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Abstract: The continuously increasing use of location-
based services poses an important threat to the pri-
vacy of users. A natural defense is to employ an
obfuscation mechanism, such as those providing geo-
indistinguishability, a framework for obtaining formal
privacy guarantees that has become popular in recent
years.
Ideally, one would like to employ an optimal obfusca-
tion mechanism, providing the best utility among those
satisfying the required privacy level. In theory optimal
mechanisms can be constructed via linear programming.
In practice, however, this is only feasible for a radically
small number of locations. As a consequence, all known
applications of geo-indistinguishability simply use noise
drawn from a planar Laplace distribution.
In this work, we study methods for substantially im-
proving the utility of location obfuscation, while main-
taining practical applicability as a main goal. We pro-
vide such solutions for both infinite (continuous or dis-
crete) as well as large but finite domains of locations, us-
ing a Bayesian remapping procedure as a key ingredient.
We evaluate our techniques in two real world complete
datasets, without any restriction on the evaluation area,
and show important utility improvements with respect
to the standard planar Laplace approach.
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1 Introduction
In recent years, the increasing availability of location in-
formation about individuals has led to a growing use of
systems that record and process location data. Exam-
ples include Location Based Services (LBSs), location-
data mining algorithms to determine points of interest,
and location-based machine learning algorithms to pre-
dict traffic patterns.
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While these systems have demonstrated to provide
enormous benefits to individuals and society, the grow-
ing exposure of users’ location information raises impor-
tant privacy issues. On one hand, location information
itself may be considered as sensitive. For instance, there
have been reported episodes of men tracking women
with GPS or specific applications [1, 2], and in California
location records have been used in divorce proceedings
to prove claims about suspicious movements of spouses
[3]. Furthermore, location data can be easily linked to a
variety of other information that an individual usually
wishes to protect: by collecting and processing such data
on a regular basis, it is possible to infer an individual’s
home or work location, sexual preferences, political and
religious inclinations, etc. [4].

It is not surprising, therefore, that a lot of effort
has been dedicated to design and implement methods
for protecting the user’s privacy, while preserving the
utility and the dependability of location data for their
use in location-based systems. In general, all compu-
tational methods for privacy protection are based on
degrading the precision of information. In the case of
location privacy, one typical way to reduce the preci-
sion is by spatial obfuscation, which has the advantage
of requiring no trusted third party, since the user him-
self can run the obfuscation mechanism locally on his
device. In this paper we focus on the randomized ap-
proaches to spatial obfuscation, which in recent years
have become increasingly more popular. Much of this
success is due to their properties of robustness with re-
spect to attackers that may combine the observation of
the user’s activity with any side information they have
about the user or, more generally, about the habits of
the population, the characteristics of the territory, etc.

The most influential proposals of this kind have
been, to the best of our knowledge, those by Shokri et
al. [5] and by Andrès et al. [6]. Both their frameworks
are built on rigorous and natural notions of privacy, and
both are based on the idea of confusing the adversary
by reporting a noisy location, generated from the true
location according to some probability distribution.

Specifically, the authors of [5] considered a Bayesian
model of adversary. They focused on optimizing the
trade-off between privacy and utility and proposed a
method to compute the optimal noise-generating mech-
anism, which consists in formalizing the utility con-
straints and the privacy target as a linear optimization
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problem, and then applying linear programming tech-
niques. The approach of computing an optimal noisy
mechanism via linear programming was also adopted in
[7] and [8], although they considered the reverse prob-
lem of optimizing the utility for a given level of privacy.

On the other hand, the authors of [6] proposed the
notion of geo-indistinguishability, based on (an exten-
sion of) differential privacy [9]. Like differential privacy,
geo-indistinguishability is independent from the prior
of the adversary, and is robust with respect to compo-
sition. Furthermore, it can be implemented in a simple
and efficient way using a planar Laplacian as the noise
function. Indeed, probably thanks to its efficiency, geo-
indistinguishability via the Laplacian mechanism has
been adopted as the basis or as a component of sev-
eral tools and frameworks for location privacy, includ-
ing: Location Guard [10], LP-Guardian [11], LP-Doctor
[12], the system for secure nearby-friends discovery in
[13], SpatialVision QGIS plugin [14], and it is one of
the possible input methods in STAC [15]. Furthermore,
the PIM mechanism [16] can be considered an extension
of the planar Laplacian to the case of traces (temporally
correlated sequences of points): The authors of [16] at-
tack the problem of the degradation of privacy due to
correlation by adding Laplacian noise directly to the
convex hull of the trace.

The Laplacian is not the only way to implement geo-
indistinguishability efficiently: on a discrete map one
can also use a planar variant of the geometric mech-
anism [17], and if the map is bounded, the exponen-
tial mechanism (cfr. [18] for its use in location privacy)
and the tight-constraints mechanism [19] are applicable
as well. The latter are applicable to any finite domain
equipped with an arbitrary privacy metric.

The advantages and disadvantages of these two ap-
proaches could be, at a first thought, resumed as follows:
Generating the noise via a direct method (Laplacian, ge-
ometric, exponential, tight-constraints) is efficient, but
there is no guarantee of optimality. Generating the noise
via linear programming techniques, on the other hand,
is computationally expensive, and not feasible for more
than about hundred locations, but it gives the optimal
trade-off between privacy and utility.

In this paper we try to improve the situation: on
one hand, we explore ways to increase the utility of the
direct methods; on the other hand, we study whether it
is possible to scale the optimal method to cover large
areas, by simply increasing the size of the locations.

It turns out that we can immediately improve the
utility of the direct methods by using one of the princi-
ples of the optimal mechanism. In general the construc-

tion of the latter (for the case in which we fix the pri-
vacy constraints and we optimize the utility) is based
on a Bayesian technique: given a prior, each reported
location is remapped into the best possible location, ac-
cording to the prior and the loss function. Such process
can be applied also in the case of the direct methods:
Given the prior, one can compute the best remapping
with respect to the prior and apply it to the method,
thus increasing the utility. The gain in utility is such
that, according to our experiments on small areas in
which the optimal mechanisms can be constructed, the
difference between the expected loss between some of
the direct methods and the optimal one is minimal. Fur-
thermore, while in the optimal method finding the best
remapping is part of the linear optimization problem
and therefore it adds significantly to the complexity, in
the case of the direct methods the best remapping is
computed separately from the mechanism, and after we
know the result of the mechanism. Therefore, it can be
computed much more efficiently.

Let us now consider the optimal method in more de-
tail, to see if we can cope with the complexity issue. The
variables of the linear program are the probabilities of
reporting location z when the true location is x. Hence,
their number is the square of the number of locations
in the problem. Consequently the linear programming
technique can only be applied the number of locations is
relatively small: In our experiments, we found that the
optimization program would already take several days
to produce the result when such number was approach-
ing 100. If we want to cover a large area, one simple
solution is to increase the size of the “locations”. For in-
stance, if we want to apply the technique in an area of
100 Km2, we would divide the map in “cells” of 1 Km2

(for reference, 100 Km2 corresponds approximately to
the San Francisco area).

One problem with this approach is that the scale of
typical utility functions is much smaller. For instance,
if we intend to use an LBS to find point of interests
in walking distance, it seems natural to measure the
distance in terms of meters, not kilometers. Now, ig-
noring distances up to a kilometer in general induces a
fictitiously higher utility, because when we discretize a
map into cells, the distances are measured as if all the
points in a cell were identified with its center. The util-
ity computed using this discretized distance is only an
approximation of the real utility, and the coarser is the
granularity of the discretization, the less precise is this
approximation.

Furthermore, a coarse granularity generates prob-
lems not only about utility, but also about privacy, be-
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cause the privacy constraints usually depend on the dis-
tance between points as well. Assume, for instance, the
privacy constraints are those of geo-indistinguishability,
and consider two points x and x′ that are very close but
after the discretization belong to different cells. Since
they are close they should be highly indistinguishable,
but since they are in different cells they will be consid-
ered as being located in the centers of their respective
cells, and they will therefore become distinguishable at
the level allowed by he distance between the two centers.

Contribution
The contributions of this paper are as follows:
– We consider the main methods for geo-

indistinguishability (Laplacian, geometric, expo-
nential, tight-constraints) on various kinds of do-
mains: continuous, discrete unbounded, and discrete
bounded. We show that their utility increases con-
siderably when we apply the best remapping (wrt
a given prior). The comparison is done using the
Brightkite and the Gowalla datasets.

– We compare the utility of the above methods and
that of the optimal method on small areas where
the latter can be computed. We show some of the di-
rected methods, after we apply the remapping, have
an expected loss close to that of the optimal one. We
also discuss the possibility of applying the optimal
method on a larger area, by increasing the size of
the location, but we show that the gap between the
approximated utility (computed on the coarse grid)
and the “real” one would be too large.

