
Proceedings on Privacy Enhancing Technologies ; 2017 (4):232–250

David Froelicher*, Patricia Egger, João
Sá Sousa, Jean Louis Raisaro, Zhicong Huang, Christian Mouchet, Bryan Ford, and Jean-Pierre Hubaux

UnLynx: A Decentralized
System for Privacy-Conscious Data Sharing
Abstract: Current solutions for privacy-preserving data
sharing among multiple parties either depend on a cen-
tralized authority that must be trusted and provides only
weakest-link security (e.g., the entity that manages pri-
vate/secret cryptographic keys), or leverage on decentral-
ized but impractical approaches (e.g., secure multi-party
computation). When the data to be shared are of a sen-
sitive nature and the number of data providers is high,
these solutions are not appropriate. Therefore, we present
UnLynx, a new decentralized system for efficient privacy-
preserving data sharing. We consider m servers that con-
stitute a collective authority whose goal is to verifiably
compute on data sent from n data providers. UnLynx
guarantees the confidentiality, unlinkability between data
providers and their data, privacy of the end result and the
correctness of computations by the servers. Furthermore,
to support differentially private queries, UnLynx can col-
lectively add noise under encryption. All of this is achieved
through a combination of a set of new distributed and
secure protocols that are based on homomorphic cryptog-
raphy, verifiable shuffling and zero-knowledge proofs. UnL-
ynx is highly parallelizable and modular by design as it en-
ables multiple security/privacy vs. runtime tradeoffs. Our
evaluation shows that UnLynx can execute a secure survey
on 400,000 personal data records containing 5 encrypted at-
tributes, distributed over 20 independent databases, for a
total of 2,000,000 ciphertexts, in 24 minutes.

Keywords: privacy, confidentiality, decentralized system,
data sharing, differential privacy

DOI 10.1515/popets-2017-0047
Received 2017-02-28; revised 2017-06-01; accepted 2017-06-02.

1 Introduction
In our increasingly connected and data-driven world, the
need to protect sensitive data and still be able to share

*Corresponding Author: David Froelicher: EPFL, E-mail:
david.froelicher@epfl.ch
Patricia Egger: EPFL, E-mail: patricia.egger@alumni.epfl.ch
João Sá Sousa: EPFL, E-mail: joao.gomesdesaesousa@epfl.ch
Jean Louis Raisaro: EPFL, E-mail: jean-raisaro@epfl.ch
Zhicong Huang: EPFL, E-mail: zhicong.huang@epfl.ch
Christian Mouchet: EPFL, E-mail: christian.mouchet@epfl.ch
Bryan Ford: EPFL, E-mail: bryan.ford@epfl.ch
Jean-Pierre Hubaux: EPFL, E-mail: jean-pierre.hubaux@epfl.ch

them among multiple entities in a privacy-conscious way
has become critical in numerous contexts. Five concrete
examples include (i) medical research, where patients’ sensi-
tive data, from multiple institutions, need to be protected
from an increasing number of cyber attacks [45] while
remaining accessible to practitioners who want to better
understand and treat complex diseases, (ii) fraud detec-
tion, where a tax authority needs to securely access foreign
bank accounts in order to identify potential tax evaders,
(iii) public safety, where security agencies from different
countries need to protect their confidential information
but also share it to design effective anti-terrorism strate-
gies, (iv) private surveys, where institutions need to collect
personal data from citizens or private companies, and (v)
commercial collaborations, where corporations do not want
to reveal confidential data but are willing to share some
information for mutual benefit.

In the last few years, researchers have tried to address
these needs by proposing different privacy-preserving solu-
tions that enable several data providers to securely store
and share their sensitive data in either a centralized or de-
centralized way [3, 11, 14, 26, 28, 30, 33, 39, 40, 42, 49, 50].
Yet, despite the acknowledgment and acceptance that most
of these solutions have received in the research community
of privacy and security, only a few have been converted into
concrete operational tools and deployed in the real world
[3, 14, 39]. The main reasons for such a low adoption stem
from the fact that simpler solutions based on a centralized
approach [30, 39] only provide weakest-link security (e.g.,
relying on a trusted third party managing cryptographic
keys); and, decentralized (and more complex) solutions
based on secret sharing (SS) [3, 14, 26, 49] or secure multi-
party computation (SMPC) [11, 28, 33, 40, 42, 50] have in-
trinsic limitations in terms of control over data and scalabil-
ity. For example, SS-based solutions result in data providers
losing the full control over their data as, for security reasons,
they require the data storage to be outsourced to indepen-
dent servers. SMPC-based solutions, which theoretically en-
able multiple data providers to keep control over their pri-
vate data and to jointly and securely compute any public
function over them, become completely unpractical when
the number of data providers increases to more than three.

As a result of the immaturity of these secure solutions,
in most of the scenarios mentioned above, it is common
practice to rely only on legal agreements rather than tech-
nical solutions. Stakeholders willing to share their sensitive

A Decentralized System for Privacy-Conscious Data Sharing 233

data can stipulate data-use agreements with a central-
ized trusted third party that becomes fully responsible for
collecting, storing and managing the data for the whole
ecosystem. Yet, this approach has proven to not be future-
proof and to be particularly difficult to realize on a large
scale for the following three main reasons:
– The trusted third party represents a single point of
failure in the system. A breach caused by an external
(hacker) or internal (insider) attack can compromise all
data providers’ data at once.

– Data providers are beginning to understand the value
of their sensitive data and are increasingly willing to
be masters of them, instead of giving control to a third
party [8, 10].

– Privacy restrictions from different jurisdictions, such
as the new European General Data-Protection Regula-
tion [4], can prevent data providers from transferring
their data across national boundaries, thus substantially
limiting the scope of data-sharing.

Hence, it is more urgent than ever to develop new op-
erational tools that enable thousands of data providers
to protect and efficiently share their sensitive data while
keeping control over them.

In this paper, we respond to this by presenting UnLynx,
a new decentralized operational solution for efficiently pro-
tecting and querying a large amount of sensitive data that
is distributed across a multitude of data providers. UnL-
ynx outperforms state-of-the-art secure solutions, both in
terms of security and efficiency, as it does not present a
single point of failure and has the ability to scale up to
thousands of data providers. It achieves this while guaran-
teeing (i) data confidentiality at rest and during processing,
(ii) unlinkability between data providers and their data,
(iii) correctness of secure computations, and (iv) private
release of end-results.

UnLynx is a decentralized system where data providers
are able to share their sensitive data without having to trust
one single entity to protect their privacy and data confiden-
tiality. In fact, trust is distributed among multiple entities
that constitute a collective authority [44]. UnLynx achieves
two distinct types of decentralization. The first is the de-
centralization of the data, i.e., there is no central repository
for all data. Each data provider can store its data on its
own premises thus maintaining control over them. The sec-
ond is the decentralization of the computations, i.e., there
is no central authority responsible for all the computations.
Instead, even in the presence of a malicious adversary, a
group of collective-authority servers is responsible for se-
curely processing data from the different data providers.

In particular, UnLynx enables the end-user to per-
form SQL-like queries over encrypted distributed data
to compute useful descriptive statistics (e.g., count/sum,
averages, etc.) on a selected subset of data records in a

privacy-preserving way. This subset selection is based on
a set of Boolean conditions. Although these operations
represent only a subset of those supported by alternative
approaches based on SMPC or trusted third parties, it
is also true that such a subset is enough to solve most
of the data-sharing scenarios described above. Moreover,
contrary to alternative approaches, our solution is highly
parallelizable by design and can easily scale to thousands
of data providers with millions of data records.

In UnLynx, during the secure processing, data are
homomorphically encrypted under a collective key and
shuffled by a set of servers, hence preventing any entity
in the ecosystem from linking data back to their respec-
tive owners. By generating deterministically encrypted
tags from probabilistically encrypted records, UnLynx is
also able to filter encrypted records according to the set of
Boolean conditions defined in the query. Finally, to prevent
inferences based on the end result and to satisfy formal pri-
vacy notions (e.g., differential privacy), UnLynx provides
a mechanism enabling the collective-authority servers to
obliviously perturb the end result with noise (unknown to
any party) sampled from a known probability distribution.
All computations performed by UnLynx can be verified
through the use of cryptographic zero-knowledge proofs.

To evaluate the performance of UnLynx, we built a
working prototype implemented as a modular system
where the different security features are represented by
independent modules that can be activated depending
on the application domain and on the privacy/efficiency
requirements. An experimental evaluation, in a realistic
simulation environment, shows that our prototype scales
almost linearly with respect to the amount of data to be
shared and the size of the collective authority. A query -
with 2 Boolean conditions and 1 grouping criteria, over
400,000 records distributed among 20 data providers, and
processed by 3 independent servers - can be executed in
less than 24 minutes under the assumption of a strong ad-
versary. By relaxing this assumption (e.g., by considering
honest-but-curious servers and deactivating some of the
security modules) the execution time of the same query
can be reduced to, at best, 2.5 minutes.

Contributions
In this paper we make the following contributions:
– A flexible, decentralized, strongest-link security sys-
tem for privacy-conscious data sharing among a mul-
titude of distributed data providers, built on top of
well-established security and privacy techniques, and
secure even in a strong adversary model.

– A novel use of collective authorities combined with the
use of homomorphic encryption and zero-knowledge
proofs.

– A set of new secure and distributed protocols enabling
deterministic tagging, key switching and collective ag-

A Decentralized System for Privacy-Conscious Data Sharing 234

gregating that, combined with a verifiable shuffle enable
a set of collective-authority servers to compute on dis-
tributed sensitive data and produce zero-knowledge
proofs of their work.

– A novel distributed protocol that enables collective-
authority servers to obliviously perturb an aggregate
query end-result in order to satisfy formal notions of pri-
vacy (e.g., differential privacy) and to mitigate inference
attacks from a malicious querier.

– A thorough evaluation of our modular system and of
the different privacy/efficiency tradeoffs in a realistic
simulation environment.

2 Background
We describe several tools that UnLynx is built upon. For
the remainder of this paper, we assume elliptic curve no-
tation in which G is an elliptic curve1 and B designates a
base point on G.

2.1 Collective Authority
Applications and systems often rely on authorities that
provide security-critical services. For example, certificate
services might rely on an authority to attest the ownership
of public keys by the subjects of the certificates. Because
these services are security-critical, they are obvious targets
for attackers. In order to provide stronger security and
to distribute trust, authorities can be decentralized, i.e.,
composed of multiple collaborating entities, referred to as
a collective authority. An example of a scalable collective-
authority is described by Syta et al. [44].

Each server Si from the collective authority possesses
a private-public key pair (ki, Ki). Using elliptic curve no-
tation, Ki = kiB, where ki is a scalar and Ki is a point
on G. The collective authority generates a collective public
key K=K1+...+Km as the aggregation of all the servers’
public keys. The corresponding private key is never con-
structed. Instead, in order to decrypt a message encrypted
using K, each server in the collective authority must par-
ticipate and partially decrypt it by using its own private
key. Thus, the collective-authority key provides strongest-
link security such that attackers have to compromise all m
servers in order to decrypt. This can be assimilated to a
(m, m)-threshold decryption.

