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Abstract: The widespread deployment of smart me-
ters that frequently report energy consumption infor-
mation, is a known threat to consumers’ privacy. Many
promising privacy protection mechanisms based on se-
cure aggregation schemes have been proposed. Even
though these schemes are cryptographically secure, the
energy provider has access to the plaintext aggregated
power consumption. A privacy trade-off exists between
the size of the aggregation scheme and the personal
data that might be leaked, where smaller aggregation
sizes leak more personal data. Recently, a UK industrial
body has studied this privacy trade-off and identified
that two smart meters forming an aggregate, are suffi-
cient to achieve privacy. In this work, we challenge this
study and investigate which aggregation sizes are suf-
ficient to achieve privacy in the smart grid. Therefore,
we propose a flexible, yet formal privacy metric using a
cryptographic game based definition. Studying publicly-
available, real world energy consumption datasets with
various temporal resolutions, ranging from minutes to
hourly intervals, we show that a typical household can
be identified with very high probability. For example,
we observe a 50% advantage over random guessing in
identifying households for an aggregation size of 20
households with a 15-minutes reporting interval. Fur-
thermore, our results indicate that single appliances can
be identified with significant probability in aggregation
sizes up to 10 households.
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1 Introduction
The smart grid is an advanced, multi-directional power
grid, containing many smart meters and is regarded as
the future of energy supply systems. Smart meters al-
low energy suppliers the permanent monitoring of their
customers’ energy consumption in order to reduce costs
through more efficient and automatized power manage-
ment. Besides the advantages for energy suppliers, the
expected increase in renewable energy, electric cars and
prosumers (consumers that also produce) in the follow-
ing decades requires more reliable and flexible energy
networks. In recent years, many countries worldwide
introduced laws in order to expedite the use of smart
meters in households. An example is the EU Directive
2006/32/EC, which asks all EU member states to pro-
vide “individual meters that accurately reflect the fi-
nal customer’s actual energy consumption and that pro-
vide information on actual time of use” for energy con-
sumers [1].

Despite the economical and ecological advantages
for the involved parties, the widespread information flow
from energy consumers to producers is a serious threat
to the consumers’ privacy. The establishment of smart
meters generates sensitive data to an extent that could
not be reached using conventional meters. The contin-
uous disclosure of energy consumption data in conjunc-
tion with algorithms like Non-Intrusive Appliance Load
Monitoring (NALM) [2, 3], helps third parties to fig-
ure out daily routines of households, particular appli-
ance uses, individuals’ presence in a building or even the
movie playing on the television [4]. If marketing agen-
cies collude with energy suppliers, they can gather de-
tailed information regarding household appliances [5].
It’s not hard to imagine that these data can be used
for targeted advertisement campaigns, new offers, etc.
Criminals who are able to tap into a meter’s data man-
agement system could predict when the occupants of a
building will not be present [6]. Therefore, they can or-
chestrate their illegal activities more accurately. Even
worse, mass surveillance is significantly enhanced. With
little resources, interested malicious parties can observe
the daily routines of millions of households.
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These privacy concerns have been known to
academia, industry and governmental institutions for
years and therefore, a plethora of privacy mechanisms
have been proposed to protect the consumers’ privacy in
the smart grid. The most promising and well researched
privacy mechanisms are based on aggregation schemes,
e.g., [7][8][9][10][11]. The core idea is to form groups of
devices within the smart grid. Then, only the aggregated
power consumption of the group is periodically reported
to the energy supplier. The aggregate of a group can se-
curely be computed using either a trusted third party,
or preferably through cryptographic means, e.g., par-
tial homomorphic encryption, secret sharing or other
secure computation techniques. This solution has also
been suggested as the-way-to-go by an expert group,
set up by the European Commission [12].

Even though secure aggregation is technically
solved, a major question has, to the best of our knowl-
edge, barely been addressed. Namely, which aggregation
size (number of smart meters in every group) is required
to achieve privacy for consumers. During the smart me-
ter roll-out in the United Kingdom, a study conducted
by the industrial body “Energy Networks Association”
concluded that aggregating the consumption of only two
smart meters provides sufficient customer privacy [13].
However, this result seems to be elusive. It is not hard
to imagine two households, where one person works dur-
ing day shifts, while the other during night shifts. An
aggregate of the two load profiles is protecting neither
household because the two individuals will most likely
be at home and use their appliances at different times.

In this paper, we shed light on the question of how
many smart meters are required to provide privacy in
an aggregation scheme.

Contributions
To study the privacy achieved by aggregation schemes,
we first define a privacy measure in the form of a crypto-
graphic game, using an indistinguishability notion. This
game-based approach is inspired by other works in var-
ious domains [14][15], and is widely used in the field
of cryptography. In a game played between adversary
and challenger, the adversary, who can be of variable
strength, has to identify a known load profile in an ag-
gregate. The challenger’s task is to ensure privacy by
utilizing a smart meter aggregation scheme. The ad-
versary’s advantage over random guessing, is used as a
measure for the achieved privacy. In contrast to previ-
ously proposed privacy metrics for the smart grid, the

game can be applied to real world consumption data
and offers a strong formalism.

With the newly developed metric, we analyze the
privacy of individual households for different aggrega-
tion sizes. An application on real energy consumption
data with more than 700 households shows that an aver-
age household is insufficiently protected in aggregates of
two load profiles. On average, an adversary can distin-
guish two typical load profiles forming an aggregate with
very high (> 80%) probability, when reporting energy
consumption information every 15 minutes. Even for ag-
gregation sizes of 20 households, the adversarial advan-
tage is (surprisingly!) 50%. We note, that these numbers
represent the average advantage for all households. Ex-
treme energy consumptions or additional auxiliary in-
formation regarding a household’s energy consumption,
make individual load profiles even more detectable.

Moreover, we examine the influence of further pa-
rameters, e.g., temporal resolution, on the detectability
of an household within an aggregate. Finally, we show
that single energy-hungry appliances can be detected in
the aggregates of up to 10 households with significant
advantage.

