
Proceedings on Privacy Enhancing Technologies ; 2017 (4):251–270

Se Eun Oh*, Shuai Li, and Nicholas Hopper
Fingerprinting Keywords in Search Queries over Tor
Abstract: Search engine queries contain a great deal
of private and potentially compromising information
about users. One technique to prevent search engines
from identifying the source of a query, and Internet ser-
vice providers (ISPs) from identifying the contents of
queries is to query the search engine over an anony-
mous network such as Tor.
In this paper, we study the extent to which Website
Fingerprinting can be extended to fingerprint individual
queries or keywords to web applications, a task we call
Keyword Fingerprinting (KF). We show that by aug-
menting traffic analysis using a two-stage approach with
new task-specific feature sets, a passive network adver-
sary can in many cases defeat the use of Tor to protect
search engine queries.
We explore three popular search engines, Google, Bing,
and Duckduckgo, and several machine learning tech-
niques with various experimental scenarios. Our experi-
mental results show that KF can identify Google queries
containing one of 300 targeted keywords with recall of
80% and precision of 91%, while identifying the specific
monitored keyword among 300 search keywords with ac-
curacy 48%. We also further investigate the factors that
contribute to keyword fingerprintability to understand
how search engines and users might protect against KF.

DOI 10.1515/popets-2017-0048
Received 2017-02-28; revised 2017-06-01; accepted 2017-06-02.

1 Introduction
Internet search engines are the most popular and con-
venient method by which users locate information on
the web. As such, the queries a user makes to these
search engines necessarily contain a great deal of pri-
vate and personal information about the user. For ex-
ample, AOL search data leaked in 2006 was found to
contain queries revealing medical conditions, drug use,
sexual assault victims, marital problems, and political
leanings [18, 38]. Thus, popular search engines such as

*Corresponding Author: Se Eun Oh: University of Min-
nesota, E-mail: seoh@umn.edu
Shuai Li: University of Minnesota, E-mail: shuai@cs.umn.edu
Nicholas Hopper: University of Minnesota, E-mail: hop-
pernj@umn.edu

-1 0 1 2 3 4 5

PCA1 ×10
7

-2

-1

0

1

2

P
C

A
2

×10
6

Backgroud Webpage Trace

Google Query Trace

(a) Google

-1 0 1 2 3 4 5

PCA1 ×10
7

-2

-1

0

1

2

P
C

A
2

×10
6

Backgroud Webpage Trace

Duckduckgo Query Trace

(b) Duckduckgo

Fig. 1. Principal Components Analysis (PCA) Plot of Google and
Duckduckgo query traces and background webpage traces based
on CUMUL feature set
Bing and Google, and ISPs, are in a position to col-
lect sensitive details about users. These search queries
have also been among the targets of censorship [29] and
surveillance infrastructures [17] built through the coop-
eration of state and private entities.

One mechanism to conceal the link between users
and their search queries is an anonymous network such
as Tor, where the identities of clients are concealed from
servers and the contents and destinations of connec-
tions are concealed from network adversaries, by send-
ing connections through a series of encrypted relays.
However, even Tor cannot always guarantee connection
anonymity since the timing and volume of traffic still
reveal some information about user browsing activity.
Over the past decade, researchers have applied vari-
ous machine learning techniques to features based on
packet size and timing information from Tor connec-
tions to show that Website Fingerprinting (WF) attacks
can identify frequently visited or sensitive web pages
[7, 14, 20, 30, 31, 44].

In this paper, we describe a new application of
these attacks on Tor, Keyword Fingerprinting (KF). In
this attack model, a local passive adversary attempts
to infer a user’s search engine queries, based only on
analysing traffic intercepted between the client and the
entry guard in the Tor network. A KF attack proceeds in
three stages. First, the attacker must identify which Tor
connections carry the search result traces of a particu-
lar search engine against the other webpage traces. The
second is to determine whether a target query trace is in
a list of “monitored queries” targeted for identification.
The third goal is to classify each query trace correctly
to predict the query (keyword) that the victim typed.

Note that while KF and WF attacks share some
common techniques, KF focuses on the latter stages of

Proceedings on Privacy Enhancing Technologies ; 2017 (4):252–270

this attack, distinguishing between multiple results from
a single web application, which is challenging for WF
techniques. Figure 1 illustrates this distinction; it shows
the website fingerprints (using the CUMUL features
proposed by Panchenko et al. [30]) of 10,000 popular
web pages in green, and 10,000 search engine queries in
blue. Search engine queries are easy to distinguish from
general web traffic, but show less variation between key-
words. Hence, while direct application of WF performs
the first step very well and can perform adequately in
the second stage, it performs poorly for differentiating
between monitored keywords. Thus, the different level
of application as well as the multi-stage nature of the at-
tack make it difficult to directly use or compare results
from the WF setting.

The primary contribution of this paper is to demon-
strate the feasibility of KF across a variety of set-
tings. We collect a large keyword dataset, yielding about
160,000 search query traces for monitored and back-
ground keywords. Based on this dataset, we determine
that WF features do not carry sufficient information
to distinguish between queries, as Figure 1 illustrates.
Thus we conduct a feature analysis to identify more use-
ful features for KF; adding these features significantly
improves the accuracy that can be achieved in the sec-
ond and third stages of the attack.

Using these new features, we explore the effective-
ness of KF, by considering different sizes of “mon-
itored” and “background” keyword sets; both incre-
mental search (e.g. Google Instant1) and “high secu-
rity” search (with JavaScript disabled); across popu-
lar search engines — Google, Bing, and Duckduckgo;
and with different classifiers, support vector machines
(SVM), k-Nearest Neighbor, and random forests (k-
fingerprinting). We show that well-known high-overhead
WF defenses [5, 6] significantly reduce the success of
KF attacks but do not completely prevent them with
standard parameters. We examine factors that differ be-
tween non-fingerprintable (those with recall of 0%) and
fingerprintable keywords. Overall, our results indicate
that use of Tor alone may be inadequate to defend the
content of users’ search engine queries.

1 Google Instant is a predictive search for potential responses as
soon as or before the user types keywords into the search box.
By default, Google Instant predictions are enabled only when
the computer is fast enough.

2 Threat Model
Our attack model for KF follows the standard WF at-
tack model, in which the attacker is a passive attacker
who can only observe the communication between the
client and the Tor entry guard. He cannot add, drop,
modify, decrypt packets, or compromise the entry guard.
The attacker has a list of monitored phrases and hopes
to identify packet traces in which the user queries a
search engine for one of these phrases, which we re-
fer to as keywords. We also assume that search engine
servers are uncooperative and consequently users relay
their queries through Tor to hide the link between pre-
vious and future queries. Thus, our threat model only
monitors traces entering through the Tor network.

The attacker will progress through two sequential
fingerprinting steps. First, he performs website finger-
printing to identify the traffic traces that contain queries
to the targeted search engine, rather than other web-
page traffic. Traffic not identified by this step is ignored.
We refer to the remaining traces, passed to the next
step, as search query traces or keyword traces. Second,
the attacker performs KF to predict keywords in query
traces. The attacker will classify query traces into in-
dividual keywords, creating a multiclass classifier. De-
pending on the purpose of the attack, the attacker trains
classifiers with either binary or multiclass classifications.
For example, binary classification will detect monitored
keywords against background keywords while multiclass
classification will infer which of the monitored keywords
the victim queried.

We assume the adversary periodically re-trains the
classifiers used in both steps with new training data;
since both training and acquiring the data are resource-
intensive, we used data gathered over a three-month pe-
riod to test the generalizability of our results.

3 Data Set
3.1 Data Collection
We describe the Tor traffic capture tool and data
sets collected for our experiment. To collect search
query traces on Tor, we used the Juarez et al. Tor
Browser Crawler [22, 39], built based on Selenium,
Stem, and Dumpcap to automate Tor Browser browsing
and packet capture.

We added two additional features to the crawler
for our experiments. The first is to identify abnor-
mal Google responses due to rate limiting and rebuild
the Tor circuit. When an exit node is rate-limited by
Google, it responds (most often) with a CAPTCHA,

Proceedings on Privacy Enhancing Technologies ; 2017 (4):253–270

thus, we added a mechanism to detect these cases and
reset the Tor process, resulting in a different exit node.

Among 101,685 HTML files for Google queries and
125,245 HTML files for Bing, we manually inspected
those of size less than 100KB, yielding 3,315 HTML re-
sponses for Google and 9,985 for Bing, and found that
a simple size threshold of 10KB for the response doc-
ument was sufficient to distinguish rate-limit responses
from normal results with perfect accuracy. In contrast,
seemingly more sophisticated methods such as testing
for the standard response URL (ipv4.google.com/sorry)
or for an embedded CAPTCHA script (google.com/
recaptcha/api.js) produced occasional false negatives
when a rate-limited node received other abnormal re-
sults (such as permission denied).

The second additional feature is to simulate the
user’s keyword typing in the search box. Google sup-
ports auto-complete and Google Instant for faster
searches. This can lead to unintentional incremental
searches. For instance, as shown in Appendix A as Fig-
ure 7, when the user loads www.google.nl and types
“kmart”, the result for “kmar” will appear just before
the user types ‘t’. Therefore, to support more realis-
tic user actions, we choose a delay of d seconds uni-
formly at random from the interval (0.1, 0.7) before typ-
ing each letter. Since Google Instant sometimes does not
show the result as soon as typing the last letter, we en-
force typing RETURN after the last letter is typed. As
a consequence, traffic related to suggestion lists, auto-
complete, and Google Instant is captured all together
with the actual search result traffic.

Since result pages can dynamically modify their
content after loading, we wait 5 seconds after the re-
sult page is loaded, and then pause 5–10 additional sec-
onds between queries to capture all traffic related to
changes made to the result webpage after loading com-
pletes. To collect query traces of monitored keywords,
we recorded up to 110 instances of each keyword, evenly
divided among 6 batches. Each batch starts with a list of
remaining keyword instances, and repeatedly selects an
instance at random from the list, queries the keyword,
and removes it from the list until no instances remain.
Background keyword traces were collected in 1 batch
with 2 instances per keyword. On average, the time gap
between batch groups was 3 days.

With these additions and settings in the crawler,
we collected several sets of Tor traces to be used in
our experiment, as summarized in Table 1; they were
collected from March to October in 2016. We used the
Tor Browser version 4.0.8. (We further collected AOL

Table 1. Data collection settings for Google, Bing, and Duck-
duckgo (inc:incremental, one:one-shot, Y:Yes, N:No)

keyword set Google(inc) Google(one) Bing Duck
Top-ranked Y Y Y Y
Blacklisted Y Y N N

AOL Y N N N

search query traces from January to February in 2017.)