2.2 ElGamal Cryptosystem
In UnLynx, data are encrypted using the probabilistic and
additively-homomorphic ElGamal cryptosystem. Specifi-
cally, if P is a public key and x is a message mapped to a
point on G, the ElGamal encryption of x is the tuple EP (x)

1 Elliptic Curves are known to require smaller key sizes for the same
levels of security compared to other methods [1], hence enabling
efficient computations.

= (rB, x+rP) where r is a random nonce. The additive ho-
momorphic property states that EP (αx1+βx2) = αEP (x1)
+ βEP (x2) for any messages x1 and x2 and for any scalars
α and β. In order to decrypt a ciphertext (rB, x+rP), the
holder of the corresponding private key p (P =pB) multi-
plies rB and p yielding p(rB)=rP and subtracts this point
from x+rP . The result is the message x.

2.3 Zero-Knowledge Proofs of Correctness
In order to provide guarantees of correct computations
by the collective authority, UnLynx makes use of zero-
knowledge proofs for general statements about discrete log-
arithms, introduced by Camenisch et al. [16]. In general,
these proofs enable a verifier to check that the prover knows
the discrete logarithms y1 and y2 of the public values Y1 =
y1B and Y2 =y2B and that they satisfy a linear equation

A1y1+A2y2 =A, (1)

where A, A1, A2 are public points on G. This is done with-
out revealing anything about y1 or y2. These proofs can
be made non-interactive through the Fiat-Shamir heuristic
[27].

In UnLynx, these proofs are used to ensure the integrity
of each computation and are published in such a way that
they can be verified by any entity.

2.4 Verifiable Shuffle
In UnLynx, we use the verifiable shuffle of sequences of
ElGamal pairs described by Andrew Neff [34] to transform
encrypted data in such a way that the outcome cannot be
linked to the original encryption.

Formally, we consider the SHUFFLE protocol such that
SHUFFLEπ,r′′

i,j
takes as input multiple sequences of ElGa-

mal pairs (C1,i,j, C2,i,j) forming a a×bmatrix and outputs
a shuffled matrix of (C̄1,i,j, C̄2,i,j) pairs such that for all
1≤i≤a and 1≤j≤b,

(C̄1,i,j,C̄2,i,j)=(C1,π(i),j+r′′π(i),jB,C2,π(i),j+r′′π(i),jP)

where r′′i,j is a re-randomization factor, π is a permutation
and P is a public key.

Therefore, this verifiable shuffle permutes each row of
ciphertexts of the form (ri,jB, xi,j+ri,jP) and transforms
it into an indistinguishable list of ciphertexts of the form(
r′i,jB, xi,j+r′i,jP

)
where r′i,j=r′′i,j+ri,j is a new random

nonce.
Andrew Neff provides a method to prove that such a

shuffle is done correctly, i.e., that there exists a permuta-
tion π and re-randomization factors r′′i,j such that output =
SHUFFLEπ,r′′

i,j
(input), without revealing anything about

π or r′′i,j. This is achieved by using honest-verifier zero-
knowledge proofs that are discussed in detail by Neff
[34, 35].

A Decentralized System for Privacy-Conscious Data Sharing 235

2.5 Differential Privacy
Differential privacy is an approach for privacy-preserving
reporting of results, first introduced by Cynthia Dwork [23].
This approach guarantees that a given randomized statis-
tic,M(D)=R, computed on a dataset D behaves similarly
when computed on a neighbor dataset D′ that differs from
D in exactly one element. More formally we have that

Pr[M(D)=R]≤exp(ε)·Pr
[
M(D′)=R

]
+δ, (2)

where ε and δ are privacy parameters: the closer to 0 they
are, the higher the privacy level is. The most straightfor-
ward method for achieving (ε, δ)-differential privacy [25]
consists in perturbing the original output f(D) with noise
drawn from the Laplace distribution with mean 0 and scale
∆f
ε , where ∆f is known as the sensitivity of the original

real valued function f to be executed on the dataset:

∆f=max
D,D′
||f(D)−f(D′)||1. (3)

3 System and Threat Models
We introduce our system model and discuss UnLynx’s
functionality, security/privacy and performance require-
ments. Then we sketch our threat model.

3.1 System Model
Our system, as depicted in Figure 1, consists of n data
providers DP1,..., DPn, m servers S1,..., Sm and a querier
Q2. Together, the servers form a collective authority (CA)
for privacy-preserving data sharing. The DPs combined
constitute a distributed database that is used to answer
queries. The querier and each of the DPs independently
choose one server in the CA to communicate with. They
can change this choice at any time. Data providers gen-
erate and/or store data that can pertain to either one or
several individuals.

Fig. 1. Data providers (in blue), collective-authority servers (in green)
and querier (in red). In this example, m = 3 and n = 10. The arrows
show the information communication flow.

We assume a public immutable distributed ledger DL
that is collectively managed by the servers and contains

2 There can be several queriers in the system, but as they do not
interact with each other, without loss of generality, we consider the
protocol for a single one.

a complete view of the system, the access rights of the
queriers, a list of available DPs, the query history and the
system’s global variables, such as the privacy parameters.
Any change in the topology or querier access rights triggers
an update of the public ledger.

We now discuss the functionality that UnLynx must
provide along with its security/privacy and performance
requirements.

Functionality. UnLynx should permit SQL queries
of the form ‘SELECT SUM(∗)/COUNT(∗) FROM DP1,...,DPl
WHERE ∗ AND/OR ∗ GROUP BY ∗’ , where l≤ n and we con-
sider that ‘∗’ denotes an arbitrary number of attributes.
We refer to the attributes involved in the WHERE clause and
GROUP BY statement as filtering attributes. These queries
can be executed on the distributed databases held by a
set of l chosen DPs. Depending on its permission level, a
querier can be limited to some types of queries. Finally, in
some specific cases, UnLynx can also provide the possibil-
ity of ‘SELECT ∗’ queries. This would, for example, enable
DPs to query and decrypt their own database. However,
this type of query is not suited for secure data-sharing as, it
cannot be done on a distributed database held by multiple
DPs, while ensuring data confidentiality and privacy. We
further discuss this in Appendix B.

Security and privacy. UnLynx should be able to
filter query responses based on the Boolean conditions of
the query, i.e. attributes in the WHERE clause, and to group
responses according to the GROUP BY statement without
revealing any information about any of the attributes or
to which groups the responses belong to. The confiden-
tiality of raw data must be protected at rest and during
processing. Moreover, no entity should be able to trace a
query response back to its provider, i.e. unlinkability be-
tween DPs and their data must be guaranteed. UnLynx’s
primary goals are to enable data sharing, ensure the DPs’
privacy and avoid any data leakage. Hence, UnLynx does
not intend to protect queriers’ privacy. UnLynx should
permit any entity to check the correctness of the sys-
tem’s computations and it should ensure that any entity
that computes incorrectly can be identified and excluded
from future computations. UnLynx must ensure (ε, δ)-
differential privacy for any individual sharing his data.
Finally, it should guarantee that only the querier is able
to decrypt the result of its query.

Performance. We require UnLynx to scale linearly
with the number of DPs, the amount of data and the size
of the CA. It should also provide a shorter response time
by relaxing some of the security/privacy requirements.

3.2 Threat Model
We define UnLynx’s threat model by discussing the role
of each entity in the system.

Collective authority servers. We assume an
Anytrust Model [46] for the CA servers. In other words, to

A Decentralized System for Privacy-Conscious Data Sharing 236

achieve the functionality and the security/privacy guaran-
tees described in Section 3.1, UnLynx does not require any
particular server to be globally trusted or to be honest-but-
curious. Instead, as long as there exists at least one server
that is not malicious, these properties are guaranteed.

Data providers. We assume DPs to be honest-but-
curious and discuss the impact of having malicious DPs
in Section 5. UnLynx does not protect against false infor-
mation coming from the DPs, i.e., we do not ensure data
integrity coming from the DPs. However, in Section 6.1,
we propose a mechanism that enables servers to verify that
an input is within a range of values, hence mitigating the
effect of DPs sending altered data. Each DP can indepen-
dently choose one server in the CA to trust, i.e., each DP
can choose a different server. Finally, a DP cannot collude
with any other entity.

Queriers. We assume queriers to be malicious. They
can try to infer sensitive information about DPs and can
collude between themselves or with a subset of the CA
servers.

We assume that all network communication is authenti-
cated and encrypted. This can be ensured by standard cryp-
tographic techniques, e.g., using TLS protocol. The number
of queries accepted per minute by UnLynx is limited and if
a server does not respond, it can be removed from the CA.

4 Overview of UnLynx
In order to achieve privacy-preserving sharing of sensitive
data, we developed a modular system that enables the use
of sub-protocols as building blocks according to security,
privacy and performance requirements. In Section 4.1, we
describe our decentralized data-sharing protocol that is
depicted in Figure 2. This protocol combines sub-protocols
that we describe in more detail in Section 4.2.

4.1 Decentralized Data-Sharing Protocol
The protocol starts with a querier who wants to retrieve
some aggregate information about sensitive data stored by
multiple DPs. The query is sent to a chosen server that
broadcasts it to the other servers in the CA. Then, the
servers broadcast the request to all DPs that respond with
the requested sensitive data in encrypted form. These data
are securely and privately processed by the servers, before
the query result is sent to the querier, who is then able to
decrypt the final result. Table 1 contains the notation and
symbols used throughout the proposed protocol.

Step 0. In the initialization phase, each server Si in
the CA creates its own ElGamal key pair (ki, Ki). The

CA constructs its public key K =
m∑
i=1

Ki that is used by

data providers to encrypt their sensitive data. A server of
the CA generates the probability distribution that corre-
sponds to the predefined differential privacy parameters of

Fig. 2. Decentralized Data Sharing Protocol from beginning (DPs
encrypt their data using the CA’s public key) to end (querier decrypts
final aggregate answers using its private key). The initialization step
is executed once at the setup of the system.

the system, ε and δ, and it uniformly samples some points
from this distribution, based on the probability quantum
parameter θ. We assume that these parameters are chosen
before the initialization of our system. This choice highly
depends on the application domain. The resulting samples
are then used as obfuscation noise in Step 6. This process
is explained in detail in Section 4.2.3.

Symbol/abbreviation Description

G; B Elliptic curve; base point on G
S1,...,Sm m collective-authority servers
DP1,...,DPn n data providers
EP () ElGamal encryption using key P
(ki, Ki) Server i’s private-public key
K=K1+...+Km Collective authority’s public key
(u, U) Querier’s private-public key
(C1, C2)=(rB, x+rK) ElG encryption of x with K
si,vi Server i’s short-term secrets
DL Immu. distributed ledger
(ε, δ); ∆f Privacy parameters; Query sensitivity
θ Proba. quantum parameter

Table 1. Commonly used symbols and abbreviations.

