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Tagging Network Flows using Blind Fingerprints
Abstract: Flow fingerprinting is a mechanism for linking
obfuscated network flows at large scale. In this paper,
we introduce the first blind flow fingerprinting system
called TagIt. Our system works by modulating finger-
print signals into the timing patterns of network flows
through slightly delaying packets into secret time inter-
vals only known to the fingerprinting parties. We design
TagIt to to enable reliable fingerprint extraction by le-
gitimate fingerprinting parties despite natural network
noise, but invisible to an adversary who does not pos-
sess the secret fingerprinting key. TagIt makes use of
randomization to resist various detection attacks such as
multi-flow attacks. We evaluate the performance and in-
visibility of TagIt through theoretical analysis as well as
simulations and experimentation on live network flows.
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1 Introduction

Linking network flows is an important problem in vari-
ous security and privacy applications. Particularly, it is
widely known [19, 33] that linking network flows can be
used by adversaries to compromise anonymity in Tor [8]
and other anonymity systems [7, 17, 19, 20, 24, 40, 41,
45] by correlating the traffic patterns of ingress and
egress flows. Alternatively, linking network flows has
been suggested [5, 9, 17, 19, 20, 31, 38, 43, 44, 46] as
a mechanism to trace back to cybercriminals who relay
their traffic through previously compromised machines,
known as stepping stone proxies [46].
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Due to the wide use of encryption and similar content-
obfuscation mechanisms, modern techniques for linking
network flows solely rely on using traffic patterns that
are not significantly impacted by encryption and net-
work perturbations, such as packet timings and sizes,
as opposed to packet contents or headers; such an anal-
ysis is broadly referred to as traffic analysis [2, 7, 33].
Traditionally, such traffic analysis for linking flows is
performed passively [7, 9, 38, 43, 44, 46], i.e., by ob-
serving and correlating traffic patterns like packet tim-
ings and sizes. More recently, researchers have inves-
tigated an active type of traffic analysis for linking
flows [17, 19, 20, 40, 41, 45]. In this approach, traffic
patterns are slightly perturbed (e.g., by slightly delay-
ing packets) in a way to embed an artificial pattern into
network flows that can be used for linking related flows.

The majority of existing work on active traffic analy-
sis is devoted to what is called flow watermarking [17,
20, 31, 41, 42, 45]. Recently, Houmansadr et al. [19]
proposed an alternative type of active traffic analysis
called flow fingerprinting. While flow watermarks aim
at tagging flows with a single bit of information, flow
fingerprints aim at tagging flows with several bits of in-
formation. This enables one to apply different tags on
different flows, therefore perform a finer-grained traffic
analysis as discussed by Houmansadr et al. [19]. Intu-
itively, designing flow fingerprints is more challenging
than watermarks as they aim at embedding multiple
bits of information. We further distinguish flow water-
marks and fingerprints in Section 2.2.2. Figure 1 shows
the setting of a flow fingerprinting mechanism.

Previous flow fingerprinting schemes [11, 19] are non-
blind, i.e., the fingerprinters and fingerprint extractors
need to establish a control channel to continuously com-
municate information about the flows they intercept.
This is a significant obstacle to the scalability of such
systems. In this paper, we design the first blind flow
fingerprinting mechanism, which we call TagIt. Blind
mechanisms are significantly more practical and scalable
than non-blind mechanisms. In a fingerprinting scenario
with n ingress and m egress flows (shown in Figure 1),
a non-blind scheme requires O(n) communication be-
tween the fingerprinting parties, compared to O(1) in
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blind mechanisms. Additionally, a non-blind mechanism
imposes an O(nm) computation overhead due to the
pairwise-correlation of the flows observed by the finger-
printing parties. A blind scheme, however, imposes an
O(m) computation overhead since the extraction is per-
formed on the individual egress flows observed by the
extractor.

We pursue several goals in the design of our blind finger-
print, TagIt. First, flow fingerprints need to be imper-
ceptible, otherwise they can be identified (and poten-
tially removed) by an adversary. TagIt embeds finger-
prints by slightly delaying network packets. TagIt also
makes use of a secret fingerprinting key, shared between
legitimate fingerprinters and extractors, such that de-
tection or extraction of the embedded fingerprints is
practically impossible to an adversary who does not
know the key. Second, the embedded fingerprint signals
should be resilient to natural network noise to enable re-
liable extraction by legitimate extractors. Towards this,
we leverage error correcting codes to compensate for
network noise, packet loss, and network delays.

We perform a mathematical analysis of TagIt’s perfor-
mance by modeling network flows and network noise
using statistical models. Based on our analysis, we pick
parameters that result in reliable fingerprinting perfor-
mance. We demonstrate TagIt’s performance through
extensive simulations on real-world network traces. We
also implement TagIt and test it on live network traffic.

The rest of this paper is organized as follows. We
overview some background on traffic analysis in Sec-
tion 2. In Section 3 we describe the design principals
of the TagIt fingerprinting scheme. We describe TagIt
fingerprinting system in Section 4, and describe TagIt
extraction in Section 5. We statistically analyze TagIt
in Section 6 by modeling the network flow behavior. We
evaluate TagIt through simulations as well as experi-
mentations in Sections 7 and 8. We finally discuss fin-
gerprint invisibility and resilience to multi-flow attacks
in Section 9.

2 Background and Related Work

We start by introducing the problem of linking network
flows and overviewing previous work.

2.1 Linking Flows

The problem studied in this paper is to link en-
crypted network flows when they pass through obfuscat-
ing proxies. In particular, this problem has been exten-
sively studied in two contexts. First, an adversary may
aim at de-anonymizing connections made through an
anonymization system like Tor by linking the ingress
and egress flows observed at various vantage points con-
trolled by the adversary. For instance, the adversary
shown in Figure 1b can de-anonymize a Tor connec-
tion by linking the corresponding ingress and egress
flows observed on compromised guard and exit relays
(or the network routers intercepting those flows). Note
that such linking can not be done by comparing packet
contents due to anonymization and onion routing.

A second widely studied scenario for linking network
flows is to identify stepping stone attackers [5, 9, 31,
38, 43, 44, 46]. A stepping stone attacker is one who re-
lays her attack traffic through previously compromised
machines, called stepping stone proxies. Figure 1a shows
an example scenario. Similar to the anonymity scenario,
the use of encryption by stepping stone proxies prevents
linking flows through packet contents. Linking network
flows has been studied in other scenarios as well, for
instance, for detecting botmasters who control botnets
trough low-latency, interactive C&C channels [18, 32].

