85% of ASes, this means that
the MPC protocol needs only be run on a fairly
small part of the AS graph. In our experimental eval-
uation in §5 we show that removing the stubs im-
proves the runtime of the MPC protocol by a factor
of ≈ 2.5. For the CAIDA topology from November

2016, the number of ASes is reduced from almost
56 000 to 8 407 ASes, when excluding stubs.

2. Whether an AS is a stub (and not an ISP) is not
considered confidential information and so our par-
tition of the AS graph into these two distinct groups
of ASes does not leak any sensitive information.

3. Observe that according to the routing policies pre-
sented in §2.2.2, to select between ISPs after the
MPC step is complete, a stub needs only to know
whether or not the ISP has a route to the destina-
tion, and the length of the route. This information
can be announced directly to the stub by its ISP.

4 Circuit Representation
As a first step towards securely computing Alg. 1
and Alg. 2, we show how to construct Boolean circuits
that implement these algorithms. In the following sec-
tion we detail how to construct a Boolean circuit from
the neighbor relation algorithm given in Alg. 1 (§4.1),
describe the optimizations that we apply to it (§4.2),
give a summary of the circuit for the neighbor prefer-
ence algorithm in Alg. 2 (§4.3), and show security and
privacy of our protocols (§4.4).

incust

inpeer

inprov

next fin dist

Customer

Peer/Prov.

Peer/Prov.

Outputs

Inputs

State

next

State

State

ddepth×

ddepth×

Fig. 2. Circuit Structure Overview.

4.1 ‘Naive’ Implementation of Alg. 1

We first outline the general structure of the cir-
cuit (§4.1.1) and then show how to implement sub-
routines and analyze their complexities (§4.1.2). We pro-
vide a circuit structure outline in Fig. 2 and the com-
plete circuit of our centralized BGP algorithm in Circ. 1.
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1: Initialization of next, fin and dist identical to Alg. 1.
BFS of customers:
2: for ddepth times do:
3: for all v ∈ V do: . in parallel
4: for all u ∈ Adj[v] do: . for all neighbors of v

5: sel ←− fin[u] ∧ !fin[v] ∧ incust
v [u]

6: sum ←− ADD(dist[u], 1)
7: next[v] ←− MUX(next[v], u, sel)
8: dist[v] ←− MUX(dist[v], sum, sel)
9: fin[v] ←− MUX(fin[v], sel, sel)

BFS of peers:
10: for all v ∈ V do: . in parallel
11: for all u ∈ Adj[v] do: . for all neighbors of v

12: sum ←− ADD(dist[u], 1)
13: cmp ←− GT(dist[v], sum)
14: sel ←− fin[u] ∧ !fin[v] ∧ cmp ∧ inpeer

v [u]
15: next[v] ←− MUX(next[v], u, sel)
16: dist[v] ←− MUX(dist[v], sum, sel)
17: fin[v] ←− MUX(fin[v], sel, sel)

BFS of providers:
18: for ddepth times do:
19: for all v ∈ V do: . in parallel
20: for all u ∈ Adj[v] do: . for all neighbors of v

21: sum ←− ADD(dist[u], 1)
22: cmp ←− GT(dist[v], sum)
23: sel ←− fin[u] ∧ !fin[v] ∧ cmp ∧ inprov

v [u]
24: next[v] ←− MUX(next[v], u, sel)
25: dist[v] ←− MUX(dist[v], sum, sel)
26: fin[v] ←− MUX(fin[v], sel, sel)

Circuit 1. Neighbor Relation Routing Circuit

4.1.1 Structure

Inputs. The circuit gets as input from each AS the se-
cret shared relationship information for its neighbors.
For efficiency reasons we have three separate input bit
arrays for each AS, one for each type of AS relation:
incust, inpeer, and inprov. For a node with n neighbors,
we have three inputs of length n bits each, where the
i-th bit corresponds to the relation to the i-th neigh-
bor. Note that the ASes only need to secret share their
inputs among the computational nodes when updating
their relationships since the computational nodes can re-
use existing data for multiple executions. (If it should
be hidden that a particular AS changed its relationships,
then the secret sharing can be run again by all ASes.
This might happen on a regular basis.) The routing des-
tination dest and network topology are public inputs
and thus not secret-shared.

State. We operate on a secret-shared state where
we store for each node: a finish bit fin, a δ-bit long desti-
nation id of the next node on the routing tree next, and
a σ-bit long hop distance to the target node dist. Ini-

tially, fin is set to false and next is set to zero, while dist
is set to the maximum value 2σ − 1. This state is then
iteratively updated using the methods for each relation.
The peer and provider methods are identical, except for
the different iterations and type of AS relation. We have
ddepth iterations of the customer sub-circuit and 1+ddepth
iterations of a combined peer/provider sub-circuit, where
we use the peer relation as input once, and the provider
relation for the remaining iterations.

Outputs. After secure evaluation of the next hop
on the route to dest for each AS v ∈ V , the computa-
tional parties send their share next[v] to every v, who
can then reconstruct the plaintext output.