3.1.1 Keywords
We used the following three different keyword datasets
to investigate the performance of KF across different
sets of monitored search queries. Note that we col-
lected “search query traces,” labelled them with the
corresponding keywords for supervised learning (using
the classifiers discussed in section 5) and inferred “key-
words” based on predicted labels returned by classifiers.
For this reason, we refer to KF as keyword fingerprinting
rather than search query fingerprinting.
Top-Ranked Keywords. We harvested 300 parent
keywords by identifying the top 20 ranked keywords for
each alphabet character, a–z, based on Google’s auto-
complete [24] (more specifically, http://keywordtool.io
via Tor). We collected the top 650–750 suggested key-
words for each of 100 parent keywords selected randomly
from these 300 keywords. This yielded a set of about
80,000 keywords to be used as the background set. For
example, if we have a parent keyword, “airline”, its sug-
gested keywords returned by auto-complete are “airline
pilot” and “airline ticket purchase.”
AOL Search Queries. As another source of monitored
and background queries, we downloaded anonymized
AOL search logs provided by Dudek [13], and extracted
the queries from these logs. The logs are split among
10 files, where each user’s queries appear in one log.
We randomly partitioned these logs into two sets, one
from which we randomly selected 100 queries to serve as
monitored keywords and the other from which we ran-
domly selected 40,000 queries to serve as background
keywords.
Google Blacklisted Keywords. Several previous
studies have collected lists of keywords blocked by
Google. Among them, we used Google blacklisted
keywords reported by www.2600.com website [16] to
gather Google blacklisted keywords. For these keywords,
searches using Google Instant fail. However, if submit-
ted as normal queries, we were sometimes able to get
Google query results for those blacklisted keywords, and
sometimes the Google result indicated that the content

ipv4.google.com/sorry
google.com/recaptcha/api.js
google.com/recaptcha/api.js
www.google.nl
http://keywordtool.io
www.2600.com

Proceedings on Privacy Enhancing Technologies ; 2017 (4):254–270

was blocked. This would allow KF to be used to identify
“blacklisted” keywords.
Background sets. Note that in both the “top-ranked”
and AOL data sets, the maximum size of background
keyword set we could use for an experiment was 80,000
queries. This is roughly 1–2 seconds worth of worldwide
query traffic processed by Google [1], and in line with
or larger than the size of background sets used in open-
world studies of WF, which generally target coverage of
a much broader background space. The use of two dif-
ferently generated background sets also lends confidence
that our results will generalize.

3.1.2 Two Search Query Settings
We considered the following different query settings.
Note that we collected Google traces in both settings,
Bing traces in the incremental query setting, and Duck-
duckgo traces in the one-shot query setting.
One-shot Query Setting. The Tor Browser download
page [2] recommends disabling JavaScript (via configur-
ing Noscript(S) to “Forbid scripts globally” for later ver-
sions than Tor Browser Bundle 3.5, or “about:config”)
in order to provide better anonymity and security.
To reflect this, we collected traces of the queries in-
troduced above assuming that there is no interaction
with a search box. This was achieved for both Duck-
duckgo and Google by directly requesting a search query
url. (e.g., google.com/search?q=“keyword” for Google).
Hence, collected traces contain packets for requesting
search result HTML and responding with HTML, and
requesting embedded web objects in HTML and re-
sponding with the corresponding embedded contents.
This also mimics the process of typing a query in the
search or address bar of Tor Browser when DuckDuckGo
is selected as the default search engine.
Incremental Query Setting. By default, Tor browser
enables JavaScript and therefore, traffic related to the
user’s interaction with the search box has to be cap-
tured in addition to all traffic from the previous setting.
For Bing, this addition is the traffic related to the sug-
gestion list. For Google, all traffic related to request and
response in incremental search results shown in Figure 7
is additionally captured. Including results of both query
types allows us to test whether incremental search im-
proves the accuracy of KF.

3.2 Data Preparation
We reconstructed full TLS records using Tshark [40],
similar to T. Wang and Goldberg’s work [44]. In ad-
dition, we removed faulty packets if they were empty,

lacked TLS segments, or if the capture file was cut short
in the middle of a packet. The latter is a result message
from Tshark when a capture file is not yet flushed out,
before a copy is made, in which case the end of the file is
not a proper record, since we saved all capture files dur-
ing a live capture. To correct for occasional out-of-order
delivery and re-transmitted packets, we re-ordered all
packets according to the TCP sequence number.

4 Feature Analysis
After collecting the query traces, we extracted features
from the traces to use in classifier experiments. We
computed many features previously identified as use-
ful for website fingerprinting, including total number of
incoming and outgoing packets and cells, Tor cell traces,
rounded TCP and TLS traces, unique packet sizes, out-
going burst data, and cumulative TLS records; for a full
description of these features, see Appendix B.

4.1 Additional Features
Since search engine result pages often embed CSS, script
and advertisement elements, search query traces typi-
cally contain multiple request and response pairs; how-
ever, the number of such pairs is on average less than
those in popular webpages carrying interactive and mul-
timedia content. Additionally, in the incremental set-
ting, after the web browser requests each character in
the query, the server responds accordingly to show an
updated suggestion list. Subsequently, the web browser
requests an HTML document with a keyword and the
server responds. Then the web browser requests any em-
bedded web objects such as images. If Google Instant is
enabled for Google searches, these interactions are re-
peated several times. Since the HTML responses are
generated by a single programmatic template, the over-
all timing and size patterns do not have much distin-
guishing power. As a result, the KF phase will need
access to more fine-grained features based on individual
TLS records. Thus our experimental results in Section 6
consider the following sets of additional features.
Burst of incoming packets. Based on the concept of
“burst” suggested by T. Wang et al. [43], but not exactly
following their approach, we defined a burst of incoming
packets as a sequence of incoming packets comprising
more than 2 incoming packets in which there are no
outgoing packets. For each such burst, we computed the
total number of packets, mean, maximum, and sum of
the TLS record sizes (burstIncoming).
Cumulative TLS data in the response for em-
bedded objects (Resp). All query traces in our dataset
include a giant sequence of incoming packets, which is

google.com/search?q=

Proceedings on Privacy Enhancing Technologies ; 2017 (4):255–270

Table 2. Comparison of the request and response portions of
Search Query Traces

Metric Google DuckDuckgo
RQ RP RQ RP

Avg of # of packets 140 223 102 193
Max # of packets 288 559 251 801

Avg of total payload(KB) 115 496 89 434
Max of total payload(KB) 350 1246 295 1669

SVM Accuracy(%) 13.9 17.2 14.7 20.8

0 100 200 300 400

TLS record index

-4

-2

0

2

S
iz

e
 o

f
T

L
S

 r
e
c
o
rd

s
 (

K
B

)

Request

Response

(a) Keyword pizza

0 100 200 300

TLS record index

-4

-2

0

2

4

S
iz

e
 o

f
T

L
S

 r
e
c
o
rd

s
 (

K
B

)

Request

Response

(b) Keyword craigslist

Fig. 2. TLS records in two Google query traces. (+) indicates
outgoing packets and (-) indicates incoming packets

red in Figure 2 and occupies more than 50% of packets
in the trace (see Table 2). We identify this sequence as
the largest incoming burst in a query trace, and call it
the “response” portion of the trace, while the sequence
before the response portion is the “request” portion.

In the request portion, we are able to capture traffic
related to requesting and downloading the HTML re-
sponse, and requesting the embedded objects. Further-
more, the request portion includes traffic generated by
the user’s interaction with the search box, e.g. sugges-
tion lists and preliminary HTML results in the case of
Google Instant. However, since search query traces from
a single web application follow a very similar HTML
template and have similar traffic pattern for the inter-
action with the search box and the predicted search if
they are same keywords, we expect this portion of the
sequence to be less informative about queries than the
response portion. Table 2 details results of a small-scale
study to confirm this intuition, in which we collected
100 traces for 100 keywords and trained multiclass clas-
sifiers on the request and response portions of the traces,
respectively. The response portion achieved higher ac-
curacy, 17% compared to 14% of the request portion in
Google. When reversing the sequence, as discussed in
the next section, the distinction becomes much greater.

Based on this observation, we extracted feature sets
from the response portion: we created the tuple RespTo-
tal consisting of the total number of TLS records, max-
imum TLS record size, average TLS record size, and
sum of TLS record sizes; the sequence of TLS record

sizes (RespTLS); the sequence of cumulative sizes of TLS
records (cumulRespTLS); and the sequence of the corre-
sponding number of Tor cells (cumulRespTorCell).

For example, if the response portion of a query
trace consists of three TLS records of sizes 2080,
3108, and 1566, then the RespTLS feature vector is
(−2080,−3108,−1566) (following the convention that
sign indicates packet direction). The corresponding cu-
mulRespTLS feature vector is (−2080,−5188,−6754)
and cumulRespTorCell is (4, 10, 13). In the following sec-
tions, we refer to features extracted from the response
portion by prefixing them with Resp; as we show in Sec-
tion 6, feature sets in Resp as well as aggregated feature
sets including Resp outperform existing feature sets for
the new, second and third stage classification.

4.2 Preprocessing
Sequence Reversal. Since both SVM and k-NN clas-
sifiers require all input vectors to have the same dimen-
sion, we additionally reversed the sequence of cumula-
tive record sizes and tor cells, so that truncation would
preserve the end of the sequence, which cumulatively
includes information about the earlier portions of the
sequence. To show that this improves accuracy versus
early truncation, for cumulRespTLS, we computed the
accuracy of an SVM classifier when trained on the first
140 packets of both the original and reversed cumula-
tive traces, for a test set of 100 instances of 100 key-
words. As a result, the reversed sequences, RcumulRe-
spTLS, gave us better accuracy (53.79%, compared to
21.33% when using truncated cumulRespTLS). There-
fore, we used RcumulRespTLS and RcumulRespTorCell
for aggregated feature sets, rather than cumulRespTLS
and cumulRespTorCell.

4.3 Feature Evaluation
There are several statistical methods to compare the dis-
tributions of two sample populations. The Kolmogorov-
Smirnov two-sample test decides if two datasets are from
the same distribution by comparing their empirical dis-
tribution functions and the Mann-Whitney U test sup-
ports the comparison of two groups of continuous, non-
normally distributed data. In contrast, the the Kruskal-
Wallis H Test [25] is a widely used non-parametric tech-
nique to test for statistically-significant differences be-
tween multiple groups of continuous data, using ranks
for each feature instead of actual values.