2.2 Previous Work

In this section, we overview existing work on linking
network flows using traffic analysis.

2.2.1 Passive Analysis

The traditional approach for linking network flows is
mainly based on observing network traffic, and try-
ing to link network flows by correlating their inher-
ent characteristics such as packet timings, counts, and
sizes [7, 9, 38, 43, 44, 46]. Zang and Paxson [46] model
a network flow as a sequence of ON and OFF intervals,
and correlate such ON/OFF patterns across flows. Al-
ternatively, Blum et al. [5] correlate flows based on the
number of packets received at any given point in time.
They declare two flows to be correlated if their counts
of packets are correlated over time. Such passive linking
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(a) Stepping stone scenario
(b) Anonymity scenario

Fig. 1. Example application scenarios of network flow fingerprints. (F I
∗ and FE

∗ represent ingress and egress flows)

algorithms suffer from needing large numbers of pack-
ets before being able to make a reliable decision. Elices
et al. [12] recently proposed a mechanism based on the
Neyman-Pearson lemma that is able to link flows with
fewer numbers of packets.

2.2.2 Active analysis

The major limitation of passive analysis is not be-
ing scalable to real-world applications. For a scenario
with n ingress flows and m egress flows, passive anal-
ysis requires O(n) communication and O(nm) compu-
tation overheads, since the collected patterns need to
be cross-correlated. Active traffic analysis reduces com-
munication and computation overheads to O(1) and
O(m), respectively, by embedding imperceptible tags
into the flows being inspected. Most active analysis tech-
niques [11, 17, 19, 20, 31, 41, 42, 45] work by modifying
packet timings, i.e., by adding artificial delays to net-
work packets to insert invisible timing tags.

There are two types of active analysis mechanisms.

Flow Watermarking. The main body of work on ac-
tive flow linking is what is known as flow watermarking.
In this approach, a traffic analysis party perturbs traffic
patterns in such a way to reliably encode a single bit
of information into network flows. Wang et al. [43] were
the first to propose a flow watermarking mechanism by
modulating the watermark signal into the inter-packet
delays (IPDs). RAINBOW [20] also uses IPDs for water-
marking but uses a non-blind architecture. It achieves
a higher detection accuracy by using a side-channel to
communicate the observed packet timings among traffic
analysis parties. An alternative approach to flow water-
marking is the interval-based approach in which packets
are delayed into specific time intervals for watermark in-

sertion. Most of the recent proposals for watermarking
have used an interval based design [31, 41, 45] due to
its better resistance to packet perturbations, like packet
re-ordering and drops, compared to the IPD-based ap-
proach. For instance, Yu et al. [45] use spread spectrum
pseudo-noise codes to modulate the watermark signal
into the rate of packets in specific time intervals.

Early interval-based watermarks are susceptible to a
multi-flow attack (MFA) [22], which works by aggre-
gating multiple flows watermarked using the same key.
Houmansadr et al. design Swirl [17] to be resistant to
MFA by making the watermarking process dependent
on the network flows being watermarked.

Flow Fingerprinting. Flow fingerprinting aims at em-
bedding multiple bits of information on each network
flow, as opposed to a single bit of information in flow
watermarking. This enables the use of flow fingerprints
in scenarios with significantly larger scales than that of
watermarks. For instance, while an anonymity adver-
sary (Figure 1b) can use a watermark to de-anonymize
a single target connection, she can use fingerprints to
de-anonymize a large number of connections (e.g., by
embedding distinct fingerprint tags on different ingress
flows she is intercepting). Since fingerprints need to
embed multiple bits of information, the design of re-
liable fingerprinting systems is significantly more chal-
lenging than watermarking systems. We refer the reader
to Houmansadr et al. [19] for detailed comparison of flow
watermarking and fingerprinting.

Fancy [19] is the first flow fingerprinting mechanism. It
extends the Rainbow [20] watermarking system through
the use of various coding mechanisms in order to en-
able reliable insertion of multiple bits of fingerprints.
Fancy is a—non-blind—fingerprint, i.e., the fingerprint-
ing entities need to constantly communicate the infor-
mation about the network flows they intercept through
a side-channel. Non-blind fingerprinting (also non-blind



TagIt: Tagging Network Flows using Blind Fingerprints 293

watermarking) suffers from similar scalability issues of
passive traffic analysis mechanisms, i.e., an O(n) com-
munication overhead and an O(nm) computation over-
head. This is because the non-blind fingerprinting en-
tities need to continuously communicate some informa-
tion about the flows they intercept. In Fancy, for in-
stance, the fingerprinters send the IPDs of the flows they
have fingerprinted to the fingerprint extraction entities.
Elices et al. [11] use a game-theoretic analysis to iden-
tify optimal strategies for non-blind fingerprinting and
compare their performance with Fancy.

In this paper, we design—the first—blind fingerprint-
ing system, TagIt. Similar to blind watermarks, a blind
fingerprinting system reduces the communication and
computation overheads to O(1) and O(m), respectively,
compared to the O(n) communication and O(nm) com-
putation overheads of non-blind mechanisms.

2.3 Relevance to Covert Communications

Active traffic analysis, including both flow watermark-
ing and fingerprinting, can be considered as a specific
type of covert communications, tailored to the applica-
tion of linking flows. That is, one can consider the fin-
gerprinter and extractor entities (Section 2.4) as covert
communicating parties.

There is a number of works on covert communications
that, similar to our active traffic analysis, try to encode
information into the timings of network packets. How-
ever, such mechanisms are not applicable to the prob-
lem of linking flows studied in this paper. Particularly, a
significant number of covert traffic timing mechanisms
work by generating synthetic network flows—as opposed
to modifying some existing flows—in order embed covert
messages [1, 6, 15, 23, 27, 28, 39]. The synthetic traf-
fic is generated in a way to mimic that of normal traf-
fic. Such mechanisms are not usable for the applica-
tion of linking flows, as introduced in this paper, since
the covert communicating parties in our threat model
do not generate traffic, but only perturb some existing
traffic. Another class of covert timing channels work by
injecting packets carrying covert messages into existing
overt traffic [3, 10, 36, 37]. Such mechanisms also can
not be applied to our problem, e.g., an adversary can
not inject packets into an intercepted Tor connection.