Step 1. Querier Q sends its query to a server
Si in the CA. An example of a query could be
‘SELECT SUM(employed) FROM DP1, ... ,DPd WHERE age =
EK(46) AND married=EK(1) GROUP BY gender’. In order
for the servers to privately process the query, the attribute
values in the WHERE clause are encrypted with the CA’s
public key K.
Finally, Si broadcasts the query to all the other collective-
authority servers, and each of them sends the query to
a different set of DPs such that each DP in the FROM
clause receives the query. We assume there is no error
during the broadcast, hence there is no query duplicate.
Before forwarding the query to its DPs or to other servers,
each server verifies the access rights of the querier in the
distributed ledger DL.

Step 2. The DPs select, for each of their data records,
the encrypted or clear text values of the attributes specified

A Decentralized System for Privacy-Conscious Data Sharing 237

in the query and send them back to their respective server.
If the query contains a ‘SELECT COUNT’ statement, the DPs
append an attribute with value EK(1) to each of their
responses. In order to prevent the servers from knowing
the count value, the DPs add dummy records (containing
EK(0)) to their responses. A DP can choose to not respond
to a query, e.g., if it is too intrusive. Each DP digitally signs
its set of responses, publicly logs it in theDL, and appends
the signature to its message to ensure authenticity.
If some DPs respond with filtering attributes (attributes
involved in the WHERE clause and GROUP BY statement) in
clear text, the servers locally aggregate the responses for
each different combination of filtering attributes, thus re-
ducing the number of responses to be processed.

Step 3. The CA launches a verifiable shuffle sub-
protocol in order to break the link between the DPs and
their data. In particular, each server sequentially performs
a verifiable shuffle on the data, as described in Section 2.4.
Any clear text data are encrypted during the verifiable
shuffle process. Eventually, each DP’s data will be shuffled
among themselves and with other DPs’ data, once by each
server.

Step 4. In order to execute the query, all the servers
run a distributed deterministic-tag sub-protocol on the
filtering attributes. This protocol appends a deterministic
tag to each filtering attribute of each DP ’s response.

The outputs of this protocol are used to filter the re-
sponses based on the query WHERE clause and to group
the responses according to the GROUP BY statement. For
example, if the query is ‘SELECT SUM(employed) FROM
DP1, ... ,DPd WHERE age=EK(46) AND married = EK(1)
GROUP BY gender’, the WHERE clause is transformed to
‘WHERE age=DT (EK(46)) AND married=DT (EK(1))’ where
DT(x) is the deterministic tag derived from x. The
derivation of this tag is explained in Section 4.2.1. The
server will then check the query predicate for each re-
sponse by verifying if ‘DT(agerespij) == DT(EK(46))
AND DT(marriedrespij) == DT(EK(1))’ holds. Here,
marriedrespij and agerespij are the values of the married
and age attributes of DPi’s response j. If the predicate is
not verified, the response is discarded. Finally, the remain-
ing responses are grouped based on the deterministic-tag
values derived from their GROUP BY statement attribute
values, and the SUM/COUNT attribute values are aggregated
in each group. This results in one aggregated response per
group.

Step 5. The servers perform a collective aggregation
protocol, presented in Section 4.2.2. When this is done,
one server has the total aggregate response for each group,
encrypted under the CA’s public key K.

Step 6. One server executes an oblivious results obfus-
cation sub-protocol and begins by verifying in the public
distributed ledger DL if the same query has already been

performed. We discuss how this verification can be exe-
cuted with encrypted queries in Section 4.2.3. If the same
query has already been executed, the server adds the same
noise value that was used for the first query to the results
of the new one. If this is not the case, the server is responsi-
ble for starting a verifiable shuffle protocol (similar to Step
3) on the list of noise values generated in the initialization
phase. The server chooses the first element in the shuffled
list and adds this noise to the query results.

Step 7. The CA launches a key switch sub-protocol
to obtain the query results encrypted under the querier’s
public key U, instead of under the CA’s public key K.

Step 8. The total aggregated responses per group are
sent to the querier who is able to decrypt them by using
its private key u.

4.2 Sub-protocols
Here, we provide details about the distributed
deterministic-tag, collective aggregation, distributed results
obfuscation, key switch and dynamic collective-authority
sub-protocols that we designed to be independent building
blocks. They can be combined to achieve privacy-conscious
data sharing with different levels of security, privacy and
performance. For the distributed deterministic-tag, dis-
tributed results obfuscation and key switch, the collective-
authority servers are organized into a cycle as these sub-
protocols are performed sequentially. For the collective
aggregation, however, the CA can be organized into a
tree to increase the protocol’s efficiency. After each sub-
protocol, we show how zero-knowledge proofs can be used
to guarantee computation integrity.

4.2.1 Distributed Deterministic-Tag
The distributed deterministic-tag sub-protocol, or DDT,
consists in tagging an ElGamal ciphertext of a message
x, encrypted using the CA key K, with a deterministic
value related to x without ever decrypting the ciphertext.
This sub-protocol is executed in two successive rounds. We
start with EK(x) = (C1, C2)=(rB, x+rK), the ciphertext
tuple corresponding to an ElGamal encryption of message
x that uses the CA’s public key K.

In the first round, each server sequentially generates a
fresh secret si and adds the value derived from its secret
siB to C2. This eliminates the possibility of having a de-
terministic tag of 0 as an output of the protocol when
the input message is zero. After this first round, the en-
crypted message is (C1, C2)=(rB, x+rK+

∑m
i=1siB). Let

(C̃1,0, C̃2,0) = (C1, C2) be a ciphertext resulting from the
first round.

In the second round, each server partially and sequen-
tially modifies this ciphertext. More specifically, when
server Si receives the modified ciphertext (C̃1,i−1, C̃2,i−1)

A Decentralized System for Privacy-Conscious Data Sharing 238

from server Si−1, it computes (C̃1,i, C̃2,i) as

C̃1,i=siC̃1,i−1 (4)

and
C̃2,i=si

(
C̃2,i−1−C̃1,i−1ki

)
(5)

Once all of these computations are done, we discard the
first component C̃1,m and obtain

C̃2,m=sx+
m∑
i=1

sisB (6)

where s =
∏m
i=1 si is a short-term collective secret corre-

sponding to the product of each server’s fresh secret. C̃2,m
is the deterministic tag collectively computed from the
original ciphertext (C1,C2).

In fact, each server Si uses the same si for all the cipher-
texts for a given query. Thus, if two messages xa and xb are
the same, then the corresponding tags will be the same. In
our case, this sub-protocol is used to verify the query con-
ditions, namely the WHERE clause and GROUP BY statement.

Zero-knowledge proofs for the distributed
deterministic-tag. Each time a server adds a secret value
or computes Equations (4) and (5), it must also compute
a zero-knowledge proof to prove that the computations
were done correctly. In the second round, when computing
(C̃1,i, C̃2,i), server Si is the prover and any entity can act
as a verifier. Coming back to Equation (1) in Section 2.3,
which we recall is A1y1+A2y2 =A, it is easy to see that for
Equation (5), y1 =si, y2 =kisi are the discrete logarithms
of siB and kisiB = siKi, respectively. The points siKi,
siB, A = C̃2,i, A1 = C̃2,i−1 and A2 = −C̃1,i−1 on G are
made public and are part of the proof. The publication
of siB also guarantees that server Si has used the same
secret si for all data during a given query. Similar proofs
can be obtained for the first round of the protocol and for
Equation (4) and are sketched in Appendix A.1.

4.2.2 Collective Aggregation
Given the ElGamal ciphertext tuples (C1,i, C2,i) held
by each server Si, the CA will produce one ciphertext
(C1,aggr., C2,aggr.) as an aggregation of all ciphertexts
(C1,i, C2,i). This aggregation is possible due to the addi-
tive homomorphic property of the ElGamal cryptosystem.

In order to improve performance, the CA can be orga-
nized into a tree structure, in which each server will wait
to receive the ciphertext tuples from its children and sum
them before passing the result on to its own parent.

Zero-knowledge proofs for the collective aggrega-
tion. Here, a zero-knowledge proof consists in publishing
the ciphertexts and the result of their aggregation. Due to
the confidentiality property of the ElGamal cryptosystem,
publishing the ciphertexts does not leak any information
about the underlying plaintexts. In order to verify these

proofs, a verifier can simply sum all of the ciphertexts and
check that it corresponds to the published output.

4.2.3 Distributed Results Obfuscation
The distributed results obfuscation sub-protocol (DRO)
enables the CA to collectively and homomorphically add
noise, sampled from a probability distribution satisfying
the differential privacy requirements, to the query results.
This ensures (ε, δ)-differential privacy for DPs without
revealing to any entity the amount of noise added. This
sub-protocol is composed of two phases: the initialization
phase, executed by the CA in the setup of the system; and
the runtime phase, performed by the servers in order to
respond to each query.

Fig. 3. Example of a quantization of Laplace distribution that is then
used to derive noise values. The Laplace curve is in red and the quantas
are in blue.

In the initialization phase, to generate the probability-
distribution curve, a server in the CA uses the globally
applicable predefined and publicly available differential
privacy parameter ε. The same server uses the predefined
probability quantum parameter θ in order to quantize an
approximate representation of the distribution curve. This
enables the server to derive a list of noise values and to ran-
domly choose a value that can then be added to the query
result to ensure (ε, δ)-differential privacy. An example of
the quantization of a Laplace distribution with θ=0.05 is
depicted in Figure 3. We use the number of quantas (blue
dots) that fit under the curve in order to approximate the
distribution and to create the list of noise values. In our
example, the noise value list contains 11 ‘0’s, 4 ‘1’s and
‘-1’s, 2 ‘2’s and ‘-2’s, ...

In the runtime phase, one server starts by verifying if
the given query has already been answered by the system.
We assume that no entity can know that two different
queries yield the same results. To compare two queries, the
server first retrieves, in the DL, all the queries that have
been executed with the same attributes. For each of these,
the server verifies if the values for the encrypted attributes
match those in the new query. In order to do this, it sub-
tracts both queries and tags the result along with a 0 by
executing a DDT sub-protocol. Finally, the server verifies

A Decentralized System for Privacy-Conscious Data Sharing 239

if ∀j, DT(EK(Qnew,j−Qi,j) =DT(EK(0)), where Qi,j is
the jth attribute of query i and new is the new query. If
all these equalities hold, the two queries are equal and the
server adds the same noise to the new query results. This
ensures that the noise cannot be averaged out. If the same
query has not already been answered, the server starts the
verifiable shuffle sub-protocol, described in Step 3, on the
list of noise values. The re-randomization in the verifiable
shuffle sub-protocol encrypts the clear text noise values.
The zero-knowledge proof of the verifiable shuffle ensures
the correctness of the computations. This results in a ver-
ifiable encryption and shuffling of the noise values. Then,
the same server chooses the first element in the shuffled
list as the noise value to be added. The verifiable shuffle
sub-protocol ensures that the noise is chosen randomly
from the proper distribution and that no entity knows its
value. This noise is added to the query results and stored
along with the query in the DL.