Since comparing features extracted from keyword
traces involves comparing more than two groups, we
decided to use the Kruskal-Walls H test to determine

Proceedings on Privacy Enhancing Technologies ; 2017 (4):256–270

(a) Aggr4 (b) roundedTCP (c) cumulTLS

Fig. 3. Mean Ranks Distribution of Aggr4, roundedTCP, and cumulTLS. Computation of these results is explained in Appendix B.

what set of features to use for classification in the KF
phase. We applied it to various combinations of the fea-
ture vectors described in the previous section, for a data
set consisting of 100 instances of 100 keywords. We ran
the Kruskal-Wallis H Test for each feature set, which
eventually returns an ANOVA table consisting of sum
of squares, degrees of freedom, H, and p-value for each
keyword group. Since there are g entries in the ANOVA
table, (where g is the number of keywords in the data
set) H is treated as a χ2 statistic with g − 1 degrees of
freedom to determine the p-value. Given the translation
into ranks, H is computed as

H = 12
N(N + 1) × Σ

TR2
g

Ng
− 3× (N + 1) , where

– N is the total number of features
– TRg is the rank total for each group
– Ng is the number of features in each group

Because of the translation to rank data, mean ranks
of groups are comparable across feature sets. For fea-
tures that are well-separated, we expect more variation
in mean rank across groups (since the features within a
group will all have similar rank), and for features that
have low distinguishing power we expect the mean ranks
of each keyword group to be more similar.

The full results of this test, for the dataset consist-
ing of 100 instances each of 100 keywords, appear in
Appendix B as Table 16; most of the features gave a
p-value of less than 0.01, but H values for some clas-
sic features were not as high as for the new features
described above. Based on these results, we decided to
test different combinations of feature sets whose H (af-
ter scaling for differences in dimensionality) was higher
than 6,000. As expected, when we included new feature
sets Resp and burstIncoming, we found a higher vari-
ance between each group. To illustrate this, we com-
puted TR2

g/Ng, for each keyword group in three feature

sets: Aggr4, which combines the Total, cumulRespTLS,
RespTotal, and cumulRespTorCell features; roundedTCP;
and cumulTLS). As shown in Figure 3, it is clear that
compared to Figure 3a, all keyword groups in Figure 3b
and Figure 3c are close to each other, which prevents
differentiating keyword groups based on this feature.

In the end, we found that it is least likely that sam-
ples in each group in Aggr4, aggregated based on Total,
RespTotal, RcumulRespTLS, and RcumulRespTorCell, are
from the same distributions, which leads to better key-
word classification results.

4.4 Feature Dimensions
Because of the need to truncate feature vectors to a
fixed dimension and because longer feature vectors lin-
early increase the computational cost of training both
k-NN and SVM classifiers, we ran a separate experiment
to determine the dimension, nbest, that gives the best
tradeoff between accuracy and training time, similarly
to Panchenko et al. [30].

As Aggr4 was determined to show the highest varia-
tion across keywords, we used this feature set to see the
relationship between the number of features and corre-
sponding computational cost. To discover nbest, we var-
ied the number of features composing Aggr4 by varying
the number of features in RcumulRespTLS and Rcumul-
RespTorCell before aggregation since Total and RespTo-
tal have fewer than 5 features. We trained the SVM with
10,000 top-ranked keyword traces and used 24 python
workers, which will be discussed in Section 5, to paral-
lelize the 10-fold cross validation (Note that we used 24
CPUs and 32GB memory for this analysis). This work is
similar to Panchenko et al.’s work [30]; however, we ad-
ditionally compared training time to get a more specific
result and determine the trade-off between performance
and computational cost.

Proceedings on Privacy Enhancing Technologies ; 2017 (4):257–270

Finally, based on the results shown in Figure 8 in
Appendix D, we decided to use 247 features as it gave
the best accuracy as well as acceptable running time,
since increasing the dimension of the feature vectors
above 250 did not yield better accuracy, while linearly
increasing the running time. In addition, note that since
training classifiers is an offline process and we use a
three-month period training (as discussed in Section 7),
188 seconds is acceptable for training.

5 Classification

5.1 Classifiers
We tested three different classifier algorithms for the
second and third phase of KF attacks: Support Vec-
tor Machines (SVM), k-Nearest Neighbor (k-NN), and
k-Fingerprinting (k-FP). All three are supervised learn-
ing techniques, which train classifiers on labelled data
using fixed-dimensional feature vectors. We evaluated
all three classifiers using the Aggr4 feature set with di-
mension 247 and 10-fold cross-validation during testing;
the results are summarized in Table 3.
Support Vector Machines Many researchers have
used SVMs to construct effective fingerprinting at-
tacks [7, 30, 44]. The SVM algorithm finds the
maximum-margin hyperplane in a high dimensional
space to which we map our samples, which gives the
largest distance to the nearest training-data point for
all classes.

In our experiment, we used a non-linear classifier
with a radial basis function (RBF) and n-fold cross-
validation to determine the C and γ leading to the high-
est accuracy, which are inputs of the RBF. We varied
C between 0.0078125 and 128, and γ from 0.03125 to 4.
The cross-validation accuracy refers to computing the
number of examples in each fold that were correctly
classified. In Section 6, we ran 10-fold cross validation
to avoid over-fitting as well as to compute the overall
metrics more correctly during testing. In addition, since
the cross validation is the most expensive operation, we
parallelized it using multiple python workers supported

Table 3. Closed-world accuracy (Acc), TPR, FPR, and within-
monitored accuracy (WM-acc) comparing to existing classifiers.
(all results in %)

Metric Acc TPR FPR WMAcc
cumulTLS[30] 18.7 35.0 3.9 8.9

k-FP(k = 1)[19] 40.3 65.4 0.03 35.8
k-NN[43] (k = 1) 44.5 88.2 22.9 41.1

k-NN (k = 2) 42.3 32.9 4.70 24.5
k-NN (k = 3) 43.7 18.7 1.7 16.1

svmResp 64.0 82.6 8.1 56.5

by the Libsvm library [9]. We used 16 workers when
the size of background classes was up to 10,000 and 24
workers when it was more than that.
k-Nearest Neighbors T. Wang et al. [43] used k-NN
classification with weighted `1 distance to conduct web-
site fingerprinting attacks. In this technique, a set of
labelled training points are first used to learn weights
for the distance metric d. Then a set of labelled classifi-
cation points are used to classify new feature vectors by
finding the k closest classification points and comparing
the labels of these neighbors; Wang et al. classify a page
as belonging to class C only if all k neighbors belong to
C. We used the same training parameters as in Wang
et al.’s work [43] with our feature vectors to compare
classifier performance.
k-Fingerprinting Hayes and Danezis [19] developed a
novel technique that they refer to as k-Fingerprinting. In
k-Fingerprinting a random forest ensemble of decision
trees is first trained on labelled feature vectors. Then
each labelled training trace is translated to a fingerprint
vector by taking the classification produced by each tree
in the forest. Finally, a new trace is classified by comput-
ing its fingerprint vector, and then finding the k nearest
neighbors among the training fingerprints. We used the
same training and classification parameters that Hayes
and Danezis used in their work [19] with our feature
vectors to compare classifier performance for KF.

5.2 Binary Classification
Binary classification is used to classify instances into
one of two possible outcomes. However, since we have
a multi-labeled dataset, we investigate two approaches.
The first is to train classifiers based on binary-label
learning by converting all data to be labeled with 1 or -
1. The second is to train classifiers with class labels, and
convert all monitored labels output by the classifier to 1,
and the unmonitored label to -1. In this setting, when
we compute the True Positive Rate (TPR) and False
Positive Rate (FPR), we ignore the confusion between
monitored query traces. In other words, we recognize it
as a TP because, although the classifier classifies a mon-
itored query trace into a different keyword in monitored
keywords, the attacker is still able to determine that it is
a monitored keyword. We used both binary-label learn-
ing and multi-label learning in the binary classification
stage for closed and open world experiments.

If we assume that the censor’s goal is to block or
detect monitored keywords, the precision indicates how
many innocent users are misclassified as searching for
“monitored keywords” and recall explains how many

Proceedings on Privacy Enhancing Technologies ; 2017 (4):258–270

Table 4. Google trace identification

background 40k 80k 100k
TPR(%) 99.2 98.6 98.6
FPR(%) 0 0 0

precision(%) 100 100 100

Table 5. Bing trace identification

background 40k 80k 100k
TPR(%) 99.7 99.9 99.8
FPR(%) 0 0 0

precision(%) 100 100 100

Table 6. Duck trace identification

background 40k 80k 100k
TPR(%) 99.6 99.6 99.6
FPR(%) 0 0 0

precision(%) 100 100 100

guilty users evade detection by being misclassified as
typing “background keywords”. If the censor is inter-
ested in a particular decision among multiple choices to
determine if it is a particular keyword, they should focus
on reducing false positives (FPs), which would result in
increased precision. If the censor is more interested in
determining whether any monitored keyword is queried,
they will focus on false negatives (FNs), which are mea-
sured by the recall.

5.3 Multiclass Classification
Multiclass classification is used to classify instances into
one of multiple possible outcomes. To support the multi-
class classification using SVMs, we can reduce the prob-
lem to multiple binary classification problems with two
different strategies: One-against-one (OAO) and One-
against-all (OAA). The OAO approach is more popu-
larly used with SVMs since it is faster than the OAA.
OAO classification trains k(k−1)

2 classifiers (if we have k
labels) per all possible pairs of labels while OAA trains
k classifiers since its purpose is to classify a single la-
bel against all remaining labels. It is well known that
OAA is more accurate than OAO in most cases when
we use SVMs [8]. For our experiment, we decided to use
OAO, yielding more reasonable computational cost for
multi-class classification as other researchers have done
[7, 22, 30, 44].

To solve the issue of how to count the confusion be-
tween monitored query traces as either FPs or FNs, we
additionally suggest a new metric, “within-monitored
accuracy”, which computes the accuracy within moni-
tored query traces. This better represents the probabil-
ity of the correct classification of individual keywords
between monitored query traces. Therefore, in the open-
world experiment, we measure success using “within-
monitored accuracy.”

6 Experiments
In this section, we evaluate the feasibility of the KF at-
tack through a series of experiments. First, we show that
query traces of a targeted search engine can be identi-
fied with nearly perfect accuracy against other webpage
traces. With the traffic identified as traces of the target
search engine, we evaluate KF in both closed-world and

open-world settings across several different experimen-
tal conditions.

In particular, we investigate the extent to which our
new feature sets described in Section 4 outperform ex-
isting WF feature sets [7, 14, 20, 30, 31, 44] to iden-
tify keywords. Furthermore, we focus on investigating
whether both identifying monitored keyword traces and
differentiating keyword traces from a single search en-
gine are feasible with our new task-specific feature sets,
even with 80,000 background keywords. In addition, to
achieve this new task, fingerprinting keywords, we con-
sider new variables affecting the performance of classi-
fiers such as different Tor Browser settings and search
engines. We also evaluate different classifiers on search
query traces to suggest the best method for keyword
fingerprinting and evaluate KF under two WF mitiga-
tion mechanisms, BuFLO [5] and Tamaraw [6]. Lastly,
we further explore the open questions of what factors
affect the fingerprintability of keywords.