There are some covert mechanisms that, similar to ac-
tive traffic analysis, embed covert messages by perturb-

ing the timings of overt traffic. Such proposals, however,
are mainly inapplicable to our problem of linking net-
work flows for various reasons. For instance, some of
such techniques offer very low covert capacities [34, 35];
some are fragile to natural packet perturbations as they
directly modify inter-packet delays [16]; and some re-
quire out-of-bound channels to constantly communicate
traffic models [15] or traffic features [16]. Active traffic
analysis, as studied in this paper, is a particular sub-
class of covert communication tailored to the specific
problem of linking flows.

2.4 Threat Model

A flow fingerprinting system consists of two main com-
ponents: fingerprinters and extractors. A flow finger-
printer is the party who manipulates network flows in
order to embed fingerprint tags on those flows. On the
other hand, the fingerprint extractor is the entity who
inspects network flows to detect those with fingerprints,
and to extract the fingerprints. For instance, in the
anonymity scenario of Figure 1b the fingerprinter can
be a malicious guard relay (or the ISP hosting a Tor
guard relay), and the extractor can be an accomplice
exit relay. On the other hand, in the stepping stone sce-
nario of Figure 1a the fingerprinter and extractor can
be the border routers of an enterprise network aiming
at detecting stepping stone attacks through fingerprint-
ing egress flows.

A fingerprinting adversary is an entity who aims at de-
tecting the presence of fingerprints (and therefore, take
actions to evade or destroy fingerprints). For instance, in
the anonymity scenario of Figure 1b the fingerprinting
adversary could be the communicating parties who use
Tor, or the Tor project operators. On the other hand, in
the stepping stone scenario of Figure 1a the fingerprint-
ing adversary could be the cybercriminals who aim at
detecting and evading potential flow fingerprinting sys-
tems. To ensure fingerprint invisibility against the fin-
gerprint adversaries, the fingerprinters and extractors
secretly share a fingerprinting key in advance. Ideally,
no entity should be able to detect (or extract) a fin-
gerprint unless she has access to this fingerprinting key
(i.e., only legitimate fingerprint extractors).
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(a) A TagIt time interval (b) Original flow

(c) Embedding bit 0 (d) Embedding bit 1

Fig. 2. Embedding bits 0 and 1 by TagIt. To embed 1, packets should move to darker subintervals, and to embed 0, they should be
moved to lighter subintervals.

3 TagIt: Design Principles

We first overview the main principles in the design of
the TagIt fingerprinting system.

Timing-based fingerprinting: Similar to the large
fraction of previous works on active traffic analysis,
TagIt is a timing-based mechanism. Therefore, a TagIt
fingerprinter embeds fingerprints into an intercepted
flow by modifying the timings of its packets, i.e., by de-
laying some of its packets. This makes the fingerprints
usable in scenarios where the content of the flows being
linked is modified in transit by obfuscating proxies.

Blind design: TagIt is designed to be a blind finger-
printing system; that is, the only information shared
between TagIt’s fingerprinter(s) and extractor(s) is a
fingerprinting key. This is unlike existing “non-blind”
flow correlation designs [11, 19, 20] where they need
to additionally share some information about the inter-
cepted flows. Particularly, in the Fancy non-blind fin-
gerprint [19] the fingerprinter will need to continuously
send the inter-packet timings of all the flows it intercepts
to the Fancy extractors for the extraction mechanism to
work.

Blind designs are significantly more practical in real-
world applications. As discussed above in Section 2.2.2,
a blind traffic analysis system offers an O(1) commu-
nication and O(m) computation in a scenario with n

ingress and m egress flows being intercepted. This is
while the orders of communication and computation are
O(n) and O(nm), respectively, for a non-blind system
like Fancy. Note that when comparing the orders of com-
putation between two fingerprinting systems, one should
also factor in the computation overhead of every single
correlation operation, as this may differ across different
systems (e.g., due to their use of different coding algo-
rithms). This is not included in our computation order
analysis, since the same correlation algorithms used in a
blind system could be also used by a non-blind system.

Interval-based: There are two types of timing-based
active traffic analysis systems: interval-based and IPD-
based systems. An IP-based system encodes the finger-
print signal into the inter-packet delays of packets, i.e.,
by modifying IPDs individually. On the other hand, an
interval-based approach modulates the fingerprint sig-
nal into the counts of packets that arrive within spe-
cific time intervals. We use an interval-based structure
for TagIt. This is because interval-based systems of-
fer significantly stronger resistance to natural packet
modifications, such as packet drops, repacketization,
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packet reordering, etc., compared to the IPD-based sys-
tems, known [19–21] to be susceptible to such modifi-
cations. Therefore, a TagIt fingerprinter delays packets
into specific time intervals in order to fingerprint a flow,
which we call fingerprint intervals. A TagIt extractor
will count the ratio of the packets arriving in such in-
tervals in order to perform fingerprint extraction.

Randomized insertion: TagIt’s interval-based ap-
proach makes it robust to packet-level perturbations, as
discussed above. However, Kiyavash et al. [22] demon-
strate that interval-based schemes may be susceptible to
an attack called the multi-flow attack (MFA). In this at-
tack, the adversary collects multiple flows fingerprinted
using an interval-based mechanism, and superimposes
the flows to increase the chances of identifying the fin-
gerprint intervals. The attack is built on the statistical
distribution of packets in various intervals of an interval-
based scheme.

We design TagIt in a way to be resistant the MFA
attack despite its interval-based scheme. Specifically,
TagIt uses a random mechanism for selecting the fin-
gerprinting intervals in a way that even inserting the
same fingerprint into the same flow twice will result
in different fingerprinted flows. As we will show in our
analysis of Section 9, this makes TagIt resist the MFA
by smoothing the statistical distribution of the packets
in the aggregation of multiple TagIt flows.

Coding to resist noise: As described earlier, de-
signing a reliable fingerprinting system is significantly
more challenging than a watermarking system since a
fingerprinting system aims for the reliable transmission
of multiple bits of information across a noisy communi-
cation channel, unlike watermarking’s single bit of infor-
mation. We use two stages of coding to enable reliable
fingerprint extraction despite the network noise. First,
we use a repetition code to resist noise due to normal
network jitter. Second, we make use of standard error
correcting codes (like Convolutional or Reed-Solomon
codes) to resist sparse, bursty channel errors that are
not recoverable by normal repetition codes. We will fur-
ther discuss the specific choices of our coding parame-
ters. As will be shown in our analysis of Section 8, such
codings result in a promising reliability for TagIt’s fin-
gerprint extraction.