– In order to construct the prior, we take a common
machine learning approach separating between the
training and testing data. From the first part, we
construct a global prior used to optimally remap the
mechanisms. From the other part of the dataset, we
construct a user-specific prior used to measure the
utility of the mechanism.

Related work
The most closely-related works have already been dis-
cussed in the first part of the introduction. Here we
mention some of the other relevant work in the area of
location privacy.

As already stated, in general, all computational
methods for privacy protection are based on degrading
the precision of information. In the particular case of
location data, this is obtained essentially in two ways:
spatial cloaking and spatial obfuscation.

Spatial cloaking, first proposed in [20], is based on
the idea of concealing the user’s exact coordinates by
reporting a cloaked area, so to meet certain anonymity
constraints. Often, the cloaking is not only spatial, but
also temporal, so to conceal also the time in which the
user was in that position. The anonymity constraints
that have been mostly considered in the case of loca-
tion privacy are: k-anonymity [21–24], l-diversity [25],
t-closeness [26], and p-sensitivity [27]. In addition, in
order to reduce the linkability between identity and
trajectories, [28] proposed the so-called mix-zones. This
idea assumes that people will only report their location
in certain regions, called “application zones”, where a
location-based service is offered, e.g. an airport, bank,
or coffee shop. In the mix zones, outside the application
zones, users will receive new, unused pseudonyms. This
helps prevent an attacker from linking pseudonyms, be-
cause the new pseudonym could have been assigned to
anyone else in the mix zone.

In order to protect aggregate location information,
randomized methods, and in particular differential pri-
vacy, have also been used. For instance, [29] presents
a way to statistically simulate the location data from
a database while providing privacy guarantees. In [30],
a quad tree spatial decomposition technique is used to
achieve differential privacy in a database with location
patter mining capabilities. On the other hand, Dewri
[31] proposes a combination of differential privacy and
k-anonymity for the purposes of hiding the location of
a single individual.

Spatial obfuscation, on the other hand, works by re-
ducing the precision of the position sent from the user
to the server. In contrast to the above approaches, that
require a trusted third party, spatial obfuscation mecha-
nisms can be run by user itself [32]. Spatial obfuscation
approaches can be classified into two main kinds: de-
terministic and randomized. We already discussed the
randomized ones in the first part of this introduction,
but we want to mention here also the approach of [33],
that presents various user-centered adaptations of differ-
ential privacy to the location context, and exploits the
symmetry of circular noise functions to define mecha-
nisms that are very easy to implement, satisfy the re-
quired privacy constraints, and under certain conditions
provide the same privacy and utility levels as more com-
plex noise functions.

As for the deterministic methods, a typical one is
that proposed by Ardagna et al. [34], which consists in
blurring the user’s location by reporting a larger region
(containing the position). Other similar proposals are
presented in [35–38].
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Unfortunately, deterministic methods are not ro-
bust with respect to composition. For instance, if the
user reports one zone and then, soon afterwards, an ad-
jacent zone, it can easily be inferred that he must be
near the border between these two zones. Furthermore,
these methods offer little guarantees against an adver-
sary who already has some side knowledge (aka prior
knowledge) about the habits of the user or of the popu-
lation.

Plan of the paper
The next section recalls the necessary preliminary no-
tions. Section 3 introduces the notion of remapping. Sec-
tion 4 defines the various direct mechanisms and the
result of applying the remapping to them. Section 5
compares the various mechanisms (with and without
remapping), and the optimal one obtained from linear
programming. Section 6 concludes. The proofs of all re-
sults can be found in the appendix.

2 Preliminaries

2.1 Geo-indistinguishability

The notion of geo-indistinguishability is a variant of dif-
ferential privacy for location based systems introduced
in [6]. Let X ⊆ R2 be the set of possible locations of a
user, and let Z be a set of reported values, often assumed
to be equal to X . Let P(Z) denote the set of probability
distributions over Z and let d⊗ be themultiplicative dis-
tance between two distributions σ1, σ2 ∈ P(Z), defined
as d⊗(σ1, σ2) = supZ⊆Z | ln

σ1(Z)
σ2(Z) |, with the convention

that | ln σ1(Z)
σ2(Z) | = 0 if both σ1(Z), σ2(Z) are zero and ∞

if only one of them is zero.
An obfuscation mechanism K probabilistically se-

lects a reported location z ∈ Z starting from a real loca-
tion x ∈ X , and is modeled by a function K : X → P(Z)
mapping each real location to a probability distribution
over the reported ones. K satisfies ε-geo-indistinguisha-
bility iff

d⊗(K(x),K(x′)) ≤ ε d(x, x′) ∀x, x′ ∈ X

where d denotes the Euclidean distance. This def-
inition can be equivalently stated as K(x)(Z) ≤
eεd(x,x′)K(x′)(Z) for all x, x′ ∈ X , Z ⊆ Z.

Note that εd can be viewed as a distinguishability
metric: the closest x, x′ are wrt this metric, the more
similar the distributions K(x),K(x′) are required to be.

Following [6], we choose ε by selecting a radius r in which
we want to enjoy strong privacy (eg. r = 0.1 km), some
small privacy level l for that radius (eg. l = ln(1.4))
and then set ε = l/r. This ensures that locations within
distance r will have distinguishability level at most l.

Note also that, although the Euclidean distance is
a natural choice of distinguishability metric for location
privacy, the same definition could be used with a dif-
ferent distance metric capturing a different notion of
privacy. Privacy under arbitrary metrics is studied in
[39], while [18] proposes a method to construct a distin-
guishability metric taking into account the semantics of
each location. In this paper we mostly assume d to be
Euclidean, but also discuss mechanisms that allow the
use of an arbitrary privacy metric.

2.2 Utility

The utility provided by an obfuscation mechanism K

depends on the specific application it is used for. Cer-
tain applications (eg. weather report) can tolerate a high
amount of noise without affecting the provided service,
while others (eg. GPS navigation) require finer informa-
tion. Following several works on location privacy [5, 7],
we define utility as the expected quality loss of K wrt
some prior distribution π:1

QL(K,π,dQ) =
∑

x∈X ,z∈Z

π(x)K(x)(z)dQ(x, z)

where dQ is a quality loss metric, measuring how much
the service is degraded when z is reported instead of x.
When evaluating a mechanism without a specific appli-
cation at hand, we commonly use the Euclidean metric
for dQ, since the quality of all LBSs degrades when z

moves far away from x.
Another useful generic quality loss metric is the

squared Euclidean distance d2. This metric is relevant
for applications querying for information in a specified
area (eg. POI retrieval), since obfuscation typically re-
quires to increase the area of retrieval which grows with
the square of the distance between x and z [6].

Note that all techniques discussed in this paper,
with the sole exception of the continuous remap of Sec-
tion 3.2, work for an arbitrary utility metric dQ, so they
can be easily adapted to the application at hand.

1 For simplicity, the expression for QL assumes discrete X ,Z.
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2.3 The planar Laplace mechanism

The planar Laplace (PL) mechanism is a simple and ef-
ficient continuous mechanism satisfying ε-geo-indistin-
guishability. It can be used when X is any subset of
R2 and the reported set Z is the full R2. The mecha-
nism consists at drawing from a 2-dimensional Laplace
distribution centered at the real location x, having pdf:

Dx(z) = ε2

2π e
−εd(x,z)

Drawing from this distribution can be easily and effi-
ciently performed in polar coordinates, by adding to x
a randomly drawn vector expressed as a radius r and
angle θ, as follows:
– draw θ uniformly in [0, 2π),
– draw p uniformly in [0, 1) and set r = C−1(p),
– report z = x+ 〈r cos(θ), r sin(θ)〉,

where C−1(p) is the inverse of PL’s cumulative distribu-
tion function for r, given by C−1(p) = −1

ε

(
W−1(p−1

e ) +
1
)
and W−1 is the Lambert W function (−1 branch) im-

plemented in several numerical libraries.
Note that, as with any continuous mechanism, us-

ing the above algorithm in a machine with floating point
arithmetic essential corresponds to using a discretized
version of the mechanism, where the obtained location
z corresponds to a subset of R2 around z. In that sense
we can think of z as a “single point” drawn from a con-
tinuous distribution.

Concerning utility, it can be shown that, due to the
symmetry of R2, the (squared) Euclidean quality loss of
PL is independent from π, namely ∀π ∈ P(X ):

QL(PL, π,d) = 2/ε and QL(PL, π,d2) = 6/ε2 (1)

2.4 Optimal mechanisms

Although the planar Laplace mechanism is simple and
efficient, its utility is not guaranteed to be optimal
among all mechanisms satisfying ε-geo-indistinguisha-
bility. If X is finite and small in size, given π and dQ an
optimal mechanism K : X → P(X ) can be constructed
by solving a linear optimization problem [7]. In the finite
case the mechanism can be represented by a |X | × |X |
stochastic matrix K, where Kxz is the probability to
report z from x. Having elements of K as variables, the
optimal mechanism is given as a solution to:

minimize QL(K,π,dQ)
subject to Kxz ≤ eεd(x,x′)Kx′z x, x′, z ∈ X

and
∑
z Kxz = 1 x ∈ X

The constructed mechanism is guaranteed to satisfy ε-
geo-indistinguishability, and have no worse utility than
any other mechanism K′ also satisfying the same pri-
vacy definition. However, solving the above problem is
feasible only when |X | is very small. In fact, the number
of variables and the number of constraints of the linear
optimization problem are respectively quadratic and cu-
bic on the number of locations. In [7] an approximation
technique is proposed using spanners, but even in this
case the technique is necessarily limited to at most a
few hundred locations.