Parameters. According to the CAIDA dataset, we
set the parameters in the protocol of §3 to ddepth = 10
and therefore have 10 iterations of the customer routine,
a single iteration for the peer routine, and 10 iterations
for the provider routine. Furthermore, we set the id-
bit length δ = dlog2 |V |e and the destination bit-length
to σ = dlog2 21e = 5, since we can at most achieve a dis-
tance of 21 hops between any AS and the destination (1
hop per each of the 10 customer and provider iterations
and one peer iteration).

4.1.2 Operations and Complexities

The operations of the pseudo-code in Circ. 1 can be im-
plemented using standard circuit constructions. Apart
from the standard bit-wise operations AND (∧) and
NOT (!), we use the following operations:

Addition (ADD). We use the Ripple-Carry addi-
tion circuit [35] with ` AND gates and a multiplicative
depth of ` for addition of `-bit values.

Greater-Than (GT). We use the greater-than cir-
cuit of [36] which has ` AND gates and a multiplicative
depth of ` when comparing two `-bit values.

if-Condition (MUX). To compute the if-
condition securely, both branches must be evaluated to
hide which branch has been chosen. The results are then
assigned to the variables depending on the condition bit
sel ∈ {0, 1} using a multiplexer MUX. A multiplexer for
`-bit values requires ` AND gates [37] and its multiplica-
tive depth is 1. There exist optimizations for the GMW
protocol that allow the evaluation of an `-bit multiplexer
at the cost comparable to a single AND gate [6], as ex-
plained in §4.2.1.

We estimate that naively implemented circuits
would have more than one hundred million AND gates,
and a multiplicative depth of several hundred thousand.
Furthermore, we estimate that the total number of gates
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is around 400 million. Since modern secure computa-
tion frameworks are able to evaluate 4-8 million AND
gates per second [6, 20], securely evaluating the circuit
would require nearly 100 s, which is arguably too long.
Finally, the high depth translates to a huge number of
communication rounds for the GMW protocol. In the
next section, we show how the circuit can be optimized
substantially to overcome these limitations.

4.2 Optimized Implementation of Alg. 1

In order to counter the problem of the high number of
AND gates, the memory complexity for storing the cir-
cuit, and the high number of communication rounds, we
propose to use the following three optimizations: reduce
the complexity for evaluating AND gates by using vec-
tor ANDs (§4.2.1), decrease the number of gates in the
circuit description by using SIMD circuits (§4.2.2), and
decrease the circuit depth by building certain parts of
the circuits as tournament-like evaluation (§4.2.3). We
describe these optimizations in more detail next.

4.2.1 Vector ANDs

The naive circuit in Circ. 1 consists of many multiplexer
gates operating on `-bit values, needed to realize if con-
ditions. As outlined in [6] and summarized in §2.1, these
multiplexers can be instantiated using vector ANDs that
reduce the precomputation cost from ` AND gates to the
cost of one AND gate. Overall, the multiplexers consti-
tute to around 75% of the total number of AND gates in
the circuit. By using the vector AND optimization, we
can therefore reduce the number of AND gates by fac-
tor 3 for the neighbor relation algorithm in Alg. 1 and
by up to factor 45 for the neighbor preference algorithm
in Alg. 2 (as shown in column Total ANDs vs. Vector
ANDs in Tab. 2 in the Appendix). Note, however, that
this optimization can only be applied when performing
the evaluation with the GMW protocol, while an evalua-
tion with Yao’s garbled circuits has to process the total
number of AND gates.

4.2.2 SIMD circuits

In order to cope with large circuits, there are two com-
mon approaches: pipelining the circuit construction and
evaluation [24] and building a Single Instruction Multi-
ple Data (SIMD) circuit. While the approach of pipelin-
ing the circuit construction and evaluation is especially

suited for processing circuits of arbitrary size, we de-
cided to pursue a solution based on SIMD techniques.
A SIMD circuit also consists of gates, but instead of
operating on single bits, it operates on multiple bits in
parallel. Thereby, the time for the load / process / store
operations of a gate amortizes, which drastically speeds
up the evaluation [38]. In contrast, a pipelined construc-
tion and evaluation approach would need to perform a
load / process / store operation per bit of evaluation.
We will now describe how to build such a SIMD circuit
that evaluates our BGP functionality.

Note that for the customer, peer, and provider func-
tionality, we perform the same operation for each node
v ∈ V in parallel. Using SIMD circuits, we can com-
bine the values for each node into vectors instead of
single bits and thereby only build a single copy of the
functionality. Thereby, we can operate on multiple val-
ues in parallel, which allows us to reduce the memory
footprint of the circuit as well as to decrease the time
for circuit evaluation. However, applying the SIMD pro-
gramming style is not straight-forward since for each
node the circuit depends on its degree, i.e., the number
of its neighbor nodes n, which differs drastically between
ASes. The obvious solution, that builds the circuit for
the node with the highest degree nmax and pads the
number of neighbor nodes for all other nodes to nmax,
introduces a non-tolerable overhead in terms of AND
gates. We solve this problem as described next.

All nodes are divided into groups of similar de-
gree. After each iteration the results from all groups
are merged into a state, that is used as input to
the next iteration. The challenge is to find the
right amount and size of groups to partition the
nodes. For our experiments, we use the following par-
titioning: {1, 2, . . . , 6, 8, 12, 20, 32, 64, 128, 256, . . . , nmax},
where nmax is the highest number of neighboring nodes
that any AS in the topology has.