Throughout this section, we use a variety of metrics
to evaluate classifiers:
– FPR: The fraction of traces from background key-

words classified as monitored keywords.
– TPR and Recall: The fraction of traces from mon-

itored keywords classified as monitored keywords, a
more useful metric in the case that most traces are
from the set of monitored keywords.

– Precision: The fraction of positive classifications
that are correct, a more useful metric in the case
that most traces are not from the monitored set.

– Accuracy: The overall fraction of traces that are
correctly classified.

– Within-monitored (WM) Accuracy: The num-
ber of monitored keyword traces classified with the
correct label over the total number of monitored
traces. This metric is only used for multi-class clas-
sification, as discussed in Section 5.3.

With these metrics, we try to answer the following re-
search questions regarding how various factors impact
the performance of KF attacks:
– Q1: Is it achievable to sift target search engine

traces from all webpage traces? (Section 6.1)
– Q2: How much is the performance of KF improved

with Resp feature sets? (Section 6.2)

Proceedings on Privacy Enhancing Technologies ; 2017 (4):259–270

Table 7. Closed-world accuracy of various feature sets. (Note that
Aggr2 is Total+RcumulRespTLS, Aggr3 is Aggr2+RespTotal,
and Aggr4 is Aggr3+RcumulRespTorCell)

feature Accuracy(%)
Total 35.5
torCell 7.5

roundedTCP 12.7
roundedTLS 15.2
burstIncoming 26.7
cumulTLS 18.7
RespTotal 26.1
RespTLS 17.2

RcumulRespTorCell 53.4
RcumulRespTLS 53.8

Aggr2 62.2
Aggr3 63.4
Aggr4 64.0

– Q3: What kind of label learning should attackers
choose according to their goal? (Section 6.3.2)

– Q4: What Tor browser settings are recommended
to protect users against KF attacks? (Section 6.3.5)

– Q5: Which search engine(s) provide the strongest
anonymity against KF attacks? (Section 6.3.6)

– Q6: How much do existing WF defenses degrade the
success of KF? (Section 6.3.7)

6.1 Search Query Trace Identification
We trained SVM classifiers using Panchenko et al.’s cu-
mulTLS features [30], drawing positive examples from
our search engine traces and negative examples from
111,884 webpage traces provided by Panchenko et
al. [30] without Google, Bing, or Duckduckgo search
queries.

The monitored set consisted of 100 instances of each
of 100 different keywords, while the size of the back-
ground set was varied from 40,000 to 100,000. As shown
in Tables 4, 5, and 6 even with 100,000 background
queries, we were able to detect query traces with a
minimum of 98.6% TPR and 0% FPR. This result is
plausible since we are distinguishing one specific class of
page from all other traffic, and query responses follow
a more restricted format with fewer embedded objects
than other webpages. This distinction is illustrated by
the PCA plot shown in Figure 1. In the following sec-
tions, we restrict the input traces to query traces from
the target search engine.

6.2 Closed World Accuracy
In the closed world scenario, we assume that the victim
may query 100 keywords and seek to classify which of
those 100 keywords a given Google query trace repre-

Table 8. TPR, FPR, and Precision when we use 100 instances
of 100 monitored Google query traces and 1 instance of 10,000
background traces.

Metric Binary-label Multi-label
TPR(%) 93.1 82.6
FPR(%) 14.9 8.1

Precision(%) 86.3 91.1

sents. As other researchers have pointed out [22, 33],
the closed world scenario relies on unrealistic assump-
tions. However, accuracy in the closed-world setting is
a minimal requirement for plausibility. We performed
multiclass classification with each feature set in Table 7,
labeling each trace according to its keyword.

We used 10-fold cross-validation — partitioning the
traces into 10 folds of 1,000 — to get the best C and
γ for each feature set and to ensure that the train-
ing sets and testing sets did not overlap. Finally, we
obtained 1,000 predictions for each fold (for a total
of 10,000 predictions). As shown in Table 7, feature
sets using information from the Response portion of a
query trace outperformed all previously used WF fea-
ture sets [7, 14, 20, 30, 31, 44] for KF. In particular,
our best feature set (Aggr4) showed much better per-
formance than the feature set (cumulTLS) used for WF
by Panchenko et al. [30], achieving a closed-world accu-
racy of 64.0% compared with only 18.7%. These results
clearly show that feature sets tailored to keyword fin-
gerprinting can improve the quality of KF attacks.

6.3 Open World Scenario
In the open-world scenario, the attacker maintains a set
of monitored keywords to identify, while the victim may
query arbitrary keywords. This is a more realistic sce-
nario in the real world, because if the attacker tries to
capture victims’ search query traces to infer user-typed
keywords, the collected data will be expected to include
more background keywords than monitored keywords.
This section evaluates the performance of several varia-
tions of KF in an open-world setting.

6.3.1 Classifier Comparison
First, we compared k-NN [43], CUMUL [30], and k-
FP [19] with svmResp to determine the best classifier
for KF. In this experiment, we used 100 traces for each
of 100 keywords from the top-ranked keyword set, and
used 1 trace for each of 10,000 keywords from the back-
ground set. We then trained and evaluated classifiers
using 10-fold cross validation in the multi-label learning
setting, where each monitored trace was labeled with its

Proceedings on Privacy Enhancing Technologies ; 2017 (4):260–270

(a) Binary-Label Learning (b) Multi-Label Learning (c) Within-monitored accuracy

Fig. 4. Precision and recall for binary classification and within-monitored accuracy for multiclass classification when varying the num-
ber of monitored and background keywords

corresponding keyword, and all background traces were
assigned a single “background” label. Note that we used
the Aggr4 feature set for k-NN and k-FP.

The results are summarized in Table 3. As expected,
CumulTLS based on the first 104 features had worse
performance than svmResp because the previously used
features do not vary enough between query traces from
a single search engine. The k-FP classifier was able to
differentiate between monitored and un-monitored key-
words quite well, achieving a FPR of just 0.03%, but did
not do well in identifying the precise monitored keyword
for a given query trace. We hypothesize that bagging
based on subsets of features discards too much useful
sequencing information in the RcumulRespTLS and Rcu-
mulRespTorCell feature vectors.

Although k-NN with k = 1 had the highest TPR, its
FPR was the highest as well. As expected, with higher
k ∈ {2, 3}, we see a reduced FPR but TPR significantly
decreases as well. Note that the FPR is much higher
than observed when applying k-NN to website finger-
printing; combined with the observed low FPR of the
k-FP classifier, this suggests that the feature vectors of
query traces are too densely packed in `1 space for k-
NN to take advantage of the multi-modality of keyword
classes. svmResp produced the best within-monitored
accuracy rate, which is important in the keyword iden-
tification phase of KF. Thus we continue to use svmResp
as the classifier for the remainder of the paper.

6.3.2 Effect of label learning.
We also evaluated KF in the binary-label learning set-
ting, where each trace was given a binary label according
to whether it belonged to the monitored or background
set. As shown in Table 8, multi-label learning achieved
higher recall (93% vs. 83%) while binary-label learning
resulted in better precision (91% vs. 86%).

Furthermore, as shown in Figure 9 in Appendix E,
multi-label learning continues to ensure better precision
while binary-label learning results in higher recall across
different C and γ pairs. This is because the probability a
trace is classified as a FN is lower in binary-label learn-
ing since we converted all monitored keyword labels into
a single label. Thus classifiers were trained with more in-
stances of the monitored label than those in multi-label
learning. For instance, if we select 30 instances for each
of 100 monitored keywords, the binary-label classifier is
trained with 3,000 instances for a single monitored la-
bel. In contrast, the probability a trace is classified as
a FP is lower in multi-label learning since the classifier
is trained with fewer instances for each monitored label
than in binary-label learning.

Based on these results and the discussion in Sec-
tion 5, if the attacker wants to correctly identify individ-
ual monitored keywords, multi-label learning will have
better performance, while also ensuring fewer incidences
of censoring non-monitored keywords. If the attacker’s
goal is to restrict access to keywords in the monitored
group, binary-label learning is better since it is more
important to ensure that fewer targeted queries evade
filtering.

6.3.3 Effect of monitored and background set size.
To determine how the sizes of the monitored and back-
ground sets change our results, we selected monitored
sets of 100, 200 and 300 keywords, collecting 80 traces
for each keyword, and varied the size of the background
set between 10,000 and 80,000. In a sense, increasing the
size of the background set represents an attempt to cap-
ture the large variation in non-monitored search engine
queries. Figure 4 shows that for binary-label classifica-
tion, the precision has almost no variation with the size
of the monitored set in binary-label learning and mini-
mal variation in multi-label learning, but decreases for

Proceedings on Privacy Enhancing Technologies ; 2017 (4):261–270

Table 9. Precision(P), recall(R), and within-monitored accuracy(W) (%) to detect 3,000 and 8,000 traces of top-ranked and AOL
search keywords and 3,000 traces of Google blacklisted keywords using binary and multiclass classification against 50k–80k back-
ground(B) keyword traces. Variance in all figures was less than 0.1%.

B Top(3,000) Black(3,000) AOL(3,000)
P R W P R W P R W

50k 83.2±.1 31.6±.1 21.6±.1 76.8±.1 24.2±.1 24.2±.1 70.2±.1 12.2±.1 11.6±.1
60k 82.4±.1 28.7±.1 20.0±.1 76.7±.1 23.1±.1 23.1±.1 71.9±.1 9.5±.1 9.1±.1
70k 84.1±.1 27.9±.1 19.2±.1 76.8±.1 22.4±.1 22.3±.1 75.2±.1 8.1±.1 7.6±.1
80k 84.7±.1 28.5±.1 19.8±.1 76.1±.1 22.1±.1 22.0±.1 75.7±.1 6.0±.1 5.7±.1

B Top(8,000) AOL(8,000)
P R W P R W

50k 90.0±.1 57.5±.1 41.4±.1 80.4±.1 31.2±.1 28.8±.1
60k 90.1±.1 54.8±.1 40.1±.1 79.5±.1 27.5±.1 25.6±.1
70k 90.6±.1 53.8±.1 39.5±.1 79.7±.1 24.3±.1 22.9±.1
80k 90.7±.1 53.4±.1 39.1±.1 81.5±.1 20.2±.1 19.2±.1

Table 10. Analysis of HTML and search results screenshot for
Top-ranked keywords and AOL search queries. We counted the
number of content types among text links, images, videos, SNS,
and maps, and computed the fraction of HTML responses (t-
html), that consist only of text links and include no other con-
tents such as images.