Note that this technique can be employed to an ar-
bitrary privacy metric d, not necessarily the Euclidean
one. Moreover, [8] proposes similar constructions taking
also into account inference error constraints.

3 Remapping locations
Remapping the output of a mechanism is a simple yet
effective technique for improving its utility while satis-
fying the same level of privacy. In this section we discuss
the technique in general, the optimal way of performing
it and an efficient way to remap points on a continuous
plane. In Section 4 we further discuss remapping for var-
ious types of mechanisms, and in Section 5 we show that
remapping can be effective in practice for substantially
improving the mechanism’s utility.

Given a mechanism K : X → P(Z), and starting
from a location x, we can first use K to draw a noisy
location z, then remap z to a new location z∗ = R(z)
using a remapping function2 R : Z → Z, and finally
report z∗. Let KR denote the composed mechanism (if
K,R are written as stochastic matrices, the composition
is their product KR). The following result is a straight-
forward adaptation of the well-known fact that remap
reserves differential privacy ([40] Prop. 2.1).

Proposition 3.1 (Remap preserves privacy). Let K :
X → P(Z) be a mechanism and R : Z → Z be a remap.
If K satisfies ε-geo-indistinguishability then so does KR.

On the other hand, remapping can improve the
mechanism’s utility. Geo-indistinguishability requires
nearby locations x, x′ to produce z with the same prob-
ability, but z does not have to be far way from x. Con-

2 In general R could also be probabilistic, although in this paper
we only consider deterministic ones, since an optimal determin-
istic remap always exists.
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sider, for instance, two locations close to the sea, say in
San Francisco (Fig 6). A mechanism such as the planar
Laplace adds noise symmetrically in all directions, lead-
ing to a high chance of z falling into the sea. Knowing
that the user is unlikely to be in the sea, we can remap
it back into the edge of the city, bringing it closer to the
true location. Of course, such a remap will decrease the
utility if a user is indeed in the sea, but the chances of
this happening is small; on average utility is improved.

Clearly, one wishes to employ the remap providing
optimal utility, captured by the following property.

Definition 3.2 (Optimal remap). A remap R is
optimal for K wrt π,dQ iff QL(KR, π,dQ) ≤
QL(KR′, π,dQ) for all remaps R′.

Optimality can be achieved by a Bayesian remap, choos-
ing the location z∗ that minimizes the expected loss
wrt the posterior distribution σ ∈ P(X ) obtained from
π,K after observing z by applying Bayes’ rule. Let
σ = Post(π,K, z) denote this distribution, given by

σ(x) = π(x)K(x)(z)∑
x′ π(x′)K(x′)(z) x ∈ X

Proposition 3.3 (Bayesian remap). Given π, K, dQ,
the remap defined by:

R(z) = arg min
z∗∈Z

∑
x∈X σ(x)dQ(x, z∗) where

σ = Post(π,K, z)

is optimal for K wrt π,dQ.

3.1 Efficiency of the Bayesian remap

The Bayesian remap consists of computing the poste-
rior Post(π,K, z) and then finding the point z∗ ∈ Z that
minimizes the expected loss. If X ,Z are finite, the remap
can be computed directly using its definition (Prop 3.3).
Note that computing the remap for an existing mecha-
nism K is far more efficient that constructing an opti-
mal mechanism (Section 2.4); the latter is feasible only
for sizes of the order of 102, while a direct computation
of R can be performed for sizes two to three orders of
magnitude larger.

Moreover, even when iterating over all z∗ ∈ Z is
infeasible, the remap can be approximated by consider-
ing only locations within a certain dQ-ball Bt(z) cen-
tered at z, replacing arg minz∗∈Z by arg minz∗∈Bt(z).
The choice of the threshold t could be done in vari-
ous ways, for instance we can choose the smallest t such

that K(x)(Bt(x)) ≥ 0.99 for all x ∈ X . Intuitively, under
this threshold we expect the posterior σ to be very small
outside the examined area, while dQ is large, making lo-
cations in that area unlikely candidates for the remap.
Note that any remap function preserves geo-indistingui-
shability, so from the point of view of privacy we are safe
to use any heuristic might make it faster.

The complexity in this case depends only on the
threshold t, not on |X |, |Z|. In fact, this technique makes
the remap applicable even if the space is infinite (but
discrete); in our experiments with an infinite grid (Sec-
tion 5) each remap took only a few milliseconds without
any loss in utility. Note also that this technique works
with any choice of dQ, making the remap a generic and
efficient method for practical applications.

On the other hand, if Z is continuous the problem
becomes harder, since, even in a bounded area Bt(z), we
would still need to consider uncountably many points.
This case is discussed in the next section.

3.2 Efficient continuous remap

For many applications, we would like to have the flexi-
bility to position a user anywhere on a plane, as well as
to report arbitrary locations, hence it is convenient to
take X ,Z to be the full R2.

The first problem in this case is computing the pos-
terior. Although users could be potentially located any-
where in the plane, in practice the prior is constructed
from some finite dataset of past service uses, POIs, etc.
Hence, we can assume that a posterior σ ∈ P(R2) of
finite support, can be constructed for the remap (see
Section 4.1.1 for a possible way of constructing σ). Now,
assuming a posterior σ of finite support, denoted by dσe,
the problem is that we still have an uncountable set of
possible candidates for z∗. The reason is that, although
dσe is finite, the z∗ minimizing the expected loss is not
necessarily an element of the support.

Thankfully, for the common case of the Euclidean
and squared Euclidean metrics, constructing the opti-
mal z∗ can be done efficiently. Intuitively, z∗ should be
“in between” the points in the support of σ, that is in
the convex hull of dσe. A natural choice is the centroid
of the points in dσe weighted by their probabilities:

Centroid(σ) =
∑
x∈dσe σ(x)x

The centroid can be shown to minimize the expected
squared distance d2.
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Proposition 3.4. For all σ ∈ P(R2) with finite dσe:

Centroid(σ) = arg min
z∗∈R2

∑
x∈dσe σ(x) d2(x, z∗)

Consider, for instance, the posterior σ(0) = 0.2,
σ(1) = 0.8. The centroid c = 0.2 · 0 + 0.8 · 1 gives the
minimum expected squared distance 0.104.

On the other hand, somewhat unexpectedly, the
centroid does not minimize the expected standard Eu-
clidean distance d. In the example above, the centroid
gives expected distance 0.28, while 1 itself gives ex-
pected distance 0.16. The problem of finding the point
that minimizes the weighted distance from a given set
is known as the Weber problem, and is solved by the
Weiszfeld algorithm, first discovered in 1937 and later
rediscovered with various improvements [41]. The algo-
rithm starts from y0 = Centroid(σ) and iterative mod-
ifies it as follows:

yi+1 =
∑
x∈dσe

σ(x)x
d(x, yi)

/ ∑
x∈dσe

σ(x)
d(x, yi)

We denote by Weiszfeld(σ) the result of this iteration
with some stopping condition (eg, when the improve-
ment in the expected distance drops below some ε).

Note that both Centroid(σ) are Weiszfeld(σ) are
practical even for large sizes. Section 4.1.1 discusses this
technique in the context of the planar Laplace mecha-
nism, and the evaluation of Section 5 shows its practical
applicability. Finally, note that for an arbitrary dQ, the
optimal solution can be approximated by discretizing
the space and applying the approximation technique of
Section 3.1.

3.3 The choice of prior

A crucial element of the Bayesian remap is the prior
distribution π from which the posterior σ is constructed.
In theory, the prior should describe the behaviour of the
user, and a good quality prior, constructed from a large
dataset of past behaviour of that user, is assumed to
be available. In practice, however, there are two major
problems with this assumption.

First, general-purpose obfuscation mechanisms
should be able to work with new users for which no in-
formation whatsoever is available. For instance, a user
installing the Location Guard browser plugin [10] is ex-
pecting to use it immediately, but the plugin has no
information about this user.

Second, even after an extended training period and
assuming that all user’s movements are recorded, the

prior constructed from this data is not necessarily of
good quality. For instance, such a prior would assign
zero probability to all locations never visited in the past,
but clearly the user might visit some new locations in
the future. Moreover, such a prior would mostly con-
tain locations that the user visits on a daily basis, such
as its home or work. Remapping using such a prior is
similar to revealing the prior to the provider: we might
often assume that an adversary already has this prior
knowledge, but if he doesn’t we shouldn’t reveal it to
him ourselves.