4.2.3 Tournament evaluation

The current circuit has a high multiplicative depth,
which makes it inefficient for secure computation pro-
tocols which require communication rounds linear in
the circuit depth, e.g., the GMW protocol. The reasons
for the high depth of the circuit are the iterative struc-
ture of Alg. 1 and the sequential processing of neighbors,
which results in a circuit depth linear in nmax, i.e., the
highest number of neighbors of any AS in the graph
(for the CAIDA dataset, nmax=5 936). In order to re-
duce the depth for processing the neighbors, we adopt a
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Input: v ∈ V, (next[uL], dist[uL], fin[uL], incust
v [uL]),

(next[uR], dist[uR], fin[uR], incust
v [uR]) with

uL, uR ∈ Adj[v], uL 6= uR
1: sel ←− fin[uL] ∧ !fin[v] ∧ incust

v [uL]
2: next′ ←− MUX(next[uR], next[uL], sel)
3: dist′ ←− MUX(dist[uR], dist[uL], sel)
4: fin′ ←− MUX(fin[uR], fin[uL], sel)
5: in′ ←− MUX(incust

v [uR], incust
v [uL], sel)

Output: (next′, dist′, fin′, in′)

Function 1. Selection Function customer

Input: v ∈ V, (next[uL], dist[uL], fin[uL], incust
v [uL]),

(next[uR], dist[uR], fin[uR], incust
v [uR]) with

uL, uR ∈ Adj[v], uL 6= uR
1: distmax = 2σ − 1
2: sumL ←− MUX(distmax, dist[uL], fin[uL] ∧ inpeer/prov

v [uL])
3: sumR ←− MUX(distmax, dist[uR], fin[uR] ∧ inpeer/prov

v [uR])
4: sel ←− GT(sumR, sumL)
5: next′ ←− MUX(next[uR], next[uL], sel)
6: dist′ ←− MUX(dist[uR], dist[uL], sel)
7: fin′ ←− MUX(fin[uR], fin[uL], sel)
8: in′ ←− MUX(inpeer/prov

v [uR], inpeer/prov
v [uL], sel)

Output: (next′, dist′, fin′, in′)

Function 2. Selection Function peer / provider

tournament evaluation style by arranging operations in
form of a tree and thereby achieve a logarithmic depth.
We give the selection function for the customer function-
ality in Func. 1 and for the peer / provider functionality
in Func. 2. Note that we can compute sel in Func. 1 as
well as sumL and sumR in Func. 2 once in the beginning
and pass/re-use them during the tournament evaluation
to decrease the number of AND gates. Thereby, the over-
all number of AND gates in the circuit remains the same
as for the sequential circuit.

4.3 Implementation of Alg. 2

The structure of the neighbor preference algorithm
described in §3.2 is very similar to that of the
peer/provider part of Alg. 1 described in §3.1. Thus,
we can use the same structure, ideas and optimizations
as described before to efficiently realize it as a Boolean
circuit optimized for the evaluation with the GMW pro-
tocol. The main difference between the neighbor pref-
erence and the relation algorithm is the publish ma-
trix pub, held by each AS. This matrix has dimension
|Adj[v]|× |Adj[v]| and hence becomes very large for ASes
with many neighbors. In fact, for the full CAIDA dataset
from November 2016, only the AS with the most neigh-
bors (nmax = 5 936) has a matrix with 35 236 096 bits.
Each bit of this matrix has to be accessed once for each

of the 2ddepth + 1 rounds in order to hide the current
next hop, which costs one AND gate per bit. Overall,
the total number of AND gates in the circuit for the
full CAIDA dataset from November 2016 amounts to
nearly 8 billion. The vector AND optimization allows us
to perform a more efficient access and reduces the cost
for processing this matrix in the setup phase to 130 mil-
lion AND gates. However, during the online phase we
have to evaluate the total number of AND gates, regard-
less of the vector AND optimization, which results in a
communication of approximately 2 GiB of data which is
an order of magnitude higher than for the relation-based
algorithm of §3.1.

Additionally, in the neighbor preference algorithm,
the computation parties need to perform lookups
by secret-shared values in Step 7 (i.e., the lookups
pubu[next[u], v] and prefv[next[v]]). We implement these
lookups by updating the values pubu and prefv for all
nodes each time a new next hop is chosen. Note that
updating the values can be done using the vector AND
optimization, which greatly reduces the costs.

4.4 Security and Privacy

Given the above circuit representations, our final proto-
cols apply the GMW protocol [5, 39] while using these
circuits as public input to all computational parties. In a
nutshell, all ASes secret share their inputs to the compu-
tational parties. Then, the parties use the GMW proto-
col to evaluate the circuit gate-by-gate, while maintain-
ing the invariant that the value on each wire is secret
shared among the computational parties. The parties
evaluate the circuit, by securely computing a secret shar-
ing of the output wire of the gate using its secret shared
input wires. At the final stage, the computational par-
ties send back to each AS its respective shares of the
output, and never learn the output by themselves. De-
note by Π1 the protocol for computing Alg. 1, and by
Π2 the protocol for computing Alg. 2.