4 TagIt Fingerprinting Scheme

In this section, we discuss the algorithm used by a TagIt
fingerprinter to fingerprint network flows. As discussed
earlier, TagIt is a timing-based, interval-based scheme,
therefore, it works by delaying some of the packets of
a flow to be fingerprinted into specific timing intervals.
In the following, we describe the details of TagIt finger-
printer; Figure 2 illustrates TagIt’s fingerprinting pro-
cess.

Dividing a flow into time intervals. The finger-
printer divides the time axis into a series of consecu-
tive time intervals of lengths T with the first interval
starting at the time offset 0 ≤ o < T . That is, the ith
interval includes the packets arriving during the time
period [o + (i − 1)T, o + iT ]. The fingerprinter uses the
arrival time of the first packet in the candidate flow as
time zero.

Selecting Fingerprint Intervals. The TagIt finger-
printer embeds a flow fingerprint by delaying packets
within several time intervals of that flow, which we
call them fingerprint intervals. Suppose that the finger-
printer aims at inserting an `-bits long fingerprint tag
into a candidate flow. The fingerprinter converts the `-
bits fingerprint into `c = f/rc bits of encoded fingerprint
bits using a Convolutional or Reed-Solomon encoder,
where rc is the coding rate of our encoder and its choice
will be discussed later in Section 8. The fingerprinter
uses the first n time intervals of a flow as its fingerprint
intervals, and assigns the `c encoded fingerprint bits to
these intervals in order (as discussed later, TagIt may
insert multiple bits in each interval).

Dividing fingerprint intervals into slots. The fin-
gerprinter divides each fingerprint interval (of length T )
into r sub-intervals of equal length T/r. It further di-
vides every sub-interval into m slots of length T/(rm).
We refer to the jth slot of the ith sub-interval as si,j
(i = 1, .., r; j = 1, ..,m). Figure 2a shows a fingerprint
interval.

Secret permutation functions. A fingerprinter gen-
erates two vectors of permutation functions, Π0 =
(π0

0 , π
0
1 , ..., π

0
r−1) and Π1 = (π1

0 , π
1
1 , ..., π

1
r−1), before

starting the fingerprinting process, and shares them se-
cretly with the extractor(s) as part of the secret fin-
gerprinting key. Each πij is a permutation function on
Zm = [0, ..,m − 1]; for instance, πij : [0, 1, 2, 3, 4, 5] →
[3, 5, 1, 0, 2, 4] is an example permutation function for
m = 6.
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Note that the Π0 and Π1 functions are generated once
and used for fingerprinting many flows. In Section 4.2
we will discuss the implications of the random selection
of Π0 and Π1.

Selecting fingerprint slots. For each fingerprint in-
terval, the fingerprinter uses the permutation functions
Π0 and Π1 along with a seed to select its fingerprint
slots. That is, for the kth fingerprint interval, the fin-
gerprinter selects the following set of slots as the finger-
printing slots:

Zk = (πb0(dk), πb1(dk), ..., πbr−1(dk)) (1)

where b ∈ {0, 1} is the encoded fingerprint bit to be
embedded in the kth interval, and dk is a random seed
(described later). Note that to improve resistance to ex-
haustive key search attacks, we use different Π0 and Π1

functions for different fingerprint intervals (this is ana-
lyzed in Section 9.4).

Embedding a fingerprint bit. Finally, the fingerprint
bits are embedded by the fingerprinter delaying packets
into the fingerprint slots. That is, the kth encoded fin-
gerprint bit is embedded into the kth interval by delay-
ing that interval’s packets into their nearest fingerprint
slots in Zk (the packets are delayed forward, so packets
appearing after an interval’s last fingerprint slot are not
delayed). This illustrated in Figure 2.

As we will analyze in Section 9, for high-rate flows de-
laying all packets into fingerprint slots will weaken the
invisibility property. We therefore only delay a fraction
Rmove of the packets into the fingerprint slots. Suppose
that ∆ is the length between two consecutive fingerprint
slots; the fingerprinter only delays the packets arriving
in the last ∆×Rmove part of the inter-slot interval into
the second fingerprint slot. This is shown in Figure 3.
We discuss this parameter in Section 8.

Empty intervals For the intervals that we have no
packet to fingerprint, we simply ignore that interval,
and therefore lose the bit corresponding to that inter-
val. Note that our choice of parameters are so that such
empty intervals are rare. Also, our use of coding com-
pensates for some of such lost bits. Alternatively, one
could use the next non-empty interval to embed the
corresponding bit; however, this will increase the risk
of de-synchronization between the extractor and finger-
printer, e.g., if a single packet moves into an empty in-
terval all of its following bits will be lost at the extractor.

Secret key of fingerprinting. Table 1 summarizes
the parameters of our system. Also, Table 1 shows the

Fig. 3. To ensure invisibility, TagIt fingerprinter only moves
Rmove fraction of packets into fingerprint slots. Rmove depends
on the rate of the flow being fingerprinted.

Table 1. Fingerprint Parameters

System parameters
T Interval length
r Number of subintervals
m Number of slots per subinterval
n Number of intervals
τ Packet extraction threshold
ρ Fingerprint extraction threshold
` Fingerprint length

m` Slot length
nbit Num. of fingerprint bits embedded in each interval
Rmove Fraction of fingerprinted packets

Secret parameters
Π0 Permutation for embedding bit 0
Π1 Permutation for embedding bit 1

parameters that are part of the fingerprinting key. The
key parameters are secretly shared between the finger-
printer and extractor, while the other parameters may
be publicly disclosed.

4.1 Extension: Inserting multiple bits per
interval

As discussed above, TagIt uses Π0 and Π1 to embed bits
0 and 1, respectively. We extend the set of permutation
functions to Π0,Π1, ...ΠS−1 in order to be able to embed
S different symbols. In other words, TagIt can embed
nbit = log2 S bits of information per interval by using S
numbers of permutation functions.

