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Privacy-preserving Wi-Fi Analytics
Abstract: As communications-enabled devices are be-
coming more ubiquitous, it becomes easier to track
the movements of individuals through the radio sig-
nals broadcasted by their devices. Thus, while there
is a strong interest for physical analytics platforms to
leverage this information for many purposes, this track-
ing also threatens the privacy of individuals. To solve
this issue, we propose a privacy-preserving solution for
collecting aggregate mobility patterns while satisfying
the strong guarantee of ε-differential privacy. More pre-
cisely, we introduce a sanitization mechanism for ef-
ficient, privacy-preserving and non-interactive approxi-
mate distinct counting for physical analytics based on
perturbed Bloom filters called Pan-Private BLIP. We
also extend and generalize previous approaches for es-
timating distinct count of events and joint events (i.e.,
intersection and more generally t-out-of-n cardinalities).
Finally, we evaluate expirementally our approach and
compare it to previous ones on real datasets.
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1 Introduction

The possibility of detecting and tracking the movements
of users through their Wi-Fi enabled devices [41] has
lead to the emergence of the field of physical analytics
[2, 49] that collect information on the human activity
in the physical world. The main objective of this type
of system is to be able to analyze human mobility at a
large scale and to use the findings of this analysis for
task such as urban planning or transportation optimiza-
tion. For instance, mobility tracking through physical
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analytics has recently arrived in the London tube [37].
The system has been deployed over 54 stations and is
collecting Wi-Fi probe requests emitted by mobile de-
vices. It has already been used to gather the mobility
data of tube users over a trial period of four weeks.

However, Wi-Fi tracking also raised important con-
cerns, in particular with respect to the location privacy
of individuals that are recorded [18] leading regulators
and data protection authorities to take repressive mea-
sures. For example in the USA, the Federal Trade Com-
mission has fined a Wi-Fi analytics company on the
ground that users were not sufficiently informed and
that no opt-out mechanism was available on site [28].
Similarly, the CNIL, the French data protection author-
ity, has denied an authorization to a Wi-Fi analytics
system on the ground that the data were not properly
anonymized [13]. As a result, tracking companies have
started to deploy some efforts to mitigate the impact
on privacy, such as proposing an MLA (Mobile Loca-
tion Analytics) Code of Conduct [29]. However, the cur-
rent adopted solutions are often not enough to ensure a
strong level of privacy as noted by the Electronic Fron-
tier Foundation [31]. In particular, the obfuscation of
MAC addresses (e.g., through hashing or truncation),
which has become a popular approach in the industry,
does not offer strong privacy guarantees [20].

In this paper, our main contribution is to propose
a novel privacy-preserving method for Wi-Fi analytics
based on perturbed Bloom filters, called Pan-Private
BLIP, that enables to estimate the number of devices,
identified by their MAC address, that have been seen at
a particular location (i.e., access point) or that are in
common between several locations. In fact, our method
is even stronger as it can be used to estimate as well
t-out-of-n distinct counts, which can be defined as the
number of distinct MAC addresses that have been seen
at exactly (i.e., no more and no less) t locations out of
n possible ones. Moreover, Pan-Private BLIP is generic
in the sense that it actually works on sets of MAC ad-
dresses, agnostic to the interpretation of these sets. A set
may represent a particular location (all MAC addresses
observed at that location), or a particular time duration
(all MAC addresses observed during that duration), or
both (all MAC addresses observed at a particular loca-
tion during a particular time duration) Thus, the sets
may actually represent arbitrary spatio-temporal collec-
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tions of identifiers and the operations that can be per-
formed on these sets enable for a richer class of analysis
than simply counting the number of distinct devices at
a particular location. Furthermore, our method is ag-
nostic to the type of identifiers and could also be used
to count and analyze other types of events such as web
connections events.

Finally, another strength of Pan-Private BLIP is
that it passively collects information in a privacy-
preserving manner. More precisely, the entire internal
state itself is as privacy-preserving as the final output of
the system, a property known as pan privacy [25]. This
means that the privacy guarantees of our scheme apply
even against legal or illegal intrusions into the system.
This property is directly in line with recommendation
of data protection authorities such as the CNIL that re-
quire the anonymization to be perform on the fly (rather
than storing everything and performing the sanitization
at the end) in order to increase the level of protection
against data stealing and leaking by against an external
attacker but also an internal one.

The outline of the paper is as follows. First in Sec-
tion 2, we review the elements of background necessary
to the understanding of our work. Afterwards in Sec-
tion 3, we introduce a novel differentially pan-private
Bloom filter construction before explaining in Section 4
the techniques developed for event counting based on the
data structure presented in the previous section. Then,
we evaluate our methods in Section 5 followed by a dis-
cussion in Section 6. Finally, we review the related work
in Section 7 before concluding in Section 8.

2 Background

In this section, we review the privacy notions that we
are considering, namely differential privacy (Section 2.1)
and pan privacy (Section 2.2) before introducing Bloom
filters, the data structure we use (Section 2.3).

2.1 Differential Privacy

The concept of differential privacy was first introduced
in 2006 by Dwork [22] in the context of statistical
databases. Differential privacy is motivated by the stan-
dard objective of data analysis, namely that an analyst
usually aims at learning aggregate information about the
population rather than the data of specific individuals.
In differential privacy, this translates to requiring that

the statistical distribution of the output of an algorithm
run on database (e.g., a sanitization mechanism) should
not depend too much on the data related to one indi-
vidual. Notice that this property relates to the distribu-
tion of outputs, and not on the outputs themselves, and
for this reason any mechanism satisfying differential pri-
vacy must be randomized. More precisely, the definition
states that the probability p that the mechanism out-
puts a particular value t does not change much if an
individual is added or removed from the input dataset.
The amount of change allowed depends on a public pri-
vacy parameter ε as shown in Definition 2.1.

Definition 2.1 (ε-Differential Privacy [22]). A saniti-
zation mechanism M : {0, 1}n → {0, 1}n satisfies ε-
differential privacy if for all inputs a, b ∈ {0, 1}n and
all outputs t ∈ {0, 1}n:∣∣∣∣ln Pr[M(a) = t]

Pr[M(b) = t]

∣∣∣∣ 6 ε · ‖a− b‖H ,

in which ‖a− b‖H is the Hamming distance between a

and b, or equivalently, the number of positions at which
they differ. The probability is taken over the coin tosses
of M.

If ε is equal to zero, the two distributions become iden-
tical and thus no information is revealed at all about
the input. However in this case, no utility can be ob-
tained from the output, which makes the sanitization
mechanism private but also useless for analysis. In con-
trast, if ε is large, the mechanism is allowed to extract a
significant amount of information about any individual
and may use this information in producing its output.
This is detrimental not only for privacy but also from
the point of view of robust statistics. For instance, too
much dependence on an outlier is likely to unreasonably
skew the analysis results and the conclusions drawn.

One of the most appealing properties of differen-
tial privacy is that no assumptions need to be made
about the adversary knowledge. In particular, differen-
tial privacy holds against a computationally unbounded
adversary, even if they have arbitrary side knowledge
(i.e., auxiliary information). In addition, differential pri-
vacy also offers strong composition properties in the
sense that applying an ε1 and an ε2-differentially pri-
vate mechanisms on the samedataset is at least (ε1 +ε2)-
differentially private [39]. More precisely, applying two
mechanisms on the same dataset is called sequential
composition, while applying each mechanism on a dis-
joint dataset is called parallel composition. It has been
proven that the parallel composition of an ε1 and ε2
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mechanism is max(ε1, ε2)-differentially private. This no-
tion of compositionality stresses the fact that with ev-
ery additional εi-differentially private release causes εi
amount of privacy to be lost. The total amount of pri-
vacy lost across all released outputs of the same dataset
is called the privacy budget. In practice, if the privacy
budget is not bounded by a carefully chosen threshold,
a complete loss of privacy may occur (we further discuss
this issue in Section 6).

In general, ε is chosen to be small, typical values for
it being 0.5, 1 or 3. In practice, the choice of the actual
value may depend on a trade-off between the privacy
level and the resulting utility (e.g., measured in terms
of global properties of the data or by an application-
specific metric). Note there is currently no clear con-
sensus in the community on a general method to mea-
sure privacy as a function of ε. Indeed, although ε itself
serves as a quantification of privacy in the sense that the
privacy gets stronger for lower values of ε, the practi-
cal guarantees ensured against various inference attacks
may not be fully characterized only from the value of ε as
the adversary’s auxiliary information must be taken into
account. For instance, Dwork shows that the amount of
information leaked, as measured by information entropy,
does not depend on the attack [22]. Nonetheless, for the
purpose of analyzing this trade-off, some authors sug-
gest choosing a value for ε that thwarts relevant prede-
termined classes of inference attacks [3]. In particular,
they consider some attacks that do not require auxil-
iary knowledge, as a form of protecting against blatant
non-privacy [19, 21].

2.2 Pan Privacy

Pan privacy was introduced by Dwork, Naor, Pitassi,
Rothblum, and Yekhanin [25] in 2010. Their initial objec-
tive was to study and design algorithms that can main-
tain their privacy guarantees even if their entire internal
state becomes visible to the adversary at some point. By
“entire internal state becoming visible”, we mean that
the adversary get exactly one instantaneous snapshot
of the internal state, as opposed to having continuous
access to the evolving internal state. For example, this
situation could occur following an intrusion by the ad-
versary, whether it was legal (e.g., following a subpoena
order) or illegal. This model is particularly relevant for
systems in which data is being continuously collected as

is the case with a Wi-Fi tracking system such as ours1.
In this model, the sequence of inputs is called a stream,
which in our scenario would be the MAC addresses as
they are observed in real-time by the system.

The original inventors of pan privacy have proposed
to classify intrusions on the basis or whether or not they
were announced. More precisely, an announced intrusion
is one in which the system becomes aware of the in-
trusion immediately after it takes place and before any
state change is performed. In the case of an announced
intrusion, the system may take measures to ensure the
continuity of the service in a privacy-preserving manner,
such as the regeneration of the used hash function or the
re-initialization of some of the randomness used in its
data structures. In contrast, an unannounced intrusion
is one in which the system does not realize that an intru-
sion took place. We later discuss that it has been proven
impossible to achieve security against unannounced in-
trusions for systems similar to ours. Similarly to differen-
tial privacy algorithms, which ensure that the output is
randomized, a pan-private algorithm ensures that both
the output and the internal state are randomized in a
differentially-private manner. Thus, pan-privacy can be
seen as an extension of differential privacy. If more than
one intrusion takes place, then all versions of the inter-
nal state the adversary has managed to observe, along
with the output, must be jointly differentially private2.
This notion is formalized in Definition 2.2.