Outline
We discuss related work in § 2, before introducing our
metric in § 3. Then, in § 4 the analyzed datasets and the
evaluation approach are described. In § 5 we apply the
proposed metric on real energy consumption datasets
and present various case studies. Furthermore, in § 6
we study the diversity of energy consumption and the
applicability of generated load profiles for privacy re-
search. Finally, we conclude in § 7.

2 Related work
Privacy Mechanisms
A plethora of mechanisms have been proposed for
the smart grid and a detailed survey is given by
Jawurek et al. [16]. Here, we give an overview of the
different directions of the existing solutions. The use
of trusted third parties has been proposed in [17] and
[18] in order to anonymize consumption data. Kalogridis
et al. [19] propose to blur the load signature of individual
smart meters – that is the unique patterns of every load
profile, in order to achieve privacy, while Chim et al. [20]
propose pseudo identities and signatures, using tamper
resistant devices. Privacy mechanisms that mask energy
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consumption using differential privacy have been pro-
posed in [21][22][23][24]. A promising approach is based
on aggregation schemes, where data is securely aggre-
gated and sent to the energy supplier. Variations of
homomorphic encryption are used in [8][11][10] to se-
curely aggregate the data. Kursawe et al. [7] presented
four different aggregation based privacy mechanisms us-
ing various cryptographic approaches, while Lu et al. [9]
presented an aggregation scheme with enhanced perfor-
mance on multidimensional data. Secure data aggrega-
tion is a promising approach for achieving anonymity.
However, to the best of our knowledge, there is no re-
search examining if the final aggregate offers privacy for
individual households.

Privacy Metrics
The authors in [25] and [26] develop privacy metrics
based on information disclosure and an attacker’s es-
timation error respectively. Zhao et al. [27] proposed
a metric for load signature moderation schemes, while
Eibl et al. [28] examined the effect of adding Laplacian
noise to aggregated smart meter load profiles. Shankar
et al. [29] use the F-Test to measure and compare raw
and noisy load profiles.

The privacy metric in this paper is based on the
cryptographic game developed by Bohli et al. [15]. The
goal of their game is the evaluation of privacy protec-
tion meachnism for a group of smart meters. The pri-
vacy level provided by the smart meter application is
defined as the advantage of an adversary over random
guessing, when distinguishing two groups of smart me-
ters and their protected load profiles. In contrast, in this
paper we create a cryptographic game to isolate indi-
viduals in aggregation schemes. In addition, we use real
world datasets that have not been sanitized by any pri-
vacy mechanism, and measure the privacy gain using
different aggregation loads.

3 Aggregation Privacy Model
As described, many cryptographic schemes have been
proposed that allow the privacy preserving (provably
secure) computation of smart meter aggregates. How-
ever, only a few metrics have been proposed that assess
the effectiveness of smart grid privacy protection mech-
anisms in a formal and sound manner.

We propose such a framework, borrowing ideas from
the ‘Smart Grid Privacy Game’, proposed by Bohli et al.

[15]. We formalize data aggregation in the smart grid
before we iteratively develop our privacy metric.

3.1 Smart Grid Aggregation Model

We make use of the following abstraction, which mod-
els the interaction between smart meters and an en-
ergy supplier. Informally speaking, when using privacy-
preserving aggregation schemes, the energy supplier
should learn the aggregated power consumption of
groups of smart meters in every measurement period.
For simplicity, we reduce our model to a single group
of meters. Thus, the model consists of an energy sup-
plier ES and a group (set) of smart meters S =
{s1, s2, . . . , sn} with n > 1. For practicality, we further
assume a virtual party, the aggregator V , which con-
nects all smart meters in S with the ES. In practice,
this aggregator can either be instantiated by a trusted
third party or by a cryptographic aggregation protocol,
run between the smart meters. Moreover, a discrete no-
tion of time T = {1, 2, 3, ...} is used. In each time period
t ∈ T , every smart meter si is attributed with a power
consumption value ei,t ∈ R, where R is the set of pos-
sible readings from a power consumption meter. Fur-
thermore, we refer to consecutive consumption values
as load profile. We denote a load profile of length l for
a single smart meter si with êi(l) = (ei,1, ei,2, . . . , ei,l).
In every time period, all smart meters report their con-
sumption to aggregator V , who computes the sum of
all consumption values at =

∑n
i=1 ei,t and finally re-

ports at to ES. We remark that we do not model further
knowledge of the ES explicitly, yet consider background
knowledge of any malicious adversary implicitly through
the metric proposed in the next subsections.

3.2 Requirements of Privacy Notions for
Aggregation in the Smart Grid

To assess the privacy protection offered by aggregation
schemes in the smart grid, we identify the following re-
quirements. A privacy notion / metric (even though it is
not a metric in the mathematical sense) that allows to
measure privacy leakage in aggregation schemes, should
– provide a strong formalism that allows reasoning

about the provided privacy level, e.g., should allow
to compute bounds; and should preferably

– allow to reason about practical attacks, i.e., it
should be possible to show that these (with a certain
probability) will fail.
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Moreover, for a study of the trade-off between util-
ity and privacy of the aggregated data, such a metric
should:
– provide an adequate adversarial modeling. Hence, it

should consider a powerful adversary. Yet, the ad-
versary’s power should not be overestimated in or-
der to achieve realistic assessments and to maximize
utility.

Achieving an adequate modeling of the adversary, es-
pecially its background knowledge, which defines its
strength, is a challenging task, which is discussed in
more detail in the next subsections.

3.3 Smart Grid Privacy Model

We define privacy for aggregation schemes using an in-
distinguishability notion. More precisely, we follow the
idea of Bohli et al. [15] and use a game based definition.
The core idea is to define privacy as the hardness to
distinguish two load profiles known to the adversary in
an aggregate. Informally speaking, the better the adver-
sary in distinguishing profiles in aggregates, the weaker
the privacy protection of individual households is in the
aggregate. The strength of such a game based privacy
notion is that it allows the modeling of arbitrary ad-
versarial background knowledge, enabling us to model
realistic and powerful attackers.