As expected, using more permutation functions in-
creases the extraction complexity as the extractor will
need to check more slot mappings. It also increases the
risk of extraction errors: as we increase the number of
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permutation functions, the probability of their overlap
also increases, which results in extraction errors. This
can be seen in Figure 4a, where increasing the number
of bits inserted per interval also increases the proba-
bility of error. Figure 4b shows the average number of
bits reliably embedded per second for various numbers
of permutation functions.

4.2 Analysis of Permutation Functions

Each permutation function gives the fingerprinter m

slot mappings for fingerprint insertion (e.g., Π0(d) gives
m slot mappings for bit 0 for a seed value d). How-
ever, since the permutation functions are generated ran-
domly, it is likely that two slot mappings where one rep-
resents a 0 bit and the other represents a 1 bit have over-
lapping slots. A high fraction of such overlapped slots
between two mappings that represent different bits will
increase the rate of false extractions, i.e., a 0 bit encoded
into an interval may be decoded as 1. Therefore, it is im-
portant to evaluate such overlaps for random selections
of Π0(d).

Let us compute the expected number of overlaps be-
tween two permutation functions. The probability of
having i ∈ [0, 1, · · · ,m − 1] overlaps between two ran-
domly generated permutation functions is given by

Pi =
(
N

i

)N−i∑
j=0

(−1)j(N − i− j)!/N ! (2)

where N = m! is the possible number of permutation
functions. Therefore, we derive the expected fraction of
overlaps between two permutation functions as

Roverlap = 1
m

m∑
i=0

iPi (3)

Therefore, for m = 6 (used in our experiments) we have
Roverlap = 0.166 ' 1/6. We confirm this analysis by ran-
domly generating 40 vectors of permutation functions
each of length 6000 and measuring their overlaps. As
can be seen in Figure 5 the mean probability of overlap
is close to 0.166.

5 Fingerprint Extraction

In this section, we describe how a TagIt extractor can
extract fingerprints from the flows it intercepts. For a

network flow intercepted by a TagIt extractor, it will
either declare the flow as “not fingerprinted”, or will
extract a fingerprint tag from that flow.

The extractor knows the fingerprinting key used by fin-
gerprinters. As described above, the fingerprinter uses a
random seed dk ∈ Zm to select a slot mapping for the
kth interval. Therefore, the extractor will need to use
M = 2nbit ·m possible mappings, e.g., m mappings for
the bit 0 and m for the bit 1 when nbit = 1. For each
of the possible M slot mappings, the extractor evalu-
ates the ratio of the packets appearing in those map-
pings. For instance, RI(k) is the fraction of packets in
interval I that appear in the slots according to the kth
mapping (0 ≤ k ≤ M − 1). Finally, the extractor finds
the mapping kmax that has the maximum fraction, i.e.,
kmax = arg maxRI (k) k.

If RI(kmax) > τ , the extractor declares the extracted bit
to be the bit represented by the mapping kmax. Other-
wise, the extractor extracts no bit from the interval I,
i.e., returns a null bit. Note that τ is a parameter of
the extractor and makes a trade-off between the false
positive and negative rates. For the extraction to be
successful, we need to have τ ≤ Rmove, where Rmove is
the fraction of packets moved into fingerprint slots, as
defined earlier. The final stage of extraction is to use
coding to correct the potentially corrupted bits. The
goal of the fingerprinter is to be able to extract all fin-
gerprint bits from a fingerprinted flow, or to correctly
declare a non-fingerprinted flow as non-fingerprinted.

Extraction complexity. For each fingerprint interval,
the legitimate extractor who knows the fingerprinting
key, i.e., the fingerprint mappings, will need to count
only M possible mappings (e.g., 2m for nbits = 1). An
adversary will need to guess the fingerprinting key to be
able to detect the fingerprint; as we show in Section 9.4
TagIt’s key has an extremely high entropy. For each key,
the adversary needs to try the possible M mappings to
see if any of them decode a fingerprint bit.

Another factor in the complexity of the extraction pro-
cess is the complexity of the coding scheme used by the
fingerprinters. However, note that since an adversary
should also perform the same decoding algorithms, the
coding complexity applies to the adversary as well. The
coding complexity of TagIt will depend on each spe-
cific coding scheme used. For instance, a convolutional
code can be decoded with a low-complexity Viterbi de-
coder [13, 14, 26, 29], which performs only 2kL checks
for each decoding operation. (Please see Appendix A for
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Fig. 4. Inserting multiple bits per interval.
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Fig. 5. Empirical distribution of slot overlaps between randomly
generated permutation functions with length 6000.

parameters. This is 23 operations for our 1/3 convolu-
tional encoder with a constraint length of 3.)

Extraction Synchronization. To extract the correct
fingerprint bit, we have to synchronize the received flow
with the sent one. To do so, we try multiple offset values
in the range [0, T/r] using steps of length t, i.e., T/(rt)
computations. We experimentally find that setting t =
m`/4 makes the right balance between computation and
synchronization accuracy. Figure 6 shows an extractor
trying various offset values.

6 System Analysis

6.1 False extraction of fingerprints from
non-fingerprinted flows

We evaluate the probability of extracting a fingerprint
message from a non-fingerprinted flow. In order to ex-
tract a fingerprint bit from the fingerprint interval of
a non-fingerprinted flow, a fraction τ or larger of the
packets within that interval should arrive within the
fingerprint slots of some fingerprint mapping.

For a particular fingerprint interval, consider a spe-
cific fingerprint mapping (out of M possible mappings).
For that mapping, the interval is declared to be finger-
printed with the corresponding bit if at least τ frac-
tion of the packets in that interval arrive within the
fingerprint slots of that mapping. We assume the pack-
ets to have a Poisson distribution, i.e., the inter-arrival
times are i.i.d. Therefore, for each packet, it will arrive
within a fingerprint slot with a 1

m probability. There-
fore, assuming P total packets in a fingerprint interval,
the chances of having τ ×P or more packets within the
fingerprint slots is given by:

FP = 1− CDFBinomialP,1/m (dτ.P e) (4)

where CDFBinomialn,p (x) is the CDF function of a Bino-
mial distribution with n number of trials and p proba-
bility of success. We have that

CDFBinomialn,p (x) =
x∑
i=0

(
n

i

)
pi(1− p)n−i

We model the arrival times using a Poisson process with
rate λ (λ is the flow rate). Consequently, the number
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Fig. 6. Offset synchronization of fingerprint extraction
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Fig. 7. False positive according to the number of embedded bits
in interval. Each point in the figure is the average over 100 flows.

of packets in the interval follows a Poisson distribution
with mean λ.T (T is the interval length). Therefore, we
average FP for different values of P as follows:

FI = M

∞∑
P=1

e−λ.T (λ.T )P

P ! FP (5)

Note that we also multiplied FP with M , the number of
all possible fingerprint mappings.