Dataset HTML size(KB) # of contents t-html(%)
Top-ranked 429±131 3.5±0.7 12.0

AOL 384±98 1.2±0.8 63

(a) Incremental Query Setting (b) One Shot Query Setting

Fig. 5. Within-monitored accuracy, precision, and recall to de-
tect 8,000 top-ranked Google keyword traces when varying Tor
browser settings (JS enabled vs. disabled)

both settings with a larger background set. The recall
always decreases by increasing the size of either set and
is more sensitive to the size of background set in multi-
label learning. For multiclass classification, Figure 4c
shows that increasing the size of either set results in
a decrease in within-monitored accuracy. However, all
of the metrics seem to stabilize with background sets
of size 50,000 suggesting these experiments accurately
capture the variability in search engine result finger-
prints. We note that Figures 4b and 4c show a signif-
icant change in precision, recall and WM-accuracy be-
tween background sets of size 30,000 and 40,000. This
was due to the random inclusion of an unusual number
of outliers in the 4th partition of background traces, as
discussed in Appendix F.

6.3.4 Effect of monitored keyword set.
To determine how the set of monitored keywords im-
pacts our results, we further constructed two additional
monitored sets using AOL search queries and Google
blacklisted keywords. Using 30 instances for each of 100
top-ranked, AOL, and Google blacklisted keywords, Ta-
ble 9 illustrates that KF is more effective for top-ranked
keywords. However, with more training data using 80
instances, KF is still able to distinguish between 100
monitored AOL keywords with recall of 31% and WM-
accuracy of 29%.

Thus, we can make KF work adequately on different
monitored datasets with sufficient training data while
the specific set of monitored keywords does somewhat
impact the performance of classifiers. To further explore
why top-ranked keywords are better targets for KF,
we examined search result screenshots and HTML re-
sponses for top-ranked keywords and AOL dataset. Ac-
cording to Table 10, we found that top-ranked keyword
traces contained more diverse types of contents as well
as larger embedded objects than AOL search queries
and these impact the performance of KF. In Section 6.5,
we furthermore intensively investigate the relationship
between specific types of contents and fingerprintability.

6.3.5 Effect of different query setting.
For users who disable JavaScript in Tor Browser as dis-
cussed in Section 3, we also investigated KF in the “one-
shot query setting,” which includes neither interaction
with the search box nor the incremental results returned
by Google Instant. We classified 100 instances of 100
top-ranked keywords with varying background set sizes.
As Figure 5 shows, all metrics except precision in one-
shot query traces were worse than those in incremental
search query traces. In particular, within-monitored ac-

Proceedings on Privacy Enhancing Technologies ; 2017 (4):262–270

Table 11. Binary classification (TPR). We did not report the
standard deviation, which is less than 0.1.

Back Google Bing Duck
10k 81.2±.1 78.4±.1 75.2±.1
20k 77.2 74.9 71.4±.1
30k 71.8 66.2 60.0±.2
40k 67.2±.1 61.2±.2 56.2±.1

Table 12. Multiclass classification (WM-accuracy). We did not
report the standard deviation, which is less than 0.1.

Back Google Bing Duck
10k 54.5±.1 44.3±.2 44.4±.1
20k 52.0±.1 42.0±.1 41.9±.1
30k 45.1 37.7±.1 35.8±.1
40k 48.2±.1 34.9 33.7

curacy was significantly lower. (17% vs. 48% for 100
monitored and 40,000 background keywords)

The main reason is that incremental traces carry
additional rich information such as traffic for auto-
complete and Google Instant search results, which are
highly likely to be consistent in the same keyword group.
Additional regular traffic makes Aggr4 more distinguish-
able than features only based on incoming traffic for em-
bedded objects in HTML responses returned by the one-
shot query. Thus, the incremental query setting is more
vulnerable to KF, indicating that disabling JavaScript
also helps to mitigate the KF attack.

6.3.6 Effect of search engine.
We evaluated classifiers for binary and multiclass KF
trained using 100 monitored top-ranked keywords and
varying background sets across three different search
engines, Google (Instant), Bing, and Duckduckgo. As
shown in Tables 11 and 12, for binary classification,
TPR is higher with Google as the size of background
set increases. For multiclass classification, WM accu-
racy is consistently highest for Google, due to the ex-
tra information leaked by incremental search. Overall,
this study shows that our approach can be applicable
to most search engines since their query traces follow
a similar format, containing a large and informative re-
sponse portion in their TLS record sequences.

6.3.7 Effect of WF defenses.
We evaluated the effect of two WF defenses on KF in the
closed-world setting: BuFLO [5], and Tamaraw [6]. Bu-
FLO enforces packet sizes and inter-packet timing to be
constant and pads with dummy packets until the total
number of packets reaches a threshold; Tamaraw allows
different inter-packet timing for incoming and outgoing

Table 13. Accuracy under Tamaraw when varying incoming (row)
and outgoing (column) padding intervals as well as padding
lengths (100–500)

interval 0.04 0.02 0.01
0.005 5.86±0.25 5.73±0.25 5.89±0.31
0.012 5.24±0.7 5.17±0.88 5.45±0.62
0.02 4.53±0.09 4.66±1.11 5.85±0.89
0.05 6.09±1.2 6.74±0.93 7.39±0.37

traffic and pads incoming and outgoing packets to the
nearest multiple of the “padding length” parameter.

We simulated 80 query traces for each of 100 moni-
tored keywords under each defense. However, since both
defenses interleave padded outgoing packets with the
response portion, the RcumulRespTLS and RcumulRe-
spTorCell feature sequences extracted from these traces
were often shorter than the full 120 records used in pre-
vious sections: for Tamaraw with padding length 100,
only 2,300 traces had at least 40 records, and for Bu-
FLO with 10 seconds of minimum time for padding, only
7800 traces had the full 120 records. For both defenses,
if we use larger bandwidth parameters (e.g, 200–3,000
for Tamaraw and 30–100 seconds for BuFLO), fewer
than 10 records remain in the response portion of most
traces.

For Tamaraw, first, we need to find the effective in-
coming and outgoing padding intervals, that give the
least accuracy. We realized that as shown in Table 13,
KF works poorly with incoming padding intervals less
than 0.02 seconds and chose 3 incoming and outgoing
interval pairs, which yielded the worst accuracy, for fur-
ther investigation of KF performance against Tamaraw.

As shown in Figure 6, larger bandwidth parameters
(minimum padding time in BuFLO and padding length
in Tamaraw), led to lower accuracy as well as higher
bandwidth overhead. BuFLO completely defeated KF
at the expense of 660% bandwidth overhead (with 0.03
seconds padding interval and 100 seconds for padding
time) while the “standard parameters” used by other
WF work applied to KF with 100 monitored keyword
traces led to accuracy of 10.1% at the expense of 146%
overhead. Under Tamaraw, KF became no better than
random guessing with 458% bandwidth overhead (0.02
seconds padding interval for both directions and 3,000
for padding length) while performing adequately (6.4%
accuracy) with 191% overhead against the parame-
ters used in previous work. This experimental result
shows that Tamaraw ensures lower bandwidth overhead
compared to BuFLO for perfect defense and existing
padding-based defense mechanisms are able to frustrate
KF attacks at the cost of bandwidth overhead.

Proceedings on Privacy Enhancing Technologies ; 2017 (4):263–270

(a) Accuracy(%) under BuFLO (b) Bandwidth overhead under
BuFLO

(c) Accuracy(%) under Tama-
raw

(d) Bandwidth overhead under
Tamaraw

Fig. 6. Closed-world accuracy for 8,000 WF defense applied Google traces when considering different feature dimensions (Note that
with no defense, accuracy is 64.03%)

Apart from padding-based defenses, there are other
defenses intended to prevent the search engine from
building accurate user search profiles, as described in
Section 8.3. We leave the evaluation of KF against those
defenses as future work.

6.4 Summary
To answer the research questions discussed before Sec-
tion 6.1,
– A1: CUMUL classifiers nearly perfectly identify

Google search engine traces with TPR 98.6% and
FPR 0% when adding 100,000 background webpage
traces because search query traces consistently have
much less traffic, which makes them clearly distin-
guishable from other webpage traces.

– A2: The feature sets based on the response portion
are more informative than existing WF features to
fingerprint keywords. This is because search results
returned by the same keyword share a common traf-
fic pattern in the response portion even though the
entire trace does not have enough power to distin-
guish different keyword traces.

– A3: In binary classification, binary-label learning is
recommended if KF focuses on reducing the number
of users evading censorship while multi-label learn-
ing is suggested to guarantee fewer innocent users
being misclassified as querying censored keywords.

– A4: As the Tor download page recommends, dis-
abling JavaScript is also helpful to mitigate KF.
This setting reduces identifying traffic patterns in
keyword traces.

– A5: Duckduckgo and Bing provide similar levels of
protection against KF, while Google’s incremental
search increases WM accuracy of KF.

– A6: Against both BuFLO and Tamaraw, KF was
still more effective than random guessing (around
10% vs 1%) at 200% bandwidth overhead, but had
significantly reduced performance compared to no
defense; with sufficient padding overhead, both Bu-

FLO and Tamaraw reduced the performance of KF
to that of random guessing.

6.5 Fingerprintability Analysis
We observed that even in settings where KF had high
within-monitored accuracy, some keywords were cor-
rectly classified with high probability while others were
never correctly classified. To investigate factors that
might contribute to fingerprint resistance, we trained
a classifier with 30 instances each of 300 monitored key-
words and 47000 background keywords from the Google
one-shot data set. We selected the 4 “most fingerprint-
able” keywords (Top-FP, with TPR from 35%–87%) and
4 “non fingerprintable” keywords (Non-FP, TPR of 0%).
Table 18 in Appendix G gives summary statistics for
these groups, not showing significant differences outside
of the Resp features. We plot them in Appendix G as
Figure 10, showing that Top-FP keywords are all tightly
clustered whereas the Non-FP keywords are more widely
spread; however, we found that several Non-FPs not
plotted in Figure 10 constructed tighter clusters, dis-
cussed later.

Therefore, for a more precise comparison, we chose
the 33 most fingerprintable keywords (with TPRs from
17% to 87%) and 52 Non-FP keywords to evaluate how
several factors contribute to fingerprintability:
Screenshot equivalence. First, for each of the 85 key-
word groups, we checked if screenshots of the instances
recorded by the crawler after loading were the same.
Second, for groups whose screenshots of instances were
the same, we further investigated the contents carried
by the HTML responses to identify what specific types
of contents vary between the FP and non-FP groups.