Definition 2.2 (Differential Pan Privacy [25]).
Let Alg be an algorithm, I the set of internal states
of Alg and σ the set of possible outputs (an output is
produced only at the end of the stream).

Then for all integers d > 1, the algorithm Alg map-
ping input prefixes to the range Id×σ is ε-differentially
pan-private against d intrusions if for all sets I ′1, . . . , I ′d ⊆
I and σ′ ⊆ σ and for all pairs of data stream prefixes S
and S′, we have that∣∣∣∣∣ln Pr

[
Alg(S) ∈ (I ′1, . . . , I ′d, σ′)

]
Pr
[
Alg(S′) ∈ (I ′1, . . . , I ′d, σ′)

] ∣∣∣∣∣ 6 ε · ‖S − S′‖X ,

in which the probability is taken over the coin flips of
Alg, and ‖S−S′‖X is the cardinality of the smallest set
X such that S \X = S′ \X. This means that S and S′

1 Note that the continuous collection of data is not the same
as continuous release of output. The latter is called continual
observer and its privacy-preserving implications are studied in
[24]. We discuss a related issue in Section 6.
2 Here “jointly”refers to the sequential composition property of
differential privacy [39].
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differ only on the number of occurrences of elements of
X and their positions.

Remark 2.1 (User-level versus event-level privacy).
The original paper by Dwork, Naor, Pitassi, Rothblum,
and Yekhanin [25] introduced the notion of user-level
pan-privacy, in which all the events caused by a par-
ticular user are protected, and event-level pan-privacy,
a weaker notion in which the protection only applies
for individual events. Within the context of this paper,
a user is a distinct MAC address while an event is a
particular probe request issued by this MAC address.
Consequently, a user may produce several events. In
Wi-Fi tracking, the distinction between user-level pan-
privacy and event-level pan-privacy is important since
the user’s device typically sends the user’s MAC ad-
dress in a probe request several times in a row, called
a burst. The burst’s number of probe requests and their
fine-grained temporal pattern may enable device finger-
printing [44, 47] and is thus a threat to privacy. The
definition we have adopted Definition 2.2, when X is
a set of MAC addresses, amounts to user-level pan-
privacy (assuming that a user does not have more than
one MAC address), which unlike event-level pan-privacy
provide a stronger guarantee that is suitable for Wi-Fi
analytics.

2.3 Bloom Filters

Standard Bloom filters. A Bloom filter [11] is a data
structure designed to answer set membership queries.
The representation of a Bloom filter is simply a vector
of bits, in which initially all the bits are set to zero.
A specific Bloom filter is also associated with a set of k
hash functions h1, h2, . . . , hk, the domain of which is the
universe of all items and codomain is the set of positions
in the bit vector associated with the Bloom filter. For ex-
ample, if the bit vector is composed of m bits, then the
hash functions map to the set {1, 2, . . . ,m}. When an
item is added to the Bloom filter, a subset of those bits
will be set to one. The choice of this particular subset
depends on the item considered and on the hash func-
tions. More precisely when an item i is added, the bits
at the corresponding positions {h1(i), h2(i), . . . , hk(i)}
will be set to one. Similarly, these same positions will
be queried when querying for the presence of this item
in the Bloom filter. In this situation, an item will be
considered to belong to the set if the bit values of those
positions are all equal to one.

Due to their design, there may be hashing collisions
leading to false positives (i.e., falsely believing than an
item is in the Bloom filter while it was not). The false-
positive probability can be set arbitrary low at a trade-
off of the size (i.e., the number of bits) of the bit vec-
tor [11, 12]. In addition due to the potential collisions, it
is not possible to remove items from a Bloom filter since
it is not possible to know whether a bit was set to one (1)
because of the item to be removed or (2) due to another
unknown item. In a sense, a Bloom filter represents a
set, and it has been known for a long time that it is pos-
sible to estimate the size of this set from its Bloom filter
representation or to compute the size of the intersection
or the union of two Bloom filters [14, 48].

Privacy-preserving Bloom filters. In 2012, Alag-
gan, Gambs, and Kermarrec [3] introduced a privacy-
preserving version of Bloom filters, which they called
BLIP (for Bloom-and-fLIP). In more details, they have
shown that it is possible to randomly and independently
flip each bit in a Bloom filter, with a probability strictly
less than half, such that the resulting structure is ε-
differentially private. They have also shown that even af-
ter a Bloom filter is flipped in such a way, it is still possi-
ble to extract some utility from it such as approximating
the similarity between two profiles represented as sets. In
a similar line of work Balu, Furon, and Gambs [8], and
later Alaggan, Gambs, Matwin, and Tuhin [4] created
techniques to estimate the set size and the size of inter-
section between two sets, given only their corresponding
BLIPs. The application considered in [4] was the analy-
sis of mobility patterns using mobile phone usage data
(such as Call Detail Records collected by telecom opera-
tors). In this work, we expand this range of applications
by considering arbitrary set counting operations on any
number of BLIPs, allowing significantly more complex
types of mobility pattern analysis. Our technique can
also be applied directly to unperturbed Bloom filters
as well and thus it might be of interest to other types
of online big data analytics in which privacy is not a
concern. In the next section, we discuss an extension to
BLIP endowing it with the stronger privacy guarantee
of differential pan-privacy.

3 Pan-Private Bloom Filters

In this section, we propose a pan-private version of
Bloom filters satisfying differential privacy and that can
withstand any number of announced intrusions at the
cost of a graceful degradation in utility for each intrusion
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(we address unannounced intrusions in Section 3.4). We
call the proposed scheme Pan-Private BLIP. It is worth
mentioning that the final released structure is entirely
identical to ordinary BLIP for all intents and purposes.
Thus, any algorithm that use BLIPs may be immediately
applied with identical utility guarantees. The main dif-
ference lies in the internal workings of the algorithm that
guarantees privacy protection to the internal state while
the BLIP is being built. We believe that this feature is
really a key property that analytics systems continously
recording personal data should possess.

3.1 Pan-Private BLIP

Pan-Private BLIP algorithm takes as input a stream
of items from some universe (e.g., the universe of all
MAC addresses). The set of internal states I and the
set of outputs σ are both in {0, 1}m. The algorithm is
composed of three main subroutines: (1) Algorithm 1:
initialization, (2) Algorithm 2: item addition and (3) Al-
gorithm 3: intrusion recovery. Furthermore before the
final release, the number of intrusions d is incremented
since the output is basically the internal state itself and
revealing it shall be counted as an intrusion (however
Algorithm 3 will not be invoked). The three phases are
collectively referred to as Pan-Private BLIP.

In the initialization phase, the bits of the Bloom
filter are set identically and independently at random
according to the distribution Bernoulli(µ0), in which
µ0 < 1/2. In line with [5], on which later sections de-
pend, we will define µ0 = 1/2− η/2 and µ1 = 1/2 + η/2
for η a parameter in the range (0, 1). For all intents and
purposes, η is completely interchangeable with the differ-
ential privacy parameter, ε, via the relation η = exp(ε)−1

exp(ε)+1
and will be treated as such hereafter. This relation be-
tween η and ε is a side effect of the relation between µ0
and ε and is derived in the proof of Lemma 3.1.

When an item is added to the Bloom filter, the bits
that are supposed to be set to one according to the hash
functions applied to that item, will be set identically
and independently at random according to a different
distribution: Bernoulli(µ1) for µ1 > 1/2.

Finally, in case of intrusion, pan privacy is guaran-
teed by re-initializing all the bits in the Bloom filter
identically and independently at random according to
Bernoulli(µ0) or Bernoulli(µ1) depending on the current
value of the bits.

Since the algorithm does not store the true unper-
turbed values of these bits in its internal memory, there
is no way to know what the bits actually were, and

Algorithm 1 Initializing an empty Bloom filter
1: procedure Initialize(m, k, ε)
2: Set d← 1 . Number of intrusions so far
3: Set η0 ← exp(ε)−1

exp(ε)+1
4: Set η ← η0
5: Set µ0 ← 1/2− η/2
6: Set µ1 ← 1/2 + η/2
7: for each i in {1, . . . ,m} do . For each bit
8: Initialize B[i]← flip a coin with probability

of 1 being µ0
9: end for
10: end procedure

Algorithm 2 Adding an element to the Bloom filter
1: procedure Add(x)
2: for each i in {1, . . . , k} do
3: Set B[hi(x)]← flip a coin with probability

of 1 being µ1
4: end for
5: end procedure

Algorithm 3 Recovering after an intrusion takes place
1: procedure AfterIntrusion
2: for each i in {1, . . . ,m} do
3: if B[i] = 0 then
4: Set B[i]← flip a coin with probability of

1 being µ0
5: else
6: Set B[i]← flip a coin with probability of

1 being µ1
7: end if
8: Set d← d+ 1 . Increase the number of

intrusions
9: Set η ← η0 · η
10: Set µ0 ← 1/2− η/2
11: Set µ1 ← 1/2 + η/2
12: end for
13: end procedure
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the re-initialization will depend solely on the noisy bits.
Thus, such re-initialization is similar to flipping an al-
ready flipped bit, effectively compounding the flipping
probability. In particular, the result is as if the Bloom
filter had been initialized with a higher privacy param-
eter than it was initially given. Algorithm 3 takes this
new augmented privacy parameter into account. At the
end, the subsequent state and eventually the released
output will have decreased utility with each intrusion,
which is unavoidable according to [23].

An alternative strategy that could preserve utility,
depending on the needs of application and available
memory resources, is to freeze the old Bloom filter in
its current state, leave it aside in a list of compromised
Bloom filters, and start a new Bloom filter from scratch,
using the initial and unaugmented flipping probability.
All d Bloom filters will then be released at the end of
the stream, in which techniques described later in the
paper may be used to compute their union cardinality or
other functions as necessary. Finally, note that the flip-
ping probability (and ε) are part of the internal state but
they are considered public information and will be even-
tually released as part of the output. As a consequence,
there is no privacy violation occurring when the adver-
sary observes them as part of an intrusion and there is
no need to bestow them with pan-privacy guarantees.

3.2 Privacy Analysis

Lemma 3.1 (Differential privacy of Pan-Private BLIP).
When no intrusion occurs, Pan-Private BLIP is ε-
differentially private.