FI is the probability of extracting a fingerprint bit from
an arbitrary (non-fingerprinted) interval. Therefore, the
chances of extracting ρ fraction of all fingerprint bits
(out of total n fingerprint intervals) follows a Binomial
distribution, which gives us the false positive extraction
rate:

FP = 1−CDFBinomialn,FI
(dρ.FIe) =

n∑
k=nρ

(n, k)(FI)k(1−FI)n−k

(6)

6.2 Fingerprint error rates

Remember that for a given fingerprint interval, the fin-
gerprinter moves Rmove fraction of its packets to the
fingerprint slots corresponding to a particular mapping.
For the extractor to be able to extract this fingerprint
bit, at least τ fraction of packets should be still in the
corresponding fingerprint slots. Therefore, an error hap-
pens when more than Rmove − τ fraction of packets
within the interval move out of the fingerprint slots.

An individual packet moving out of a fingerprint
slot. Consider a fingerprinted packet pi, i.e., one that
has been moved to a fingerprint slot by the fingerprinter.
Suppose that pi has a distance x from the center of its
fingerprint slot (− T

2mr ≤ x ≤ T
2mr ). We model network

noise on packets with a Gaussian distribution as sug-
gested in previous work [20, 30] and also confirmed in
our measurements shown in Figure 8. Therefore, the
probability of pi moving out of its slot due to noise is:

P (pi shifted|x) = 1− Φ0,1(T/2mr − x
σ

)

+ Φ0,1(−T/2mr + x

σ
)

(7)

where Φ0,1(·) is the CDF of a Gaussian distribution with
mean 0 and standard deviation 1.

Given pi’s uniform distribution in the fingerprint slot,
we have:

P (pi shifted) = rm

T

x=T/2mr∫
x=−T/2mr

P (pi shifted|x)dx (8)

Losing a fingerprint bit. The fingerprinter loses an
interval’s fingerprint bit if more than Rmove−τ fraction
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Fig. 8. Delay distribution for different rates on a link between two distant computers (one in the U.S. and the other in Europe).

of its packets move out of the designated fingerprint
slots, i.e.,

Prloss = Pr{(Rmove−τ) or more frac. of packets shifted}

Assuming there are P packets in the interval, we have

PrPloss = 1− CDFBinomialP,c (d(Rmove − τ)P e) (9)

where c = P (pi shifted) in (8). By averaging across all
possible P ’s we have

Prloss =
∞∑
P=1

e−λ.T (λ.T )P

P ! PrPloss (10)

which is the probability of the extractor losing one par-
ticular fingerprint bit. Note that this is an upper bound
for the error; for each bit there are multiple mappings
(e.g., M/2 for nbit = 1), and therefore the packets of
the noisy interval may move into slots that correspond
to another mapping of the fingerprinted bits.

Flipping a fingerprint bit. A lost fingerprint bit
may be decoded as an invalid bit, e.g., a 0 bit may
be extracted as a 1 by the extractor. This happens if
the shifted packets move to the slots corresponding to
a mapping that represents an incorrect bit. We can es-
timate the probability of a bit flip as:

Prflip = Prloss × (Mb

∞∑
P=1

e−λ.T (λ.T )P

P ! FP ) (11)

where FP is given in (4) and Mb is the number of pos-
sible mappings for the incorrect bit.

Extraction error rate. Recall that TagIt uses an en-
coder, e.g., a convolutional code, to transform ` finger-
print bits into `c coded bits. Suppose that our encoder
can correct c bits out of `c bits. Therefore, our extrac-
tor should be able to correctly extract `c − c or more in
order to be able to decode the ` fingerprint bits.

Therefore the probability of the extraction error is:

ErrorExtraction = 1− CDFBinomial`c,Prloss
(c) (12)

As discussed in Section 8, we choose our parameters
such that ErrorExtraction is close to zero.

7 Simulations

7.1 Simulation setup

In our simulations, we generate synthesized network
flows with various rates based on Poisson processes, as
commonly used in the literature. We measure network
jitter between a node on our campus (which we will call
“Campus”) and several Planetlab nodes [4]. We partic-
ularly pick three Planetlab nodes that represent vari-
ous network conditions. Table 2 compares the standard
deviation of delay for the three links that we used in
our simulations. The delays are measured over 200 flows
each containing 600 packets sent over the links.

We additionally simulate more noisy conditions (higher
delay standard deviations) by adding artificial noise to
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Table 2. Comparing the network delay of the three links used in
our simulations.

Nodes involved Standard deviation of delay
Link 1 Campus-Ireland 0.083 − 0.478 (ms)
Link 2 Campus-Switzerland 9.773 − 12.347 (ms)
Link 3 Campus-China 24.917 − 30.762 (ms)

Table 3. Trade-offs in selecting different parameters of TagIt

Parameter Trade-offs
Increasing improves Decreasing improves

T Extraction rate Extraction time
r Delay, invisibility Extraction rate

m` Extraction rate Invisibility
m Invisibility, delay Extraction rate
nbit Invisibility False pos., Extract. time
τ False positive False negative
ρ False positive False negative
` Extract. performance Extraction time, delay

Rmove Extraction rate Invisibility

the traffic using the Linux tc command. For each link,
we measure delays for three different flow rates of 10,
100, and 200 pkt/sec.

Note that we have excluded experiments on Tor. This
is because our measurement of delays on Tor suggests
that they significantly deviate from that of typical Inter-
net traffic, therefore our earlier analysis does not hold.
We leave deriving parameters tailored to Tor for future
work.

7.2 Parameter choices

Table 3 shows how each of TagIt’s parameters impact its
performance. For instance, r makes a trade-off between
false-negative and the added delay, since the maximum
inserted delay is bounded by T

r (2− 2
m ).