The problem of prior knowledge is particularly cru-
cial for the proper evaluation of a mechanism. Con-
structing a prior from a dataset and then evaluating it
on the same dataset (a common practice in the litera-
ture of location privacy) might be misleading, especially
for datasets containing only a few locations per user. In
the extreme case, a prior constructed from a single vis-
ited location will lead to a remap that is perfect for that
location, but likely very bad for any other location the
user might visit in the future. Such a practice is similar
to training and testing a learning algorithm on the same
dataset.

To deal with the above issues, we assume the remap
is performed using a global prior π that describes the be-
haviour of an average user. Possible ways for construct-
ing such a prior are discussed in the following section.
In the evaluation of Section 5 we construct the prior
from a training dataset containing no data whatsoever
of the users of the testing set. This simulates a remap-
ping applied to a new user seen for the first time, based
on generic data about past uses of the specific service.

On the other hand, a drawback of using a global
prior is that the remapping is not guaranteed to improve
the expected loss of users who behaviour is drastically
different that that prior. However, in our evaluation we
see that the percentage of users who are actually “hurt”
by the remap is small. One way to mitigate this problem
is to measure how different the global prior is from the
user’s behaviour and avoid the remap if it becomes too
large. We leave such a study as future work.

Obtaining a differentially private global prior
There are several approaches for constructing a good
quality global prior for remapping. A user-independent
approach is to use semantic information about each lo-
cation, such as the density and variety of POIs, which
can be obtained from sources such as OpenStreetMap.
On the other hand, a user-dependent approach, using
information from users of the service itself, can pro-
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vide a prior of improved quality. For instance, a prior
could be constructed from aggregate information about
past uses of the service, made available from the ser-
vice provider. However, since publishing such aggregate
information could compromise the users’ privacy, the
provider should employ some privacy protection mech-
anism, such as differential privacy, for publishing this
information.

Obtaining a global prior under differential privacy
can be achieved using standard techniques. For each
user we construct a prior πi (a vector of probabili-
ties for each location) and then compute the average
1
n

∑
i πi. The average query is sensitive to changes in

a single user if the number of users n is small. Hence,
a standard technique is to require that n is above a
certain threshold N in order to release the result. N
should be selected in advance (independently from the
database) and if n < N we should add dummy users
in the computation or refuse to provide an answer.
By modifying a single prior π to π′ the `1 sensitivity
is ‖ 1

n (π − π)′‖1 ≤ 1
N (‖π‖1 + ‖π′‖1) = 2

N . Hence, we
can achieve ε-differential privacy by adding noise from
Lap( 2

Nε ) to each element of the average prior [9]. The
result is not necessarily a probability vector, but can be
converted to one by post-processing, setting negative
values to 0 and normalizing.

Note that the choice of N is important: large val-
ues allow to release the average with limited noise for
database of size at least N , while sacrificing utility for
smaller databases. An evaluation of this technique is
provided in Section 5.

Note also that the stardard setting of differential
privacy assumes a trusted curator that has access to all
data, and hence he can compute the real answer and
then add noise to it. However, under the standard as-
sumption of a polynomial time adversary, there exist se-
cure multiparty computation techniques (e.g. [42]) that
allow to compute noisy aggregates in a distributed set-
ting. In such a setting users maintain their own data
and participate in a protocol in order to directly com-
pute the noisy answer under differental privacy.

3.4 Remap and adversarial error

We have already discussed that remapping locations is
safe wrt geo-indistinguishability; we now show that it is
also safe wrt adversarial error, a well-known model for
quantifying location privacy proposed in [43]. In this
model, an adversary performs an inference attack, pro-
ducing a guessed location x∗ starting from the reported

location z. Such an attack can be modeled by a stochas-
tic matrix H, where Hzx∗ is the probability to guess x∗

when seeing z. Then, privacy is measured by the ex-
pected error of an optimal attack, that is:

AdvError(K,π,dA) = min
H

QL(KH,π,dA)

Here, the metric dA(x, x∗) captures the adversary’s loss
when he guesses x∗ while the real location is x. A crucial
observation is that any remap R can only increase the
adversary’s error, since a remap that reduces the error
could be performed by the adversary himself.

Proposition 3.5. For all π, K, R, dA:

AdvError(K,π,dA) ≤ AdvError(KR, π,dA)

4 Practical Mechanisms
In this section we discuss several mechanisms satisfy-
ing geo-indistinguishability that can be applied to a
generic LBS. Our emphasis is on practical applicabil-
ity: the mechanisms should be efficient and applicable
to realistic domain sizes, without any unreasonable as-
sumptions.

We classify the mechanisms based on the restric-
tions they assume on the structure of the domains
X ,Z. In the more flexible case, the domains can be the
full continuous plane. However, in some applications it
might be reasonable to restrict to a discrete, either in-
finite or a finite but realistically large domain. Mech-
anisms for each category can be clearly applied to the
more restrictive cases, but the extra restrictions allow
for the construction of additional mechanisms with cer-
tain advantages.

4.1 Mechanisms for the continuous plane

In the general unrestricted case of the full continuous
plane, the natural choice is to apply the planar Laplace
mechanism described in Section 2.3. The PL mechanism
is simple and efficient, and due to its generality and lack
of restrictions, it is used in all known applications of
geo-indistinguishability. However, even on a continuous
plane, the remapping technique can be practically em-
ployed to improve the mechanism’s utility, as discussed
in the next section.
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4.1.1 Remapping the planar Laplace mechanism

The challenge for remapping the PL mechanism lies in
the continuity of its domain. Using a continuous prior on
R2 is not realistic, it’s hard to construct such a prior, let
alone to use it. Instead, we assume that prior informa-
tion about the service is given in the form of a dataset
of previous uses of the service, or even in the form of
generic information about points of interest (POIs). Let
Q ⊂ R2 be a possibly large but finite set of locations,
each q ∈ Q associated with a weight w(q) ≥ 0. For in-
stance Q might contain the locations from which the
service has been accessed in the past, with w(q) being
the number of users accessing the service from that loca-
tion. Or Qmight be a list of POI relevant for the service,
with w(q) capturing the popularity of each POI.

Given a noisy location z drawn from PL, the goal
is to first construct a reasonable posterior σ ∈ P(R2) of
finite support. To do so, we need to restrict Q (which
can be very large) to a limited area around z. Let t =
C−1(0.99), where C−1 is the inverse of PL’s cumulative
distribution function for the radius (see Section 2.3),
and let Qt = Q ∩ Bt(z). Intuitively, PL reports a point
within distance t from x with probability 99%, hence it
is reasonable to remap z to a point z∗ no farther that t
away from z.

Note that Qt can be computed efficiently using a
spatial data-structure such as kd-trees. The 0.99 thresh-
old can be used to trade efficiency for accuracy, smaller
values will lead to a smaller Qt but might cause the
optimal point to be outside the area. If Q is dense, a
pre-processing phase could be used to reduce the size of
Qt, merging points into small clusters, and setting w(q)
to the weight of the cluster.

The weights w(q), q ∈ Qt can be though of (after
normalization) as a finite prior on R2. Applying Bayes’
law to this prior, using the pdf of PL, we can construct
the following posterior σ with finite support dσe = Qt:

σ(x) = w(x)e−εd(x,z)∑
q∈Qt w(q)e−εd(q,z) x ∈ Qt

Finally, the remapped point z∗ is Weiszfeld(σ) (if
dQ = d) or Centroid(σ) (if dQ = d2).

Note that, in practice, the dataset Q might not be
detailed enough to provide sufficient information for ev-
ery location. A new user might access the service from
a location in which no or few other users have been in
the past. A remap using low quality data is likely to de-
crease the user’s privacy, hence we use a simple heuristic
for assessing the data’s quality: if the size (or alterna-
tively the total weight) of Qt is below a certain threshold

qmin, then we skip the remap and report z directly. The
complete algorithm is displayed in Fig 1.

Algorithm 1: Planar Laplace with remap
Data: x ∈ R2, ε > 0, qmin ≥ 0, Q ⊂ R2,

w : Q→ R+

Result: An obfuscated location z∗

1 draw z ∼ PLε(x) ;
2 set t = C−1(0.99) ;
3 compute Qt = Q ∩Bt(z) ;
4 if |Qt| < qmin then
5 return z

6 else
7 compute

σ(x) = w(x)e−εd(x,z)∑
q∈Qt w(q)e−εd(q,z) x ∈ Qt ;

8 compute z∗ = Weiszfeld(σ);
9 // or z∗ = Centroid(σ);

10 return z∗

4.2 Mechanisms for the discrete plane

For some applications, it is reasonable to assume that
users are located on a discrete grid, and reported points
should always be on that grid. However, we might still
want to cover very large areas (or the whole world),
hence it is convenient to think of this grid as being in-
finite. The PL mechanism can of course be employed
in this case, with or without remap, by further project-
ing its output on the grid. However, the discrete nature
of the domain allows us to use the Planar Geometric
mechanism, a discretized version of PL.