Formal Privacy Game
The basic game is illustrated in Figure 1. First, chal-
lenger and adversary agree on a load profile generator
Egen, the number of smart meters in the aggregate m,
and the load profiles’ length l. Egen can either be a set
of load profiles, e.g., from a real world consumption data
set, or a sampling function that samples (realistic) load
profiles from a probability distribution. After the initial
setup phase, the adversary chooses (or samples, as de-
scribed in the next paragraph) two load profiles ê0 and
ê1 of length l from Egen, which are then sent to the chal-
lenger. The challenger draws a random bit r ∈ {0, 1},
samples m − 1 further load profiles ê2, ê3, . . . êm, and
computes their aggregate êa = êr + ê2 + . . . êm. The ag-
gregate is sent to the adversary who computes a decision
function fdec(êa, ê0, ê1) that returns a bit g ∈ {0, 1}, rep-
resenting the guess whether ê0 or ê1 is contained in the
aggregate. On a correct guess, the challenger outputs
true, and false otherwise. We refer to the game as privacy
aggregation game (AggG). The privacy of an aggrega-

tion scheme can be measured by the chances of an ad-
versary in winning AggG. As in [15], we formally define
the advantage of an adversary A for a given load profile
generator Egen, a number of smart meters m and load
profile length l as the advantage over random guessing:

AdvA
AggG(Egen,m, l) =
|Pr[AggGA(Egen,m, l, r = 0) = 0]

− Pr[AggGA(Egen,m, l, r = 1) = 0]|.

Practical Privacy Notion
Assuming an adversary with an optimal decision func-
tion, the outcome of one instance of the privacy game
mainly depends on two aspects. Namely, it depends on
the load profiles chosen by the adversary and the load
profiles sampled by the challenger. For example, assum-
ing two load profiles with very distinct (visual) shape
chosen by the adversary and load profiles with a flat
shape sampled by the challenger, these distinct shape
of the chosen load profiles may also become visible in
the aggregate and allows a decision with high certainty.
Thus, the adversary’s advantage in the privacy game
noticeably depends on the load profile generator Egen,
namely, how distinct the generated load profiles are and
how these are distributed, as the advantage is computed
over all possible aggregates.

An adversary A maximizes its advantage by choos-
ing load profiles that are the most distinct. Comput-
ing the maximum possible advantage allows to deter-
mine bounds on the privacy leakage and resembles the
scenario for the worst case consumer with a very dis-
tinct energy consumption. We refer to this advantage
as (AdvA,max

AggG ). However, this notation might overes-
timate the privacy leakage for the average consumer,
whose consumption is more similar to the average en-
ergy consumption of other consumers. Therefore, we in-
troduce a second interpretations of AggG, which is the
average advantage over all combinations of load profiles
that can be ‘chosen’ by A (AdvA,avg

AggG ).

General Applicability
Revisiting the requirements of a privacy metric for ag-
gregation, we observe that the AggG provides a strong
formalism. Moreover, the applied indistinguishability
notion is powerful, as it allows to model arbitrary, yet
realistic background knowledge (load profiles are chosen
from Egen) of the adversary.
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To illustrate the applicability of AggG, we consider
the following exemplary privacy violation. The question
whether it is possible to infer from a given aggregate
that a consumer is at home during daytime can be mod-
eled in AggG by choosing a load profile representing
this consumption as ê0 and a different typical load pro-
file where the consumer is not at home as ê1. A sig-
nificant advantage in AggG indicates that a malicious
energy supplier is able to answer this question with some
certainty. A further practical attack, which can be mod-
eled with the AggG is illustrated in Section 5, where
we show that individual appliances can be detected in
an aggregate with their signature.

On a first glance the game based definition with the
precise knowledge of ê0 and ê1 might seem as overesti-
mating the adversaries capabilities. However, in practice
energy suppliers have access to a significant amount of
external information that can be very close to the knowl-
edge of precise load profiles. For example, suppliers have
knowledge about:
– households contained in an aggregate (technical re-

quirement for most schemes)
– past load profiles of all aggregators
– current and past montly billing information for ev-

ery smart meter and specific time charges
– weather conditions, etc.,

Moreover, we note that the adversary A in the AggG is
given almost no background information on the energy
consumption of the other households contained in the
aggregate. A only knows that the aggregate is sampled
from a subset of realistic load profiles. In practice, it is
not unreasonable to assume, that a malicious supplier
has further background information, e.g., to the average
power consumption of multiple households contained in
the aggregate, because these are also customers that pe-
riodically report their consumption for billing purposes.

Inputs: Egen,m, l

Adversary Challenger

ê0, ê1 ← Egen
ê0, ê1−−−−−−−→r←$ {0, 1}

ê2, ê3, . . . , êm ←$Egen

compute aggregate êa:

êa←−−−−−−−êa ← êr + ê2 + · · ·+ êm

g ← fdec(êa, ê0, ê1)
g

−−−−−−−→output (g = r)

Fig. 1. Basic privacy game for aggregation schemes (AggG) in
the smart grid.

Due to these reasons, we consider the proposed met-
ric as well suited to show which aggregation sizes are
insufficient and risk the loss of privacy.

Further Application - Membership Disclosure
To further illustrate the versatility of the proposed met-
ric, we describe how the indistinguishablity based notion
can be used to evaluate membership disclosure, i.e., to
answer the question whether household x is contained
in an aggregate or not. This can be evaluated by adapt-
ing the AggG, such that the adversary only samples one
load profile ê0 ← Egen and the challenger samples the
other profile ê1 ← Egen, which is consequently unknown
to the adversary. The rest of the game can be left un-
changed, and the adversarial advantage is computed as
the advantage over random guessing, whether ê0 or ê1
is contained in the aggregate.