Zero-knowledge proofs for the distributed results
obfuscation. In the initialization phase, the correctness
of the computations can be verified by checking the value
of the parameters and the generated noise values that
are all publicly stored in the DL. For the runtime phase,
the integrity of the computations is ensured by the zero-
knowledge proofs of both the verifiable shuffle presented
in Section 2.4 and the homomorphic addition described in
Section 4.2.2. Given the quantization of the distribution,
we prove the following theorem.
Theorem 1. Let Laplace(0, b) with b= ∆f

ε be the Laplace
distribution from which the noise is to be sampled, θ the
unit quanta, [−T, T] the range of integer noises (T is the in-
teger bound), and L the length of the generated noise list in
the initialization phase. Our mechanismM provides (ε, δ)-
differential privacy where δ= 1

L , if we choose θ= 1
2be
−T/b.

Proof. Let w be the noisy output, µ1 the original output
for dataset D1, and µ2 the original output for dataset D2.
We have
Pr[M(D1)=w]
Pr[M(D2)=w] =

d 1
2be
−|w−µ1|/b/θe/L

d 1
2be
−|w−µ2|/b/θe/L

≤
1
2be
−|w−µ1|/b/θ+1

d 1
2be
−|w−µ2|/b/θe

≤
1
2be
−|w−µ1|/b/θ

1
2be
−|w−µ2|/b/θ

+ 1
d 1

2be
−|w−µ2|/b/θe

=e(|w−µ2|−|w−µ1|)/b+ 1
d 1

2be
−|w−µ2|/b/θe

≤e|µ1−µ2|/b+ 1
d 1

2be
−|w−µ2|/b/θe

≤eε+ 1
d 1

2be
−|w−µ2|/b/θe

.

(7)

Therefore, we have

Pr[M(D1)=w]≤eεPr[M(D2)=w]+ 1
L
. (8)

When w is at the boundary of M(D1), w might be the
output for D1 but is not a possible output for D2, hence
Pr[M(D2) =w] = 0. For example, if µ1 =µ2−1, we have
M(D1) ∈ [µ1−T, µ1 +T], and M(D2) ∈ [µ2−T, µ2 +T],
and thus Pr[M(D2)=µ1−T]=0. If we choose θ≥ 1

2be
−T/b,

then a boundary noise is sampled with probability 1
L ,

hence the formula Pr[M(D1)=w]≤eεPr[M(D2)=w]+ 1
L

still holds with Pr[M(D2)=w]=0. Nevertheless, we should
choose T large enough such that 1

L is sufficiently low to
achieve strong differential privacy.

4.2.4 Key Switch
The key switch sub-protocol enables the conversion of an
ElGamal ciphertext of a message x encrypted under the
CA’s public keyK to one of the same message x encrypted
under any known public key, e.g., the querier’s public key
U, without ever decrypting. The sub-protocol is described
below.

We start with EK(x) = (C1, C2)=(rB, x+rK), a cipher-
text tuple corresponding to the ElGamal encryption of mes-
sage x using the CA’s public key K. Let (C̃1,0, C̃2,0)=(0,
C2) be the initial modified ciphertext tuple. Each server
partially and sequentially modifies this element. More
specifically, when server Si receives (C̃1,i−1, C̃2,i−1) from
server Si−1, it generates a fresh random nonce vi and
computes (C̃1,i, C̃2,i) as

C̃1,i=C̃1,i−1+viB (9)

and
C̃2,i=C̃2,i−1−(rB)ki+viU

=C̃2,i−1−rKi+viU.
(10)

where v=v1+...+vm. Once all of these are computed, we
obtain the new ciphertext that corresponds to x encrypted
under the public key U, (C̃1,m, C̃2,m)=(vB, x+vU) from
the original ciphertext (C1, C2). At this point, the cipher-
text (C̃1,m, C̃2,m) can be decrypted only by the holder of
the private key u, where U=uB.

Zero-knowledge proofs for the key switch. To
prove that the computations have been done correctly,
each time a server computes Equations (9) and (10), it
must also compute a zero-knowledge proof. Again, at each
step i, server Si is the prover and any entity can be the
verifier. Coming back to Equation (1) in Section 2.3, it is
easy to see that for Equation (10), y1 =ki, y2 =vi are the
discrete logarithms of kiB=Ki and viB, respectively. All
points Ki, viB, A= C̃2,i− C̃2,i−1, A1 =−rB and A2 =U

are made public and do not leak any information about
underlying secrets. A similar proof can be obtained for
equation (9) and is sketched in Appendix A.2.

A Decentralized System for Privacy-Conscious Data Sharing 240

4.2.5 Dynamic Collective Authority
This sub-protocol enables us to add/remove a server
to/from the collective authority. On the one hand, adding
more servers strengthens the privacy guarantees; on the
other hand, detecting misbehavior, for example through
the use of zero-knowledge proofs, should lead to the cul-
prits’ exclusion from the CA. When a server joins/leaves
the CA, this server has to collaborate with all the DPs
in order to change their data encryption from the CA’s
previous public key to the new one. We assume, here,
that DPs want to outsource computations and that the
joining/leaving server participates in the protocol.

Without loss of generality, let Sm be the server that
needs to be added/removed. in order to have its data
encrypted under the CA’s new public key Knew, any DP
storing data encrypted using the CA’s previous public key
Kprev must execute the following protocol. When adding
a new server Sm to the collective authority S1,...,Sm−1,
Kprev =K1 + ...+Km−1 and Knew =K1 + ...+Km. When
removing server Sm from S1,...,Sm, Kprev =K1 +...+Km
and Knew = K1 + ...+Km−1. Starting from a message x
encrypted under Kprev, (C1, C2)=(rB, x+rKprev), server
Sm multiplies C1 by its private key km

C1km=(rB)km=rKm (11)

and adds/removes, the result to/from, C2

C̃2 =C2±rKm=x+rKprev±rKm=x+rKnew.8 (12)

Component C̃1 remains the same, i.e., C̃1 =C1. The result
is the new ciphertext tuple (C̃1, C̃2) = (rB, x+ rKnew)
corresponding to the same message x encrypted under the
CA’s new public key. Hence, it is possible to expand the
CA and update the corresponding encryptions without
needing to decrypt any of the ciphertexts. Finally, the DPs
that trusted the server who left the CA can choose another
server to trust or leave the system.

Zero-knowledge proofs for the dynamic collective
authority. Using Equation (1) in Section 2.3, we see that
for Equation (12), y1 = km is the discrete logarithm of
kmB = Km. All points Km, A = C̃2−C2 and A1 = −C1
are made public and do not leak any information about
underlying secrets. A similar proof can be obtained for
Equation (11) and is sketched in Appendix A.2

5 Security and Privacy Analysis
We analyze UnLynx’s security and privacy by studying
each step of our decentralized data-sharing protocol pre-
sented in Section 4.1 and by showing, for each step, how
UnLynx guarantees the security and privacy requirements
presented in Section 3.1.

Step 0. In the initialization step, each server i builds its
own key pair (ki, Ki) and, as long as one server keeps its

secret key ki hidden, the CA’s secret key k=
m∑
i=1
ki remains

unknown. As a result, data confidentiality is ensured for
DPs through the use of the CA’s public key K=

m∑
i=1

Ki to

encrypt their data. The correctness of the noise-value gen-
eration is ensured by the fact that all the parameters and
values are stored in a public, immutable, distributed ledger
DL, and the computations can be verified by any entity.

Step 1. UnLynx rules out unauthorized queries by
checking the querier’s permission in the DL. Moreover,
because DPs publicly log the fact that they respond to a
query, a server’s malicious behavior, such as excluding a
DP from a query or impersonating a DP, will be caught.

Step 2. Data authenticity is ensured by the DPs’ digital
signatures on the responses. Moreover, UnLynx enables
an optional upper bound that can be used to hide the
amount of data sent by DPs. More specifically, DPs either
discard some records or add dummy responses that consist
of responses with the SELECT attributes, all equal to EK(0);
and the filtering attributes uniformly distributed over the
range of possible values. This prevents an adversary from
inferring any information (e.g., using traffic analysis) from
the amount of data sent by a given DP .
As described in Section 3.2, we consider DPs to be honest-
but-curious, which means that we assume they provide
correct responses to a query and do not collude with any
other entity. Otherwise, if malicious DPs collude with the
querier or some of the servers, they could infer some in-
formation about other (non-colluding) DPs. Nevertheless,
UnLynx would still offer some protection when this is the
case. In fact, when colluding with the querier, malicious
DPs would only have access to an approximation of the
query results of their target(s) because of the oblivious
noise addition done in Step 6. When colluding with one
or multiple servers, malicious DPs would be able to ob-
serve the output of the Distributed Deterministic Tagging
sub-protocol (Step 4). In the worst case, if there were only
malicious DPs connected to a malicious server, they would
be able to infer the mapping between an attribute and its
deterministic tag. Yet, the data would be shuffled (Step
3) and mixed with dummy records (Step 2) beforehand.
This would still ensure the unlinkability of the data and
the secrecy of the honest DPs responses distribution.

Step 3. Unlinkability is guaranteed by the verifiable
shuffle sub-protocol. Data confidentiality is maintained as
the data are never decrypted during the protocol.

Step 4. The tag (sx+
∑m
i=1sisB) is a collective encryp-

tion of the filtering attribute x because each si is known
only to server Si. Hence, the confidentiality of the filter-
ing attributes is guaranteed. Each step of this protocol is
publicly verifiable due to the zero-knowledge proofs.

Step 5. A misbehaving server can be caught due to the
zero-knowledge proofs for homomorphic additions.

A Decentralized System for Privacy-Conscious Data Sharing 241

Step 6. The input list of noise values is publicly known,
and the shuffling and aggregating operations can be veri-
fied. Any entity can check that the noise added is one of the
values in the list, without learning which one. Moreover,
the queries are publicly logged and the same noise is used
for identical queries. By providing (ε, δ)-differential privacy,
UnLynx is resilient against (colluding) queriers/servers try-
ing to infer information from query outputs and against
other types of attacks such as set difference attacks pre-
sented by Souza et al. [19]. UnLynx maintains a global
privacy budget, defined by Dwork [24], which is updated
at each executed query by computing the sensitivity or the
privacy loss of the query and by subtracting this value to
the global budget. In fact, with (ε, δ)-differential privacy,
the privacy loss is additive and the privacy budget im-
poses a limit on the cumulative values ε and δ after which
new queries are not allowed. The choice of this parameter
highly depends on the application domain and is out of
the scope for this paper.

Step 7. Each step of the key switch sub-protocol can
be verified and the result can be decrypted only by the
querier. Each server can check that the encryption is in-
deed switched to the querier’s public key and, if this is not
the case, any server can block the process.

Step 8. If the querier does not receive the final result
from the server to which it is connected, e.g., because the
server is unresponsive, it can simply send the same request
to another server.

In conclusion, data are encrypted during the whole
protocol execution, therefore data confidentiality is not
compromised at any step. All computations are publicly
verifiable due to the use of zero-knowledge proofs. Finally,
UnLynx provides (ε, δ)-differential privacy and unlinkabil-
ity between DPs and their data through to the use of new
distributed and secure sub-protocols, namely distributed
deterministic-tag, distributed results obfuscation and veri-
fiable shuffle sub-protocols.

6 UnLynx’s Possible Extensions
By analyzing UnLynx and its set of protocols, we can iden-
tify two potential improvements: (1) data integrity/input
validation and (2) a way to exclude a non-cooperative
server from the CA. We propose two new solutions that
can be implemented in the next version of this system.