We found that 58% of FP keywords and 44% of
Non-FP keywords have the same screenshots in all in-
stances. We further analyzed their embedded contents
in HTML. Table 14 shows that Non-FP keywords gen-

Proceedings on Privacy Enhancing Technologies ; 2017 (4):264–270

Table 14. Analysis of Dynamic and Static contents embedded in
HTML

DS Contents Non-FP(%) FP(%)

Dynamic

RHS-DIV 59 45
News 57 42
Twitter 17 15
Stock 11 9
Reviews 9 5

People also ask[37] 22 5
See result about[28] 22 0

People also search for[36] 22 32

Static

Images 10.8 20
Video 2 17

Dictionary 4 32
UI(e.g.,inner searchbox) 17 26

Table 15. Unmonitored keyword set analysis
(a) Euclidean distance in
PCA plot. (Note that scale is
e+5)

Dist same other back
FP 4 7.7 7.8
NFP 3.5 6.3 5.7

(b) Within-monitored
accuracy(%) with different
background keywords

Ratio .2 .3 .4
back-c 21 29 34
back-v 47.7 47.9 48

erally delivered more dynamic contents2 than FP key-
words. For example, 59% of Non-FP traces include a
large right-hand side DIV block — containing various
dynamic contents such as stock price and user reviews
— versus 45% of FP traces. Dynamic contents make
traces more inconsistent leading to worse accuracy.
Unmonitored keyword set.We discovered that while
the feature vectors of Top-FP groups were generally
tightly clustered in PCA space, the feature vectors of
Non-FP groups could either be tightly clustered or more
widely spread. Thus, we further computed the average
PCA Euclidean distance between instances in the same
group and to instances in different groups for each Non-
FP and FP keyword and compared them to examine the
difference according to fingerprintability.

Table 15a shows that average distance between each
FP instance and other keyword instances was larger
than for Non-FP instances, however, the gap was not
high. After investigating confusions, interestingly, most
Non-FP keywords were misclassified as “background”
labels. Therefore, we re-calculated their average dis-
tances to background keyword instances and the distinc-
tion became more pronounced. In addition, we trained
classifiers with 200 monitored keywords and two dif-

2 The definition of dynamic contents is that the content is vari-
able enough to be changed within 0.2–54.7 hours based on Ta-
ble 19 in Appendix H.

ferent 24,000 background keyword sets, “back-c” and
“back-v”, and tested each classifoer with the same back-
ground set used in Figure 4b. Traces in “back-v” are
more widely-spread than in “back-c,” with an average
PCA Euclidean distance between instances in the back-
ground group of 1.02e+6 versus 3.12e+5, and an average
distance to instances in the monitored group of 9.40e+5
versus 3.07e+6. Table 15b shows that the WM accuracy
was better with “back-v.”

Appendix H discusses further analyses of other fac-
tors that might impact fingerprintability. In summary,
the existence of dynamic contents in search results hin-
ders fingerprintability while the network condition dur-
ing trace collection does not seem to have any impact.
There was not a significant difference in the range of exit
nodes used for FP and non-FP query traces. Moreover,
fingerprintability is affected by the choice of background
set used in training, a factor that is under the control
of the adversary.

7 KF Deployment and Mitigation
In the real world, users are likely to visit other webpages
and could be involved in other tasks such as listening to
music at the same time as using search engines. Further-
more, users do not announce when they are querying a
search engine to allow the adversary to begin recording
a trace. In addition, search traces and results can be
sensitive to when and where users send queries. In this
section, we discuss how these issues complicate applica-
tion of KF to the real world and present strategies that
an adversary might deploy to deal with them.
Single query trace identification. First, we need
to split a full Tor connection sequence into sessions.
T. Wang and Goldberg [45] proposed “split” strategies
based on timing and machine learning to perform this
separation under more realistic conditions. Similarly, we
can use a pre-defined duration t, for which users pause
before moving to another webpage or performing some
other action such as clicking a link, to determine the
splitting point. Such t can be determined experimen-
tally or empirically.

To ensure a better result, we might additionally use
the *Resp* feature sets to characterize a single query
session and use existing feature sets to represent other
webpage sessions. Even though the degree of difficulty
as well as feasibility is not in the scope of this pa-
per, this machine-learning based approach to identify
a query session is viable based on the work of T. Wang
and Goldberg [45]. To handle noise, they further pro-
posed adding similar high-bandwidth noise to testing

Proceedings on Privacy Enhancing Technologies ; 2017 (4):265–270

data rather than removing the noise to get better ac-
curacy. A similar technique could clearly be applied to
KF attacks.
Caching, location and time effect on search re-
sults. In our experiment, we did not consider the user
customization effect since Tor Browser by default dis-
ables caching and cookie storage between browser ses-
sions. Therefore, we assumed that the same content
always is returned to different users if they type the
same keyword. For the location effect, based on our
Tor crawler logs, the exit nodes were selected among 43
different countries, which should capture a significant
representation of the diversity by exit location seen by
typical Tor users. In addition, Google has not publicly
reported how often they update search results. As Mc-
Donald’s blog [27] mentioned, it is presumed to be 4–5
times a year. Juarez et al. [22] reported that WF accu-
racy goes down to around 0% if the gap between collec-
tion of training data and testing data is more than 90
days. Therefore, to ensure good results, training classi-
fiers every 1 to 3 months seems like a fair choice.
Mitigation. As we explored in Section 6.3.7, padding-
based defenses deteriorate the performance of KF since
insertion of outgoing dummy packets makes identifying
the response portion more difficult in addition to con-
cealing traditional features. More sophisticated outgo-
ing padding that focuses on the largest incoming burst
to make it less distinguishable among different keywords
in terms of the length of the burst, in a method similar
to the sequence padding used in Walkie-Talkie [46], and
the size of TLS in the response portion seem likely to re-
duce the bandwidth overhead while further diminishing
the performance of KF attacks.

Based on the results in Section 6, Tor alone does
not have enough power to protect privacy in search
queries against targeted traffic analysis. To avoid band-
width overhead from padding approaches, cryptography
and obfuscation based techniques (as discussed in sec-
tion 8.3) could be adopted to help conceal the link be-
tween users and their search queries, but more work is
needed to evaluate the value of these techniques in the
context of KF.
Reproducibility. We provide the software and data
sets needed to reproduce all of our results on github.3

3 https://github.com/KeywordFingerprinting/KF

8 Related Work

8.1 Side Channel Attacks and Defenses on
Encrypted Network Traffic

The idea of inferring meaningful information based on
analyzing encrypted SSL packets was introduced in 1996
[41]. Many studies have exploited side channel leaks in
web applications through traffic analysis and investi-
gated their countermeasures. Chen et al. [11] showed
that financial information, health profiles, and search
queries were leaked over HTTPS andWPA by packet in-
spection. Schaub et al. [34] and Sharma et al. [35] specif-
ically focused on side channel leaks in Google. Sharma et
al. discovered the relationship between typed characters
and their exchanged encrypted packet lengths, although
this attack has not worked since 2012,4 and Schaub et al.
presented enhanced side channel attacks with stochas-
tic algorithms. For defenses, Zhang et al. [48] developed
Sidebuster, based on program analysis to quantify side
channel leaks via traffic analysis. Chapman et al. [10]
also presented a black-box tool for side channel weak-
ness quantification using the Fisher criterion. Backes et
al. [3] adopted a formal approach, enabling information
flow analysis to detect side channel attacks.

In contrast, KF targets Tor where all traffic is en-
crypted, the size of packets is padded to multiples of 512
bytes, and multiple sessions are sent over the same cir-
cuit, which makes the traffic patterns less distinct than
other encrypted channels. In particular, KF considers
broader feature sets beyond traditional feature sets for
better classifier performance.

8.2 Fingerprinting Attacks and Defenses
on Tor

Attacks. After Herrmann et al. [20] first described WF
attacks on Tor using Naive Bayes classifiers, more ad-
vanced WF attacks on Tor were suggested by Panchenko
et al. [31], introducing sophisticated machine learning
techniques using diverse feature sets to ensure higher
accuracy. Later on, many researchers [7, 44] have intro-
duced more powerful and realistic attacks, improving
accuracy up to around 90% in the closed-world setting.
Their research aimed to extract new features and im-
prove the quality of classification. In particular, a novel

4 Since 2012, Google has supported many possible sequences
of packet lengths for a given search query to make such predic-
tion more challenging. KF is still effective despite this change,
because we did not require a deterministic relationship.

https://github.com/KeywordFingerprinting/KF

Proceedings on Privacy Enhancing Technologies ; 2017 (4):266–270

WF attack by Cai et al. [7] successfully defeated existing
well-known defense mechanisms such as HTTPOS [26].
After that, Juarez et al. [22] discussed how previous
work [7, 20, 31, 44] overestimated the adversary’s ca-
pabilities due to unrealistic assumptions such as the
closed-world setting. In comparison, most of these criti-
cisms do not apply to our work. Our data was collected
using a recent version of Tor Browser and the crawling
framework developed by Juarez et al. [22]. The multi-
stage nature of the KF attack means that although some
query traces might be missed as false negatives due to
multitab browsing, with high probability only search
query traces will pass on to the keyword classification
stage. By necessity, KF attacks do not focus on the in-
dex page of a search engine. Finally, we consider both
the impact of the training set size and the number of
classes in our analysis for evaluating KF attacks.

Following this criticism, L. Wang et al. [42] in-
troduced semantics-based, entropy-based, and machine
learning-based attacks to detect Tor pluggable trans-
ports. More recently, Panchenko et al. [30] proposed
more scalable attacks to vary the size of background
web page sets and further tried to fingerprint web pages
(rather than web sites), additionally considering other
subpages on the website. Hayes and Danezis [19] pro-
posed Random Forest-based WF attacks on both Tor
and standard web browsers, and analyzed the influence
of various features using their classifiers.
Defenses. WF Defense mechanisms change the pat-
tern of traffic at the transport level. Wright et al. [47]
proposed traffic morphing, which changes the traffic
pattern to match other traffic. However, since their
approach still leaks other information such as packet
order, attacks focusing on other features can readily
evade their mechanism. Luo et al. [26] proposed novel
HTTP/TCP level defense mechanisms, which changed
window sizes and the order of packets in the TCP stream
and injected extra data into HTTP GET headers. The
Tor community also introduced “randomized pipelin-
ing” [32] to defend against WF, by having the browser
load web content in a random order. More recent de-
fenses such as BuFLO [5] and Tamaraw [6] require very
high bandwidth overhead and have not been deployed.

8.3 Privacy Protection in Search Engines
Apart from Tor and traffic analysis against defenses,
there have been other lines of research on improving
privacy guarantee in user search queries based on Pri-
vate Information Retrieval (PIR) and obfuscating user
profiles. Howe et al. [21] and Domingo-Ferrer et al. [12]

used bogus queries to mask actual queries and pre-
vent servers from tracing identifiable user information
in query logs. Balsa et al. [4] performed an in-depth
analysis of privacy properties in web searches and sys-
tematically evaluated existing obfuscation-based meth-
ods; they found that these methods did not adequately
mask a user’s actual queries from the search engine.
Juarez and Torra [23] proposed a proxy-based approach
to dissociate user queries with acceptable overhead in
browsing. RePriv [15] proposed in-browser data mining
to ensure individual privacy and improving the quality
of search by requiring user consent before transferring
sensitive information.