The k factors in (1+exp(ε/k))−1 guarantees privacy
for the items encoded in the Bloom filter, since each item
may impact up to k different bits through the use of k
different and independent hash functions [3]. However,
for the rest of the paper we will ignore the k factors
and assume it is equal to 1, for the sake of presenta-
tion. It was observed in [4] that k = 1 produces more
utility that k > 1, which agrees with the intuition that
even for equivalent privacy guarantees, using more hash
functions increases the chances of hash collisions, and
subsequently, loss of information. Our theorems do not
lose generality by dropping k as they hold for k > 1 by
using ϕ′ = ϕk in place of ϕ.

Theorem 3.2 (Pan privacy of Pan-Private BLIP).
For every positive integer d, Pan-Private BLIP is at

least (dε)-differentially pan-private for d− 1 announced
intrusions, in which µ0 = (1 + exp(ε))−1.

Note that the bound given by Theorem 3.2 holds
for both strategies: (1) the strategy in which d BLIPs
are released (in which case the bound is tight) and
(2) the strategy in which only one BLIP is released.
However, in the latter case the bound is not tight and
the effective privacy guarantee is stronger than the for-
mer strategy. In particular, using the moments accoun-
tant method [1], it is possible to numerically show for
ε = 1 and d = 30, that our algorithm is (1.81, 10−5)-
differentially pan-private (i.e., 1.81-differentially pan-
private with probability at least 1 − 10−5) instead of
being 30-differentially pan-private.

3.3 Utility Analysis

The quantification of utility depends what is done with
the output of the algorithm. This paper (in particular
Section 4), along with the unifying framework of [5], en-
compass the prior works of [3, 4, 8] and many others.

The previous bounds in [3, 4, 8] apply automatically
for their respective applications once we substitute the
correct value of the flipping probability µ0 = 1/2−ηd/2,
in which d is the number of intrusions including the
output itself. In particular, for [5] all upper and lower
bounds after d intrusions follow by replacing η by ηd.
Such simple substitution is one of the reasons that the
parameter η is more suited for our analyses than ε. Al-
though it is straightforward, we refrain here from rewrit-
ing all these bounds with such a substitution due to
space considerations.

Note that when considering the interaction of sev-
eral BLIPs, such substitution is only applicable when
all the BLIPs have undergone the same number of in-
trusions. This requirement can be ensured even without
interactions between the BLIP holders (in case various
BLIPs were held and managed by different parties), sim-
ply by releasing the number of intrusions a BLIP has
endured along with its normal output. Moreover, this
process should always be performed since otherwise if
the final flipping probability, which depends on the num-
ber of intrusions, is not be publicly known this means
that the output of BLIP will be useless. Afterwards the
combination of several BLIPs together can be performed
by emulating an intrusion on the BLIPs with the low-
est number of intrusions until their flipping probability
matches the BLIPs with the highest number of intru-
sions. The same technique also allows the combination
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of two BLIPs with different privacy parameters, regard-
less of whether intrusions were involved.

3.4 Limitations

Unannounced Intrusions. Our algorithm can only toler-
ate announced intrusions. However, this is an inherent
limitation as it has been proven to be impossible to tol-
erate any number of unannounced intrusions in the case
in which the internal state is released at the end. Indeed,
such final release is counted as an announced intrusion
and Dwork, Naor, Pitassi, Rothblum, and Yekhanin [25]
have shown that for all ε > 0, no ε-differentially pan-
private algorithm with a state having a finite size for
approximating stream density (e.g., counting the num-
ber of distinct elements) can tolerate one unannounced
intrusion followed by an announced intrusion [25, Corol-
lary 6.2]. Since our algorithm always releases its internal
state at the end, then any unannounced intrusion would
have to have happened before such final release. Hence,
the result of [25, Corollary 6.2] applies, precluding the
possibility that BLIP or any other efficient methods can
tolerate even as little as one unannounced intrusion.

In-core protection. Note that in the analysis of the
algorithm, the space in which the item itself is temporar-
ily stored before being included in the Bloom filter is not
counted as part of the internal state to be protected. To
be more precise, this means implicitly that the period of
time in which an item exists in memory in clear is not
protected by our scheme, which is unavoidable unless we
make additional assumptions about the fact this infor-
mation is protected by a highly trusted component such
as a dedicated tamper-proof hardware. However, this is
only a limitation if we consider a live intrusion, in which
the adversary accesses the machine directly while it is
actively operating on data. Alternatively, in case of a
court-ordered subpoena, the most plausible scenario is
that the system will be shut down and only cold storage
will be accessed by the intruder. It is beyond the scope
of this paper to consider further side-channel attacks.

4 Distinct Counting

An intuitive and well-known observation that the num-
ber of bit positions set to one in a Bloom filter is closely
related to the size of the set that the Bloom filter en-
codes [48]. Furthermore, the cardinality of the intersec-
tion of two sets is also related to joint features of their

corresponding Bloom filters [14, 46]. For instance, these
relationships have been extensively used for event count-
ing and stream analysis to estimate the number of dis-
tinct events taking place. As a concrete example, such
as approach has been followed for estimating the num-
ber of unique IP addresses observed for the purpose of
detecting denial-of-service attacks [14].

These relationships have been extended to privacy-
preserving Bloom filters (such as BLIP [3]) in the case
of one Bloom filter [8] and two Bloom filters [4]. More
precisely, given a privacy-preserving Bloom filter, each
of the previous works [3, 4, 8] adopt a direct approach by
analyzing the direct relationship between the observed
perturbed bits and the target set cardinality to be com-
puted. These approaches are tailored specifically for one
or two Bloom filters and are challenging to generalize
even to as little as three Bloom filters.

In contrast to that direct approach, we propose a
two-step method, in which we decompose the problem
into two independent sub-problems that can be solved
individually. The un-flipping step is to estimate, from
the perturbed Bloom filters, the number of bit positions
(either in a single Bloom filter or jointly in two or more),
whose values were zero prior to perturbation. In particu-
lar, this quantity can be defined as the number of bit po-
sitions which, jointly across n Bloom filters, have exactly
t ones, in any combination. This estimate is provided for
all t ∈ {0, 1, . . . , n}. The un-hashing step uses those esti-
mates to compute the required set cardinalities.

The un-flipping step was already solved by Alaggan,
Cunche, and Minier [5] and we use it here implicitly
as a black box. In a nutshell, their method takes the
perturbed t-out-of-n density vector (cf. Definition 4.2)
and uses a linear program to find a candidate vector
close to the original density vector with high probability.
Their method is designed for values of ε approaching 0,
and thus the utility of the estimated density vector may
not be as optimal as possible for large values of ε. We
refer the interested reader to [5] for further details on
the technique and its error bounds.

For the un-hashing step, usually a model of hash-
ing collisions must be assumed in order to be able to
give meaningful cardinality estimates and error bounds.
In particular, previous work exists in which the hash-
ing model analyzed is that of 4-wise independent hash
functions [25]. However, in this paper we only study the
truly random hash function model for simplicity of pre-
sentation [17]. In this model, hash functions are assumed
to map each input independently and identically at ran-
dom to its hash value. While this model is unrealistic
since representing such a hash function requires expo-
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nential amount of memory, Chung, Mitzenmacher, and
Vadhan have shown that provided that the input stream
itself (e.g., the stream of MAC addresses) has enough
entropy, the resulting utility in practice when the truly
random hash function is replaced by an O(1)-wise inde-
pendent hash function will not differ significantly from
the theoretical analysis that used truly random hash
functions [17]. Note also that it is not pan-private to
store an associative list of MAC addresses and their ran-
domly chosen hash values, even if it is practical to do so
for the small set of observed MAC addresses in most ap-
plications, since the keys of such associative list, even if
hashed or truncated, may reveal information about the
observed MAC addresses, beating the purpose of using
a pan-private algorithm.

Note that the un-flipping step is independent of the
semantics of the Bloom filter and the amount of hash
collisions taking place and that the un-hashing step is
agnostic to the sanitization mechanism used. Moreover,
each of those two steps can be independently useful if
integrated with a suitable substitute of the other and
thus different sanitization mechanisms or different hash-
ing models may be accommodated.

4.1 t-out-of-n Distinct Count

In the previous section, we reviewed the well-known re-
lationship between the set size (quantity 1) and the cor-
responding number of bits set to one in the associated
Bloom filter (quantity 2). In this section, we general-
ize these two quantities to multiple sets and describe
a novel relationship between those two generalizations.
This relationship will serve as the gist of the un-hashing
step described previously and provides the theoretical
framework for our distinct count estimation algorithm.

For n sets, the generalization of the set size (quan-
tity 1) is the t-out-of-n distinct count, which we denote
as the vector T , while that of the number of bits set to 1
in the Bloom filter (quantity 2) is that of t-out-of-n den-
sity, denoted as the vector D. The t-out-of-n density is
precisely the output of un-flipping step described earlier.
Hereafter, we formalize these definitions.

Definition 4.1 (t-out-of-n distinct count). Given a
multiset s of n sets: s = {{s1, s2, . . . , sn}}, let T =
(T1, . . . , Tn)> denote the vector of t-out-of-n distinct
counts, in which Tt is the number of elements belonging
to exactly t sets of n.

Definition 4.2 (t-out-of-n density [5]). Given n

Bloom filters: b1, b2, . . . , bn, each of size m, let D =
(D1, . . . , Dn)> denote the vector of t-out-of-n den-
sities, in which Dt is the density of bit positions
which, jointly across the n Bloom filters, contain
exactly t bits set to one out of n. In particular
Dt = 1

m ·
∣∣∣{i|i ∈ {1, 2, . . . ,m} ∧ t =

∑n
j=1 b

j
i

}∣∣∣.
As described in the previous section, D can be estimated
up to additive error using the technique of [5] (the un-
flipping step) when the Bloom filters are pan-private.
One of the advantages of the technique of [5] is that
the estimate of (D0, D1, . . . , Dn)>, which contains one
more component than D, namely D0 is guaranteed to
sum to one as expected (since it accounts for the fact
that the t-out-of-n density is a partition of all bit posi-
tions), unlike other methods that uses unbiased estima-
tors (such as the inverse of the transition matrix). This
consistency enhances the accuracy for larger n compared
to the baseline introduced later (Section 5.1), which
is an inclusion-exclusion based approach. By inclusion-
exclusion based approach we mean to refer to the rela-
tionship, known under that name, between cardinality
set intersection and cardinality set union of two sets, and
its generalization for more than two sets. For example,
the inclusion-exclusion principle for two sets states that
|A ∪B| = |A|+ |B| − |A ∩B|.