4.2.1 The planar geometric mechanism

The planar geometric mechanism can be seen as a dis-
cretized version of the planar Laplace mechanism de-
scribed in Section 2.3 (similarly to the relationship be-
tween the one-dimensional geometric and Laplace mech-
anisms). The two mechanisms share the idea of produc-
ing the output by adding random noise to the user’s
location x such that the added noise is independent of
the real location of the user.

Precisely, let the Euclidean space R2 be partitioned
into a grid of square cells such that the side length of
every cell is s > 0. The centers of these cells form there-
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fore an infinite grid of points G, in which the horizontal
(or vertical) distance between any successive two points
is exactly s. We call this distance the ‘spacing’ of G.
Then we define the planar geometric mechanism PG as
a probabilistic function from G to itself as follows:

PG(x)(z) = λ e−εd(x,z) x, z ∈ G (2)

where λ = 1/
∑

(i,j)∈Z2

e−ε s
√
i2+j2

In general, every output location z of a mechanism
can be seen as the sum of the input location x and an
Euclidean ‘noise’ vector u having the magnitude d(x, z),
and describing the added obfuscation noise. From this
perspective, it is easy to see from (2) that the prob-
ability assigned by PG to every noise vector depends
only on its magnitude regardless of the input of the
mechanism. The normalization constant λ ensures that
such probabilities sum up to 1, forming a valid distri-
bution on the vectors drawn from G. It is also easy to
see that the planar geometric mechanism satisfies ε-geo-
indistinguishability on G.

Sampling from a discrete mechanism, such as PG,
can be performed efficiently since we have an explicit
construction of its probability mass function. First, λ
can be approximated to any precision, which only needs
to be done once for every choice of ε, s. Then, to draw
a random location z, we uniformly select p ∈ [0, 1] and
we iterate on G, starting from x, by visiting locations in
increasing order of distance from x. Once the cumulative
probability of all visited points reaches p, we report the
last visited location.

Finally, remapping can be applied to PG in two
ways: one approach is to employ the continuous remap
described in the previous section, and project the result
to the grid. An alternative approach, is to directly use
the definition of the Bayesian remap, but restrict to a
radius around z, as discussed in Section 3.1. The sec-
ond approach has the advantage of being applicable for
any choice of dQ, but is less efficient, especially if the
spacing s is small.

4.3 Mechanisms for large but finite grids

The third case that we consider is that of an application
within a limited region, for which users are assumed to
lie on a finite grid. Still, we would like to cover a large
area, and more importantly to use a fine cell size, hence
the grid size should be realistically large.

Clearly, the PL and PG mechanisms, with or with-
out remap, can still be employed in this case, by project-

ing (truncating) their output to the finite grid. Note that
the truncation step is an instance of post-processing,
since it is independent from the user’s real location x,
hence it preserves geo-indistinguishability.

On the other hand, the finite nature of the domain
allows us to construct alternative mechanisms, that we
discuss in the following sections.

4.3.1 Tight-Constraints mechanisms

The tight-constraints mechanism was introduced by [19]
in the general setting of d-privacy for any finite space X
of secrets equipped with a privacy metric d. In our con-
text of ε-geo-indistinguishability, this mechanism, de-
noted by TC is defined as follows.

Definition 4.1 (Tight-Constraints mechanism [19]).
Given a finite set of locations X and ε > 0, TC : X →
P(X ) is a mechanism satisfying:

TC(x)(z) = e−εd(x,z) TC(z)(z) ∀x, z ∈ X .

The above definition relates the probability of reporting
an output z, when the real location is z itself, with the
same probability from some other location x. This rela-
tion means precisely that the ε-geo-indistinguishability
constraint for the inputs x, z and the output z is sat-
isfied with equality. With regard to this characteris-
tic, the mechanism is named after those ‘tight’ con-
straints. It is shown in [19] that TC satisfies ε-geo-
indistinguishability; furthermore, with respect to the bi-
nary loss function – defined as dQ(x, z) = 0 iff x = z

and 1 otherwise – this mechanism is optimal for a set
of priors called ‘regular’ priors. While this optimality
is guaranteed only for the binary loss function, we ex-
perimentally show in Section 5 that TC provides also a
substantial improvement in comparison to other mech-
anisms when the loss is measured as the Euclidean dis-
tance between the input and output locations. In par-
ticular, TC enjoys substantially better utility than the
Exponential mechanism, the only other (efficient) mech-
anism applicable to an arbitrary privacy metric d.

Existence and construction
It is important to remark that the mechanism TC may
not exist in some cases, more precisely when there are no
collection of conditional probability distributions (one
for every input) that satisfy the tight constraints of
Def 4.1. It is shown by the authors of [19] that the nec-
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essary and sufficient condition of the existence of this
mechanism is related to the privacy-constraints matrix
Φ with entries indexed by the elements of X as follows.

φxz = e−εd(x,z) ∀x, z ∈ X .

Then the mechanism TC exists if and only if there is a
vector µ indexed by X such that

Φ µ = 1 and µz ≥ 0 ∀z ∈ X . (3)

Every entry µz of the vector µ is precisely the probabil-
ity of reporting the location z when the user is at z, i.e.
µz = TC(z)(z) for every z ∈ X . Therefore using the en-
tries of this vector and Definition 4.1, all the conditional
probabilities of the mechanism TC are easily obtained
by the following simple equation.

TC(x)(z) = φxzµz ∀x, z ∈ X . (4)

When the domain of locations of the users is re-
garded as a discrete set of points, e.g. a grid, we show in
this paper that TC provides significantly less expected
loss in comparison to other well-known mechanisms, e.g.
the planar Laplace mechanism. However, this advantage
comes at the computational cost required to obtain µ

by solving the system of |X | linear equations in (3). In
the following we exploit the graph symmetries between
the points of X to reduce this cost of constructing TC.

Reducing the construction cost using symmetries
The domain of locations X together with the distances
between its individual points can be regarded as a
weighted graph in which the vertices are the points
of X , and the weight for every two vertices x, z is ex-
actly the Euclidean distance d(x, z). A bijective map-
ping ρ : X → X is called an automorphism on X if this
mapping preserves the distance between every x, z ∈ X
in the sense d(ρ(x), ρ(z)) = d(x, z). Using the notion of
automorphisms, we define symmetric points as follows.

Definition 4.2 (symmetric points). Consider a do-
main of points X . For any two points x, x′ ∈ X , we
say that x is symmetric to x′, written as x ≈ x′ if there
is an automorphism ρ : X → X such that ρ(x) = x′.

It is clear that ≈ is an equivalence relation, and there-
fore it partitions the domain X into a set of equivalence
classes written as X/≈. Figure 1 illustrates a grid X of
10 × 10 cells (locations), in which symmetric cells are
annotated by the same label. In other words, the label
on every cell refers to the equivalence class that the cell

15 14 13 12 11 11 12 13 14 15
14 10 9 8 7 7 8 9 10 14
13 9 6 5 4 4 5 6 9 13
12 8 5 3 2 2 3 5 8 12
11 7 4 2 1 1 2 4 7 11
11 7 4 2 1 1 2 4 7 11
12 8 5 3 2 2 3 5 8 12
13 9 6 5 4 4 5 6 9 13
14 10 9 8 7 7 8 9 10 14
15 14 13 12 11 11 12 13 14 15

Fig. 1. Symmetric cells in a grid of size 10 × 10. The cells hav-
ing the same label are symmetric to each other, i.e. in the same
equivalence class. The highlighted region contains one cell of ev-
ery equivalence class, and shows that the grid has 15 class.

belongs to. With respect to the equivalence classes of X ,
we define a matrix Φ≈ of which the rows and columns
are indexed by elements (classes) of X/≈ as follows. For
every c, c′ ∈ X/≈,

φ≈cc′ =
∑
z∈c′

φxz where x is any member of c. (5)

Then the following theorem shows that instead of con-
structing TC by solving the original equations (3) which
involves the large matrix Φ, this mechanism can be con-
structed more efficiently using the smaller matrix Φ≈.