6.1 Input-Range Validation
In this paper, we assume DPs are honest-but-curious and
we do not ensure the correctness of the data they provide.
Nevertheless, to limit the effect of DPs who introduce in-
valid data, we propose an input-range validation technique.
Adding input-data validation in UnLynx is not intended
for, and will not help in, situations where a DP injects a
large amount of invalid data (many data records), but it

can limit the damage to cumulative query results if only a
few of a DP’s records (inadvertently or maliciously) contain
invalid data, e.g., a data-entry error by an organization
employee. This would enable us to relax the assumption
that DPs input only correct data. Camenisch et al. [15]
present simple and efficient zero-knowledge proofs to prove
that an encrypted value is in a specific range/set. If the
encrypted value is an integer I, a zero-knowledge proof
consists of proving that I =

∑
Ij · bj and that each b-ary

digit of this integer is between [0, b−1]. For the first part of
the proof we can adapt Equation (1), and as for the second
part, we can use the set membership proofs provided by
Camenisch et al. [15].

6.2 Enabling a Dynamic Collective Authority
In Section 4.2.5, we propose a sub-protocol that enables
the system to remove/add a server from/to the CA when
this server collaborates. However, this is not always the
case and UnLynx might want to exclude a misbehaving
server that refuses to leave.

The first solution is to require the DPs to re-encrypt
their data with the CA’s new public key, assuming that
DPs keep off-line backups of their data. When this is not
possible, we propose that a threshold of t (out of m−1)
servers reconstruct the secret key of the leaving server Sm
through the use of a (t, m− 1)-verifiable secret-sharing
(VSS) scheme [18]. In such a scheme, a potentially dishon-
est dealer can share Sm’s secret key km, among the m−1
remaining servers, in such a way that any t semi-honest
servers can reconstruct km but any subset of t−1 servers
learn nothing about km. This secret sharing should be
done for all servers when they join the CA. In this way,
when Sm is removed from the CA, its private key can
be reconstructed by the remaining CA servers. This VSS
weakens the threat model defined in Section 3.2 but en-
hances the dynamism of the CA by enabling it to discard
a misbehaving or unresponsive server. In fact, by using a
(t, m−1)-verifiable secret-sharing scheme, the security of
the scheme is guaranteed, as long as t out of m−1 servers
are honest or honest-but-curious, instead of only 1 in the
Anytrust model.

7 Performance Evaluation
We start with a theoretical analysis of UnLynx’s compu-
tation and communication complexities. Then, we discuss
our experimental setup and evaluate UnLynx’s perfor-
mance. We consider the performance when producing the
results for one single query. We demonstrate that UnL-
ynx yields acceptable performance and is scalable with
the amount of data and the size of the CA.

7.1 UnLynx Complexity
We discuss the time and communication complexities for
each of our sub-protocols. We denote by m the number

A Decentralized System for Privacy-Conscious Data Sharing 242

of servers in the CA, r the total number of records sent
by all the DPs, and f and g the number of attributes in
the WHERE clause and in the GROUP BY statement, respec-
tively. The number of different combinations of GROUP BY
attributes is denoted gd and we usually have r >> gd.
Finally, t is the size of the noise-values list, and a is the
number of attributes in the query SELECT statement. We
discuss the complexity of each sub-protocol and UnLynx’s
overall complexity.

Verifiable Shuffle. In this sub-protocol, all the cipher-
texts have to be shuffled and re-randomized by all the
servers, resulting in a computation and communication
complexity of O(m·r·(f+g+a)).

Distributed Deterministic Tag. In this sub-protocol,
only the attributes in the WHERE clause and in the GROUP BY
statement are processed. Both the computation and com-
munication complexities are therefore O(m·r·(f+g)).

Collective Aggregation. Before executing this sub-
protocol, the responses are locally filtered and aggregated
by each server, which means that the number of responses
is reduced from r to m · gd. Moreover, the size of the re-
sponses is reduced from g+f+a to g+a, as the WHERE clause
attributes are no longer useful and can be discarded. The
servers can be organized in a binary tree structure, such
that each server aggregates the results of its children and
its own. Hence, the computation complexity is O(log2(m)·
gd·(g+a)) and the communication is O((m−1)·gd·(g+a)).

Distributed Results Obfuscation. Both the compu-
tation and communication complexities of this sub-protocol
are O(m·t) and correspond to the complexity of shuffling
the noise values. Other parts of the protocol incur a negli-
gible workload.

Key Switch. The complexity depends mainly on the
number of servers and on the size of the responses. Both
the computation and communication complexities are
O(m·gd·(g+a)).

Overall Complexity. The overall complexity of our
protocol can be reduced to the complexity of the verifiable
shuffle sub-protocol, that is responsible for most of the
computation and communication.

We recall that even if most of the sub-protocols need to
be executed sequentially by the servers, the computations
performed locally by each server are highly parallelizable.

7.2 System Implementation
We implemented UnLynx in Go [5], and the experimen-
tal code is publicly available at https://github.com/lac1/
unlynx [7]. We relied on Go’s native crypto library and
the public advanced crypto DeDiS library [2]. The latter
includes an implementation of a verifiable shuffle of se-
quences of ElGamal pairs [34] and zero-knowledge proofs
for general statements about discrete logarithms [16]. We
used ElGamal encryption on the Ed25519 elliptic curve
[12] with 128-bit security. More specifically, our prototype

implements all the sub-protocols described in Section 4. In
all of these sub-protocols, we assume the existence of a
distributed ledger for which the implementation is future
work. This means that the proofs of correctness are stored
in global variables and the query logging and equality check-
ing are not implemented yet. The communication between
different participants relies on TCP. Finally, in order to al-
low for an easy deployment of UnLynx in different environ-
ments, we implemented an application that automatically
handles the creation of the CA on multiple servers and
provides queriers with an easy way to query the system.

7.3 System Evaluation
We used Mininet [6] to simulate a realistic virtual network
between servers. Each CA server ran on a separate machine
and was connected to the others by a 1Gbps link with a
communication delay of 10ms. For each of our servers, we
used machines with two Intel Xeon E5-2680 v3 CPUs with
a 2.5GHz frequency, 256GBRAM that supports 24 threads
on 12 cores. In our performance evaluation, we study the
execution time of Steps 3 to 7 presented in Section 4.We do
not include the time needed to initialize the system (Step 0)
or for the data providers to encrypt their data since these
operations are done once and offline. The time needed for
the querier to build the query (Step 1), for the DPs to send
their responses (Step 2), and for the querier to decrypt the
results (Step 8) are also left out. For Step 1 and Step 8, the
runtime is negligible in comparison to the whole process,
whereas the time needed for Step 2 depends almost entirely
on the communication links between the servers and the
DPs. In the following, we describe the default parameters
used in our experiments and we observe the influence of
each parameter on the overall system separately.

Parameter Default Value
of servers 3
of responses in tot. 15,000
of filtering attributes 2
of possible groups 10
of aggregating attributes 10
of noise values 1,000

Table 2. Default parameter values used for the evaluation of UnLynx.

We simulated distributed computations on 15,000 re-
sponses, evenly distributed among 3 servers. A response
was considered to contain 2 filtering attributes, e.g., one in
the WHERE clause and one in the GROUP BY statement, and
10 aggregating attributes. We assume 10 different groups,
i.e., GROUP BY attributes can form up to 10 different group
combinations. We chose to use a list of 1,000 obfuscating
noise values. The default parameters are summarized in
Table 2. In the following graphs, each measurement is
averaged over 10 independent runs.

https://github.com/lac1/unlynx
https://github.com/lac1/unlynx

A Decentralized System for Privacy-Conscious Data Sharing 243

We begin our evaluation by showing how our decentral-
ized data-sharing protocol is collectively executed by three
servers (S1, S2, S3) with the default parameters described
above. The results are shown in Figure 4.
Recall, each server has to run the verifiable shuffle and

Fig. 4. Runtime for the different servers (S1, S2, S3) in the CA.

distributed deterministic-tag sub-protocols on the data
received from their DPs. A server can run these two
sub-protocols sequentially, without having to synchronize
with the others. Nevertheless, they are still required to
participate in the sub-protocols when requested. As a con-
sequence, both sub-protocols can be executed in parallel
by the CA, hence we can efficiently distribute the workload
among the servers. Once these first two steps are finished,
the server responsible for initially processing the query
begins a collective aggregation. Finally, the same server
sequentially executes the distributed results obfuscation
sub-protocol and then the key switch sub-protocol.
By further analyzing the graph, we see that the first two
sub-protocols are the most time consuming, as they are
required to process all the DPs’ responses. In contrast, the
last two sub-protocols are executed significantly faster, as
they are only required to process aggregate responses. The
DRO execution time is constant for a given number of
servers.
Using these observations, we often group the two first
sub-protocols - "Ver. Shuffle + DDT" - and the three last
sub-protocols - "Other" - in our experimental results. More-
over, we always separate the runtime of the sub-protocols
and their respective proofs, as the proofs can be verified
offline. At runtime, servers are required to save all the infor-
mation needed (e.g, the ciphertexts and the public values
derived from the secret/ephemeral keys used) to create the
proofs in order to be able to generate them when requested.
Finally, we observe that the communication is the most
time consuming process and accounts for 75% of the overall
execution time. We now study the scalability of UnLynx
against different parameters.

Varying the number of responses. To show that
UnLynx scales almost linearly with the total number of

responses, we begin by increasing the number of responses
processed by each server in the collective authority.

Figure 5(b) shows the time it takes for all servers to pro-
duce all zero-knowledge proofs, as well as the time needed
for an entity3 to verify these proofs. We do not consider the
time it takes for the servers to publish their proofs and for
a verifier to download the data necessary to verify them.
Results from Figure 5(a) show evidence of UnLynx’s
scalability. In fact, UnLynx is able to satisfy a request
with 150K responses in less than 73 seconds. However, in
Figure 5(b), we observe that the zero-knowledge proofs
incur a non-negligible computational overhead. For exam-
ple, a query with 15K responses is answered in less than 9
seconds when it does not include proofs, whereas the com-
plete execution takes almost 64 seconds. This represents
an expanding factor of 7.

Varying the response size. We study the runtime of
UnLynx against the number of attributes in each response.
We consider that half of the attributes in a response are
filtering attributes. Figure 5(c) shows that the runtime
increases almost linearly with respect to the size of the
responses, and the proofs bear a non-negligible overhead
as shown in Figure 5(d).

Varying the number of groups. We observe Un-
Lynx’s runtime when increasing the number of possible
groups or, in other words, the number of different combina-
tions of GROUP BY attributes. This is plotted in Figures 5(e)
and 5(f). As the number of responses is constant, the execu-
tion time for the verifiable shuffle and DDT (Steps 3 and 4)
are constant and, combined, they take less than 9 seconds
on average. The proof creation and verification also remain
constant at 29 and 15 seconds, respectively. The runtime,
both with and without proofs, increases with the number
of groups but remains within acceptable boundaries. For
example, with 1,000 possible groups, the execution time
without proofs takes approximately 9+3.3=12.3 seconds.