9 Conclusion
We have described a novel attack, keyword fingerprint-
ing, to identify search engine queries over Tor, using
new feature sets focusing on incoming packets in the re-
sponse portion of a search query trace. We performed
feature analysis to select appropriate new features for
this classification task, and analyzed the effect of several
variations on the attack, including the choice of classi-
fier, size and contents of the monitored set, the size and
contents of the background training set, and the search
engine and query method. Across these variations, the
results show acceptable performance and suggest that
new work is needed to understand how to defend against
keyword fingerprinting attacks, given the importance of
protecting the contents of search engine queries.

Acknowledgments
This work was supported by the NSF under grant
1314637. We thank Marc Juarez for his help with the
Tor Crawler, Tao Wang for sharing the k-NN classifier
code, Jamie Hayes for sharing the k-FP classifier code,
and our shepherd Ian Goldberg for helpful comments
and suggestions regarding WF defense evaluation.

References
[1] Internet live stats. http://www.internetlivestats.com/one-

second/#google-band.
[2] Tor homepage. https://www.torproject.org/.
[3] M. Backes, G. Doychev, and B. Köpf. Preventing Side-

Channel Leaks in Web Traffic: A Formal Approach. NDSS,
2013.

[4] E. Balsa, C. Troncoso, and C. Diaz. OB-PWS: Obfuscation-
based private web search. In Proceedings - IEEE Symposium

http://www.internetlivestats.com/one-second/#google-band
http://www.internetlivestats.com/one-second/#google-band
https://www.torproject.org/

Proceedings on Privacy Enhancing Technologies ; 2017 (4):267–270

on Security and Privacy, pages 491–505, 2012.
[5] X. Cai, R. Nithyanand, and R. Johnson. Cs-buflo: A conges-

tion sensitive website fingerprinting defense. In Proceedings
of the 13th Workshop on Privacy in the Electronic Society,
pages 121–130. ACM, 2014.

[6] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Gold-
berg. A systematic approach to developing and evaluating
website fingerprinting defenses. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’14, pages 227–238, New York, NY,
USA, 2014. ACM.

[7] X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touching from
a distance: Website fingerprinting attacks and defenses.
Proceeding of the 2012 ACM conference on Computer and
Communications Security, pages 605–616, 2012.

[8] F. F. Chamasemani and Y. P. Singh. Multi-class Support
Vector Machine (SVM) Classifiers – An Application in Hy-
pothyroid Detection and Classification. In 2011 Sixth Inter-
national Conference on Bio-Inspired Computing: Theories
and Applications, pages 351–356. IEEE, Sep 2011.

[9] C. Chang and C. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1–27:27, 2011. Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm.

[10] P. Chapman and D. Evans. Automated Black-Box Detec-
tion of Side-Channel Vulnerabilities in Web Applications.
Proceedings of the 18th ACM conference on Computer and
communications security - CCS ’11, (October):263, 2011.

[11] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel
leaks in web applications: A reality today, a challenge to-
morrow. In Proceedings - IEEE Symposium on Security and
Privacy, pages 191–206, 2010.

[12] J. Domingo - Ferrer, A. Solanas, and J. Castella -
Roca. h(k)−private information retrieval from privacy-
uncooperative queryable databases. Online Information
Review, 33(4):720–744, Aug 2009.

[13] G. Dudek. Aol-user-ct-collection. http://www.cim.mcgill.ca/
~dudek/206/Logs/AOL-user-ct-collection//.

[14] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton.
Peek-a-boo, i still see you: Why efficient traffic analysis
countermeasures fail. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, SP ’12, pages 332–
346, Washington, DC, USA, 2012. IEEE Computer Society.

[15] M. Fredrikson and B. Livshits. RePriv: Re-imagining Con-
tent Personalization and In-browser Privacy. In 2011 IEEE
Symposium on Security and Privacy, pages 131–146. IEEE,
May 2011.

[16] Google-Instance-Disliked-Blacklist-Words.
https://www.2600.com/googleblacklist/.

[17] G. Greenwald and E. MacAskill. NSA Prism Program Taps
in to User Data of Apple, Google and Others. The Guardian,
June 2013.

[18] S. Hansell. AOL Removes Search Data On Vast Group Of
Web Users, 2006.

[19] J. Hayes and G. Danezis. k-fingerprinting: a Robust Scalable
Website Fingerprinting Technique.

[20] D. Herrmann, R. Wendolsky, and H. Federrath. Website Fin-
gerprinting: Attacking Popular Privacy Enhancing Technolo-
gies with the Multinomial Naïve-Bayes Classifier. CCSW,
2009.

[21] D. C. Howe and H. Nissenbaum. TrackMeNot: Resisting
Surveillance in Web Search. Lessons from the Identity Trail:
Anonymity, Privacy and Identity in a Networked Society,
pages 417–436, 2009.

[22] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. A
Critical Evaluation of Website Fingerprinting Attacks. Pro-
ceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security - CCS ’14, pages 263–274,
2014.

[23] M. Juarez and V. Torra. DisPA: An Intelligent Agent for
Private Web Search. pages 389–405. Springer International
Publishing, 2015.

[24] Keyword-Tool. http://keywordtool.io.
[25] W. H. Kruskal and W. A. Wallis. Use of Ranks in One-

Criterion Variance Analysis. Source Journal of the American
Statistical Association, 4710087:583–621, 1952.

[26] X. Luo, P. Zhou, E. W. Chan, W. Lee, R. K. Chang, and
R. Perdisci. Httpos: Sealing information leaks with browser-
side obfuscation of encrypted flows. In NDSS, 2011.

[27] B. McDonald. How often does google update its search
results? https://hdwebpros.com/blog/how-often-does-
google-update-its-search-results.html, 2013.

[28] M. Miller. Google launches knowledge graph, ‘first step in
next generation search’. https://searchenginewatch.com/
sew/news/2175783/google-launches-knowledge-graph-step-
generation-search, 2012.

[29] J. Ng. Blocked on Weibo: What Gets Suppressed on China’s
Version of Twitter (And Why). New Press, The, 2013.

[30] A. Panchenko, F. Lanze, A. Zinnen, M. Henze, J. Pen-
nekamp, K. Wehrle, and T. Engel. Website Fingerprinting
at Internet Scale. 16th NDSS (NDSS 16), pages 143–157,
2016.

[31] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Web-
site Fingerprinting in Onion Routing Based Anonymization
Networks. WPES, 2011.

[32] M. Perry. Experimental defense for website traffic finger-
printing. https://blog.torproject.org/blog/experimental-
defense-website-traffic-fingerprinting, 2011. Accessed: 2015-
11-23.

[33] M. Perry. A critique of website traffic fingerprinting attacks.
https://blog.torproject.org/blog/critique-website-traffic-
fingerprinting-attacks, 2013. Accessed: 2015-11-1.

[34] A. Schaub, E. Schneider, A. Hollender, V. Calasans, L. Jolie,
R. Touillon, A. Heuser, S. Guilley, and O. Rioul. Attacking
Suggest Boxes in Web Applications Over HTTPS Using
Side-Channel Stochastic Algorithms. Risks and Security of
Internet and Systems, 2015.

[35] S. A. Sharma and B. L. Menezes. Implementing side-channel
attacks on suggest boxes in web applications. In Proceedings
of the First International Conference on Security of Internet
of Things - SecurIT ’12, pages 57–62, New York, New York,
USA, 2012. ACM Press.

[36] J. Slegg. Google adds “people also search for” thumbnails to
search results. http://www.thesempost.com/google-adds-
people-also-search-for-thumbnails-to-search-results/, 2016.

[37] A. Smarty. Google’s “people also ask” (related ques-
tions): What are they, and why you should care. http:
//www.internetmarketingninjas.com/blog/search-engine-
optimization/googles-people-also-ask-related-questions/,
2016.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection//
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection//
https://hdwebpros.com/blog/how-often-does-google-update-its-search-results.html
https://hdwebpros.com/blog/how-often-does-google-update-its-search-results.html
https://searchenginewatch.com/sew/news/2175783/google-launches-knowledge-graph-step-generation-search
https://searchenginewatch.com/sew/news/2175783/google-launches-knowledge-graph-step-generation-search
https://searchenginewatch.com/sew/news/2175783/google-launches-knowledge-graph-step-generation-search
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/experimental-defense-website-traffic-fingerprinting
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
https://blog.torproject.org/blog/critique-website-traffic-fingerprinting-attacks
http://www.thesempost.com/google-adds-people-also-search-for-thumbnails-to-search-results/
http://www.thesempost.com/google-adds-people-also-search-for-thumbnails-to-search-results/
http://www.internetmarketingninjas.com/blog/search-engine-optimization/googles-people-also-ask-related-questions/
http://www.internetmarketingninjas.com/blog/search-engine-optimization/googles-people-also-ask-related-questions/
http://www.internetmarketingninjas.com/blog/search-engine-optimization/googles-people-also-ask-related-questions/

Proceedings on Privacy Enhancing Technologies ; 2017 (4):268–270

[38] J. Titanium. AOL Search Log Special,Part1. http://www.
somethingawful.com/weekend-web/aol-search-log/, 2006.

[39] Tor-Browser-Crawler. https://github.com/webfp/tor-
browser-crawler.

[40] tshark. https://www.wireshark.org/docs/man-
pages/tshark.html.

[41] D. Wagner, B. Schneier, et al. Analysis of the ssl 3.0 pro-
tocol. In The Second USENIX Workshop on Electronic
Commerce Proceedings, pages 29–40, 1996.

[42] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and
T. Shrimpton. Seeing through Network-Protocol Obfus-
cation. Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 57–69,
2015.

[43] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Gold-
berg. Effective Attacks and Provable Defenses for Website
Fingerprinting. 23rd USENIX Security Symposium (USENIX
Security 14), pages 143–157, 2014.

[44] T. Wang and I. Goldberg. Improved website fingerprinting
on Tor. Proceedings of the 12th ACM workshop on Work-
shop on privacy in the electronic society - WPES ’13, pages
201–212, 2013.

[45] T. Wang and I. Goldberg. On Realistically Attacking Tor
with Website Fingerprinting. Proceedings on Privacy En-
hancing Technologies, (4):21–36, 2016.

[46] T. Wang and I. Goldberg. Walkie-Talkie: An Efficient De-
fense Against Passive Website Fingerprinting Attacks . 26th
USENIX Security Symposium (USENIX Security 17), 2017.

[47] C. V. Wright, S. E. Coull, and F. Monrose. Traffic morph-
ing: An efficient defense against statistical traffic analysis. In
NDSS, 2009.

[48] K. Zhang, Z. Li, R. Wang, X. F. Wang, and S. Chen. Side-
buster: Automated detection and quantification of side-
channel leaks in web application development. In Proceed-
ings of the ACM Conference on Computer and Communica-
tions Security, pages 595–606, 2010.