Theorem 4.3 (Tight-Constraints mechanism). A TC
mechanism exists for a domain of locations X if and
only if there is vector µ≈ such that

Φ≈ µ≈ = 1 and µ≈c ≥ 0 ∀c ∈ X/≈. (6)

Furthermore, TC is obtained by setting for every c ∈
X/≈,

TC(x)(z) = e−εd(x,y) µ≈c ∀x ∈ X ,∀z ∈ c. (7)

Using the above theorem, the cost of constructing
TC for a domain of locations X is dramatically reduced
by exploiting the symmetries between its locations. For
example, in Figure 1, the grid of 100 locations contains
only 15 equivalence classes. In general for any grid of
size n × n, the number of classes is n2/8 + n/4 if n is
even and (n+ 1)2/8 + (n+ 1)/4 if n is odd. Clearly this
makes solving Equations (6) significantly cheaper than
solving the original equations (3).
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4.3.2 The exponential mechanism

The exponential mechanism Exp is a generic mechanism
applicable to any finite domain X with an arbitrary pri-
vacy metric d. It is given by:

Exp(x)(z) = λxe
− 1

2 εd(x,z) where λx = 1/
∑
z e
− 1

2 εd(x,z)

Compared to the other mechanisms, the 1
2 factor in the

exponent compensates for the fact that the normaliza-
tion factor λx depends on the secret x. The smaller ex-
ponent leads to a greater variance of the noise, hence the
utility of this mechanism is the worse among those dis-
cussed in this section, with the advantage, on the other
hand, of being very simple and at the same time appli-
cable to any metric d. The exponential mechanism is
used in [18] to achieve privacy wrt a constructed “elas-
tic” metric, adapted to the semantics of each location.

4.3.3 Optimal mechanism built on a coarse grid

Since our domain is finite, we could apply the construc-
tion of 2.4 to obtain an optimal mechanism for a certain
prior π. However, if X contains more than a few hun-
dred locations, as it is common in realistic scenarios,
this construction is not feasibly applicable.

A natural solution would be to construct the mech-
anism on a coarser grid X ′ containing larger cells ob-
tained by merging together several cells of X . Once K
is constructed from X ′, a user located at x ∈ X would
draw a noisy location from K(x′), where x′ is the cell
of the coarse grid in which x is situated. This technique
is essentially implied by the use of very coarse grids in
the evaluation of the mechanisms in [5, 7, 8], however it
has various shortcomings, as discussed in Section 5.3.

5 Evaluation
We have evaluated all mechanisms discussed above on
two real-world datasets from the Gowalla and Brightkite
social networks. The results for Gowalla are presented
in this section; those for Brightkite, can be found in
the appendix. For the infinite continuous and discrete
case, we perform an evaluation on the complete datasets,
showing that an efficient remapping can be performed
without any restriction on the area of interest. For the
finite case, we consider a large geographical region cov-
ering most of the San Francisco peninsula.
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Fig. 2. Results for the continuous case, Euclidean loss

To ensure the practical applicability of the pro-
posed mechanisms, we take a common machine learning
approach separating between the training and testing
(evaluation) data. More precisely, we split the entire lo-
cation dataset into two non-overlapping parts. The first
part, containing the location data of approximately 80%
of the users, is seen as the training set. From this part,
we construct a global prior computed as the average of
individual priors of all users visiting the region, which
is then used to optimally remap the proposed mecha-
nisms. Note that this remap is optimized for the global
prior rather than being overfitted to a specific user.

The other part of the dataset, which contains the
data of the remaining 20% of the users is seen as the
testing set for evaluating the constructed mechanisms.
More precisely, we construct a user-specific prior for ev-
ery user having at least 20 check-ins (in total for the
infinite case, or in the specified region for the bounded
case), and measure the expected loss of the mechanism
for the user using her own prior. Although the mecha-
nisms are trained only on the users of the training part
of the dataset, we find that they offer a low level of
quality loss also for the users in the testing set.

We should emphasize that the split is performed on
users (not on checkins): no data whatsoever for the test-
ing users is available in the training dataset. This very
conservative approach aims at simulating the case of a
new user for which we have no information, other than
what is generally available about the whole service. Im-
proving the utility in this case is a strong result; clearly,
if we trained on part of the user’s own data, the results
could be further substantially improved.

All evaluated mechanisms are constructed to sat-
isfy ε-geo-indistinguishability, using ε = l/r where r =
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Fig. 3. Results for the continuous case, squared Euclidean loss
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Fig. 4. Results for the discrete infinite case

l=ln(1.4) l=ln(1.7) l=ln(2.0) l=ln(2.3) l=ln(2.6)

ex
pe

ct
ed

 lo
ss

 (
km

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Planar Laplace without/with remapping
Planar geometric without/with remapping
Tight-Constraints without/with remapping

Fig. 5. Results for a large but finite grid (SF area)

Fig. 6. A rectangular region of size 12 km × 28 km covering
most of the San Francisco peninsula

0.1 km and l ranging from ln(1.4) to ln(2.6). Utility is
measured wrt dQ = d, unless stated otherwise.

For the continuous case, we evaluate the planar
Laplace mechanism, by itself, or coupled with the con-
tinuous remapping technique of Section 3.2. The dataset
Q is the whole training set consisting of 48K users and
more than 5M checkins. From the list of checkins we
create a kd-tree, allowing to quickly construct Qt. To
avoid a single user greatly affecting the posterior, we
take w(x) = 1/u where u is the number of checkins of
that user in Qt, and also set qmin = 20. In our evalua-
tion, each remap took only a few milliseconds, despite
the large dataset. The mechanisms were evaluated in
the complete testing dataset of 12K users.

The results are shown in Fig 2 (for dQ = d) and
Fig 3 (for dQ = d2), where boxplots of the average
loss for each user are given for various values of l. Note
that the average loss for PL without remap is always
the same – given by (1) – hence the boxplots reduce
to a single line. On the other hand, the average loss
when remapping is employed depends on the user: since
remapping is performed using a global prior, it might
not always give an improvement. Still, although no user
data is used for training, the evaluation shows a sub-
stantial improvement in terms of expected loss for most
users. The results for ln(1.4) show that the remapped
PL has a mean expected loss of 499 m, while the corre-
sponding mean of the unremapped PL is 594.4 meters,
i.e. 19% higher. Of course, not all users benefit from
the remap, however only 8.17% of the users have any
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increase in expected loss, while only 1.27% have an in-
crease of 10% (59.4 m) or more.

For the infinite discrete case, we perform the same
evaluation, mapping all points in the Gowalla dataset
to a infinite grid of cell size 0.1 km (hence, despite the
discretization, locations are given with a relatively high
precision). The PL and PG mechanisms are evaluated,
with and without remapping. For PG, although we are
interested in the Euclidean loss, we use the generic ap-
proximation technique of Section 3.1, demonstrating its
efficiency for large datasets. The results are shown in
Figure 4; similarly to the continuous case, remapping is
shown to be effective, despite the use of a generic prior.
Moreover, PG slightly outperforms PL in most cases,
which is expected since it is tailored to the discrete grid.

Finally, for the evaluation on a large but finite do-
main, we use the region delimited by the red line shown
in Figure 6, covering most of the San Francisco area.
This region, 12km × 28km, is bounded from south and
north by the latitudes 37.5395, 37.7910, and from west
and east by longitudes -122.5153, -122.3789. In the case
of the Gowalla dataset, our training set has 5216 users
having 103052 check-ins in the considered region. On
the other hand, the testing part consists of 273 users,
where each one has at least 20 check-ins in the region.
To allow acceptable precision of this discretization, we
set the side length of every cell to be only 200 meters,
hence splitting our region in a 60×140 grid of 8400 cells.
Note that, although still finite, this size is two orders of
magnitude larger that the one typically considered for
constructing optimal mechanisms [5, 7], typically per-
formed for domains of 50 to 100 cells.

For this grid, we construct the truncated planar
Laplace mechanism, the truncated planar geometric
mechanism, and the tight-constraints mechanism on the
8400 cells covering the required region, with and with-
out remap. The results are displayed in Figure 5, show-
ing that the tight-constraints and the geometric mech-
anisms clearly outperform the planar Laplace. It is im-
portant here to remark that each one of these two mech-
anisms has an advantage over the other one. The geo-
metric mechanism enjoys the feature that it exists for
all levels of privacy due to the symmetry of the infinite
grid on which it is constructed. The tight-constraints
mechanism, on the other hand, might not exist for very
strong levels of privacy; however, it has the advantage of
being applicable to any privacy metric d, not necessarily
the Euclidean one.

Finally, we compare the tight-constraints and the
exponential mechanism, the only two (efficient) ones
that are applicable to an arbitrary privacy metric
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Fig. 7. Remaps using a differentially private prior

d. Apart from the Euclidean one, we evaluate the
two mechanisms using the well known maximum3 (or
Chebyshev) metric, defined as d∞(x, x′) = εmaxi(|xi −
x′i|). This metric corresponds to a privacy property re-
quiring the same level of privacy within a square area,
instead of a circle. Note that in both cases ε = l/r scales
the corresponding metric, deciding the radius (or the
length of the square’s sides) in which a privacy level l is
required.

It turns out that, for the Euclidean metric, the tight-
constraints mechanism significantly outperforms the ex-
ponential mechanism. Concerning the maximum metric,
the tight-constraints mechanism does not exist for the
strong levels of privacy, but when it exists, it outper-
forms the exponential one. On the other hand, the lat-
ter is simpler to compute and always applicable. The
details of this comparison are shown in Appendix B.