We note that the membership game is at least as
hard as the indistinguishability game. Given an ad-
versary that can win the membership game, we can
construct an adversary that is able to win the indis-
tinguishability game with the same advantage. In or-
der to decide which of two known profiles has been
used in the aggregate of the indistinguishability game,
an adversary could use the membership distinguisher
to decide whether ê0 is contained in the aggregate or
not. The probability that ê0 is in the aggregate is the
same in both games. Hence, the adversary’s advantage
is identical to the advantage of the adversary in the
membership game. Furthermore, given the fact that in-
verse reduction is impossible1, the membership game
is strictly harder than the indistinguishability game.
However, we observe that it is possible to construct
a practical heuristic fmem

dec (êa, ê0) for the membership
game, given a decision function f ind

dec(êa, ê0, ê1) for the
indistinguishability game. Even without access to ê1,
an adversary in the membership game can repeatedly,
i.e., a number of times k, invoke f ind

dec(êa, ê0, êr) with
a new randomly sampled êr. Using a majority voting∑k−1

i=0 f
ind
dec(êa, ê0, êr) > k/2, adversary A decides for ê1

or otherwise for ê0. We give an experimental evaluation
of this privacy question and heuristic in Section 5.

1 Constructing a counter example is trivial: Assuming that all
but one load profiles, which can be generated from Egen, are flat,
i.e., constant, then an adversary in the indistinguishability game
has roughly twice the advantage to observe the non-constant
load profile than an adversary for the membership game, who
only gets to see a single load profile.
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4 Methodology

4.1 Smart Grid Datasets

To identify aggregation sizes that provide sufficient pri-
vacy, we apply the privacy game on multiple real world
energy consumption datasets. In Table 1, an overview
of the datasets used in this work is given. The datasets
have mainly been made available for energy disaggrega-
tion research. To the best of our knowledge, these are the
largest publicly available datasets regarding the num-
ber of load profiles. We observe that the datasets have
different geographical origins, as well as different mea-
surement set ups, e.g., resolutions. Moreover, we remark
that the datasets use different types of power measure-
ment including active, reactive and apparent power [30].
Therefore, in most case studies we distinguish between
datasets and study them separately.

Some datasets, e.g., Dataport and UMASS, contain
several hundreds of households, whereas others, e.g.,
AMPds, focus on a single household for a large period
of time. Unfortunately, only the Dataport and GOVAU
dataset contain consumption data for more than 6 smart
meters over multiple days.

Furthermore, most datasets require preprocessing,
as they contain up to 10% incomplete or unusable (e.g.,
NAN) load profiles due to the experimental nature of
energy consumption recording [31]. We consider a load
profile to be complete if at least one sample is recorded
in every sampling period required for a case study. In-
complete load profiles have been removed from all stud-
ies. The difference in the number of load profiles between
complete and incomplete data is shown in Table 2. Note
that the number of (complete) load profiles for each
building in the same dataset may differ, therefore the
total number of load profiles is given.

Name Origin Households LPs/Hh Resolution
Dataport [32] US 707 647 15 min
Redd [31] US 5 7 1 s
AMPds [33] Canada 1 726 1 min
ECO [34, 35] Switzerland 6 192 1 min
UCI [36] France 1 1358 1 min
GOVAU [37] Australia 31 406 30 min
UMASS [38] US 376 1 1 min

Table 1. Datasets used for the analysis. Presented are the ge-
ographical origin, the number of households measured in each
dataset, the average number of load profiles that have been
recorded for each household, and the sampling resolution.

4.2 Evaluation Approach

To identify an aggregation size that protects the con-
sumer’s privacy, an implementation on the privacy game
was created. To handle most of the datasets, we rely on
the NILMTK framework [39], which has been developed
to study energy disaggregation algorithms (NALM).
NILMTK provides converters for most of the aforemen-
tioned datasets into a consistent data representation.
The adversary is modeled in the form of a decision func-
tion fdec that decides between two chosen load profiles
ê0 and ê1. Different decision functions, which use a vari-
ety of heuristics, are introduced in the next section. For
all case studies presented in Section 5, our implementa-
tion applies the following algorithm:
1. For the analysis, a dataset, an aggregation size m,

a temporal resolution σ (the sampling frequency,
e.g., σ = 15 min), an adversarial strategy (decision
function fdec), and a number of iterations N (e.g.,
N = 5000) are chosen.

2. The dataset is loaded. A dataset consists of multi-
ple households with continuous load samples over
one or multiple time periods. The load samples are
grouped in load profiles of fixed start and end time.
If not stated otherwise, each load profile starts at
midnight with a duration of 24 hours in all experi-
ments.

3. Next, all incomplete load profiles, i.e., load profiles
that do not have at least one load sample per sam-
pling period, are removed.

4. If the input dataset is more granular than the chosen
resolution, the resolution of all load profiles is re-
duced, by temporal aggregation of consecutive load
samples.

5. Two different households are selected from the
dataset uniformly at random. From the two house-

- Buildings Load profiles
Name complete total complete total usable
Dataport 707 729 458048 474523 96.52%
Redd 6 6 53 236 22.45%
Ampds 1 1 726 730 99.45%
ECO 6 6 1196 1337 89.45%
UCI 1 1 1405 1440 97.56%
GOVAU 31 31 12606 12917 97.59%
UMASS 377 377 367 377 97.34%

Table 2. The number of buildings in each dataset that have at
least one complete load profile and the total number of (com-
plete) load profiles per dataset for a sampling resolution of 15min.
The fraction of the usable against the total number of load pro-
files is displayed.
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holds, one load profile is sampled for each house-
hold. The sampled load profiles are labeled as ê0
and ê1. This process ensures that even though dif-
ferent households might have a different number of
load profiles, all households are represented equally
in the result.

6. Analogously, m − 1 load profiles are selected from
the remaining households. A random bit r ∈ {0, 1}
is sampled and the m− 1 load profiles are summed
up and added to êr to create an aggregated load
profile êa.