It is easy to see that our naive circuits (e.g., Circ. 1)
correctly implement our algorithms. These are direct
translations of the algorithms into lower level compo-
nents, such as AND (∧) and NOT (!) gates, as well
as ADD, GT and MUX. We rely on the correctness of
the implementations of [35] for ADD-gates, [36] for GT
and [6] for MUX, to conclude our final circuits, that use
only AND and XOR gates.

The correctness of the protocols is derived from cor-
rectness of the GMW protocol, and the correctness of
our circuits. The privacy of our protocols is derived from
the proof of security [5, 39] of the GMW protocol for
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privately computing a given circuit while hiding the in-
termediate values on its internal wires. We specify these
properties formally in Theorem 1.

Theorem 1. Security and Privacy
Protocol Π1 (resp. Π2) privately computes Alg. 1 (resp.
Alg. 2) in the presence of a semi-honest adversary, cor-
rupting at most n− 1 out of n computational parties in
addition to all but one ASes.

5 Benchmarks and Evaluation
In this section, we provide benchmark results of our pro-
tocols and evaluate the practicality of our solution.

We show that we are capable of securely evaluating
the circuit for the full dataset in a reasonable runtime
and further improve it using the algorithmic optimiza-
tion of excluding stubs from the computation (cf. §3.3).

We implement our protocols using the ABY frame-
work [6] which provides the two-party variant of the se-
cure computation protocol by Goldreich-Micali-Wigder-
son (GMW) [5] with security against passive adversaries.
The main reason for the GMW protocol are the opti-
mizations from §4.2, that are only possible with GMW.
Using Yao’s garbled circuits, runtimes would become
impractical. We provide further arguments for choosing
the GMW protocol in Appendix B.

To the best of our knowledge, the optimizations de-
scribed in §4.2 are only implemented in the ABY frame-
work. We are not aware of automated tools capable of
using the same optimizations to the same extent that we
do in our hand-built circuits. We would like to point out,
however, that our efficient circuits are generic Boolean
circuits that could be evaluated with any secure compu-
tation framework and could thus be extended to more
than 2 parties or even security against malicious adver-
saries (e.g. using [40] or [41]), with additional cost in
communication and runtime.

Benchmarking Environment. Our MPC bench-
marks are run on two Amazon EC2 c4.2xlarge in-
stances with 8 virtual CPU cores with 2.9 GHz and
15 GiB RAM located in the same region, connected via
a Gigabit network connection. The symmetric security
parameter in our experiments is set to 128 bits. All run-
time results are median values of 10 protocol executions
and their standard deviation. The communication num-
bers provided are the sum of sent and received data for
each party.
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Fig. 3. Median runtimes for setup and online phase, for the
CAIDA topology of November of every year, with and without
stub nodes, comparing the neighbor relation algorithm (Alg. 1,
§3.1) and the neighbor preference algorithm (Alg. 2, §3.2).

CAIDA (Fig. 3). A visualization for the evalua-
tion of both protocols (neighbor relationship Alg. 1 and
neighbor preference Alg. 2) on CAIDA datasets of the
past 10 years is provided in Fig. 3. Detailed results are
given in Tab. 2 in Appendix C. Our results show that
both protocols spend most of the time in the setup phase
which takes 15.46 s for the neighbor relation algorithm
(35.07 s for the neighbor preference algorithm) for the
full CAIDA November 2016 topology and reduces to
6.41 s (12.80 s) if we exclude stub nodes. Note that this
part of the computation is less critical than the online
phase for two reasons: a) it is independent of the net-
work topology and input of the ASes and can thus be
precomputed at any time and b) it can be ideally par-
allelized by adding more machines and thus is just de-
pendent on the available resources. The online phase is
the time required from a secret shared input of the ASes
until the resulting next hop on the routing tree can be
provided to them. For the full network, the online run-
time is 6.12 s for the neighbor relation algorithm (29.89 s
for the neighbor preference algorithm) and decreases to
3.18 s (10.47 s) when leaving out stub nodes.

Generally speaking, the algorithmic improvement of
removing stub nodes from the network topology speeds
up both protocols by a factor between 2 and 3.
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Fig. 4. Median runtimes for setup and online phase, for subgraphs of CAIDA’s November 2016 topology, with and without stubs,
comparing the neighbor relation algorithm (Alg. 1, §3.1) and the neighbor preference algorithm (Alg. 2, §3.2).

The required bandwidth between the two compu-
tational parties in the online phase for the neighbor
relationship algorithm is less than 60MiB, while the
more complex neighbor preference algorithm requires
around 800MiB for the most recent topology without
stub nodes. Our results also show that the online run-
time of the preference algorithm scales worse with a
growing topology size. In general, communication be-
tween the two computing parties takes approximately
1/3 of the runtime of the online phase and is also the
part that induces the biggest runtime variations, even
on a local network. The remaining 2/3 of the runtime
in the online phase are spent on local computations con-
sisting of simple bit operations and memory accesses.