4.2 t-out-of-n Distinct Count Estimator:
The un-hashing step

The goal of the un-hashing step is to convert densities
(D) to distinct counts (T ). In the hashing model stud-
ied in this section, we treat the distinct counts as an un-
known given constant, while densities are a random vari-
able over the probability space of the random choice of a
hash function from a family of hash functions. The fam-
ily of hash functions considered is the family of truly ran-
dom functions (i.e., the chosen hash function is picked
uniformly at random from the set of all functions from
a given domain to a given range). This model is charac-
terized by the probability vector P , indexed by t from 1
to n, such that Pi is the probability, over the choice of
the hash function, that a particular bit position contains
exactly t bits set to 1 across the n Bloom filters. It can
be shown that P = E[D] (Proposition C.1).



Privacy-preserving Wi-Fi Analytics 12

4.2.1 The un-hashing step estimator

Hereafter, we described our proposed un-hashing step
estimator and prove upper bounds on its additive error,
along with a numeric example.

Definition 4.3 (t-out-of-n Distinct Count Estimator).
Given a multiset S of n sets: S = {{s1, s2, . . . , sn}}, and
their corresponding BLIPs, each of size m, let D be the
t-out-of-n density vector (cf. Definition 4.2) and D̂ be
its estimator ( i.e. is the output of the un-flipping step
when it is fed the BLIPs of each set in S). Our pro-
posed estimator of the t-out-of-n distinct count vector
T (cf. Definition 4.1) is:

T̂ , D̂/ ln(1/ϕ) , (1)

in which ϕ = 1− 1/m.

When m is large, the estimator may be simplified to
D̂/ ln(1/ϕ) ≈ mD̂ + O(1/m). To compute the additive
error of this estimator, which effectively is composed of
three disjoint sources of errors, we need to first define
a few symbols. The first source of error, the vector eF ,
is the additive error of the un-flipping step estimator3.
Having the ability to isolate eF from other sources of er-
ror makes it easier to analyze the impact on accuracy of
using alternative un-flipping step estimators. However,
we only use the additive error of the [5] estimator. In
all cases, eF , D̂ −D. The second source of error eH
is unrelated to the noise injected by the differential pri-
vacy mechanism, but is due to the variance resulting
from the random choice of the hash function and the
ensuing effect on the number of collisions4. In particu-
lar eH = D − E[D], in which the expectation is taken
over the choice of hash function. While, eH depends on
the chosen family of hash functions, it is usually very
small compared to other sources of error , such as of-
ten three orders of magnitude smaller. For instannce,
in our experiments it is usually 10 or 100 when other
sources of error are respectively 10000 or 100000.. As a
consequence, this error may be omitted in most cases.
Both sources of error described so far jointly contribute
to the variance of our estimator. This means that the
probabilistic amount of additive error that will differ for
different runs, with different random coins, even for the
exact same input multiset S and parameters m and ε.

3 The mnemonic “e” comes from “error” and “F” comes from
“un-Flipping”.
4 The mnemonic “H” is for “Hashing”.

The remaining source of error, eT is the bias, in the
sense that it is not affected by the random coins. It will
depend solely on the input multiset S, m, ε and on the
form of Equation (1). It is also perhaps the most intrigu-
ing component of the error since it gives rise to a rich set
of alternative behaviors depending on the form of Equa-
tion (1), often related to number-theoretic notions and
computationally-difficult problems. The general form of
the total additive error as a function of these compo-
nents is given in Theorem 4.4.

Theorem 4.4 (Estimator’s Additive Error). Let Q−1

is the matrix whose i, j entry is (−1)n+i+j−1( j
n−i
)
for

1 6 i, j 6 n and ϕ be equal to 1− 1/m, for m being the
size of the Bloom filters. Then the additive error of T̂

(cf. Equation (1) in Definition 4.3) is:

T − T̂ = Q−1eT + (eH + eF )/ lnϕ . (2)

Note that this is an exact additive error as any
sources of uncertainty is deferred to the underlying error
components (the proof is provided in Appendix C). A
worked numerical example is presented in Appendix E.

4.3 Upper Bound

We upper bound all terms except the hashing variance
(eH) since it is negligible compared to other factors. The
proof of Lemma 4.5 is in Appendix D. The upper bound
in Figure 2 shows that although it can be loose when m
is small, it is still useful for the choice of m, given that
ξ has been estimated suitably, as described in [5].

Lemma 4.5 (Upper Bound). If the un-flipping step es-
timator used was that of [5], then the upper bound Γξ on
the error ‖T − T̂ ‖, ignoring eH , is, for sufficiently large
m:

Γξ = ‖Q
−1K(x 7→ x2)‖

2m +O(η−n)
2ξ
√
− ln(β) ln(n+ 1)
− ln(ϕ)

√
2m

,

with probability at least 1−β, in which all the norms are
the max norm; ‖x‖∞ , maxi |xi|, or its induced norm
for matrices, and ξ ∈ (0, 1) is the precomputed multiplier
described in [5].

5 Experimental Evaluation

To evaluate the efficiency of our approach we tested it on
a dataset provided by CISCO, coming from a Meraki lo-
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cation analytics plateform5. This dataset have been gen-
erated by a dozen access points (AP) installed around
a busy roundabout in a large European city. The re-
sulting data, collected over a period of three months in
2016, contains timestamped events corresponding to the
detection of Wi-Fi devices by the APs composing the
platform. For obvious privacy reasons, we did not have
direct access to the raw MAC addresses. Rather, the
MAC addresses provided were first pseudonymized using
a secret one way function to which the authors do not
have access (e.g., using an HMAC with a secret key that
is thrown away afterwards). The generated pseudonyms
are consistent throughout the dataset.

Afterwards, the dataset was aggregated on a daily
basis in the sense that all the MAC addresses observed
by all APs during a particular day are encoded together
in a single privacy-preserving Bloom filter (BLIP). From
this BLIP, we use the tools developed in Section 4 to es-
timate the number of distinct MAC addresses observed
that day. As mentioned previously, the roundabout at
which the data was collected is very busy and thus the
number of distinct devices seen in day can be as high as
50 000 unique MAC addresses.
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Fig. 1. Error decomposition for two randomly generated sets, A

and B, such that |A| = |B| = 25000 and |A ∩ B| = 10000. The
additive error, when ε = 1 shown on the y-axis is ‖T − T̂‖∞, the
maximum of additive errors for all t.

5.1 Baseline

To the best of our knowledge, there is no method in the
litterature that combines three or more flipped Bloom fil-
ters, or even raw unsanitized Bloom filters, in way that

5 https://meraki.cisco.com/solutions/location-analytics
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Fig. 2. Upper bound Γ1/8 on the additive error for two randomly
generated sets, A and B, such that |A| = |B| = 625000 and
|A ∩B| = 250000. The additive error, when ε = 1, shown on the
y-axis is ‖T − T̂‖∞, the maximum of additive errors for all t.

is comparable to our work6. Thus, to evaluate the ef-
ficiency of the un-hashing step, which transforms the
density estimate of the un-flipping step into t-out-of-n
distinct counts, we propose as a baseline a straightfor-
ward generalization of the approach of [46] for comput-
ing the cardinality intersection of two Bloom filters, to
compute instead the cardinality intersection of n Bloom
filters (equivalently, n-out-of-n distinct counts). Both
our method and the proposed baseline take as input the
output of the un-flipping step [5]. The baseline relies on
the 0-out-of-n densities and the technique of [48], which
convert the density of zeros into an estimate of the cardi-
nality set union, to compute the union of all 2n subsets
of the n Bloom filters. In particular, it will invoke the un-
flipping step Θ(2n) times. Given the values of all these
unions, the baseline will employ the inclusion-exclusion
principle Θ(2n) times to recursively compute the inter-
section of the given n Bloom filters. As shown later in
the results obtained, our method provides better utility
and runtime performance for higher n, while being at
least as good as the baseline for small n. Furthermore,
the baseline is not scalable to large n as it requires an
exponential runtime in n.

5.2 Utility versus Dataset Size

The strong guarantees provided by differential privacy
come from the fact that it bounds the amount of infor-
mation each user contributes to the output [6]. In fact,
in [6], Alvim, Andrés, Chatzikokolakis, and Palamidessi
showed that the utility increased with the number of

6 RAPPOR [26] is not comparable to our work as will be dis-
cussed later

https://meraki.cisco.com/solutions/location-analytics
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Fig. 3. Plotting the privacy-preserving estimates against the ground truth. The figure shows the distinct count of MAC addresses for
each day, for the intersection of a rolling window of 2 consecutive days, and for the intersection of a rolling window of 3 consecutive
days. For each situation, m, the size of the Bloom filters, was chosen as the one with the least error among possible values of m.
The first day is August 5 2016, a Friday, and the last is November 3 2016, totaling 91 days. Weekends (Saturdays and Sundays) are
highlighted in orange (north east pattern), official holidays in pink (north west pattern), and school holidays in green (no pattern).
The count of October 31 is less than the average of a working day, indicating that many people took the day off as a bridge holiday
between the weekend and the official holiday on November 1.

users in the dataset. Intuitively, the more users there
are, the more information can be pieced together about
their aggregated properties. In contrast, the fewer users,
there are the less utility can be extracted. In particular,
in the extreme situation in which there is only one user
in the system, no utility can be extracted as any such
utility will be considered as a privacy breach since it is ul-
timately information about that particular user. There-
fore, differential privacy mechanisms provide higher util-
ity when the number of users is large while behaving
poorly when that number is small. This relationship de-
pends on the privacy parameter ε and the mechanism
itself. We explore the trade-off between the size of the
dataset and the utility by evaluating our method on sub-
samples of the original dataset of various sizes. More
precisely, in Figure 9 we compare the results obtained
for the original dataset versus a subsample of one-half
(respectively one-quarter and one-eighth) of its size, for
different levels of the privacy parameter ε.

5.3 Results

Temporal patterns. In Figure 3, we plot in the first row
the estimated count of distinct MACs (y-axis) seen each
day (x-axis) along with the ground truth. The second

and third rows are similar except that they show the
estimated count of distinct MACs appearing in a win-
dow of respectively two and three consecutive days. The
figure shows that most temporal patterns are preserved,
even with a privacy level as strict as ε = 1. For each row,
m, the size of the Bloom filters, was chosen as the one
with the least multiplicative error among possible val-
ues of m. Figure 4 complements this choice by showing
the median of the multiplicative error for varying values
of m and ε. The observed existence of a value of m in
the middle of the spectrum that is optimal in terms of
utility agrees with Appendix E and Figure 1.