7. The decision function fdec is evaluated on êa, ê0 and
ê1.

8. If fdec decided correctly (i.e., fdec(êa, ê0, ê1) = r) a
correct guess is recorded.

9. Steps 5-8 are repeated N times. Afterwards, the ad-
versarial advantage values are computed as:

Advfdec,avg
AggG (m) =

∣∣∣correct guesses
N

− 0.5
∣∣∣ · 2

4.3 Decision Functions

For two given load profiles ê0 and ê1, an adversary in
AggG has to decide which of the two is more likely con-
tained in the aggregated load profile êa. In practice, find-
ing an optimal decision is a hard computational prob-
lem, as an optimal distinguisher has to decide according
to the maximum likelihood over all possible combina-
tions of load profiles. Therefore, we focus on studying
four heuristics and show in Section 5 that the described
(comparably simple) heuristics are sufficient to identify
load profiles in the aggregate. For better comparison,
the aggregated load profiles are first normalized by the
aggregation size: êa ← êa/m. The chosen decision func-
tions are based on i) the Mean Squared Error (MSE),
ii) the Pearson correlation, iii) peak detection and iv)
a combined method based on Pearson correlation and
peak detection. These heuristics have been chosen, as
they all allow to measure a distance between two time
series and follow different approaches.

In i) the MSE is computed as the pairwise squared
difference between load samples, hence, fMSE

dec (êa, ê0, ê1)
decides for ê0 if MSE(ê0, êa) <MSE(ê1, êa).

The Pearson correlation also considers the trend
of the compared load profile and ii) is decided by the
higher correlation, hence, fcorr

dec (êa, ê0, ê1) decides for ê0
if corr(ê0, êa) > corr(ê1, êa).

In iii) the relative peaks of each load profile êa, ê0, ê1,
are determined and fpeak

dec (êa, ê0, ê1) decides according
the most common peaks between ê0 and êa, or ê1 and
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Fig. 2. Shown is a slice of two exemplary load profiles (ê0, êa)
and marked are the identified peaks of each load profile. More-
over, a window of size 3 is drawn around each load profile, which
has been used to identify the peaks (cf., Section 4.3). The time
resolution is 15 minutes.

êa. Peak detection is a promising approach, as it consid-
ers the most significant features of a load profile that (in
our expectation) could also be visible in an aggregate.
For the peak extraction we follow a simple approach,
where a window around every sample of length ±1 is
selected. If a sample has a value higher than its neigh-
bors it will be considered as a peak. For illustration, in
Figure 2 a slice of an exemplary load profile ê0 and an
aggregated load profile êa, the identified peaks, and the
windows of size three around each peak are shown. In
the shown slice the load profiles only share one peak at
01:00 o’clock.

The decision function iv) combines peak detection
and correlation with the idea that the shape of the load
profile surrounding the peaks carries more information
than the peak itself. Therefore, in iv) all peaks of ê0, ê1
and êa are computed. Then, the union of the peaks be-
tween of ê0 (ê1) and êa is formed. Afterwards, the Pear-
son correlation is computed for a surrounding window
of a fixed length of samples around every peak, e.g. We
identified a window of ±5 (i.e., windows size is 11) as the
best heuristic for 15 minute readings (a detailed analy-
sis on the window size is given in the next section). The
decision function fcomb

dec (êa, ê0, ê1) decides according to
the higher mean correlation between all windows of ê0
and êa or ê1 and êa.
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5 Case Studies
To analyze the privacy protection offered by aggrega-
tion schemes, we perform multiple case studies. First, we
show for multiple datasets that the simple decision func-
tions are sufficient to identify load profiles within aggre-
gates of sizes ranging from two to hundreds of buildings.
Moreover, we study the impact of temporal resolution,
load profile length and daytimes on the distinguishing
advantage. Then, we show that single appliances can be
detected in aggregates consisting of load profiles from
multiple households. Finally, we investigate membership
disclosure in aggregates.

How effective are decision functions in identify-
ing load profiles in an aggregate?
We evaluate the effectiveness of the proposed decision
functions by comparing them in the privacy game over
N = 5000 simulations with different power measure-
ments and time resolutions. A decision function is ef-
fective, if the advantage over random guessing is sig-
nificant. Goal of the decision functions, as described in
Section 4.2, is to identify the correct profile (ê0 or ê1)
contained in the aggregate. First, we compare the aver-
age advantage of all proposed decision functions on the
Dataport dataset with a sampling resolution of 15 min-
utes, shown in Figure 3. We observe that all heuristics
can identify the correct load profile for small aggrega-
tion sizes with significant advantage. More precisely, for
only 2 load profiles, all methods have an advantage of
more than 75%. The Pearson correlation and peak de-
tection heuristics perform similar over all evaluated ag-
gregation sizes, whereas the proposed combination is the
most powerful distinguisher. For aggregation sizes larger
than 10, its advantage is than twice the best advantage
of the other three heuristics.

As already described in Section 4.3, the combined
method computes the Pearson correlation for a window
of load sample around all detected peaks. The window
size, which influences the distinguishing advantage, is
empirically evaluated in Figure 4. Plotted is the aver-
aged advantage for different window sizes for the com-
bined method on the Dataport dataset for three differ-
ent sampling resolutions (15 min, 60 min, and 120 min)
over aggregation sizes from 2 to 30. We observe that the
best results are achieved for a moderately sized window,
e.g., 10 load samples for a 15 minute reading. Moreover,
we observe that a more granular sampling resolution re-
quires more load samples to be contained in the window
to achieve the best advantage.
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Fig. 3. Comparison of the four decision functions, based on aver-
aged adversarial advantage for different aggregation sizes (Data-
port, 15 min resolution).
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Fig. 4. Evaluating the window parameter of the Combined deci-
sion function (Dataport, m = {2, ..., 30}, 15 min resolution).