Varying the number of servers. We assess the ef-
fect of the size of the CA on UnLynx’s runtime. Figure 6
shows that the latency increases slightly with an increasing
number of servers. This is explained by the fact that the
workload and data are distributed among a larger number
of servers, thus improving the parallelization of UnLynx.
Nevertheless, adding a server increases the number of
steps needed to complete each of the sub-protocols, which
hinders the positive effect of improved parallelization.

7.3.1 Storage Overhead
We now discuss the storage overhead induced by ElGamal
encryption. We recall that our encryption relies on an el-

3 We assume that this entity has the same computing power as one
of the servers.

A Decentralized System for Privacy-Conscious Data Sharing 244

(a) Runtime vs. total number of responses. (b) Proof creation and verification runtime vs.
total number of responses.

(c) Runtime vs. size of the responses (half of
each response is filtering attributes and other
half is aggregating attributes).

(d) Proof creation and verification runtime vs.
responses’ size.

(e) Runtime vs. number of groups. (f) Proof creation and verification runtime vs.
number of groups.

Fig. 5. Performance evaluation of UnLynx (using the default parameters presented in Table 2). (a), (c), and (e) do not include proof creation
or verification. In (b), (d) and (f), all proofs from all servers are computed and verified.

liptic curve with 128-bit security and that each encrypted
message is a pair of points on the curve. Each point is
encoded with 32 bytes, hence each encrypted message is
64 bytes long. Therefore, the encryption of an integer (4
bytes) in clear text yields an expansion factor of 64/4=16.
For example, assume each DP’s database contains 10,000
lines and 120 columns. Each line contains data belonging to
one individual, and the columns correspond to attributes.
Here, the amount of data stored by each DP is 4.8MB if
it is stored in clear, and 73.25MB if it is encrypted. Fi-
nally, storage overhead on each CA server is negligible, as
data can be temporarily stored and discarded after locally
aggregating the data.

Fig. 6. Runtime for a varying number of servers in the CA.

7.3.2 Communication Overhead
As shown by our performance evaluation, most of the sub-
protocol’s execution time is dedicated to communication.
We use the same example as in the previous section and as-
sume that a query requests 120 columns, half of which are
filtering attributes. In this case, each DP sends 73.25MB to
the servers. Considering six DPs, this results in 439.5MB
of data to be processed by the CA. The communication
overhead for each sub-protocol is given below.

Verifiable Shuffle. All the data have to be sent through
all three servers, resulting in a communication overhead of
439.5×3=1315.5MB.

Distributed Deterministic Tag. In this sub-protocol,
only the attributes in the WHERE clause and in the
GROUP BY statement need to be sent, which totals to
439.5

2 ×3=659.25MB.
Collective Aggregation. Before executing this sub-

protocol, the responses are locally filtered and aggregated
by each server. With 10 possible groups, we obtain a
communication overhead of only 0.14MB for when all the
filtering attributes are in the GROUP BY statement (worst
case scenario). We recall that WHERE clause attributes can
be discarded after the responses have been filtered.

Distributed Results Obfuscation. The amount of
traffic for this sub-protocol depends on the number of
servers and the size of the noise value list that, in this case,

A Decentralized System for Privacy-Conscious Data Sharing 245

is 1,000 clear text integers. Therefore, for this particular
example, we send around 0.004MB ×3=0.012MB of data.

Key Switch. In this sub-protocol, only the final results
of the query are processed. With 10 possible groups, the
highest possible communication overhead is 0.2MB.

Finally, in order to privately process 439.5MB of data,
UnLynx needs to send 1315.5+659.25+0.14+0.012+0.2=
1975.1MB, which is 4.5 times the original amount of data.

In Figure 7, we observe the influence of the bandwidth
capacity and communication delay between the servers. By
using the default parameters presented in Table 2 and with
1Gbps links, the maximum communication rate observed
was 80Mbps. We show, for increasing latency, the complete
runtime of UnLynx when the communication rate is not
limited (80Mbps) and when it is reduced to 40Mbps and
20Mbps. As expected, the computation time is constant,
around 1.3 seconds, and the communication time increases
with both the bandwidth and the transmission delay. We
observe that when the delay increases, reducing the band-
width from 80Mbps to 40Mbps does not have a significant
effect on the overall runtime. This occurs because when
the delay increases the maximum communication rate also
decreases.

Fig. 7. Runtime for different values of bandwidth capacity and latency
for the links between the servers.

7.3.3 Dynamic Collective Authority
We observe the latency incurred by adding/removing a
server to/from the CA. We do not include the time to
transfer the data between DPs and servers. We assume
that the server leaving/joining the CA is willing to partic-
ipate in the process.

The results are shown in Figure 8 and depict an al-
most linear increase in runtime with the total number of
ciphertexts collectively held by the DPs.

8 Example
Application: Secure Survey

To illustrate that UnLynx is usable in practice, we present
a realistic use case of a secure distributed survey. We also
further assess our system’s performance and study the

possible tradeoffs that can be made in order to improve
UnLynx’s response time.

We show that our system could improve and simplify
the process of carrying out a survey on sensitive personal
data. In fact, such surveys are usually done on data that
are anonymized, hence reducing the precision of the results.
Moreover, and as demonstrated by D. Bogdanov et al. [13],
obtaining the permission to access such sensitive data is
administratively heavy, requires the participation of mul-
tiple data-protection entities (local government, European
Union, ...) and is extremely time and money consuming.
UnLynx enables us to do a secure and privacy-preserving
survey on data that are encrypted at rest and during
computations, and that remain under the DPs’ control
throughout the process. This can tremendously facilitate
the access to data and the achievement of such surveys.

Fig. 8. Runtime for adding/removing a server to/from the CA.

We consider a realistic example where a statistical in-
stitute wants to compute the average salary of the top 20
biotechnology companies in the United States. The query
is ‘SELECT AVG(salaries) FROM C1,...,C20 WHERE age in [40:
50] AND ethnicity = Caucasian GROUP BY gender’. A
SELECT AVG(∗) query is executed by combining the results
of the ‘SELECT SUM(salaries), COUNT(∗)’ query on the
same filtering attributes. In our example, the DPs are the
companies, the querier is the statistical institute and the
collective authority corresponds to three servers handled by
the statistical institute, a consortium of the companies and
the US government (who wants to ensure that data are pro-
tected). We assume that each company has 20K employees.

In this scenario, which we refer to as our baseline, all data
are encrypted and all the zero-knowledge proofs are created
and verified. Then, we discuss two possible tradeoffs that
can be used in UnLynx and compare their performance.

The first tradeoff is to consider all servers as non-
malicious, hence to not ask for proofs of correctness. This
reduces the runtime by at least 90%, as shown in Figure 9.
A verifier can also randomly ask for - and check - part of
the proofs or request proofs from a single server. In both
cases, this can be done offline and the proof-execution time
decreases proportionally to the amount of omitted proofs.

A Decentralized System for Privacy-Conscious Data Sharing 246

Fig. 9. Protocol runtime considering the tradeoffs between security/privacy
and efficiency in the case of a secure census.

As servers cannot anticipate which proofs will be verified,
they must still compute correctly, if they do not want to
be caught cheating.

The second tradeoff is for DPs to have all the filtering-
attribute values stored in clear text. This enables servers to
locally aggregate DPs’ responses for each combination of
filtering attributes, thus reducing the number of responses
to be processed from the number of records sent by the
DPs to the number of different filtering attribute combina-
tions. The latter usually being considerably smaller than
the former.

In Figure 9, we can verify that each of these tradeoffs sig-
nificantly enhances performance. Producing and verifying
50% of the proofs at each server reduces the execution time
by 45%, whereas having all DPs send clear text filtering
attributes reduces it by 99%.

Considering the results shown in Figure 9, it becomes
obvious that, in order to control the computation and
storage overhead, the categorization of attributes as either
sensitive or non-sensitive is key in deciding what needs to
be encrypted. We suggest the following guidelines for an
efficient and privacy-preserving solution.
Non-sensitive attributes (e.g., age, gender or ethnicity).
Stored in clear and protected by privacy-protection tech-
niques yielding, for example, k-anonymity [43].
Sensitive attributes (e.g., salary). Store encrypted under
the CA’s public key K.
We provide an example database, Table 3, that respects
these guidelines where EK(x) refers to the ElGamal en-
cryption of message x.

Finally, we argue that a response time of 24 minutes,
for a secure distributed and privacy-preserving survey on
400,000 records, is acceptable. We recall that this response
time does not include Steps 0, 1, 2 and 8, as explained in
Section 7. In this specific case, if we assume that (1) DPs
machines have the same settings as the servers described

ID Gen. Age Ethnicity ... Salary
P1 F 40:50 Caucasian ... EK(100,032)
P2 M 40:50 Caucasian ... EK(10,009)
P3 M 30:40 Asian ... EK(10,080)
P4 F 30:40 Asian ... EK(100,014)

Table 3. Proposed database structure. In this specific example, gender,
age and ethnicity are non-sensitive filtering attributes and are therefore
left in clear. To reduce the risk of identity disclosure, the table values
are generalized to satisfy k-anonymity with k=2 for the quasi-identifiers
age, gender and ethnicity. Salary is a sensitive attribute and is therefore
encrypted under the CA’s public key K

in Section 7, (2) data are encrypted beforehand and (3)
DPs respond all at the same time, then the time to trans-
mit these data (Step 2) is around 0.4 seconds. This time
depends exclusively on the communication link between
the servers and DPs and on the amount of data to be sent.

In conclusion, if we assume that the filtering attributes,
namely age, gender and ethnicity are stored in clear, pro-
tected by anonymization techniques and that the proofs
of correctness are not executed, then UnLynx’s response
time is reduced to 0.4 seconds as shown in Figure 9.

9 Related Work
In the database research community, various architec-
tures have been proposed for efficient data-sharing and
distributed-data management among different institutions.
For example, PeerDB [36] is a peer-to-peer (P2P) dis-
tributed data-sharing system that offers capabilities for
data management, content-based search and a flexible con-
figuration of network topology. Yang et al. [48] propose
a hybrid P2P system for distributed data-sharing that
combines the efficiency of structured P2P networks and
the flexibility of unstructured ones. Yet, these solutions, as
opposed to UnLynx, provide almost no security or privacy
guarantees for dealing with sensitive data.

Similarly, in the security and privacy community, most
of the existing systems, which use cryptographic or sta-
tistical techniques to enable sensitive data protection and
sharing, strive to provide the same features as UnLynx;
they either lack efficiency or provide lower security.

In general, privacy-preserving data-sharing systems are
designed as either centralized or decentralized. Due to low
complexity and communication overhead, centralized sys-
tems such as CryptDB [39] and Mona [30], are popular in
cloud computing and are usually more efficient than their
decentralized counterparts. However, centralized systems
provide weakest-link security and some assume a trusted
third party [10, 20, 30, 39]. In the presence of a strong and
persistent adversary that targets a single point of failure,
these methods are inappropriate for handling sensitive
data.