Spatial patterns. To complement the previous ex-
periment, in Figure 5 (left panel) we evaluate an
application-oriented utility metric. More precisely, we
consider that the task at hand is the computation of
an origin-destination matrix [9]. In a nutshell, an origin-
destination matrix is a matrix showing the number of
people who were at a particular origin location at one
point in time and then moved to the destination location
at another point in time. When the time component is
taken into account they it is known as time-dependent
or dynamic origin-destination matrix, while otherwise it
is called time-independent or static. Time-independent
origin-destination matrices are generally used when data
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about a large period of time is available, such as in our
case, and long-term planning is desired. We constructed
the time-independent origin-destination matrix between
the 14 different APs in the dataset for the entire period
of three months. The value in a cell of the matrix is
simply the number of distinct MAC address in the inter-
section of the two access points. To realize this, we con-
sider the application of finding the top-k most common
origin-destination pairs. The quality of our estimation is
measured by the F1-score, whose value ranges between
0 (no match) and 1 (perfect match), and is equivalent
to the scaled harmonic mean of recall (r) and precision
(p): F1 = 2/(1/r + 1/p) = 2pr/(p + r) when p + r > 0
and∞ otherwise. More precisely, the F1-score measures
the extent to which two sets are similar. In particular,
the precision is the fraction, out of the inferred set, of
the true top-k set of origin-destination pairs, while the
recall is the fraction, out of the true top-k set of origin-
destination pairs, which were inferred. The results show
that our scheme reached as high as an F1-score of 0.8
for some values of m, even for the strict privacy level of
ε = 0.5.

Baseline. Figure 8 shows how our method is com-
parable, in terms of utility, against the less computa-
tionally efficient and less flexible alternative. The figure
demonstrates that our method always performs better

when ε is strict, but also that the utility is often compa-
rable with, if not better than the baseline when ε is not
strict.

Utility versus dataset size. We also assess the sensi-
tivity of our method with respect to the dataset size in
Figure 9. To realize this, we sequentially remove half of
the distinct MAC addresses in the dataset three times in
a row before evaluating our method each time. On aver-
age, a day has roughly 44000 (respectively 22000, 11000
and 55000) distinct MAC addresses in the dataset with
0% (respectively 50%, 75% and 87.5%) of distinct MAC
addresses randomly removed. An intersection of two (re-
spectively three) consecutive days has roughly 11000
(respectively 6000) distinct MAC addresses on average.
The figure shows that the utility decreases as the size of
the dataset get smaller, as expected from a differentially-
private algorithm which limits the amount of informa-
tion released by an individual, thus resulting as the total
amount of released information diminishing as the num-
ber of individuals decreases. The figure also shows that
the intersection of three days (respectively two days) is
more sensitive to dataset size reduction than the inter-
section of two days (respectively one day). This observa-
tion suggests that for higher-level mobility analytics re-
quiring the involvement of many spatio-temporal BLIPs,
either a large dataset should be available or a large pri-
vacy budget should be allowed.

Naïve approach. In Figure 5 (both panels) we study
an assumption made by the un-flipping step. In particu-
lar, the un-flipping step is designed for strict values of ε
(i.e., values of ε approaching zero). This fact has two con-
sequences: (1) when ε is large the assumption is violated
and the utility may not be as optimal as possible, and
(2) the un-flipping step makes our method particularly
well-suited for strict value of ε. The plot confirms both
consequences. In particular, we compare our method to
the naïve approach of considering the perturbed Bloom
filter directly. Using the perturbed Bloom filter directly
makes sense for high value of ε since in that case it will
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approach the true Bloom filter. While such high value of
ε is not recommended for real applications, if it was uti-
lized in practice, it may be easier and sometimes more
accurate to rely on the naïve approach rather than our
method.

5.4 World Cup 1998 Website Access Logs

To demonstrate its applicability to other contexts, we
have also applied our method to a non-WiFi dataset.
The dataset considered corresponds to the access logs
of the website of FIFA World Cup championship that
have taken place in France 1998 [7]. This dataset records
all the HTTP requests sent to and served by the vari-
ous servers hosting the website, from 30 April 1998 to
26 July 1998. Instead of using MAC addresses as identi-
fiers for individual persons, we use the source IP address
of an HTTP request. There is 1,352,804,107 HTTP re-
quests in the dataset, sent by 2,769,901 unique IPs and
served by 33 servers. In Figure 6, we show the intersec-
tion of n consecutive days, starting from 30 April 1998,
for n ranging up to 30 days. The figure contains one
subplot for each n, ordered left-to-right, and spanning
multiple rows, in order of increasing n. The parameters
for each n, namely the choice of the Bloom filter size m
and the privacy parameter ε was computed as the param-
eters minimizing the error, among m ∈ {28, 29 . . . , 224}
and ε ∈ {0.1, 0.5, 1, 3}. The values chosen for m, from
n = 1 up to n = 30, in that order, are: {222, 223, 222, 221,
222, 220, 219, 222, 222, 221, 221, 221, 220, 221, 221, 220,
220, 220, 220, 221, 218, 220, 220, 220, 219, 219, 219, 219,
219, 218}, and the values for ε are {3, 3, 3, 3, 3, 3, 3, 1,
1, 3, 3, 3, 3, 1, 1, 0.5, 0.5, 0.5, 0.5, 1, 1, 0.5, 0.5, 0.5, 3, 3,
1, 1, 1, 3}. We can see from the figure that the temporal
patterns are preserved even as n grows so large, albeit
as clearly some almost-constant bias is introduced. The
apparent irregularities for n ∈ {6, 7, 21} are most likely
due to the use of power-of-two values for the size of the
Bloom filter, which may not correspond to the optimal
value. In particular, these irregularities are not unique
to n ∈ {6, 7, 21}. Indeed, they also appear – to a lesser
degree – in n ∈ {2, 3, 4, 25, 26}, and to an even lesser
degree in others.

6 Discussion

Consider the scenario in which three BLIPs are released,
and in which each BLIP contains information about a

different day and each was flipped using the privacy
level ε. If the three days are guaranteed not to share any
users at all, then the composition of the three BLIPs is
also ε-differentially private, by the parallel composition
lemma [39]. However, if all users appear in all three days
then the total privacy budget used by the system is in
fact 3ε, due the sequential composition lemma [39]. Con-
sequently, the users who appear in more than one day
are given weaker guarantees about their privacy than
users who appear in at most one day. In the extreme
case in which they appear in many days it could even
be the case that they can be identified with high proba-
bility [26], showing that the privacy risk increases with
the number of days in which a user appears in the data.

However, in practice most people appear in a small
number of days, according to the power-law princi-
ple [51]. For example, Figure 7 shows that 90% people
do not appear in more than 6 days in the dataset consid-
ered in this paper. Nonetheless, it remains unsustainable
for the privacy of the minority of users who happen to
appear in many days to keep releasing BLIPs publicly
for an unbounded number of days.

Countermeasures to specific attacks such as re-
identifying the most frequent users by means of tech-
niques like RAPPOR [26] can be deployed. For instance,
one possibility is to change the hash functions used by
the Bloom filters on a regular basis (e.g., every week)
while keeping those hash functions secret, which is a
compartmentalization technique. While RAPPOR can
handle perturbed Bloom filters that use different hash
functions (called cohorts), their method requires the
knowledge of the hash function used.

Unfortunately, a generic countermeasure that would
work against any attack is much more challenging to ac-
complish, especially without making assumptions about
the auxiliary knowledge the adversary has. For example,
even if no BLIPs were released, but rather locally com-
puted statistical information involving the same users
were released many times, the privacy budget would still
be exhausted. Indeed, the query response itself carries
information and is also composable, which means that
solutions such as compartmentalization, which assumes
that the culprit of the composable privacy loss is the
ability to link different BLIPs, would not work.

As mentioned previously, the above problem is
known as continual observation problem and has been
studied before [23]). In our case in which the internal
state itself (the BLIP) is released, it might be called
continual intrusion as well. Dwork, Naor, Pitassi, and
Rothblum show that a pan-private algorithm releasing
a counter (i.e., the count estimation from a BLIP falls



Privacy-preserving Wi-Fi Analytics 17

Fig. 6. The number of the daily distinct IP addresses sending an HTTP request to the FIFA Worldcup 1998 championship website. The
x-axes is the day, and the y axis is the distinct count of the IP addresses (ymin is always 0). The dark solid black line represents the
ground truth, while the dashed red line represents the estimate by our method.
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Fig. 7. The privacy budget consumed by each user. The y-axis
is cumulative and shows the ratio of distinct MAC addresses
appearing in at least x BLIPs.

under this category) under continual intrusion must be
performing some form of randomized response [23]. Ad-
ditionally, they prove that to maintain privacy in this
situation, the error must grow as the number of releases
increases [23, Theorem 4.3]. As a consequence when the
number of days increases, the error will eventually be-
come too large, effectively enforcing an upper bound on
the total number of usable BLIPs. More precisely, an
unbounded number of days may be released, but all ex-
cept the first few will be totally random and convey no
information. This can be implemented by triggering the
re-initialization of the privacy parameters after a release
as is the case after an intrusion (i.e., Algorithm 3).

7 Related Work

The privacy guarantees provided by plain Bloom filters
has been formally studied by Bianchi, Bracciale, and
Loreti [10]. Their study highlights their inherent limita-
tion, when the universe can be enumerated, which is the
case with network identifiers like MAC addresses. Focus-
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ing on the false-positive rate and the plausible deniabil-
ity features provided by Bloom filters, they demonstrate
that depending on the filter parameters, not all elements
may benefit from the same level of protection and even
that some of them can be denied this protection. For ex-
ample, if a particular bit in the Bloom filter can only be
set to 1 by only one item in the universe. One of their
suggestions for improvement was to randomly choose
the values of some bits in the array, which is similar in
spirit to the approach that we have taken.

In [30], Gonçalves, José, and Baquero considered
the problem of estimating the number of persons in a
privacy-preserving manner using Bloom filters. The pri-
vacy guarantees of this system is based solely on the
intrinsic false-positive probability of Bloom filters, and
thus it provides a weak protection while our approach
provides stronger guarantees by combining differential
and pan-privacy. More recently, Lim, Zimmerling, and
Thiele have introduced DEVCNT [35], a system for
counting Wi-Fi devices that only relies on the detection
and counting of active Wi-Fi scan events to estimate the
number of devices, thus disregarding privacy issues as-
sociated with the collection of identifiers. In contrast to
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our approach, DEVCNT is limited to counting devices
at a single location and does not support complex set
operations as our protocol.