Which parameters influence the privacy game?
Dataset dependency. The results of an empirical anal-
ysis commonly depend on the dataset used. To show
that the difference in adversarial advantage is rather
small between the datasets, we compare the distinguish-
ing advantage between the datasets Dataport and the
other two largest datasets (GOVAU and UMASS), for
the combined decision function in Figure 5. We observe
that the power consumption in UMASS is noticeable
more distinguishable by the combined decision function
than the GOVAU and Dataport dataset, which share a
very similar (in-)distinguishability for increasing aggre-
gation sizes.

Furthermore, we can illustrate a similar behavior of
all four decision functions on a union of all load profiles
from all datasets. To sample a load profile in this ex-
periment, we first sample a dataset, then a household
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Fig. 5. Comparison of the averaged distinguishing advantage
between the UMASS, GOVAU, and Dataport dataset for different
aggregation sizes, when using the combined decision function (30
min resolution).
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Fig. 6. Comparison of the decision functions based on the av-
eraged adversarial advantage, using different aggregation sizes,
using profiles from all datasets (30 min resolution).

(uniformly among the dataset) and then a load pro-
file (uniformly among the household). This guarantees
an equal representation of datasets and households. We
acknowledge that consequently some load profiles have
more impact on the results than others, unfortunately
the limited number of large datasets does not allow for
a better experimental setup. The distinguishing advan-
tages in this experiment are shown for different groups
of aggregation sizes in Figure 6. We observe a similar
distinguishing advantage as when studying datasets in-
dependently. Moreover, as before the combined decision
function outperforms the others in every scenario, and
hence will be used as the main decision function in all
remainder of this section.
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Fig. 7. Comparison of the impact of different temporal resolutions
when using different aggregation sizes m. Measured is averaged
advantage using the combined heuristic (Dataport).

In summary, the datasets show diversity in their
load profiles, which is also visible in the AggG. However,
the difference in the results between the datasets (also
influenced by the empirical nature of our approach) is
only marginal when deriving qualitative statements on
the individuals privacy.
Temporal Resolution. The rate at which each smart
meter reports its values, is a crucial factor for pri-
vacy. More frequent reports enable NALM algorithms
to work with higher accuracy and extract more informa-
tion. Hence, we expect that higher sampling resolutions
are less privacy friendly. In Figure 7, we present the
advantage for different aggregation sizes with different
sampling resolutions when using the combined decision
function on the Dataport dataset. Clearly, the advan-
tage is higher for more frequent reports and smaller ag-
gregation sizes. In aggregations with 10 or more load
profiles (m ≥ 10), the advantages differ only by a small
factor independent of the temporal resolution. When
only two households are aggregated, a significant ad-
vantage of 50% is observed for a temporal resolution
as low as 4 hours. This confirms what we intuitively
expected, namely that distinguishability increases with
more frequent reports. In addition, it is clear from mea-
surements that the aggregate of two load profiles is not
enough to provide privacy, even for a very low sampling
resolution.
Influence of Different Daytimes. In previous evalua-
tions, we studied load profiles of 24h length . In this sec-
tion, we examine if different daytimes affect the model’s
accuracy. The load profiles of the Dataport dataset
were split in four parts according their daytime. Those
were, night time (0:00-6:00), mornings (6:00-12:00), af-
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ternoons (12:00-18:00) and evenings (18:00-24:00). We
study aggregation sizes ranging from 2 to 50 households,
and fix the sampling resolution to 15 minutes. We per-
formed N = 5, 000 simulations of the privacy game for
each period. In Table 3, the average advantage for the
four different daytimes, as well as for the whole day is
presented. In summary, we observe only marginal differ-
ences between the different daytimes, but as expected, a
24 hour load profile allows for better distinguishability
than isolated daytimes.

Daytime m = 2 m = 5 m = 10 m = 30 m = 50
Night 0.811 0.574 0.411 0.233 0.184
Morning 0.836 0.603 0.436 0.232 0.157
Afternoon 0.792 0.566 0.418 0.237 0.157
Evening 0.800 0.566 0.410 0.234 0.152
Day - 24h 0.947 0.793 0.634 0.396 0.29

Table 3. Average advantage when distinguishing load profiles
of 6h length, using the Dataport dataset (15 min resolution),
compared with the advantage when distinguishing a load profile
of 24h length.

How many households are required to achieve
privacy?
Bigger aggregation sizes lead to better privacy for in-
dividual households. However, an arbitrary increase in
aggregation size defeats the purpose of smart meters,
which should be able to monitor and predict the con-
sumption in order to distribute energy more efficiently.
Thus, an upper bound exists on how many households
should be in an aggregate report in order for the smart
grid to retain some utility. Unfortunately, we have no
(reasonable) measure of utility, yet we can identify a
marginal utility on the privacy protection. Applying
the AggG with the combined heuristic on the Data-
port dataset, which provides the largest number of load
profiles and households, for aggregation sizes of up to
700, we can infer, which aggregation size is needed to
achieve a certain level of privacy (distinguishing advan-
tage over random guessing) shown in Figure 8 for a 15-
minute sampling resolution. We denote with m the size
of the aggregate and with δ the average adversarial ad-
vantage. The shape of the curve can be used to analyze
the marginal utility. The curve is very steep up to a pri-
vacy level of δ = 0.5, which is reached in the experiment
with an aggregation size of m = 23. At a privacy level of
δ = 0.2 (m = 92) the curve significantly starts to flatten

0 200 400 600

0.1
0.2

0.5 m = 23
δ = 0.5

m = 92
δ = 0.2

m = 258
δ = 0.1

aggregation size

ad
va
nt
ag
e

Fig. 8. Adversarial advantages achieved with the combined deci-
sion function for different aggregation sizes m. Marked with δ are
interesting advantage levels (Dataport, 15 min resolution).
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Fig. 9. Illustration of the imprecision in the experimental com-
putation of the distinguishing advantage for aggregation sizes
m > 75 over simulations with N = 5000 runs (Dataport, 15 min
resolution).

out with only marginal improvements in privacy after
m = 200.