We pick m = 6 throughout the paper. As mentioned, m
makes a trade off between extraction performance and
invisibility. The parameter T should be chosen based
on the rate of the flow, since false errors are propor-
tional to Tλ. The parameter m` represents a trade-off
between extraction time and delay since having small
length for m` will make the synchronization step more
time-consuming as discussed in Section 5. τ should be
used to control the rates of false positive and false neg-
ative. Increasing τ improves the false positive, and de-
creasing it improves the false negative. Also, ρ repre-

sents a trade-off between false positive and false nega-
tive rates. Figure 7 suggests a maximum false extraction
rate of 0.15, i.e., an expected number of 30 ∗ 0.15 = 4.5
false bits when n = 30. We therefore pick a conservative
value of ρ = 10.

7.3 Discussion of the Results

To fingerprint a flow, we randomly choose a flow delay
from our delay database, and a flow from the Poisson
distribution database. We embed the fingerprint on the
flow and then add the delay to the flow. We finally use
the extractor (who knows the fingerprinting key) on the
noisy flows. We embed various number of bits per inter-
val on various links as they have different noise standard
deviations; specifically, nbit is 5, 2, and 1 for links 1, 2
and 3, respectively.

Figure 9 shows the extraction results for the 3 selected
links. As expected, increasing slot length increases the
extraction rate. Also, higher packet rates result in better
extraction with the same parameters, as they offer more
packets to be fingerprinted.

Comparing with analysis. Figure 10 compares our
simulation results with that of our analysis from Sec-
tion 6. As can be seen, our analysis presents an upper-
bound on the experimental extraction rate. This is due
to the imperfection of our modeling of network noise (as
discussed earlier), and also the artifacts not included in
our model such as bursty errors due to temporary net-
work conditions. Note that our analysis does not aim at
tightly predicting the performance; instead, it intends
to (1) demonstrate how various parameters trade off
TagIt ’s features (like FP, invisibility, etc.), and (2) en-
able picking the values of TagIt’s parameters to be used
in the experiments for various traffic rates and network
conditions.

8 Implementation

We implement TagIt on Linux to fingerprint live net-
work flows. Our implementation is done in C++ using
NFQUEUE and libnetfilter libraries [25]. We did our
experiments on two different links: Link 1 from simu-
lations, and Link 4: Campus-California with standard
deviation of delay in the range 9.773 − 12.347 ms. We
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Fig. 9. Extraction result for different nodes in Europe and Asia (no coding)
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Fig. 10. Comparing analysis and simulation results for rate= 10.

use the communication system toolbox from Matlab to
implement our coding algorithms. We use two coding al-
gorithms in our experiments: Reed-Solomon codes (RS)
and Convolutional codes [26]. See Appendix A for in-
troduction on these coding algorithms.

On each of the links, we try various coding algorithms
and rates to achieve an extraction rate close to 1. Note
that our choice of coding algorithms and parameters are
not optimal, but to demonstrate the possibility of com-
pensating for remaining network errors through coding.
We leave the investigation of optimal codes to future
work.

In link 1, we embed nbits = 5 bits in each fingerprint
interval. Therefore, we use a Reed-Solomon code to cor-
rect the errors on this link. This is because, as discussed
in the appendix, RS codes are best for correcting bursty
errors. We aim at fixing 5 bits of errors; we therefore use
a rate 2/3 RS code with parameters n = 31 and k = 21.

On the other hand, in link 4 we embed nbits = 1 bit per
interval. We therefore use the Convolutional code on
this link, which works better on sparse errors (however,
it works best on longer streams). Similarly aiming to
correct 5 bits of errors, we try two rates of 1/3 and 2/3
with constraint lengths of 3 and [5,4], respectively. We
use a Truncated termination mode for our decoder.

Table 4 summarizes the results on live traffic for various
parameters and flow rates on the two links. The results
are averaged for 100 fingerprinted flows. We pick various
parameters for different tests to demonstrate the impact
of parameters on the performance.

9 Fingerprint Invisibility

In this section, we evaluate TagIt’s invisibility.

9.1 Kolmogorov-Smirnov Similarity Test

The Kolmogorov-Smirnov test compares the empirical
distribution of two samples and based on their maxi-
mum distance decides if they are from the same distri-
bution. We use the KS test to distinguish between TagIt
fingerprinted flows and their non-fingerprinted versions.
Table 5 summarizes our experiments for various pa-
rameters and flow rates. For each set of parameters
(each row of the table) we generate 100 fingerprinted
flows and compare each fingerprinted flow with its non-
fingerprinted version using the KS test. Table 5 shows
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Table 4. Running TagIt on live traffic.

Link 1
λ (flow rate) T (ms) r m` (ms) Rmove rc (coding rate) Ave. extraction rate Ave. extraction after coding
λ = 10 1800 600 0.5 1 2/3 0.946 1
λ = 100 270 90 0.951 1

Link 4
λ (flow rate) T (ms) r m` (ms) Rmove rc (coding rate) Ave. extraction rate Ave. extraction after coding
λ = 10 1800 15

20

1 2/3 0.82 0.996
λ = 10 1920 16 0.6

1/3
0.943 0.98

λ = 10 2160 18 1 0.96 1
λ = 100 2160 18 0.6 0.93 1

the result of KS test on different links with their confi-
dence level. The “Pass rate” column shows the fraction
of fingerprinted flows (out of 100) that are declared to
be from the same distribution as their non-fingerprinted
version by the KS test (a higher pass rate means bet-
ter invisibility). The table also demonstrates the trade-
off between invisibility and extraction performance, e.g.,
for various interval lengths, number of fingerprint bits,
and the ratio of the moved packets.

Also, as described earlier, Rmove (the fraction of pack-
ets being delayed) trades off fingerprinting performance
with invisibility. Figure 11 shows the impact of Rmove.
As can be seen, increasing Rmove improves fingerprint-
ing performance (increases extraction rate and reduces
false positive) at the price of degrading invisibility (in-
creasing the KS statistic).

9.2 Single flow invisibility

We also use the delay imposed during fingerprinting
as another metric to evaluate invisibility. Such an at-
tack can be performed by an adversary who feeds his
own flows into the fingerprinting system in order to
measure fingerprint perturbations. The worst-case de-
lay per packet inserted by TagIt fingerprinter is given
by maxdelay = T

r (2− 2
m ). Table 6 shows the average of

maxdelay for different r.

9.3 Multi-flow invisibility

We also evaluate TagIt’s invisibility to the MFA attack
of Kiyavash et al. [22], discussed earlier. As mentioned
before, TagIt uses randomization to defeat MFA. Be-
cause of using randomization by TagIt, fingerprinted
flows will have different patterns even when the fin-

gerprint key is the same. Figure 12 shows the cumu-
lative histogram for 10 flows in an interval before and
after fingerprinting, for different slot lengths. As can
be seen, even the use of 10 flows can not leak the fin-
gerprint since TagIt’s randomization spreads packets
evenly across various slots.