RIRs (Fig. 4). We show similar measurements
for subgraphs of CAIDA’s November 2016 topology for
5 RIRs and a regional topology for German ASes (RIPE-
DE) in Fig. 4 and provide detailed numbers in Tab. 3 in
Appendix C. When considering the smaller RIR topolo-
gies, the online time decreases below 10 s for both al-
gorithms, even for big sub-topologies such as RIPE or
ARIN. For smaller sub-topologies, the online runtime
decreases even further. For instance, on the full RIPE-
DE sub-topology, the online runtime for the neighbor
relation algorithm is 0.33 s (0.52 s for the neighbor pref-
erence algorithm) and decreases to 0.17 s (0.26 s), when
leaving out stubs. In a similar fashion, the required
bandwidth decreases to 1.0MiB for the neighbor rela-
tion algorithm and to 3.6MiB for the neighbor prefer-
ence algorithm withour stub nodes.

6 Deployment and Future Work
In this section, we explain our network assumptions and
propose further enhancing security and privacy by en-
forcing input consistency. We discuss how to handle fail-
ures and byzantine behavior, and possible deployment.

6.1 Network Considerations

The connection between the CPs is a critical point in our
system and has to be low-latency and high-throughput.
We argue that this is realistic, since reputed entities
that run the CPs are often co-located in the same data
centers, yet managed by different authorities. The com-
munication between ASes and CPs can be an arbitrary
Internet connection with no special requirements. Error
correction can be applied on the usual network layers
(e.g. within TCP/IP or on application level). Packet loss
between ASes and CPs does not cause severe problems,
as old inputs from ASes can be re-used in multiple proto-
col iterations. Lost outputs have the same consequences
as lost BGP messages nowadays. However, packet loss
is covered by the use of TCP/IP that re-sends lost pack-
ets. The ASes have to do one round of communication
with the computational parties that run our protocols.
Thus, we have measured the round trip time (RTT) be-
tween our computational parties and other Amazon EC2
regions and observed average RTTs between 90ms and
311ms, as depicted in Tab. 1. This time has to be added
to the MPC runtime to get the time an individual AS
has to wait for a computation result. The standard de-
viations of the RTTs and packet loss were less than 1%.
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Table 1. Average round trip times between Amazon EC2 regions
measured from EU (Frankfurt) to the listed regions.

Location ∅ RTT

US East (Northern Virginia) 90.2ms
US West (Northern California) 162.5ms
South America (São Paulo) 193.4ms
Asia Pacific (Mumbai) 112.5ms
Asia Pacific (Tokyo) 228.5ms
Asia Pacific (Sydney) 311.3ms

6.2 Input Consistency

The centralized evaluation gives us the powerful abil-
ity to check the ASes’ inputs for consistency. Since our
solutions aim at protecting AS relations and local prefer-
ences, the CPs could have an overview of the announced
prefixes and can detect malicious behavior such as prefix
hijacking or misconfigurations. One more specific attack
that can be prevented by this, is the following: AS a

claims that AS b is its peer, while b claims that a is
its provider. Clearly, one of them is lying. To verify the
symmetry of input relations (cf. §2.2), we require only
a single layer of AND gates that processes the inputs,
adding negligible complexity to the overall algorithm.
This check has to be done only once whenever an AS
changes its inputs. Further, more complex sanity checks
of encrypted data can be added on top of that at the ex-
pense of longer runtimes, while validity checks of plain-
text inputs can be done rather easily.

When inconsistencies are detected, the CPs can dis-
card these new and inconsistent inputs and fall back
to previous inputs. Involved ASes can be queried to re-
send their inputs if we suspect that the inconsistency
happened erroneously or due to faulty transmission. If
an AS is detected as malicious or permanently faulty,
the computational parties, can virtually remove this AS
from the public topology and ignore it until recovery.
This has the effect that no route will be sent via a faulty
or malicious AS.

6.3 Handling Failures and Byzantine
Behavior

Our approach preserves the privacy of interdomain
route-computation against honest-but-curious attackers.
However, the MPC itself is a single point of failure, as
the routing depends on the availability and the honesty
of two computational parties. We propose to add robust-
ness by running multiple, independent 2-party MPC ses-
sions in parallel. Alternatively, one could also use se-

cure multi-party computation protocols based on t-out-
of-n secret sharing that work even if all but t out of
the n computing parties fail. Identifying more efficient
schemes is an interesting direction for future research.

In §6.2 we showed that our approach can be adapted
efficiently to the case of malicious ASes, but where the
computational parties are still semi-honest. Another fu-
ture direction is to protect against malicious computa-
tional parties, while keeping runtimes practical, at least
at country- or region-level scales. Another possible ap-
proach is to obtain security in a slightly weaker adver-
sarial model, which is the covert security model [42].
By small adaptations of our protocol we can obtain a
semi-honest version of GMW for the multi-party case
(instead of two-party as we considered). Assuming hon-
est majority, such a protocol can be transformed eas-
ily (and in a black-box way) to efficient protocols in
the more robust setting of covert adversaries [42], at
the expense of just running the protocol several times
(in parallel) [43]. In this setting, the corrupted party
might not follow the protocol, and by doing so it can
also sometimes break the security of the protocol. Nev-
ertheless, the security guarantee is that any cheating at-
tempt can be recognized by the honest party with some
high probability (say, 50%). Furthermore, by some addi-
tional (cheap) adaptations of the protocol, any cheating
attempt can also be publicly verified [44, 45], which en-
ables the honest party to persuade other third parties
(e.g., a “judge”) about the cheating attempt. Since the
computational parties in our settings are reputed au-
thorities such as IANA/NANOG/RIPE, etc., we believe
that the fear of being caught, the public humiliation or
even the legal consequences is enough of a deterrent to
prevent any cheating attempt.