We remark, that results for the distinguishing ad-
vantage for larger aggregation sizes, e.g., above 100,
should be studied with a grain of salt. Even though, each
data point is computed via a simulation over N = 5000
trials, it contains a noticeable error for larger aggrega-
tion sizes, which is illustrate in Figure 9. We observe
that very similar aggregation sizes can show a notice-
able variance in the distinguishing advantage.
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Fig. 10. The detectability of single appliances in an aggregate.
Shown is the distinguishing advantage for the combined decision
function (Dataport, 15 min resolution).

Are particular appliances detectable in an aggregation
scheme?
Specific appliances create unique patters in load pro-
files. NALM algorithms can extract specific devices’ us-
age in single households, by detecting those patterns.
In order to examine if specific devices can be detected
in the aggregation, we adjust the adversary’s choices in
the AggG. The first load profile ê0 is sampled from the
dataset, the second load profile is ‘generated’ by sub-
tracting from the individually measured load profile ê0
a single appliance. Hence, ê0 and ê1 only differ in the
energy consumption of a single appliance.

Using the Dataport dataset, we study the AggG for
different aggregation sizes and household appliances. In
Figure 10, we present the average adversarial advantage
over random guessing, for an electric furnace, a dish
washer, a fridge and a stove. The results demonstrate
that specific appliances, e.g., electric furnace, are de-
tectable with significant advantage even in aggregates
of size m > 10. As expected, the detection is more pow-
erful when aggregation is small. A study of further de-
vices and the resulting adversarial advantage is given
in the appendix in Figure 18, where we illustrated the
adversarial advantage when detecting various devices in
the Dataport dataset, for aggregation sizes of m = 5, 10
and 25.

To identify specific patterns that make a load pro-
file (of an appliance) distinguishable in an aggregate,
we study various properties of appliances in the dataset,
namely: mean load (when switched on), maximum load,
the number of peaks, as well as the daily uptime and
average load per peak. The results are illustrated in Ta-
ble 4. The correlation between the characteristic proper-

Appliance
Mean

load(W)
Max

load (W) #Peaks
Daily
uptime Load/Peak

Dish washer 43.5 887.1 6.1 9% 504.5
Electric furnace 135.7 603.7 18.7 87% 305.8
Fridge 77.1 344.5 23.2 50% 143.9
Stove 55.0 1110.8 9.6 27% 440.7

Table 4. Characteristic properties of particular appliances (aver-
age values).

ties and the detectability, using the Pearson correlation
between the properties and the advantage per aggrega-
tion size is depicted in Figure 11.
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Fig. 11. Correlation between characteristic properties and de-
tectability of appliances for different aggregation sizes.

We observe that the detectability of an appliance
shows the largest correlation with the maximum load,
followed by the average load per peak. The correlation
between average mean load and the detectability is sig-
nificantly lower, while the properties average daily up-
time and number of peaks are negatively correlated to
the privacy level. To conclude, not only households but
also individual appliances that show consumption pat-
terns with high peaks can be detected with minimal
effort in aggregates of smaller size.

Can membership in an aggregate be disclosed using
the same decision functions?
A further application of AggG is outlined in Section 3,
namely whether an adversary could identify the exis-
tence of a single profile in an aggregate rather than dis-
tinguishing two known profiles. Hence, shifting the fo-
cus from an indistinguishability notion to a membership
disclosure question. As described, the privacy game has
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to be adapted in the following way; instead of having
the adversary select two profiles and then try to dis-
tinguish which one is in the aggregate, he only samples
one (ê0). Then the challenger randomly samples a sec-
ond one (ê1), unknown to the adversary, and by flipping
a coin decides which one of the two will used in the ag-
gregate sent to the adversary. The adversary has then
to guess, whether this profile is part of the aggregate
or not. Using a similar experimental setup as before,
we studied this questions for the Dataport dataset with
aggregation sizes from m = 2 to 20 and N = 1000 sim-
ulations per aggregation sizes. Moreover, we used the
randomized decision functions as described in Section 3
with k = 100 iterations. In Figure 12 the advantage
for correct answering the membership question with the
help of the two most effective heuristics, i.e., peak detec-
tion and the combined method is presented. In addition,
the advantage in the indistinguishability notion for the
same aggregation sizes is given.

Even though the adversary has less power in this
game, and consequently, its advantage decreases com-
pared to the indistinguishably game, we observe that the
advantage remains significant for all aggregation sizes. A
more surprising result is that that peak detection and
the combined methods perform similarly for member-
ship disclosure, in contrast with the cases previously
examined. This again indicates that the peaks are the
most robust feature to distinguish load profiles.

In summary, the AggG is very suited to also exam-
ine privacy under a different view point, i.e., member-
ship disclosure, with small modification. Yet, even in the
membership based privacy notion, very simple heuristics
are able to achieve a significant advantage over random
guessing for larger aggregation sizes.

6 Dataset Analysis
Studying the detectability of individual load profiles
with the help of the aggregation game, a question arises,
whether a common ‘universal’ load profile exists. The
existence of a universal load profile could be used to
only consider the relative changes to the universal load
profile as privacy relevant and thus, demand a reformu-
lation of the privacy game. Therefore, in this section,
we first study the differences between individual load
profiles and their average from the dataset. Second, to
overcome the very limited availability of real world en-
ergy consumption datasets, we study the applicability of
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Fig. 12. Comparison of the modified privacy game where the
adversary has knowledge of only one load profile (membership dis-
closure) vs when he distinguishes two profiles (indistinguishability
notion). For each experiment, the distinguishing advantage for
the two most effective heuristics (peak detection and combined
method) for aggregation sizes of up to 20 households is displayed.
(Dataport, 15 min resolution).

load profile generators in privacy research for the smart
grid.