Appendix

A Google Instant
Google returns incremental search results and the sug-
gestion list each time a character is typed, as shown in
Figure 7. We implemented these additional functionali-
ties (Section 3.1) in the crawler.

B Traditional Feature Sets
Packet and Cell totals (Total). This is a general fea-
ture set widely used in existing work [14, 20, 31, 44]. We
computed the total number of packets, total number of
incoming packets, total number of outgoing packets, to-
tal number of incoming Tor cells, and total number of
outgoing Tor cells.

(a) Go to
www.google.nl

(b) Auto-complete
shows its searche
suggestions and
Google Instant shows
the result for kmar

(c) Google Instant
shows the result for
kmart

Fig. 7. Dynamic Google search result page during typing kmart

Table 16. Sum of squares, mean of squares, and χ2 of feature
sets, returned by Chi-square test statistic, and accuracy of fea-
ture sets, evaluated using the SVM classifier over 100 parent
keywords. Each feature is described in Sections 3, 4, and Ap-
pendix B.

Feature SS MS H Acc
roundedTCP 4.5e+10 4.55e+8 1353 12.73
roundedTLS 6.35e+10 6.42e+8 1905 15.16
cumulTLS 7.08e+10 7.15e+8 2123 18.67

Total 2.15e+11 2.17e+9 6461 35.48
burstIncoming 2.8e+11 2.83e+9 8402 26.7
RcumulRespTLS 2.22e+11 2.24e+9 6667 53.79

RcumulRespTorCell 2.17e+11 2.19e+9 6528 53.43

Tor Cell Trace (torCell). We created a sequence of
the number of Tor cells sent in each direction based on
the sequence of TLS record sizes. For example, if the
sequence of TLS records between the client and guard
have sizes 1000, -1500, 700, 500, (where negative num-
bers indicating incoming packets) the corresponding se-
quence of Tor Cells is 1, -2, 2 based on the fact that the
size of single Tor cell is 512 bytes. We used + to indicate
outgoing packets and - to indicate incoming packets.
Rounded TCP (roundedTCP) and TLS
(roundedTLS). We rounded the packet size by incre-
ments of 600, as Cai et al. [7] and T. Wang and Gold-
berg [44] suggested in their work. These are packet
sequences for the rounded size of TCP packets and the
rounded size of TLS records.
Unique packets (Unique). In the Tor network, certain
packet sizes frequently appear. We compiled a list of
such common packet sizes; in our experiment, we used
the range of [-1050,1050], and marked each packet with
1 if it was on the list and with 0 if it was not. This is
similar to the work by T. Wang and Goldberg [44].
Burst of outgoing packets. T. Wang et al. [43] in-
troduced bursts of outgoing packets as an identifying

http://www.somethingawful.com/weekend-web/aol-search-log/
http://www.somethingawful.com/weekend-web/aol-search-log/

Proceedings on Privacy Enhancing Technologies ; 2017 (4):269–270

0 50 100 150 200 250 300

of features

40

45

50

55

60

65

A
c
c
u
ra

c
y
 (

%
)

50

100

150

200

T
ra

in
in

g
 T

im
e

 (
s
e

c
)

Fig. 8. Accuracy and Training Time when varying the number of
features

feature, where a burst is defined as “a sequence of out-
going packets, in which there are no two adjacent incom-
ing packets.” They used statistics of bursts as features;
e.g., maximum burst length, number of bursts, etc.
Cumulated TLS records (cumulTLS). This fea-
ture is used by Panchenko et al. [30]. First, we ex-
tracted a sequence of TLS records’ size. If the se-
quence T=(p1, ..., pN) where pi is the size of TLS record,
we calculated the cumulative sizes, which constitutes
C=(c1, ..., cN), where c1=p1 and ci=ci−1+pi. In this
project, we only consider the size of TLS records in cu-
mulTLS feature set while they considered size of TCP
and Tor cells in their CUMUL feature set.

C Kruskal-Wallis Results and
Details

To generate the numbers in Table 16 and Figure 3,
first, we applied PCA to feature vectors in each fea-
ture set and selected the first two PCA scores to bal-
ance different dimensions in each feature set. Then,
we replaced numbers with their corresponding ranks.
For example, if we have two instances for each of two
keywords, a and b, assume that those features vec-
tors are a1=(7.2,10.3), a2=(2.7,4.1), b1=(15.0,3.9), and
b2=(6.5,9.1). For ranked measures, we used a1=(5,7),
a2=(1,3), b1=(8,2), and b2=(4,6). After that, we com-
putedH for each feature set in Table 16 and for Figure 3,
we calculated TR2

g/Ng for each keyword group.

D The best number of features
We ran SVM classifiers with Aggr4 in closed-world set-
ting by considering different number of features in Rcu-
mulRespTLS and RcumulRespTorCell before aggregation.
Based on both accuracy and training time, based on Fig-

ure 8, we determined 247 as the best feature dimensions
and use it throughout Section 6.

E Different label learning
We used different C and γ pairs to show that multi-
label learning ensures better precision while binary-label
learning returns better recall as given in Figure 9.

F Average PCA distance for
background sets

Figure 4b and Figure 4c show that all metrics decreased
more significantly with 40,000 background set and since
all background sets were constructed based on ran-
dom partitioning, we additionally computed the aver-
age PCA distance between monitored and background
traces for each of 10,000–80,000 background sets to show
this feature.

G FP vs. Non-FP
We drew the PCA plot in Figure 10 and Table 18
to show difference in feature vectors and packet total
statistics according to the fingerprintability.

H Further Fingerprintability
Analysis

Tor restart/out of order or dropped packets. We
had often received CAPTCHAs during Google trace
captures based on Table 19. We examined how often
the Tor process had been restarted for each keyword
group and further how it affected query results. We
found no instances showing a major difference in search
results due to the location difference led by a different

(a) Precision (b) Recall

Fig. 9. Precision and Recall when varying C and γ to train 100
traces of 100 parent keywords and 1 trace of 10,000 background
keywords (M:Multi-label learning, B:Binary-label learning)

Proceedings on Privacy Enhancing Technologies ; 2017 (4):270–270

Table 17. We calculated average PCA euclidean distances between montiored and background traces for each of 10k–80k background
sets. Note that column indicates the size of monitored sets, row indicates the size of background sets, dist means the average eu-
clidean distance between monitored and background traces, and gap is the difference between distances of two subsequent background
sets. For instance, for 20k, the gap is the difference between dist of 20k and dist of 10k.

Back 100 200 300
dist gap dist gap dist gap

10k 1.40e+6 N/A 2.79e+5 N/A 2.89e+5 N/A
20k 1.41e+6 1.0e+4 2.97e+5 3.02e+4 3.02e+5 1.3e+4
30k 1.42e+6 1.7e+4 3.14e+5 1.69e+4 3.17e+5 1.54e+4
40k 1.52e+6 9.32e+4 1.03e+6 7.18e+5 3.35e+5 1.83e+4
50k 1.55e+6 3.52e+4 1.43e+6 4.01e+5 3.52e+5 1.7e+4
60k 1.59e+6 4.33e+4 1.49e+6 5.71e+4 3.54e+5 1.65e+3
70k 1.60e+6 8.85e+3 1.50e+6 1.33e+4 3.54e+5 2.69e+2
80k 1.63e+6 5.0e+3 1.55e+6 4.93e+4 3.59e+5 4.6e+3

Table 18. Statistics of traces from best fingerprintable keywords.
Note that Avg means traces from all 300 parent keywords (30
instances for each) regardless of fingerprintability.

Metric Top-FP Non-FP Avg
of outgoing packets 84 71 77

of tor cells 964 883 873
of packets in Resp 247 193 180
Cumul payload(KB) 462 420 414

-1.5 -1 -0.5 0 0.5 1 1.5

PC1
×10 6

-6

-4

-2

0

2

4

6

P
C

2

×10 5

Top-FP1

Top-FP2

Top-FP3

Top-FP4

Non-FP1

Non-FP2

Non-FP3

Non-FP4

Fig. 10. PCA plot of best fingerprintable keyword traces and non-
fingerprintable keyword traces

exit chosen. (For example, we get different search re-
sults for a keyword ’man’ when we use Google Italia and
Google US.) In addition, 54% of FP keywords received
a CAPTCHA during collection and the Tor process had
been restarted 60 times on average (35% and 23 times
for Non-FP keywords). Furthermore, unstable network
conditions can lead to dropped, duplicated, or out of or-
der packets. We got the result that 38% of FP traces had
such events, whereas 17% of Non-FP contained those.

These results indicate that both CAPTCHA and
unstable network condition did not affect the finger-
printability in our experiment.

Table 19. Statistics of capture time and CAPTCHA appearance
per keyword for 400 parent keywords collection and 110 instances
for each. (Note that restarting the Tor process when encountering
CAPTCHAs contributed to the some very large capture times.)

Metric Capture Time(h) CAPTCHA(times)
Avg 3.5 37
Min 0.2 0
Max 54.7 220

Page loading time. We expected that the diversity
and number of contents in the resulting HTML affected
the page loading time. However, the page load time did
not show significant difference between FP keywords
and Non-FP keywords. (0.08 sec vs. 0.06 sec on aver-
age) In fact, page loading time is highly affected by the
network condition at that time.

	Fingerprinting Keywords in Search Queries over Tor
	1 Introduction
	2 Threat Model
	3 Data Set
	3.1 Data Collection
	3.1.1 Keywords
	3.1.2 Two Search Query Settings

	3.2 Data Preparation

	4 Feature Analysis
	4.1 Additional Features
	4.2 Preprocessing
	4.3 Feature Evaluation
	4.4 Feature Dimensions

	5 Classification
	5.1 Classifiers
	5.2 Binary Classification
	5.3 Multiclass Classification

	6 Experiments
	6.1 Search Query Trace Identification
	6.2 Closed World Accuracy
	6.3 Open World Scenario
	6.3.1 Classifier Comparison
	6.3.2 Effect of label learning.
	6.3.3 Effect of monitored and background set size.
	6.3.4 Effect of monitored keyword set.
	6.3.5 Effect of different query setting.
	6.3.6 Effect of search engine.
	6.3.7 Effect of WF defenses.

	6.4 Summary
	6.5 Fingerprintability Analysis

	7 KF Deployment and Mitigation
	8 Related Work
	8.1 Side Channel Attacks and Defenses on Encrypted Network Traffic
	8.2 Fingerprinting Attacks and Defenses on Tor
	8.3 Privacy Protection in Search Engines

	9 Conclusion
	A Google Instant
	B Traditional Feature Sets
	C Kruskal-Wallis Results and Details
	D The best number of features
	E Different label learning
	F Average PCA distance for background sets
	G FP vs. Non-FP
	H Further Fingerprintability Analysis