6.4 Deployment

Our approach is primarily intended as a broad vision for
the future of interdomain routing. Of course, transition-
ing to MPC of interdomain routes is an extremely chal-
lenging undertaking that involves cooperation of tens of
thousands of independent financial and political entities,
alongside significant deployment and operational chal-
lenges. We believe, however, that our approach can also
yield significant benefits (e.g., in terms of privacy, secu-
rity, and ability to innovate) when applied at a smaller
scale, while alleviating many of the challenges a global
transition entails. Often, for performance and security
reasons, traffic within a geographic/political region is ex-
pected to not leave the boundaries of that region. One
example for this is that many end-users retrieve con-



Privacy-Preserving Interdomain Routing at Internet Scale 162

tent from servers in their geographic region due to the
popularity of content delivery networks (à la Akamai).
Thus, a natural deployment scenario for MPC of inter-
domain routes is focusing on a specific region and exe-
cuting MPC only for routes between the ASes in that
region, while all other routes will be computed via tra-
ditional (decentralized) BGP routing.

This would also offer very natural instantiations of
the MPC parties: The computation could be done by the
RIR as well as a local IXP, such as DE-CIX. While be-
ing independent entities, they typically share a fast and
low latency network connection, which is required for
our protocols. We give the runtimes for such subgraphs
for the RIRs in Fig. 4 and observe that such a regional
execution also drastically decreases the runtime of our
algorithms (e.g., 0.20 s setup time and 0.17 s online time
for the German RIR RIPE-DE). We point out that such
a scheme, beyond MPC’s inherent privacy guarantees
and the other benefits listed in §1.3, can provide the
guarantees that all routes between ASes in the region
will indeed only traverse other ASes in that region. This
should be contrasted with today’s insecure routing with
BGP, which allows a remote AS to manipulate the rout-
ing protocol so as to attract traffic to its network. Our
evaluations show that, beyond the above guarantees, it
also yields better running times due to the smaller size
of the “input”. We believe that a region/country-level
implementation of such MPC of routes is a tangible and
beneficial first step en route to larger-scale deployment
scenarios.

6.5 Hiding the Network Topology

Currently, we exploit the fact that the network topol-
ogy is public for many implementation optimizations in
the circuit. However, we could also keep the topology
private, which comes at an overhead of O(n3), where n
is the number of ASes [46]. For country-level ASes,
especially when excluding stub-nodes, this overhead
seems tolerable. E.g., the RIPE-DE country-level AS
has 250 non-stub ASes, which would result in a circuit
with 30 million AND gates for the neighbor relations
algorithm of §3.1 and around 200 million gates for the
neighbor preference algorithm of §3.2.
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Appendix

A BGP Network
In the following, we provide insight into the development
and growth of the BGP network in the past years. With
the historic data collected by CAIDA [33], we can assess
how the number of ASes, the number of connections be-
tween them, and the maximum degree of ASes develops
over time. In Fig. 6, we show these values for both the
full CAIDA dataset, as well as the set with the stub
nodes removed. In Fig. 5, we depict the count of ASes
with a given number of neighbors. We show that ASes
are only sparsely connected and most nodes only have
a small number of neighbors. Note that both axes are
in a logarithmic scale. 91% of the nodes have at most
8 neighbors in the full topology, while in the no-stub
topology the average degree is higher and the number
of nodes with degree 8 and less is 69%.

B GMW vs. Yao
We decided to rely on the MPC framework ABY [6]
for implementing our protocols, since it is publically
available and implements many recent optimizations.
ABY provides two different approaches for secure two-
party computation on Boolean Circuits: the GMW pro-
tocol [5] or Yao’s garbled circuits [21]. In the following,
we justify our decision to choose GMW for our imple-
mentation.

B.1 Generic Protocol Differences

The features of each protocol make it advantageous for
use in different scenarios. Typically, the main factors
to decide which protocol to use are the network latency
and the multiplicative depth of the function that is eval-
uated, since GMW requires a number of communication

rounds that is linear in the depth while Yao’s garbled
circuits has a constant number of rounds.

For our evaluation, however, we use GMW, even
though our circuit has a high multiplicative depth. Our
decision is due to the following reasons:

Precomputation. GMW allows precomputation
of all symmetric cryptographic operations and communi-
cation independently of the circuit (in our case indepen-
dent of the AS topology) and its inputs. Additionally,
this setup phase can be heavily parallelized and easily
computed by multiple machines.

Multi-Party. GMW allows for easy extension to
multiple computing parties, which is good for our set-
ting where we might want to use more parties for better
trust assumptions.

Balanced Workload. Unlike Yao’s protocol,
GMW balances the workload equally between all com-
putational parties.

Lower Memory Consumption. The memory
consumption for circuit evaluation is much lower for
GMW, since GMW only needs to process single bits
while Yao’s garbled circuits needs to process symmetric
keys of length 128 bits.

SIMD Evaluation. Only GMW allows more effi-
cient parallel evaluation of gates by processing multiple
bits per register, which is especially important for large
circuits (cf. §4.2.2).