5.1 Using a differentially private prior

In this section, we evaluate the remapping technique
using a differentially private prior, as discussed in Sec-
tion 3.3. We perform the same evaluation in the SF area,
the only difference being that Lap( 2

N ln(3) ) noise is ap-
plied to the global prior. Unfortunately, the Gowalla
dataset is not ideal for such an evaluation since it con-
tains only 5216 users in the training set for the SF
area. As a consequence, we perform two evaluations,
one with N = 5000, which is relatively small for averag-

3 Note that the maximum metric is a natural choice for location
traces [6, 44], although we here use it for single locations.
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ing queries, and one with N = 50000. In the latter case,
we duplicate the users so that we reach the required
number; although the results in the latter case are not
realistic, we get an idea of what we can expect if we had
that many users.

The results are shown in Figure 7. Four versions of
PL and PG are evaluated: in the leftmost one no remap
is applied while in the rightmost one a remap using the
exact global prior is applied. For the two middle ones,
a remap using a differentially private global prior is ap-
plied, using N = 5000 and N = 50000 respectively. As
expected, the quality of the remap is reduced by the
noise applied in the prior. However, even in the case
N = 5000 the loss is limited, while for N = 50000 the
noisy prior is almost as good as the exact one.

5.2 Comparison with the optimal method

We have shown that the mechanisms PL, PG, and TC
are scalable with respect to the size of the location do-
main, in contrast to the optimal mechanism OPT, which
involves a linear optimization feasible only for a small
number of locations. In order to compare these mecha-
nisms with OPT, therefore, we have to consider a rela-
tively small grid: according to our experiments, solving
the optimization problem on hundred locations would
already require several days of running time. We choose
a grid of 10 × 10 square cells, each of size 0.2km ×
0.2km, thus covering an area of 2km × 2km. Note that
a spacing of 0.2km is still an acceptable granularity, and
in line with previous evaluations. Of course, we could
choose a coarser grid and cover a larger area (cfr. Sec-
tion 4.3.3), but there are various problems with that
idea, that will be discussed in the next section.

We overlay this grid on a selected dense region in
San Francisco, selected in such a way that it captures
a large number of check-ins based on Gowalla dataset.
More precisely this region is bounded from south and
north by the latitudes 37.7737, 37.7917 and from west
and east by longitudes -122.4135, -122.3908, and con-
tains 38963 check-ins. Using an average prior computed
from these checkins, we construct OPT, and also the
remapped versions of the PL, PG, and TC, for vari-
ous privacy levels. Figure 8 displays the boxplot for the
utilities of those mechanisms for 110 testing users.

We can see that, for relatively strong levels of pri-
vacy (e.g. l = ln(1.4)), the mechanisms PL, PG, and TC
are significantly improved by remapping. This improve-
ment becomes less significant in the case of relaxed pri-
vacy (e.g. l = ln(2.6)). In fact when the privacy is strong,
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gion in San Francisco

a large amount of noise is added by non-remapped mech-
anisms, giving a considerable margin for reducing the
noise according to the available prior.

In comparison with OPT, we observe that, for high
privacy levels (e.g. l = ln(1.4)), the remapped versions
of PL, PG, and TC are only slightly worse than OPT.
However, for more relaxed privacy levels, only PG and
TC are close to OPT, while PL is not. This is due to
the fact that PL adds enough noise to guarantee privacy
for all the points of the continuous region, in contrast to
PG, TC and OPT, which are tailored to protect only the
centers of the cells overlaid on that region (and which
are the only points considered for utility).

5.3 Criticisms to the use of a coarse grid

As discussed in Section 4.3.3, one can in general cover a
large area with a small number of locations by using a
large-granularity grid. However, this idea has a number
of drawbacks.

First of all, the granularity of the grid affects privacy
in the geo-indistinguishability model. The geo-indistin-
guishability constraints guarantees that for two loca-
tions y, y′ in the coarse grid, K(z),K(y′) are as similar
as the distance d(y, y′) between them. If, however, the
mechanism is used by users located at points x, x′ of the
fine grid (by projecting to the coarse one), the privacy
they enjoy is as large as the distance between the pro-
jected points. Two points x, x′ could be projected to the
same coarse cell, in which case their effective distance is
0; however, two close points at a border of a coarse cell
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could be projected to different cells, in which case their
effective distance will be much larger that d(x, x′).

A second, related, problem is the following: For a
fixed level of privacy l, the more we enlarge the distances
between cells the more we relax the geo-indistinguisha-
bility constraints, so that, in order to maximize utility,
cells will tend to “report themselves” with probability
closer and closer to 1, unless they have prior 0. Thus
a very coarse grid will generate a quasi-deterministic
mechanism, and the resulting effect will be similar to
the spacial cloacking (except for the cells with prior 0):
points within the same coarse cell will be almost indis-
tinguishable, while points of different coarse cells will
be almost completely distinguishable. Appendix C il-
lustrates this problem on real data.

Finally, also the computation of the utility depends
on the granularity of the cells, because the distances are
computed with respects to the centers of the cells, and
the probabilities of points in the same cell are lumped
together (or, in other words, users are seen as located at
the centers of the cells). Hence, an optimal mechanism
constructed on a coarse grid, is by no means guaranteed
to be optimal also on a finer one. Appendix D shows that
indeed the optimal mechanism constructed on a coarse
grid does not compare favorably to the other mecha-
nisms when its utility is (re)computed with respect to
the points of the finer grid.

6 Conclusion
In this work, we studied mechanisms for location pri-
vacy with emphasis on being practical, for realistic do-
main sizes and without unreasonable assumptions about
the prior information available about the user. We dis-
cussed such solutions under various constraints for the
domain of locations: the complete unconstrained con-
tinuous plain, the discrete plain or large but finite do-
mains, using a Bayesian remap as a key ingredient.
An extended evaluation was provided on two real-world
datasets, showing considerable improvements wrt the
standard planar Laplace mechanism.
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A The Brightkite dataset
In this section we evaluate the direct mechanisms
(Laplacian, geometric, and tight-constraints) on the
Brightkite dataset. The setup, including all configu-
ration options, is identical to the one used for Gowalla
(Section 5). The dataset is split into a training set of
40K users and a testing set of 10K users.

The results for the continuous case are shown in
Fig 9. Similarly to the case of Gowalla, the remap pro-
vides a substantial utility improvement in most cases
(although slightly less than that of Gowalla). For ln(1.4)
the remapped PL has a mean expected loss of 503 m
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Fig. 9. Brightkite: results for the continuous case, Euclidean loss
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Fig. 10. Brightkite: results for a large but finite grid (SF area)
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Fig. 11. The expected loss of the exponential and tight-
constraints mechanisms that satisfy geo-indistinguishability on
the centers of the large grid (60 × 140 cells) covering San Fran-
cisco.

(and median expected loss of 538 m) while the corre-
sponding mean of the unremapped PL is 594.4 meters,
i.e. 18% higher. On the other hand, the variance of the

error for Brightkite is higher than the one for Gowalla.
For this dataset 18.06% of the users have any increase
in expected loss, while only 2.66% have an increase of
10% (59.4 m) or more.

The results for a large but finite grid are shown in
Fig 10. Again, the utility improvement in most cases is
substantial; in fact the median expected error is lower
that the one for Gowalla. On the other hand, the vari-
ance of the error is visibly much higher. This difference
in variance can be explained by the lower quality of data
in the Brightkite dataset: many users have checkins in
a single location, repeated thousands of times.

B The tight-constraints vs the
exponential mechanism

In this section we compare the tight-constraints and
the exponential mechanism, the only two (efficient) ones
that are applicable to arbitrary privacy metrics.

Figure 11 illustrates the case of the Euclidean met-
ric, showing that the utility of the tight-constraints
mechanism significantly outperforms that of the ex-
ponential one. For the maximum metric, defined as
d∞(x, x′) = εmaxi(|xi − x′i|), the results are shown
in Figure 12. We observe in this case that the tight-
constraints mechanism does not exist for the stronger
levels of privacy ln(1.4) and ln(1.7), while it exists for
other levels, in which cases it outperforms the exponen-
tial mechanism. Hence we can conclude that whenever
the tight-constraints mechanism exists, it outperforms
the exponential one, while the latter is simpler to com-
pute and always applicable.