In order to avoid weakest-link security, some systems use
a decentralized framework. For example, Duan et al. [21]

A Decentralized System for Privacy-Conscious Data Sharing 247

propose P4P (Peers for Privacy) for privacy-preserving
data mining by employing a hybrid architecture that inte-
grates the popular client-server paradigm and decentralizes
the computation among a server and a number of peers.
The framework assumes an adversary model with a num-
ber of constraints, such as a well-protected server and non-
collusion between server and peers. Multi-server systems,
which include those using public cloud servers, often make
use of secret sharing [14, 26, 49] where a number of servers
secret-share the data providers’ data in order to guarantee
confidentiality of the data, as long as a threshold number
of the servers does not collude. A fundamental issue with
data-secret sharing, however, is that data providers cannot
store and manage their own data; instead, this is handled
by the servers. Finally, storing sensitive data at a server
might not be desirable, or even possible, especially if this
server is physically in a different country or jurisdiction.

UnLynx does not present any of these limita-
tions. Another family of decentralized frameworks
([11, 28, 33, 40, 42, 50]) is based on secure multiparty com-
putation (SMPC) protocols that can theoretically perform
any computation task without leaking any party’s private
data. Yet, several critical issues, with current SMPC solu-
tions, render them impractical in real operational settings.
For instance, state-of-the-art SMPC libraries cannot appro-
priately address computations that involve more than two
participants (e.g., [11, 28, 33, 42]). The computation and
memory costs of these solutions are already prohibitively
high in a semi-honest adversary model, let alone when
considering malicious behavior. UnLynx is designed to be
inherently parallelizable to guarantee efficient sharing of
sensitive data among any number of peers with strongest-
link security and verifiable computations.

Finally, in contrast to the heavy cryptographic solutions,
hardware-based solutions (e.g., [38, 41]) tend to become in-
creasingly popular in the privacy and security research com-
munity, due to the recent technology advances in trusted
hardware, such as Intel Software Guard eXtensions (SGX).
Nevertheless, hardware-based solutions rely on the fact
that the users must trust the hardware producers (e.g., In-
tel) who manage the master keys that are involved in some
important protocols. Furthermore, even in the presence of
trusted hardware, side-channel attacks based on memory
and network access patterns have proven to be effective in
many scenarios [29, 37, 47], which shows the immaturity
of deploying such systems - at their current stage - to
address critical challenges such as secure data sharing. In-
stead, UnLynx, is based on well-established cryptographic
techniques that rely on a standard security model, and
it provides a set of critical security features that none of
previous contributions have achieved, such as proof of com-
putation and decentralized trust. Hence, its strong security
guarantees, coupled with its ability to efficiently support

thousands of data providers, make UnLynx ready for
immediate deployment in real operational environments.

In UnLynx, we propose an efficient protocol that pro-
vides differential privacy guarantees for queries executed
on distributed databases. This solution, as most other ex-
isting solutions, relies on the addition of some noise that
is derived from a probability distribution such that the
final result respects differential privacy. Anandan et al. [9],
Narayan et al. [32] and Mohammed et al. [31] propose to
use secure two-party computation in order to jointly gener-
ate a probability distribution and obliviously derive a noise
value from it. These solutions are efficient, but limited to
only two parties. Chen et al. [17] propose a solution with
multiple parties that work together with a trusted proxy
in order to add a distributively created noise. Dwork et al.
[22] remove the need for a trusted party by using verifiable
secret sharing of noise values that are then combined in
order to generate the noise. Nevertheless, secret sharing
imposes that at least two-thirds of the parties are honest,
whereas our protocol is secure in an Anytrust Model [46].

10 Conclusions and Future Work
UnLynx is a modular decentralized system for privacy-
preserving data sharing among multiple data providers.
Specifically, we enable a querier to obtain aggregate statis-
tics for different grouping criteria on a set of different
databases. We achieve this through protocols that enable
a number of independent servers to compute on distributed
data sets and that provide proofs of correctness of their
work. We further build upon advances in several areas,
such as zero-knowledge proofs and verifiable shuffling, and
we bring them all together into UnLynx, providing se-
curity and privacy guarantees against malicious behavior.
Additionally, by introducing a new protocol for distributed
obfuscation of results, UnLynx ensures (ε, δ)-differential
privacy for individuals sharing their data. The perfor-
mance evaluation of our prototype shows that it is efficient
and almost linearly scalable with the amount of data to
be processed. We provide a realistic use case of a secure
distributed survey.

For future work, we intend to explore different cryptosys-
tems (e.g., lattice-based homomorphic encryption) suitable
for decentralized trust, which would enable more efficient
computations, more flexible and sophisticated queries, and
lower storage overhead.

Acknowledgments
We would like to thank all of those who reviewed the
manuscript or somehow participated in the development
of this solution, in particular: Juan Troncoso-Pastoriza and
the DeDiS team from EPFL.

A Decentralized System for Privacy-Conscious Data Sharing 248

References
[1] Bluekrypt, cryptographic key length recommendation.

https://www.keylength.com/fr/4/#Biblio4.
[2] DeDiS Research Lab at EPFL, advanced crypto library for the

Go language. https://github.com/DeDiS/crypto.
[3] Dyadic security. https://www.dyadicsec.com/.
[4] General Data Protection Regulation. http://ec.europa.eu/justice/

data-protection/international-transfers/index_en.htm.
[5] The Go Programming Language. https://golang.org.
[6] Mininet, An Instant Virtual Network. http://mininet.org.
[7] Unlynx experimental implementation. https:

//github.com/lca1/unlynx.
[8] What is the Future of Data Sharing? http://www8.gsb.columbia.

edu/globalbrands/sites/globalbrands/files/images/The_Future_
of_Data_Sharing_Columbia-Aimia_October_2015.pdf.

[9] B. Anandan and C. Clifton. Laplace noise generation for two-party
computational differential privacy. In 13th Annual Conference on
Privacy, Security and Trust (PST), pages 54–61, 2015.

[10] Dixie B. Baker, Jane Kaye, and Sharon F. Terry. Privacy, Fairness,
and Respect for Individuals. eGEMS (Generating Evidence &
Methods to Improve Patient Outcomes), 4(2), 2016.

[11] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway. Efficient
Garbling from a Fixed-Key Blockcipher. In 2013 IEEE Symposium
on Security and Privacy (SP), pages 478–492, May 2013.

[12] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y.
Yang. High-speed high-security signatures. Journal of
Cryptographic Engineering 2, pages 77–89, 2012.

[13] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane,
Ville Sokk, and Riivo Talviste. Students and taxes: a privacy-
preserving study using secure computation. In Proceedings on
Privacy Enhancing Technologies 2016, 2016.

[14] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A
framework for fast privacy-preserving computations. In European
Symposium on Research in Computer Security, pages 192–206.
Springer, 2008.

[15] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient
protocols for set membership and range proofs. In ASIACRYPT
2008, pages 234–252, 2008.

[16] Jan Camenisch and Markus Stadler. Proof systems for general
statements about discrete logarithms. Technical Report, (260),
1997.

[17] R. Chen, A. Reznichenko, P. Francis, and J. Gehrke. Statistical
queries over distributed private user data. In NSDI. Vol. 12, 2012.

[18] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch
Awerbuch. Verifiable secret sharing and achieving simultaneity in
the presence of faults. In 26th Annual Symposium on Foundations
of Computer Science, pages 383–395. IEEE, 1985.

[19] Tulio de Souza, Joss Wright, Piers O’Hanlon, and Ian Brown. Set
difference attacks in wireless sensor networks. International Confer-
ence on Security and Privacy in Communication Systems, 2012.

[20] Xin Dong, Jiadi Yu, Yuan Luo, Yingying Chen, Guangtao
Xue, and Minglu Li. Achieving an effective, scalable and
privacy-preserving data sharing service in cloud computing.
Computers & security, 42:151–164, 2014.

[21] Yitao Duan, John Canny, and Justin Zhan. Efficient privacy-
preserving association rule mining: P4P style. In Symposium
on Computational Intelligence and Data Mining, pages 654–660.
IEEE, 2007.

[22] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and
M. Naor. Our data, ourselves: Privacy via distributed noise
generation. In Annual International Conference on the Theory

and Applications of Cryptographic Techniques, pages 486–503.
Springer Berlin Heidelberg, 2006.

[23] Cynthia Dwork. Differential privacy. Venice, Italy, July 2006.
Springer Verlag.

[24] Cynthia Dwork. A firm foundation for private data analysis. In
Communications of the ACM, 54(1), pages 86–95, 2011.

[25] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data analysis.
In Theory of Cryptography Conference, pages 265–284. Springer,
2006.

[26] Benjamin Fabian, Tatiana Ermakova, and Philipp Junghanns. Col-
laborative and secure sharing of healthcare data in multi-clouds.
Information Systems, 48:132–150, March 2015.

[27] Amos Fiat and Adi Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In Conference on
the Theory and Application of Cryptographic Techniques, pages
186–194. Springer, 1986.

[28] Chang Liu, Xiao Shaun Wang, K. Nayak, Yan Huang, and
E. Shi. ObliVM: A Programming Framework for Secure
Computation. In 2015 IEEE Symposium on Security and Privacy
(SP), pages 359–376, May 2015.

[29] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level
Cache Side-Channel Attacks are Practical. In 2015 IEEE
Symposium on Security and Privacy, pages 605–622, May 2015.

[30] Xuefeng Liu, Yuqing Zhang, Boyang Wang, and Jingbo Yan.
Mona: secure multi-owner data sharing for dynamic groups in
the cloud. IEEE Transactions on Parallel and Distributed Systems,
24(6):1182–1191, 2013.

[31] N. Mohammed, D. Alhadidi, BCM. Fung, and M. Debbabi.
Secure two-party differentially private data release for vertically
partitioned data. In IEEE Trans Dependable Secur Comput 11,
pages 59–71, 2014.

[32] A. Narayan and A. Haeberlen. Djoin: Differentially private
join queries over distributed databases. In Proceedings of the
10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 149–162, 2012.

[33] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and
E. Shi. GraphSC: Parallel Secure Computation Made Easy. In 2015
IEEE Symposium on Security and Privacy (SP), pages 377–394,
May 2015.

[34] C Andrew Neff. Verifiable mixing (shuffling) of ElGamal pairs
(2004).

[35] C Andrew Neff. A verifiable secret shuffle and its application to
e-voting. In Proceedings ACM-CCS 2001, pages 116–125, 2001.

[36] Wee Siong Ng, Beng Chin Ooi, Kian-Lee Tan, and Aoying Zhou.
PeerDB: A P2P-based system for distributed data sharing. In Data
Engineering, 2003. Proceedings. 19th International Conference
on, pages 633–644. IEEE, 2003.

[37] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos
Gkantsidis, Markulf Kohlweiss, and Divya Sharma. Observing and
Preventing Leakage in MapReduce. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications
Security, pages 1570–1581, 2015.

[38] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta,
Sebastian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious
multi-party machine learning on trusted processors. In 25th
USENIX Security Symposium (USENIX Security 16), 2016.