Vector ANDs. Only GMW supports vector ANDs,
that reduce the number of OTs that have to be eval-
uated and allows the construction of very efficient
MUX gates that allow for highly efficient instantia-
tion of multiplexers which occur frequently in the cir-
cuit (cf. §4.2.1). For our circuit, this reduces the required
number of OTs by a factor between 3 and 45.

Note, however, that the Boolean circuit we designed
for computing the routing tree of BGP is independent of
the underlying secure computation scheme. Hence, for
networks with high latency, one could simply use an im-
plementation of Yao’s protocol [21] with pipelining [24]
for evaluation instead of GMW.

B.2 Why Yao’s Protocol Won’t Work

In the following, we argue why we cannot achieve rea-
sonable runtimes when evaluating the BGP circuits with
Yao’s protocol.

Communication. When evaluating the BGP cir-
cuit with Yao’s Garbled Circuits protocol, we will have
higher bandwidth requirements, since we cannot use the
optimized vector MUX gates and thus have to evalu-
ate between 3 to 45 times more AND gates. Today’s
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Fig. 6. Statistics for the number of ASes, edges between them
and the maximum degree for all available CAIDA ASrel datasets
from January 1998 until November 2016 for the full topology
compared to the topology without stub nodes.

most communication-efficient method for garbled cir-
cuits [47] requires 2 · 128 = 256 bit of communication
per AND gate. We also have to consider the prob-
lem, that we cannot precompute the setup phase in-
dependently of the AS topology and hence have to
use circuit pipelining [24], i.e., generate and transmit
the garbled circuit in the online phase. Assuming an
ideal Gigabit network connection the resulting runtime
for communication alone will be 380 · 106 AND gates ·
256 bit per AND gate / 1Gbps ≈ 100 s for the full
topology and ≈ 35 s without stubs. We emphasize that
these ideal runtimes are already higher than our com-
bined setup and online time.

Computation. The fastest available Yao’s gar-
bled circuits implementation is JustGarble [48] that re-
quires 48.4 cycles for evaluating and 101.3 cycles for
garbling gates in “larger” circuits [48, Fig. 10]. Us-
ing a 3.5GHz CPU we need (380 · 106 AND gates +
797 · 106 XOR gates) · 101.3 cycles per gate / (3.5 ·
109 cycles per second) ≈ 34 s for the full topology and
≈ 12 s without stubs for garbling the circuit (evaluation
can be done in parallel when using pipelining).

Summary. Overall, the runtime for Yao’s garbled
circuits, even with the fastest available implementation,
most recent optimizations, and an ideal network, would
be significantly slower than the runtimes we achieve
with the GMW protocol.
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C Benchmark Results
Here, we provide detailed numbers for our performance
evaluation, which we describe in §5.

In Tab. 2, we give detailed evaluation results for
both of our protocols on the CAIDA datasets of the past
10 years, where the most recent results for the topology
of November 2016 are marked in bold. We list the num-
ber of ASes, the connections between them, and the
maximum degree for each benchmarked topology. Fur-
thermore, we list the circuit sizes as total number of
AND gates (that one would have to evaluate without us-
ing the vector gate optimization of the GMW protocol
respectively when using Yao’s protocol), the number of
gates when using the vector gate optimization for GMW,
and the depth of the circuit, i.e. the number of commu-
nication rounds between the two computational parties.

In Tab. 3, we list the same values for subgraphs
of the CAIDA dataset from November 2016 that cor-
respond to the RIR networks and a local topology as
described in §6.4.
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Table 2. Comparison of topology, circuit and MPC runtimes of both algorithms from §3, using CAIDA datasets from past years,
comparing the full dataset with the topology without stubs. The depicted communication happens solely between the CPs. We used
the November dataset from every respective year. Most recent values are marked in bold.

Topology Circuit Benchmarks
max. Total Vector AND Setup Phase Online Phase

CAIDA ASes Edges Degree ANDs ANDs Depth Runtime Comm. Runtime Comm.
Dataset [·106] [·106] [s] [MiB] [s] [MiB]

Fu
ll

T
op

ol
og

y 2008 Alg. 1
§3.1

30 018 82 630 2 632 123 37 1 042 5.25 (± 1 %) 1 136 2.96 (± 1 %) 47
2012 42 847 138 306 3 703 217 63 1 042 8.91 (± 1 %) 1 921 4.20 (± 0 %) 82
2016 55 809 239 064 5 936 380 110 1 118 15.46 (± 0 %) 3 344 6.12 (± 1 %) 143

2008 Alg. 2
§3.2

30 018 82 630 2 632 2 074 58 1 430 9.52 (± 1 %) 1 767 7.99 (± 2 %) 520
2012 42 847 138 306 3 703 4 428 99 1 430 18.09 (± 0 %) 3 028 14.98 (± 2 %) 1 105
2016 55 809 239 064 5 936 6 603 184 1 535 35.07 (± 0 %) 4 577 29.89 (± 0 %) 2 130