Fawaz, Kim, and Shin investigated [27] the tradeoff
between privacy and rewards in location-based services
in which users are willingly sharing their whereabouts in
exchange of rewards. The proposed system ensure that
the user will get a fair trade-off between the level of
information provided to the system and the reward re-
ceived. In contrast to our approach, the user has to ac-
tively interact with the tracking service, meaning that
he can control the level of information shared and that
he has given explicit and informed consent, which is not
the case in our work. Furthermore, the tracking entity
considered by Fawaz et al. has for objective to profile
each user individually while in our setting the tracker is
interested in global properties of the dataset.

In [26], Erlingsson, Pihur, and Korolova intro-
duced RAPPOR for Randomized Aggregatable Privacy-
Preserving Ordinal Response, a system that allows
to extract, in a privacy-preserving manner, the most-
frequently visited websites for a very large group of users.
While RAPPOR also relies on Bloom Filter to encode
data and on the addition of noise to make them differen-
tially private, their objective is different from ours and
incomparable. More precisely, they compute the exact
“heavy-hitters” set from the intersection of millions of
sanitized Bloom filters, while we compute only the num-
ber of distinct elements in the intersection (and other
combinations, like union and symmetric difference) of a
handful of sanitized Bloom filters (usually less than 10).

In a similar way, Melis, Danezis, and Cristofaro
presented an approach based on sketches to crowd-
source statistics in a privacy-preserving way [40]. This

scheme works by combining counting sketches with ho-
momorphic encryption for private aggregation to which
Laplacian noise can be added to ensure differential pri-
vacy. This last work has then been applied by Pyrgelis,
De Cristofaro, and Ross to the case of crowdsourced
mobility analytics [43]. Using real world datasets, they
validate the efficiency of their approach in the context
of predictive analytic tasks and anomaly detection.

Haze, a privacy-preserving traffic monitoring system
Brown et al. based on threshold cryptography and dif-
ferential privacy techniques has been introduced by [15].
Popa, Blumberg, Balakrishnan, and Li proposed PrivS-
tats [42], a solution for the aggregation of statistics on
location data featuring provable guarantees on location
privacy and privacy-preserving accountability. A system
for the distributed collection of visit quantities has been
proposed [32] by Kopp, Mock, and May. In [45], Shi,
Chan, Rieffel, Chow, and Song proposed a framework
allowing an untrusted aggregator to learn statistics on
time-series data produced by users.

All those works assume that the user is cooperat-
ing by locally performing computation. However, this
approach is only valid in a crowdsourcing scenario in
which users willingly cooperate which is not the case of
our setting. Indeed, physical analytics based on Wi-Fi
typically rely on the passive collection of signal emitted
by personal devices [41] and is particularly pervasive as
it does not require any interactions with those devices.

In [36], Liyue Fan and Li Xiong introduced FAST,
an adaptive system for releasing time-series while pro-
viding differential privacy. In FAST, a central entity
is in charge of periodically releasing statistics over pri-
vate data. FAST minimize the overall privacy budget by
adaptively sampling the data to be tailored to the dy-
namics of the data. Although FAST allows the release
of differentialy private time-series without the coopera-
tion of the subjects, it does not protect against an in-
truder that can access the internal state of the system
in contrast to our approach. Cao, Carminati, Ferrari,
and Tan introduced CASTLE [16] a framework for ag-
gregating data stream under time constraints. The time-
constrained publication of datastream has also been in-
vestigated by Zhou, Han, Pei, Jiang, Tao, and Jia [50]
and Li, Ooi, and Wang [34]. As our approach, those
works address the issue of on the fly sanitization but
they only provide k-anonymity while our scheme pro-
vides differential and pan privacy.

In the seminal paper on which they introduced the
concept of pan-privacy [24], Dwork, Naor, Pitassi, and
Rothblum also presented several algorithms to compute
statistics over a stream of events while enforcing user-
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level pan-privacy. Namely they presented algorithms to
estimate the count of distinct events, but also other
statistics such as t-Cropped Mean, k-Heavy Hitters, and
t-incidence [25]. For the t-incidence case which is closest
to our application, they use a data structure composed
of a collection of arrays, in which each array acts as
a noisy histogram modulo a different prime. Our work
provides a practical implementation of pan-private al-
gorithms relying on another type of data structures,
namely Bloom filters. Furthermore, our approach en-
able the computation of complex set operations, after
the data collection phase, while the approach in Dwork
et al. restricts the analysis to a unique stream of events.

MAC randomization is a client side solution that has
been proposed and put forward by vendors to protect
users from tracking. In this technique, instead of using
the real MAC address, the device uses an address that is
periodically renewed. The main drawback of MAC ran-
domization is that its applicability is limited to scanning
mode. Indeed, when connected to a network, the device
falls back to a stable MAC address [38], thus exposing
the user to tracking.

8 Conclusion

In this paper, we have proposed Pan-Private BLIP
a novel privacy-preserving sanitization mechanism for
physical analytics that can be used to estimate the num-
ber of Wi-Fi enabled devices that have been seen at a
particular access point. Our method can also be used
to compte more complex correlations such as t-out-of-
n distinct counts. These operations pave the way for a
richer class of spatio-temporal analysis tasks than simply
counting the number of distinct devices that have been
seen at a particular location. In addition, our method
is agnostic to the type of identifiers and therefore that
it could be used for performing analytics in other con-
texts and for other types of data as demonstrated in
our experiments. In addition, Pan-Private BLIP offers a
strong level of privacy as it is ensures pan privacy, which
is an extension of differential privacy providing strong
guarantees even against intrusions into the system by
ensuring that the internal state of the algorithm is as
private as the output itself. Finally, Pan-Private BLIP
is efficient both in terms of computation time and mem-
ory used due to the use of Bloom filters but also due to
the fact that the data structure can be built in an online
and privacy-preserving manner.

As future work, we are aiming at designing and test-
ing practical inference attacks targeted at Wi-Fi data to
be able to evaluate the privacy provided by Pan-Private
BLIP for different values of ε. Once a meaningful set of
inference attacks has been developed, it can also be used
by a practitioner to tailor the value of ε when deploy-
ing our system in real-life. Another avenue of research
concerns the investigation of using our approach to per-
form more complex physical analysis tasks, such for road
traffic application including traffic forecast and anomaly
detection [43], point-to-point travel time [35] or urban
network characterization [33].

Finally, we want to underlined that those results can
find may applications beyond Wi-Fi tracking. Basically,
any domain in which users are associated to a unique
identifier could benefit from our contribution such as for
instance public transportation systems in which users
authentify via smartcards or traffic monitoring applica-
tions based on RFID tags or plate-number recognition.

9 Acknowledgments

This work is supported by the Cisco grant CG# 593780
and the French Programme d’Investissement d’Avenir
-FSN-AAP 1 Protection des Données Personnelles pro-
jet ADAGE n° P128356-2659748PIA ADAGE as well as
an NSERC Discovery Grant and Discovery Accelerator
Supplement Grant for Sébastien Gambs. The authors
would also like to thank the PETS reviewers for their
helpful comments and feedback.

References
[1] M. Abadi, A. Chu, I. J. Goodfellow, H. B. McMahan,

I. Mironov, K. Talwar, and L. Zhang. Deep learning with
differential privacy. In E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, editors, Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 308–318, Vienna, Austria,
October 2016. ACM.

[2] U. G. Acer, G. Vanderhulst, A. Masshadi, A. Boran, C. For-
livesi, P. M. Scholl, and F. Kawsar. Capturing Personal and
Crowd Behavior with Wi-Fi Analytics. In Proceedings of the
3rd International on Workshop on Physical Analytics, WPA
’16, pages 43–48, New York, NY, USA, 2016. ACM.

[3] M. Alaggan, S. Gambs, and A.-M. Kermarrec. BLIP: Non-
Interactive Differentially-Private Similarity Computation on
Bloom Filters. In Proceedings of the 14th International Sym-
posium on Stabilization, Safety, and Security of Distributed
Systems (SSS’12), Toronto, Canada, October, 2012.



Privacy-preserving Wi-Fi Analytics 20

[4] M. Alaggan, S. Gambs, S. Matwin, and M. Tuhin. San-
itization of Call Detail Records via Differentially-Private
Bloom Filters. In P. Samarati, editor, Data and Applications
Security and Privacy XXIX - 29th Annual IFIP WG 11.3
Working Conference, DBSec 2015, Fairfax, VA, USA, July
13-15, 2015, Proceedings, volume 9149 of Lecture Notes in
Computer Science, pages 223–230. Springer, 2015.

[5] M. Alaggan, M. Cunche, and M. Minier. Non-interactive
(t, n)-Incidence Counting from Differentially Private In-
dicator Vectors. In Proceedings of the 2017 ACM on In-
ternational Workshop on Security And Privacy Analytics,
IWSPA@CODASPY 2017, Scottsdale, AZ, USA, March 2017.
ACM.

[6] M. S. Alvim, M. E. Andrés, K. Chatzikokolakis, and
C. Palamidessi. On the relation between differential privacy
and quantitative information flow. In L. Aceto, M. Henzinger,
and J. Sgall, editors, Automata, Languages and Program-
ming - 38th International Colloquium, ICALP 2011, Zurich,
Switzerland, July 4-8, 2011, Proceedings, Part II, volume
6756 of Lecture Notes in Computer Science, pages 60–76.
Springer, 2011.

[7] M. Arlitt and T. Jin. 1998 World Cup Web Site Access Logs,
August 1998. URL http://www.acm.org/sigcomm/ITA/.

[8] R. Balu, T. Furon, and S. Gambs. Challenging Differen-
tial Privacy: The Case of Non-Interactive Mechanisms. In
ESORICS, pages 146–164, 2014.

[9] S. Bera and K. Rao. Estimation of origin-destination matrix
from traffic counts: the state of the art. European Trans-
port/Trasporti Europei, 49:3–23, 2011.

[10] G. Bianchi, L. Bracciale, and P. Loreti. ” Better Than
Nothing” Privacy with Bloom Filters: To What Extent? In
International Conference on Privacy in Statistical Databases,
pages 348–363. Springer, 2012.

[11] B. H. Bloom. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Commun. ACM, 13(7):422–426, July 1970.
ISSN 0001-0782.

[12] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin,
J. Morrison, M. H. M. Smid, and Y. Tang. On the false-
positive rate of bloom filters. Inf. Process. Lett., 108(4):
210–213, 2008.

[13] C. Bouchenard. JC Decaux’s pedestrian tracking system
blocked by french data regulator. Marketinglaw, 2015.
URL http://marketinglaw.osborneclarke.com/advertising-
regulation/jc-decauxs-pedestrian-tracking-system-blocked-
by-french-data-regulator/.