Universal Load Profile
While datasets from different countries presumably dif-
fer in their average load profile due to differences in
cultural and climatic preconditions, this does not ap-
ply to load profiles from similar climate zones and cul-
tural environments. Unfortunately, the available data
is insufficient to present an exhaustive analysis. Yet,
when comparing the average load profile of the Data-
port (707 households) and GOVAU (31 households) and
UMASS(376 households), shown in Figure 13, similar-
ities in shape can be identified. For example, compar-
atively low consumption values during night, and con-
sumption peaks in the morning and evening hours are
visible. We note that the different energy measurements
(re-/active power) lead to noticeable differences in the
individual consumption values and should therefore not
be compared by their absolute value. Moreover, we ob-
serve significant more variance in the UMASS datasets,
which only provides one load profile for every household.

Generally, we observe that individual load profiles
can be quite distinct from the average of a dataset. This
is illustrated in Figure 14, where the distribution of the
mean squared error (MSE) between all individual load
profiles and their average is illustrated for the Data-
port dataset. Similarly, in Figure 15 the Pearson correla-



Two Is Not Enough: Privacy Assessment of Aggregation Schemes in Smart Metering 210

00:00 06:00 12:00 18:00
0

2,000

4,000

6,000

time of the day

po
w
er

in
w
at
t

UMASS Dataport
GOVAU

Fig. 13. Mean load profiles of the datasets UMASS, Dataport,
and GOVAU.
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Fig. 14. Distribution of Mean Squared Error between individual
load profiles and the average load profile in Dataport.

tion coefficient between individual load profiles and the
dataset’s average is plotted for the GOVAU and ECO
dataset. Even though, there is a noticeable correlation
to the datasets’ averages, we also observe numerous out-
liers in both datasets, that are very different to the aver-
age. Thus, load profiles carry significantly more informa-
tion than only small relative differences to the datasets
average load profile. Moreover, Figure 15 also shows the
correlation of each load profile to the household’s av-
erage. This correlation is (expectable) higher than the
correlation to the mean of the according dataset, yet
also shows a significant variance between the load pro-
files from the same household.

In summary, we observe that (background) knowl-
edge on the average load profile of a region or house-
hold could be used to improve the detectability of load
profiles in an aggregate. Yet, the significant variance be-
tween load profiles illustrate that the protection of only
small changes to an average is insufficient.
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Fig. 15. Distribution of correlation between single load profiles
and the datasets (GOVAU, Eco) or households average.

Load Profile Generators for Privacy Research
Load profile generators are tools that are able to simu-
late the energy consumption for a certain period based
on an underlying model. The area of application ranges
from studies concerning the effects of new technology
on the energy consumption of households to forecasts
like the determination of the national energy demand
[40]. A natural question is if these generators are ade-
quate for a privacy analysis and could be considered in
subsequent work. In this work, we focus on studying en-
ergy consumption of individual households, and hence a
load profile generator based on the so called bottom-up
approach is promising. Bottom-up load profile genera-
tors aim at simulating the behavior of inhabitants of a
household, that is modeled in the use of household appli-
ances, e.g., cooking, heating or television or other activi-
ties. According to the simulated usage of appliances and
(pre-recorded) appliance specific demand profiles, load
profiles for households are generated. The model can be
enhanced by external influences like temperature, holi-
days and geographic circumstances. Various bottom-up
load profile generator have been proposed in [41]. Using
the implementation of the Loadprofile Generator [42],
we created a dataset containing 266 households with
365 load profiles per household, which is studied in the
following paragraphs.

In Figure 16 the mean load profile of the gener-
ated dataset is shown. When comparing the dataset’s
mean to the mean load profiles of the datasets depicted
in Figure 13 qualitatively, it is clear that all datasets
share similarities and prominent features like the peaks
at about 06:00 and after 18:00 can be found in both.

Similar to the previous analysis, we applied the pri-
vacy game to the generated dataset using a resolution of
15 minutes on aggregates of sizem = 2 to 50. The results
for all decision functions are illustrated in Figure 17. We
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Fig. 16. Mean load profile for the generated dataset consisting of
266 households.

observe that all decision functions show a similar behav-
ior as on the real data sets, i.e., the combined decision
function outperforms the rest, whereas the MSE shows
the least distinguishing advantage. For better compar-
ison, we plotted the results of the combined decision
function when applied on the Dataport dataset. Also
here, we observe no significant differences (in the distin-
guishing advantage) between the generated dataset and
the real dataset. Hence, we conclude for future privacy
studies on real world data, generated datasets seem to
be a very promising alternative to real world datasets,
whose availability is very limited.

7 Conclusions
In this work, we studied the privacy of single load pro-
files contained in an aggregate. Even though fixing an
acceptable privacy loss (advantage) is more a philosoph-
ical question rather than a purely technical, it becomes
obvious that an aggregation size in the single digit range
seems to be far from being sufficient to provide privacy
when assuming a 15 minute reporting interval. Even
worse, it is safe to say that the privacy leakage is no-
tably higher in practice than in our model. This is due
to the fact that energy suppliers continuously record
consumption information. Consequently, periodical be-
havior of households inhabitants (e.g., sleep cycle) will
inevitably leak to the supplier.

We are convinced the secure aggregation is a pow-
erful mechanism to protect privacy in the smart grid.

0 10 20 30 40 50

0

0.5

1

0.25

0.75

aggregation size

ad
va
nt
ag
e

Combined (dp)
Combined (gen)
Pearson (gen)
Peaks (gen)
MSE (gen)

Fig. 17. Comparison of the decision functions for the generated
dataset (gen). For comparison, the advantage of the combined
decision function applied to the Dataport (dp) dataset is also
plotted (15 min resolution).

However, the observation that load profiles can be de-
tected in aggregates of more than 100 meters with sig-
nificant advantage (>10%) demands that all parame-
ters that influence the trade-off between utility and pri-
vacy, such as temporal resolution and aggregation sizes,
should carefully be studied, before being blindly ac-
cepted as secure.

It remains an open question, to quantify utility in
aggregation schemes. A utility measure would allow to
study the utility and privacy trade-off, and thus practi-
cality of aggregation, in more detail.
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