C Diagonal probabilities of the
optimal mechanism on a coarse
grid

Figure 13 shows the diagonal elements for the optimal
mechanism that is constructed on a coarse grid of 14×6
cells covering San Francisco. These elements are orga-
nized in the same grid format and the value reported
in each cell represents the probability of reporting that
cell when the user is located in the same cell. Note that
all values are either 0 or almost 1. The 0 is due to the
fact that the prior is null for those cells.
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Fig. 12. The expected loss of the exponential and tight-
constraints mechanisms for the maximum metric d∞

D Comparative evaluation of the
optimal mechanism
constructed on a coarse grid

We consider here the optimal ε-geo-indistinguishable
mechanism constructed on a coarse grid obtained by
partitioning the grid of 8400 cells covering the San
Francisco area (cfr. Section 5). into 6 × 14 cells spac-
ing 2.0 km. This mechanism is optimal (by definition)
for the centers of the coarse grid, but its utility de-
grades sensibly computed on the original finer grid.
More precisely, we consider the expected loss computed
by remapping the outputs of this mechanism to the cells
of the original fine grid, using the global prior con-
structed from the training data. Figure 14 compares
such expected loss with that of the other mechanisms,
evaluated for the individual users in the testing data,
using their own priors, and for various levels of privacy.
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Fig. 13. The diagonal entries of the optimal mechanism that
satisfies ε-geo-indistinguishability for ε = ln(1.4)/0.1 (l = ln(1.4))
on a coarse grid of size 14× 6 cells covering San Francisco.

One clear implication from Figure 14 is that the op-
timal mechanism constructed on a coarse grid (6 × 14
cells) of the region is no longer optimal for finer and
more practical discretization scheme of the region into a
grid of 60×140 cells. Although this situation is improved
by constructing a remapped version of such mechanism
on the fine-grained grid (using a global prior), the result-
ing mechanism still incurs higher quality loss, i.e. worse
utility, relative to the other mechanisms (the Laplace,
the geometric, and the tight-constraints ones). Another
important observation is that this optimal mechanism
(on the coarse grid) and its remapped version main-
tain the same expected loss as the privacy level l grows.
This is due to the fact that the optimal mechanism con-
structed on such coarse grid becomes almost a determin-
istic ‘cloaking’ mechanism (cfr. Section 5.3), regardless
of the privacy level. As a consequence, the remapped
version of this fixed mechanism to the cells of a finer
grid depends only on the global prior on this fine grid,
with no regard to the privacy level.

In contrast to the uniform behavior of the optimal
mechanism and its remapped version, we observe that
the expected losses of other mechanisms are significantly
influenced by the imposed privacy level and provide bet-
ter trade-off between the privacy requirements and the
utility.
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Fig. 14. The expected loss of privacy mechanisms using Gowalla (a) and Brightkite (b) datasets on the geographical region of Figure
6. The optimal mechanism is constructed on a coarse grid (6 × 14 cells) covering the region, and its remapped version is constructed
on the large fine grained grid (60× 140 cells). The other mechanisms are constructed directly on the fine grained grid. The parameter l
describes the level of privacy within 0.1km.

E Proofs
We present here all proofs omitted from the paper due
to space constraints.

The following is a straightforward adaptation of
a similar result for standard differential privacy ([40]
Prop. 2.1).

Proposition 3.1 (Remap preserves privacy). Let K :
X → P(Z) be a mechanism and R : Z → Z be a remap.
If K satisfies ε-geo-indistinguishability then so does KR.

Proof. The proof lies on the fact that the probabil-
ity for KR to report an observation in Z ⊆ Z, is the
same as the probability of K to report an observation
in R−1(Z) = {z ∈ Z : R(z) ∈ Z}:

KR(x)(Z) = K(x)(R−1(Z)) ∀x ∈ X , Z ⊆ Z (8)

Hence, for all x, x′ ∈ X , Z ⊆ Z we have that:

KR(x)(Z) = K(x)(R−1(Z)) (8)

≤ eεd(x,x′)K(x′)(R−1(Z)) ε-geo-ind. of K

= eεd(x,x′)KR(x′)(Z) (8)

Proposition 3.3 (Bayesian remap). Given π, K, dQ,
the remap defined by:

R(z) = arg min
z∗∈Z

∑
x∈X σ(x)dQ(x, z∗) where

σ = Post(π,K, z)

is optimal for K wrt π,dQ.

Proof. From the definition of R(z) we have that, for all
z, z∗ ∈ Z,∑
x
π(x)K(x)(z)dQ(x, z∗) ≥

∑
x
π(x)K(x)(z)dQ(x,R(z))

(9)
Let R′ : Z → Z be an abritrary remapping function.
We have that

QL(KR′, π,dQ) =
∑
x∈X
z∈Z

π(x)K(x)(z)dQ(x,R′(z))

≥
∑
x∈X
z∈Z

π(x)K(x)(z)dQ(x,R(z))

(using (9) with z∗ = R′(z))
= QL(KR, π,dQ)

Proposition 3.4. For all σ ∈ P(R2) with finite dσe:

Centroid(σ) = arg min
z∗∈R2

∑
x∈dσe σ(x) d2(x, z∗)

Proof. Let x ∈ R2, we denote by ‖x‖ the Euclidean
norm. Recall that ‖x‖2 = x · x where · denotes the dot
product. Let c = Centroid(σ), z∗ ∈ R2, we have that:∑
x∈dσe

σ(x)‖x− z∗‖2

=
∑
x∈dσe

σ(x)‖x− c+ c− z∗‖2
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=
∑
x∈dσe

σ(x)(x− c+ c− z∗) · (x− c+ c− z∗)

=
∑
x∈dσe

σ(x)
(
‖x− c‖2 + 2(x− c) · (c− z∗) + ‖c− z∗‖2

)
=
∑
x∈dσe

σ(x)‖x− c‖2 + 2(c− z∗) ·
∑
x∈dσe

σ(x)(x− c)+

∑
x∈dσe

σ(x)‖c− z∗‖2

Finally, since
∑
x∈dσe σ(x) = 1,

∑
x∈dσe σ(x)(x− c) = 0

and ‖c− z∗‖2 ≥ 0 we get that∑
x∈dσe

σ(x)‖x− z∗‖2 =
∑
x∈dσe

σ(x)‖x− c‖2 + ‖c− z∗‖2

≥
∑
x∈dσe

σ(x)‖x− c‖2

Theorem 4.3 (Tight-Constraints mechanism). A TC
mechanism exists for a domain of locations X if and
only if there is vector µ≈ such that

Φ≈ µ≈ = 1 and µ≈c ≥ 0 ∀c ∈ X/≈. (6)

Furthermore, TC is obtained by setting for every c ∈
X/≈,

TC(x)(z) = e−εd(x,y) µ≈c ∀x ∈ X ,∀z ∈ c. (7)

Proof. In the following we will denote the equivalence
class of every x ∈ X by cx. Suppose that there is a vector
µ≈ that satisfies (6). Then it holds for every x ∈ X
that

∑
c∈X/≈ φ

≈
cxc µ

≈
c = 1. The latter equation can be

expanded using the definition (5) of φ≈cxc as∑
c∈X/≈

∑
z∈c

φxz µ
≈
c = 1.

From the above equation, it is clear that (3) is satisfied
with the vector µ defined as µz = µ≈c for all c ∈ X/≈
and z ∈ c. Since also µz ≥ 0, the tight-constraints mech-
anism exists. In this case Eq. (4), which evaluates the
probabilities of TC, yields Eq. (7) since φxz = e−εd(x,y)

and µz = µ≈c .
Conversely, suppose that the tight-constraints

mechanism exists, i.e. there is a vector µ that satisfies
the system of equations (3). We show in the following
that there is vector µ≈ that satisfies the reduced system
(6). Let {ρi : i = 1, 2, . . . , n} be the set of all different
automorphisms on X . Now consider any class c ∈ X/≈,

and any member x ∈ c. Then by (3), it holds∑
z∈X

φρi(x)ρi(z) µρi(z) = 1, 1 ≤ i ≤ n.

The above equations are exactly the instances of (3)
that correspond to the locations ρi(x) for 1 ≤ i ≤ n, i.e.
the members of c. Note also in the above summation,
ρi(z) considers every element of X because y iterates on
all these elements and ρi is bijective. Using the fact that
φρi(x)ρi(z) = φxz, we combine the above equations into
one as follows.∑

c′∈X/≈

∑
z∈c′

φxz

(
n∑
i=1

µρi(z)

)
/n = 1.

In the above equation, note that the quantity
(
∑n
i=1 µρi(z))/n is non-negative and depends only the

class c′ of y. Denoting this quantity by µ≈c′ , and recall-
ing that

∑
z∈c′ φxz = φ≈cc′ , the above equation can be

rewritten as follows.∑
c′∈X/≈

φ≈cc′ µ
≈
c′ = 1.

Since c was chosen arbitrarily, the above equation holds
for every member of X/≈. Since also µ≈c′ ≥ 0 for all c′,
the system of equations in (6) is satisfied.

Proposition 3.5. For all π, K, R, dA:

AdvError(K,π,dA) ≤ AdvError(KR, π,dA)

Proof. The result is a direct consequence of the fact that
for any inference attack H onKR, there exists an attack
H ′ on K such that

QL(KRH,π,dA) = QL(KH ′, π,dA)

This comes from the associativity of matrix multiplica-
tion by taking H ′ = RH.
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