[14] A. Z. Broder and M. Mitzenmacher. Survey: Network Applica-
tions of Bloom Filters: A Survey. Internet Mathematics, 1(4):
485–509, 2003.

[15] J. W. S. Brown, O. Ohrimenko, and R. Tamassia. Haze:
Privacy-preserving real-time traffic statistics. In Proceed-
ings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems, SIGSPA-
TIAL’13, pages 540–543, New York, NY, USA, 2013. ACM.

[16] J. Cao, B. Carminati, E. Ferrari, and K. L. Tan. CASTLE: A
delay-constrained scheme for ks-anonymizing data streams. In
2008 IEEE 24th International Conference on Data Engineer-
ing, pages 1376–1378, Apr. 2008.

[17] K. Chung, M. Mitzenmacher, and S. P. Vadhan. Why simple
hash functions work: Exploiting the entropy in a data stream.
Theory of Computing, 9:897–945, 2013.

[18] S. Clifford and Q. Hardy. Attention, Shoppers: Store Is
Tracking Your Cell. The New York Times, 2013. URL
http://www.nytimes.com/2013/07/15/business/attention-
shopper-stores-are-tracking-your-cell.html?pagewanted=all.

[19] A. De. Lower bounds in differential privacy. In R. Cramer,
editor, Theory of Cryptography - 9th Theory of Cryptogra-
phy Conference, TCC 2012, Taormina, Sicily, Italy, March
19-21, 2012. Proceedings, volume 7194 of Lecture Notes in
Computer Science, pages 321–338. Springer, 2012.

[20] L. Demir, M. Cunche, and C. Lauradoux. Analysing the
privacy policies of Wi-Fi trackers. pages 39–44. ACM Press,
2014.

[21] I. Dinur and K. Nissim. Revealing information while pre-
serving privacy. In F. Neven, C. Beeri, and T. Milo, editors,
Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems,
June 9-12, 2003, San Diego, CA, USA, pages 202–210.
ACM, 2003.

[22] C. Dwork. Differential Privacy. In M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, editors, Proceedings of the
33rd International Colloquium on Automata, Languages and
Programming (ICALP’06), Part II, volume 4052 of Lecture
Notes in Computer Science, pages 1–12, Venice, Italy, 2006.
Springer.

[23] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differen-
tial privacy under continual observation. In L. J. Schulman,
editor, Proceedings of the 42nd ACM Symposium on The-
ory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 715–724. ACM, 2010.

[24] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differ-
ential privacy under continual observation. In Proceedings of
the forty-second ACM symposium on Theory of computing,
pages 715–724. ACM, 2010.

[25] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and
S. Yekhanin. Pan-Private Streaming Algorithms. In A. C.
Yao, editor, Proceedings of the 1st Symposium on Innova-
tions in Computer Science (ICS’10), pages 66–80, Tsinghua
University, Beijing, China, 2010. Tsinghua University Press.

[26] U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Ran-
domized Aggregatable Privacy-Preserving Ordinal Response.
pages 1054–1067. ACM Press, 2014.

[27] K. Fawaz, K.-H. Kim, and K. G. Shin. Privacy vs. Reward
in Indoor Location-Based Services. Proceedings on Privacy
Enhancing Technologies, 2016(4):102–122, 2016. ISSN
2299-0984. 00000.

[28] Federal Trade Commisioin. Retail tracking firm settles ftc
charges it misled consumers about opt out choices, 2015.
URL https://www.ftc.gov/news-events/press-releases/
2015/04/retail-tracking-firm-settles-ftc-charges-it-misled-
consumers.

[29] Future of Privacy Forum. Mobile location analytics code of
conduct, 2013. URL https://fpf.org/wp-content/uploads/10.
22.13-FINAL-MLA-Code.pdf.

[30] N. Gonçalves, R. José, and C. Baquero. Privacy Preserving
Gate Counting with Collaborative Bluetooth Scanners. In
R. Meersman, T. Dillon, and P. Herrero, editors, On the
Move to Meaningful Internet Systems: OTM 2011 Work-
shops, number 7046 in Lecture Notes in Computer Science,
pages 534–543. Springer Berlin Heidelberg, Oct. 2011.

http://www.acm.org/sigcomm/ITA/
http://marketinglaw.osborneclarke.com/advertising-regulation/jc-decauxs-pedestrian-tracking-system-blocked-by-french-data-regulator/
http://marketinglaw.osborneclarke.com/advertising-regulation/jc-decauxs-pedestrian-tracking-system-blocked-by-french-data-regulator/
http://marketinglaw.osborneclarke.com/advertising-regulation/jc-decauxs-pedestrian-tracking-system-blocked-by-french-data-regulator/
http://www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html?pagewanted=all
http://www.nytimes.com/2013/07/15/business/attention-shopper-stores-are-tracking-your-cell.html?pagewanted=all
https://www.ftc.gov/news-events/press-releases/2015/04/retail-tracking-firm-settles-ftc-charges-it-misled-consumers
https://www.ftc.gov/news-events/press-releases/2015/04/retail-tracking-firm-settles-ftc-charges-it-misled-consumers
https://www.ftc.gov/news-events/press-releases/2015/04/retail-tracking-firm-settles-ftc-charges-it-misled-consumers
https://fpf.org/wp-content/uploads/10.22.13-FINAL-MLA-Code.pdf
https://fpf.org/wp-content/uploads/10.22.13-FINAL-MLA-Code.pdf


Privacy-preserving Wi-Fi Analytics 21

[31] P. Higgins and L. Tien. Mobile tracking code of conduct falls
short of protecting consumers. Electronic Frontier Foundation,
2013. URL https://www.eff.org/fr/deeplinks/2013/10/mobile-
tracking-code-conduct-falls-short-protecting-consumers.

[32] C. Kopp, M. Mock, and M. May. Privacy-preserving dis-
tributed monitoring of visit quantities. In Proceedings of the
20th International Conference on Advances in Geographic
Information Systems, SIGSPATIAL ’12, pages 438–441, New
York, NY, USA, 2012. ACM.

[33] P. A. Laharotte, R. Billot, E. Come, L. Oukhellou,
A. Nantes, and N. E. E. Faouzi. Spatiotemporal Analysis
of Bluetooth Data: Application to a Large Urban Network.
IEEE Transactions on Intelligent Transportation Systems, 16
(3):1439–1448, June 2015. ISSN 1524-9050.

[34] J. Li, B. C. Ooi, and W. Wang. Anonymizing streaming data
for privacy protection. In Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on, pages 1367–1369.
IEEE, 2008.

[35] R. Lim, M. Zimmerling, and L. Thiele. Passive, Privacy-
Preserving Real-Time Counting of Unmodified Smartphones
via ZigBee Interference. In 2015 International Conference on
Distributed Computing in Sensor Systems, pages 115–126,
June 2015.

[36] Liyue Fan and Li Xiong. Adaptively Sharing Time-Series with
Differential Privacy. Technical report, Jan. 2013.

[37] J. O. Malley. Here’s what tfl learned from tracking your
phone on the tube. Gizmodo UK, 2017. URL http://
www.gizmodo.co.uk/2017/02/heres-what-tfl-learned-from-
tracking-your-phone-on-the-tube/.

[38] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown,
C. Riggins, E. C. Rye, and D. Brown. A Study of MAC
Address Randomization in Mobile Devices and When it Fails.
Proceedings on Privacy Enhancing Technologies, 2017(4):
268–286, 2017.

[39] F. McSherry. Privacy Integrated Queries: an Extensible
Platform for Privacy-Preserving Data Analysis. Commun.
ACM, 53(9):89–97, 2010.

[40] L. Melis, G. Danezis, and E. D. Cristofaro. Efficient private
statistics with succinct sketches. CoRR, abs/1508.06110,
2015.

[41] A. Musa and J. Eriksson. Tracking unmodified smartphones
using wi-fi monitors. In Proceedings of the 10th ACM
conference on embedded network sensor systems, pages
281–294. ACM, 2012.

[42] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H.
Li. Privacy and accountability for location-based aggregate
statistics. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11, pages
653–666, New York, NY, USA, 2011. ACM.

[43] A. Pyrgelis, E. De Cristofaro, and G. J. Ross. Privacy-
friendly mobility analytics using aggregate location data. In
Proceedings of the 24th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems,
page 34. ACM, 2016.

[44] A. E. C. Redondi, D. Sanvito, and M. Cesana. Passive
Classification of Wi-Fi Enabled Devices. pages 51–58. ACM
Press, 2016.

[45] E. Shi, H. T. H. Chan, E. Rieffel, R. Chow, and D. Song.
Privacy-preserving aggregation of time-series data. In Annual
Network & Distributed System Security Symposium (NDSS).

Internet Society., 2011.
[46] S. J. Swamidass and P. Baldi. Mathematical correction for

fingerprint similarity measures to improve chemical retrieval.
Journal of Chemical Information and Modeling, 47(3):952–
964, 2007.

[47] O. Waltari and J. Kangasharju. The Wireless Shark: Identify-
ing WiFi Devices Based on Probe Fingerprints. In Proceedings
of the First Workshop on Mobile Data, MobiData ’16, pages
1–6, New York, NY, USA, 2016. ACM. 00000.

[48] K. Whang, B. T. V. Zanden, and H. M. Taylor. A linear-time
probabilistic counting algorithm for database applications.
ACM Trans. Database Syst., 15(2):208–229, 1990.

[49] Y. Zeng, P. H. Pathak, and P. Mohapatra. Analyzing Shop-
per’s Behavior Through WiFi Signals. In Proceedings of the
2Nd Workshop on Workshop on Physical Analytics, WPA
’15, pages 13–18, New York, NY, USA, 2015. ACM.

[50] B. Zhou, Y. Han, J. Pei, B. Jiang, Y. Tao, and Y. Jia. Con-
tinuous Privacy Preserving Publishing of Data Streams. In
Proceedings of the 12th International Conference on Extend-
ing Database Technology: Advances in Database Technology,
EDBT ’09, pages 648–659, New York, NY, USA, 2009.
ACM.

[51] G. Zipf. Human behavior and the principle of least effort: an
introduction to human ecology. Addison-Wesley Press, 1949.

A Proofs for Pan-Private BLIP

Lemma 3.1 (Differential privacy of Pan-Private BLIP).
When no intrusion occurs, Pan-Private BLIP is ε-
differentially private.