9.4 Fingerprinting key entropy

A trivial way to attack a fingerprinting system is to
guess its fingerprinting key. Therefore, the key should
have a high-entropy making it practically infeasible to
be guessed. When TagIt embeds 1 bit per interval, the
space of fingerprinting keys is the set of all possible per-
mutation functions Π0 and Π1. Thus, the number of
possible permutations is given by:

kspace = (((m)!)rn)2 (13)

Also, we have m different choices for the random seed of
each interval, dk. So the key entropy of our fingerprint-
ing scheme is:

log2kspacem (14)

Evaluating this for the parameters of Table 4 results
in a key with over 7552 bits of uncertainty, which is
significantly costly to be guessed.

10 Future Directions

Comprehensive Invisibility Analysis. While in
Section 9 we evaluated TagIt’s invisibility against spe-
cific classifiers, our analysis does not offer theoretical
guarantees on the invisibility of fingerprints against
other types of classifiers. Future research may deploy
modern classification algorithms (including machine
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Table 5. Kolmogorov-Smirnov test results for various parameters

Link λ(flow rate) T (ms) r m`(ms) Rmove Confidence level Pass rate Extraction rate
n = 30 n = 20 n = 10

Link 2 λ = 10

360 6
0.6 95%

1 0.52
480

10

8 0.99 1 1 0.688
600 10 0.92 0.98 1 0.745
360 6

0.8 95%
1 0.56

480 8 0.94 0.99 1 0.71
600 10 0.60 0.85 0.98 0.819
360 6

1 95%
0.87 0.99 1 0.68

480 8 0.25 0.53 0.91 0.85
600 10 0.0 0.15 0.64 0.89
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Fig. 11. The impact of Rmove on invisibility and extraction performance (slot length= 8ms).
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Fig. 12. Cumulative histogram of 10 flows, non-fingerprinted and fingerprinted with different slot lengths (quantization step in each
figure is half of slot length). (a) and (c) have 2000 points in the X axis because slot length is 2 vs. 20 in (b)and (d), and interval
length is 2sec.

Table 6. Average and maximum fingerprint delay per packet for
different r parameters

r T/r (ms) Average delay (ms) Maximum delay (ms)
10 180 84.11 300
20 90 40.55 150
30 60 28.15 100
60 30 14.44 50

learning algorithms or statistical tests) that are able
to distinguish TagIt fingerprints with higher confidence
than the classifiers used in this paper. Therefore, an av-

enue for future work is to evaluate TagIt’s invisibility
against other classifiers, and in general seek provable
guarantees on the invisibility of fingerprints. This may
in turn lead to design adjustments that improve TagIt’s
invisibility.

Experiments on Tor. Compromising anonymity sys-
tems like Tor is one of the potential use cases of flow
fingerprints, as we argued early in the paper to moti-
vate the importance of the flow fingerprinting problem.
However, our experiments throughout this paper were
mainly performed on Planetlab nodes, representing reg-
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ular Internet nodes, but not on the Tor network. This is
due to two reasons: First, based on our measurements
of Tor traffic, the behavior of latency in Tor is signif-
icantly different than regular Internet. Therefore, our
theoretical analysis of performance (e.g., Section 6) is
not valid when fingerprints are used on Tor traffic. In
particular, while we modeled the network jitter of regu-
lar traffic using Laplacian distribution (which simplifies
our derivations), our measurements show that Tor jit-
ter has a unique distribution that highly deviates from
that of normal traffic. One avenue for future work is
to derive accurate statistical models for traffic behavior
in Tor (and similar anonymity systems), and use such
a model to analytically evaluate the performance of a
fingerprinting system like ours when used in Tor.

Second, our measurements on Tor shows that network
jitter varies drastically across different Tor circuits. As
shown in our experiments and demonstrated through
analysis, the performance and invisibility of TagIt is
highly sensitive to the choice of parameters and net-
work conditions. However, the fingerprinting entities are
not aware of all of the Tor relays comprising a partic-
ular Tor connection, consequently, they can not tailor
the fingerprinting parameters to each specific Tor con-
nection. This makes the use of TagIt unsafe in the Tor
application as the fingerprinting parties can not adjust
the right invisibility-performance balance, e.g., the fin-
gerprint may be overtly visible, or highly unreliable due
to the use of improper fingerprinting parameters. As a
future research direction, we suggest designing flow fin-
gerprinting systems that are less sensitive to the network
conditions, therefore usable on Tor even though the fin-
gerprinting parties are unaware of the relays comprising
connections.

11 Conclusion

We designe the first blind flow fingerprinting system
called TagIt. We extensively evaluate the performance
and invisibility of TagIt through theoretical analysis.
We also evaluate TagIt through extensive simulations
on network traces as well as through experimenting over
live network traffic.
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A Coding Algorithms Used

A.1 Convolutional codes

Convolutional codes are a class of linear codes that have
been used in different applications [26]. A Convolutional
code is represented by (n, k, L), in which k is the length
of the input stream entering the encoder, and n is the
length of the output. k/n is the rate of the code. The
output is generated by convolving multiple bits of the
input by a generator function G. The length of the gen-
erator function is the constraint length, L. Increasing
the constraint length makes the decoding more com-
plex, bur also more powerful. The Viterbi algorithm is
an efficient way to decode Convolutional codes [26].

A.2 Reed-Solomon codes

Reed-Solomon codes are a class of linear block codes
that are used in digital communications where the noise
is bursty. A Reed-Solomon encoder takes a block of data
and adds extra “redundant” bits. The Reed-Solomon
code is represented by the triple (n, k,mc), where k is
the number of input blocks, mc = log2 (n+ 1) is the
length of each block, and n is the number of blocks in

the output (the message contains mcn bits). By adding
2t redundant blocks, the RS code is able to correct up to
t corrupted blocks. The number and type of errors that
can be corrected depend on the characteristics of the
Reed-Solomon code. The number of distinct fingerprints
that can be embedded and extracted reliably using RS
code by TagIt is given by:

N = 2mck (15)

For instance, for k = 5, and mc = 5, we have that N =
107.
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