N
o

S
tu

b
s

2008 Alg. 1
§3.1

4 550 29 275 764 43 14 890 2.05 (± 3 %) 418 0.87 (± 1 %) 16
2012 6 483 52 661 1 384 78 25 966 3.55 (± 2 %) 760 1.55 (± 0 %) 30
2016 8 407 95 157 2 913 147 45 1 042 6.41 (± 1 %) 1 374 3.18 (± 1 %) 55

2008 Alg. 2
§3.2

4 550 29 275 764 434 22 1 220 3.65 (± 2 %) 687 2.05 (± 1 %) 111
2012 6 483 52 661 1 384 1 173 41 1 325 6.77 (± 1 %) 1 255 4.34 (± 1 %) 296
2016 8 407 95 157 2 913 3 142 75 1 430 12.80 (± 0 %) 2 283 10.47 (± 1 %) 785

Table 3. Comparison of topology, circuit and MPC runtimes of both algorithms from §3, using subgraphs of the CAIDA datasets from
November 2016, comparing the full dataset with the sub-topology, with and without stub nodes. The depicted communication happens
solely between the CPs.

Topology Circuit Benchmarks
max. Total Vector AND Setup Phase Online Phase

ASes Edges Degree ANDs ANDs Depth Runtime Comm. Runtime Comm.
Dataset [·106] [·106] [s] [MiB] [s] [MiB]

Fu
ll

T
op

ol
og

y

CAIDA 2016

Algo. 1
§3.1

55 809 239 064 5 936 380 110 1 118 15.46 (± 0 %) 3 344 6.12 (± 1 %) 143
RIPE 21 723 95 909 1 769 149 44 966 6.35 (± 1 %) 1 358 2.45 (± 1 %) 56
ARIN 16 942 39 563 3 047 56 17 1 042 2.53 (± 3 %) 518 2.38 (± 1 %) 21
APNIC 7 505 18 802 727 25 8.1 890 1.23 (± 4 %) 249 0.68 (± 1 %) 9.5
LACNIC 5 283 28 374 1 066 39 12.5 966 1.77 (± 3 %) 381 1.09 (± 1 %) 15
RIPE-DE 1 328 5 375 372 6.8 2.4 814 0.35 (±11 %) 72 0.33 (± 1 %) 2.6
AFRINIC 916 1 644 199 1.8 0.7 738 0.12 (±16 %) 21 0.17 (± 2 %) 0.7

CAIDA 2016

Algo. 2
§3.2

55 809 239 064 5 936 6 603 184 1 535 35.07 (± 0 %) 4 577 29.89 (± 0 %) 2 130
RIPE 21 723 95 909 1 769 2 844 71 1 325 13.07 (± 1 %) 2 185 9.55 (± 2 %) 711
ARIN 16 942 39 563 3 047 1 325 26 1 430 5.25 (± 1 %) 789 6.14 (± 1 %) 330
APNIC 7 505 18 802 727 200 12.5 1 220 2.04 (± 4 %) 386 1.36 (± 1 %) 52
LACNIC 5 283 28 374 1 066 693 20 1 325 3.42 (± 3 %) 622 2.82 (± 2 %) 174
RIPE-DE 1 328 5 375 372 44 3.8 1 115 0.77 (± 8 %) 118 0.52 (± 2 %) 12
AFRINIC 916 1 644 199 6.3 1.0 1 010 0.27 (±14 %) 33 0.24 (± 3 %) 1.8

N
o

S
tu

b
s

CAIDA 2016

Algo. 1
§3.1

8 407 95 157 2 913 147 45 1 042 6.41 (± 1 %) 1 374 3.18 (± 1 %) 55
RIPE 3 646 41 274 918 58 19 890 2.75 (± 2 %) 583 1.02 (± 1 %) 22
ARIN 1 849 8 501 665 11 3.7 890 0.61 (± 7 %) 112 0.51 (± 1 %) 4.0
APNIC 1 140 5 398 338 6.7 2.3 814 0.37 (±11 %) 71 0.31 (± 1 %) 2.5
LACNIC 1 012 8 367 484 9.9 3.6 814 0.52 (± 9 %) 109 0.37 (± 1 %) 3.8
RIPE-DE 250 2 219 167 2.5 1.0 738 0.20 (±16 %) 31 0.17 (± 2 %) 1.0
AFRINIC 178 371 77 0.4 0.2 662 0.04 (±12 %) 5.1 0.10 (± 3 %) 0.2

CAIDA 2016

Algo. 2
§3.2

8 407 95 157 2 913 3 142 75 1 430 12.80 (± 0 %) 2 283 10.47 (± 1 %) 785
RIPE 3 646 41 274 918 884 32 1 220 5.67 (± 2 %) 971 3.32 (± 3 %) 223
ARIN 1 849 8 501 665 86 6 1 220 1.02 (± 6 %) 182 0.91 (± 1 %) 23
APNIC 1 140 5 398 338 36 3.7 1 115 0.71 (± 9 %) 117 0.50 (± 2 %) 9.7
LACNIC 1 012 8 367 484 109 5.8 1 115 1.16 (± 6 %) 182 0.79 (± 2 %) 28
RIPE-DE 250 2 219 167 13 1.6 1 010 0.31 (±14 %) 53 0.26 (± 2 %) 3.6
AFRINIC 178 371 77 1.0 0.2 905 0.08 (±10 %) 9.2 0.13 (± 4 %) 0.3
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