[39] Raluca Ada Popa, Catherine Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. CryptDB: protecting confidentiality with
encrypted query processing. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, pages
85–100. ACM, 2011.

https://www.keylength.com/fr/4/#Biblio4
https://github.com/DeDiS/crypto
https://www.dyadicsec.com/
http://ec.europa.eu/justice/data-protection/international-transfers/index_en.htm
http://ec.europa.eu/justice/data-protection/international-transfers/index_en.htm
https://golang.org
http://mininet.org
 https://github.com/lca1/unlynx
 https://github.com/lca1/unlynx
http://www8.gsb.columbia.edu/globalbrands/sites/globalbrands/files/images/The_Future_of_Data_Sharing_Columbia-Aimia_October_2015.pdf
http://www8.gsb.columbia.edu/globalbrands/sites/globalbrands/files/images/The_Future_of_Data_Sharing_Columbia-Aimia_October_2015.pdf
http://www8.gsb.columbia.edu/globalbrands/sites/globalbrands/files/images/The_Future_of_Data_Sharing_Columbia-Aimia_October_2015.pdf

A Decentralized System for Privacy-Conscious Data Sharing 249

[40] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria: A
Programming Language for Generic, Mixed-Mode Multiparty
Computations. In 2014 IEEE Symposium on Security and Privacy,
pages 655–670, May 2014.

[41] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado,
G. Mainar-Ruiz, and M. Russinovich. VC3: Trustworthy Data
Analytics in the Cloud Using SGX. In 2015 IEEE Symposium on
Security and Privacy, pages 38–54, May 2015.

[42] E. M. Songhori, S. U. Hussain, A. R. Sadeghi, T. Schneider,
and F. Koushanfar. TinyGarble: Highly Compressed and Scalable
Sequential Garbled Circuits. In 2015 IEEE Symposium on Security
and Privacy, pages 411–428, May 2015.

[43] L Sweeney. k-anonymity: A Model for Protecting Privacy. Inter-
national Journal on Uncertainty, Fuzziness and Knowledge-based
Systems, 10(5):557–570, 2002.

[44] Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky,
Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ismail Khoffi,
and Bryan Ford. Keeping Authorities" Honest or Bust" with Decen-
tralized Witness Cosigning. arXiv preprint arXiv:1503.08768, 2015.

[45] U.S. Department of Health and Human Services . Breach portal:
Notice to the secretary of hhs breach of unsecured protected
health information. https://ocrportal.hhs.gov/ocr/breach/breach_
report.jsf. Last Accessed: September 27, 2017.

[46] David I Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron
Johnson. Scalable anonymous group communication in the
anytrust model. In 5th European Workshop on System Security,
2012.

[47] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-
Channel Attacks: Deterministic Side Channels for Untrusted
Operating Systems. In Proceedings of the 2015 IEEE Symposium
on Security and Privacy, pages 640–656, 2015.

[48] Min Yang and Yuanyuan Yang. An efficient hybrid peer-to-peer
system for distributed data sharing. IEEE Transactions on
computers, 59(9):1158–1171, 2010.

[49] Mahdi Zamani, Mahnush Movahedi, and Jared Saia. Millions
of millionaires: Multiparty computation in large networks. IACR
Cryptology ePrint Archive, 2014:149, 2014.

[50] Ning Zhang, Ming Li, and Wenjing Lou. Distributed data mining
with differential privacy. In 2011 IEEE International Conference
on Communications (ICC), pages 1–5. IEEE, 2011.

A Zero-Knowledge Proofs
A.1 Distributed Deterministic-Tag
We recall the distributed deterministic-tag sub-protocol
below.

This sub-protocol is made of two consecutive rounds.
It starts with EK(x) = (C1, C2) = (rB, x + rK), the
ciphertext tuple corresponding to an ElGamal encryption
of message x under the CA’s public key K.

In the first round, each server sequentially generates a
fresh secret si and adds the value derived from its secret
siB to C2. This eliminates the possibility to have a de-
terministic tag of 0 as an output of the protocol when
the input message is zero. After this first round, the en-
crypted message is (C1, C2)=(rB, x+rK+

∑m
i=1siB). Let

(C̃1,0, C̃2,0) = (C1, C2) be a ciphertext resulting from the
first round.

In the second round, each server partially and sequen-
tially modifies this ciphertext. More specifically, when
server Si receives the modified ciphertext (C̃1,i−1, C̃2,i−1)
from server Si−1, it computes (C̃1,i, C̃2,i) as

C̃1,i=siC̃1,i−1 (13)

and
C̃2,i=si

(
C̃2,i−1−C̃1,i−1ki

)
(14)

Once all of these computations are done, we discard the
first component C̃1,m and obtain

C̃2,m=sx+
m∑
i=1

sisB (15)

where s =
∏m
i=1si is a short-term collective secret corre-

sponding to the product of each server’s fresh secret. C̃2,m
is the deterministic tag collectively computed from the
original ciphertext (C1, C2).

Each time a server does the computations in the first
round and in Equations (13) and (14), it must also com-
pute a zero-knowledge proof to prove that the computa-
tions have been done correctly. In this case, when adding
a secret value and when computing (C̃1,i, C̃2,i), server
Si is the prover and anybody can act as a verifier. In
the first round, the prover proves that he knows si the
discrete logarithm of siB. Coming back to Equation (1)
in Section 2.3, it is easy to see that for Equation (14),
y1 = si, y2 = kisi are the discrete logarithms of siB and
kisiB=siKi, respectively. The points siKi, siB, A= C̃2,i,
A1 =C̃2,i−1 and A2 =−C̃1,i−1 on G are public and are part
of the proof. The publication of siB also guarantees that
server Si has used the same secret si for all data during a
given query. This means that for each query, server Si will
pick a value si that will be used throughout the query and
will be different for the next query.

For Equation (13), y1 = si is the discrete logarithm of
siC̃1,i−1. The points C̃1,i, siB, A=C̃1,i and A1 =C̃1,i−1on
G are public and are part of the proof.

A.2 Key Switch
We recall the key switch sub-protocol below.

We start with EK(x) = (C1, C2) = (rB, x+ rK), a
ciphertext tuple corresponding to the ElGamal encryp-
tion of message x under the CA’s public key K. Let
(C̃1,0, C̃2,0) = (0, C2,j) be the initial modified cipher-
text tuple. Each server will partially and sequentially
modify this element. Specifically, when server Si receives
(C̃1,i−1, C̃2,i−1) from server Si−1, it generates a fresh
random nonce vi and computes (C̃1,i, C̃2,i) as

C̃1,i=C̃1,i−1+viB (16)

and
C̃2,i=C̃2,i−1−(rjB)ki+viU

=C̃2,i−1−rjKi+viU.
(17)

https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf
https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf

A Decentralized System for Privacy-Conscious Data Sharing 250

where v=v1+...+vm.
Each time a server does the computations in Equations

(16) and (17), it must also compute a zero-knowledge proof
to prove that the computations have been done correctly.
Again, at each step i, server Si is the prover and anybody
can be the verifier. Coming back to Equation (1) in Section
2.3, it is easy to see that for Equation (17), y1 =ki, y2 =vi
are the discrete logarithms of kiB =Ki and viB, respec-
tively. All pointsKi, viB, A=C̃2,i−C̃2,i−1, A1 =−rjB and
A2 =U are made public and do not leak any information
about underlying secrets.

For Equation (16), y1 = vi is the discrete logarithm of
viB. All points viB, A=C̃1,i−C̃1,i−1 and A1 =U are made
public and do not leak any information about underlying
secrets.

A.3 Dynamic Collective Authority
We recall the sub-protocol allowing to add/remove a server
from the collective authority.

Let Sm be the server that needs to be added. Any data
provider that stored data encrypted using the CA’s previ-
ous public key Kprev must execute the corresponding sub-
protocol in order to have its data encrypted under the CA’s
new public keyKnew. When adding a new server Sm to the
collective authority S1,...,Sm−1, Kprev =K1 + ...+Km−1
and Knew = K1 + ... + Km. Starting from a message x
encrypted under Kprev, (C1, C2)=(rB, x+rKprev), server
Sm multiplies C1 by its private key km

C1km=(rB)km=rKm (18)

and adds the result to C2

C̃2 =C2+rKm=x+rKprev+rKm=x+rKnew. (19)

Component C̃1 remains the same, i.e.,

C̃1 =C1.

Coming back to Equation (1) in Section 2.3, we see that
for Equation (19), y1 = km is the discrete logarithm of
kmB = Km. All points Km, A = C̃2 −C2 and A1 = C1
are made public and do not leak any information about
underlying secrets.

Now, assume a collective authority ofm servers S1,...,Sm
and let Sm be the server that needs to be removed. In this
case, Kprev =K1+...+Km and Knew =K1+...+Km−1. In
order to update the encryption of message x to the CA’s
new public key Knew, server Sm must compute C̃2 as

C̃2 =C2−rKm=x+rKprev−rKm=x+rKnew. (20)

Again, using Equation (1) in Section 2.3, we see that
for Equation (20), y1 = km is the discrete logarithm of
kmB=Km. All points Km, A=C̃2−C2 and A1 =−C1 are
made public and do not leak any information about un-
derlying secrets. For Equation (18), y1 =km is the discrete

logarithm of kmrB and the point kmrB is public and do
not leak any information about underlying secrets.

B SELECT∗ query
UnLynx’s design enables the system to respond to queries
of the form ‘SELECT ∗’. The system would handle this query
by executing all the steps of the Decentralized Data Sharing
protocol 4.1 except Steps 5 and 6 that would be skipped.

While this can be useful for a data provider wishing to
retrieve/decrypt parts/all of his database, UnLynx should
not allow these queries on a distributed database held
by multiple data providers. In fact, it is not possible to
answer this request while preserving the privacy and data
confidentiality of data providers because differential pri-
vacy cannot be ensured on non-aggregated data. Moreover,
an external querier would have access to DP’s raw data.
Hence, our system should only allow this operation for a
data provider querying his own database.

	UnLynx: A Decentralized System for Privacy-Conscious Data Sharing
	1 Introduction
	2 Background
	2.1 Collective Authority
	2.2 ElGamal Cryptosystem
	2.3 Zero-Knowledge Proofs of Correctness
	2.4 Verifiable Shuffle
	2.5 Differential Privacy

	3 System and Threat Models
	3.1 System Model
	3.2 Threat Model

	4 Overview of UnLynx
	4.1 Decentralized Data-Sharing Protocol
	4.2 Sub-protocols
	4.2.1 Distributed Deterministic-Tag
	4.2.2 Collective Aggregation
	4.2.3 Distributed Results Obfuscation
	4.2.4 Key Switch
	4.2.5 Dynamic Collective Authority

	5 Security and Privacy Analysis
	6 UnLynx's Possible Extensions
	6.1 Input-Range Validation
	6.2 Enabling a Dynamic Collective Authority

	7 Performance Evaluation
	7.1 UnLynx Complexity
	7.2 System Implementation
	7.3 System Evaluation
	7.3.1 Storage Overhead
	7.3.2 Communication Overhead
	7.3.3 Dynamic Collective Authority

	8 Example Application: Secure Survey
	9 Related Work
	10 Conclusions and Future Work
	A Zero-Knowledge Proofs
	A.1 Distributed Deterministic-Tag
	A.2 Key Switch
	A.3 Dynamic Collective Authority

	B SELECT query