Proof of Lemma 3.1. Consider a raw unflipped, Bloom
filter. The probabilistic map taking the bit 0 to
Bernoulli(µ0) and the bit 1 to Bernoulli(µ1), in which
µ1 = 1 − µ0 is essentially a bit flipping operation in
which a bit in the raw Bloom filter is flipped with prob-
ability µ0. Hence if µ0 equals the flipping probability
(1 + exp(ε/k))−1 used in [3], we establish an equiva-
lence between our Pan-Private BLIP and the original
BLIP in [3]. In particular, the distributions of the out-
put of Pan-Private BLIP and the BLIP produced in [3]
are identical. Hence, by reduction, since the latter is ε-
differentially private [3, Theorem 1] so is the former.

Theorem 3.2 (Pan privacy of Pan-Private BLIP).
For every positive integer d, Pan-Private BLIP is at
least (dε)-differentially pan-private for d− 1 announced
intrusions, in which µ0 = (1 + exp(ε))−1.

Proof of Theorem 3.2. The final output is counted in d
even though it is not technically an intrusion. In partic-
ular, d = 1 means that no intrusions occurred and the
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adversary has obtained only one version of the internal
state, which corresponds to the output willingly released
at the termination of the algorithm. Therefore, if there
was d − 1 intrusions, the intruder will have at most d
different versions of the flipped Bloom filter. According
to Lemma 3.1, for i ∈ {1, 2, . . . , d}, the ith version will
be εi-differentially private for εi = ln

(
1+ηi

1−ηi

)
. In partic-

ular, we note that εi > εi+1. Therefore, by the sequen-
tial composition property of differential privacy [39], the
composition of all such versions is (

∑
i εi)-differentially

private. Finally, since ε is equivalent to ε1 – the case
in which no intrusions take place – we end up with∑
i εi 6

∑
i ε1 = dε.

B Proof of Bias’ Relation to T

and P

Lemma B.1 (Bias relation to T and P ).

eT = QT +QP / lnϕ .

B.1 Nomenclature

If m is the size of the Bloom filters used, then let ϕ ,
1− 1/m.

B.1.1 Sets

We consider n sets, s1, s2, . . . , sn, the members of the
multiset S , {{s1, s2, . . . , sn}}. For a subset s ⊆ S of S,
we define the set (

⋃
s) to be the union of the sets in

s, that is
⋃
s ,

⋃
s′∈s s

′. The we denote the multiset
P′(S) = 2S \∅ as the powerset of S without the empty
set. Therefore, P′(S) contains 2n−1 sets. Then, the Venn
decomposition V of S is a set with 2n − 1 elements. In
this decomposition, each element x of V is bijectively
associated with an element y of P′(S) such that x is the
set containing the elements in each of the sets in y but
not in any set of S \ y. That is x = (

⋃
y) \ (

⋃
(S \ y)).

B.1.2 Vectors

Let the function Kt(f) =
∑
s⊂S,|s|=t f(|

⋃
s|),

and the vector-valued function K(f) =
(K1(f),K2(f), . . . ,Kn(f)). Then define Φ , K(x 7→ x),
and Ψ , K(x 7→ ϕx). For example, if S = {{A,B,C}},

then Φ = (|A| + |B| + |C|, |A ∪ B| + |A ∪ C| + |C ∪
A|, |A ∪B ∪ C|)> and Ψ = (ϕ|A| + ϕ|B| + ϕ|C|, ϕ|A∪B| +
ϕ|A∪C| + ϕ|C∪A|, ϕ|A∪B∪C|)>. Furthermore let eT ,
Φ + (v−Ψ)/ lnϕ. Note that by Lemma D.1, eT asymp-
totically approaches K(x 7→ x2) for large m.

Let v be such that vi =
(
n
i

)
for i ∈ {1, 2, . . . , n}. Let

the vector P is the probability vector indexed by t from
1 to n, and similarly let the vector P ′ the probability
vector indexed by t from 0 to n− 1. One can be derived
from the other by the fact that the sum P0 + P1 + · · ·+
Pn = 1 or via the relationship defined in Lemma B.2.

Let V be the vector describing the number of ele-
ments in each element of the Venn decomposition V of
S. That is, v = |x|, for v a component of V , and x is
the element of V corresponding to v. Finally, let C be
the vector describing the sizes of all the possible 2n − 1
combinations of set unions among the n sets in S; that
is, and element c of C corresponding to an element y of
P′(S) is simply |

⋃
y|.

Finally, let ei be the standard basis vectors, which
is e1 = (1, 0, . . . , 0)> and e2 = (0, 1, 0, . . . , 0)>, and so
on, until en = (0, 0, . . . , 0, 1)>.

B.1.3 Matrices

Let U be the upper triangular n×n Pascal matrix, which
means the matrix whose i, j entry is the binomial coef-
ficient

(
j
i

)
, in which i, j range from 1 to n. Define Q

as the matrix whose i, j entry equals
∑

16k6j
(
n−k
i−1
)

=(
n
i

)
−
(
n−j
i

)
for i, j ∈ {1, 2, . . . , n}. Then the i, j entry of

its inverse, Q−1, is (−1)n+i+j−1( j
n−i
)
. The matrix Q is

derived later in Lemma B.7.
There exist two linear operators: Z, the linear op-

erator mapping V to T (the vector defined in Defini-
tion 4.1); and R, mapping V to C. Interestingly, Z also
maps C to Φ. If we define χ(i) for a positive integer
i < 2n to be the n-component vector representing its
binary expansion and |χ(i)| to be the number of non-
zero components of that vector (i.e., ‖χ(i)‖0), then we
can define the linear operators Z and R as follows: El-
ement i, j of Z is 1 if |χ(j)| = i and 0 otherwise, for
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , 2n − 1}. Element
i, j of R is 1 if χ(i) · χ(j) > 0 and 0 otherwise, for
i, j ∈ {1, 2, . . . , 2n − 1}.

Finally, let J denote the row-reversed identity ma-
trix, which means the matrix whose anti-diagonal is all
ones and the off-diagonals are all zeros. For example,
Je0 = en.
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B.2 From P to P ′

Lemma B.2.

P = Q−1 (v − UJP ′
)
.

Let D be the linear projection operator from Rn+1

to Rn which drops the first component when applied
to a vector. Similarly, let P be the reverse operator of
D, in the sense that it maps vectors from Rn to Rn+1

by prepending a zero component. Let J and U be the
(n+ 1)× (n+ 1) dimensional counterparts of the n× n
dimensional operators J and U (U counts from 0 to n
instead of 1 to n). Note that DP = I, but PD = I−e1e>1 .

Proposition B.3.

Q−1 = −DJU−1P .

Proof. We are going to prove this form I = −QDJU−1P.
For each i, j ∈ [n] we have

〈i|−QDJU
−1

P|j〉

=
∑

k,`,m∈[n+1]
q∈[n]

〈i|−Q|q〉 〈q|D|k〉 〈k|J|`〉 〈`|U−1|m〉 〈m|P|j〉

= (−1)j

[∑
q∈[n]

(−1)q
(n− q

i

)( j

n− q

)
−
(n
i

)∑
q∈[n]

(−1)q
( j

n− q

)]

= (−1)j

[ ∑
06q6n−1

(−1)q
(q
i

)(j
q

)
−
(n
i

) ∑
06q6n−1

(−1)q
(j
q

)]

= (−1)j

[ ∑
06q6n−1

(−1)q
(q
i

)(j
q

)
− (−1)n−1

(n
i

)(j − 1
n− 1

)]
= (−1)j

[
(−1)j

( 0
i− j

)
− (−1)n

(n
i

)(j
n

)
− (−1)n−1

(n
i

)(j − 1
n− 1

)]
= (−1)j

[
(−1)j

( 0
i− j

)
− (−1)n

(n
i

)(j − 1
n

)]
=
( 0
i− j

)
In which we used in the last equality the fact that(
j−1
n

)
= 0 that holds since j − 1 < n.

Lemma B.2.

P = Q−1 (v − UJP ′
)
.

Proof. First, we show that Q−1v = en, in other words
v = Qen, which is easy to see since the ith element of
Qen is simply

(
n
i

)
−
(
n−j
i

)
=
(
n
i

)
−
(
n−n
i

)
=
(
n
i

)
−
(0
i

)
=

(
n
i

)
since i is never 0. Then, we use Q−1 = −DJU−1P

shown in Proposition B.3 to show that

Q−1UJ


a1
a2
...
an

 =


−a2
−a3
...
−an

a1 + a2 + · · ·+ an

 ,

or equivalently that

〈i|Q−1UJ |j〉 =
(

0
n− i

)
−
(

0
i− j + 1

)
.

Note that U = D(U − e11>)D>. Therefore, PU =
(I − e1e>1 )(U − e11>)D>. Hence

Q−1UJ = −DJU−1PUJ

= DJU−1(e1e>1 − I)(U − e11>)D>J
= DJU−1e1e>1 UD>J −DJD>J .

Remarking that e1e>1 e1 = e1, it is easy to show that
the i, j element of DJD>J is 1 if i = j − 1 and 0
otherwise. Afterwards, by observing that U−1e1 = e1,
that is e1 is an eigenvector of U , and e>1 U = 1>,
then DJU−1e1e>1 UD>J = DJe11>D>J , it is therefore
straightforward to show that this expression evaluates
to 1 when i = n and 0 otherwise.

B.3 From P ′ to Ψ

Lemma B.4.
Ψ = UJP ′ .

Theorem B.5. Let S, F, F be multisets. In particular,
the multiset cardinalities |S|, |F |, |F | represent the sum
of the multiplicities of their elements. Furthermore, the
multiset complement operation S \ F subtracts the ele-
ment multiplicities, such that the resulting multiset has
no elements of nonpositive multiplicity. We use the nota-
tion {{· · · }} to denote multisets. Finally, let

⋃
F denote

the set {i|f ∈ F ∧ i ∈ f}.
Let S be the multiset of n sets, {{s1, s2, . . . , sn}}.

Then, given a multiset F ⊆ S, define F = {{s′|s ∈
S \ F ∧ s′ = s \

⋃
F}}. Then the probability Pt

def=
P (S, n = |S|, t) that a bit position contains exactly t 1-
bits across n Bloom filters, with fully uniform hashing is:
P (S, n, t) = 0 when t 6∈ {0, 1, . . . , n}; P (S, n, t) = ϕ|

⋃
S|

when t = 0; P (S, n, t) = 1 −
∑
t′ 6=n

P (S, n, t′) when t = n;

and P (S, n, t) =
∑
F⊂S
|F |=n−t

P (F , n− t, 0)P (F, t, t) otherwise;
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in which ϕ = 1− 1/m, and m is the size of each Bloom
filter.

Proof. We prove the recurrence relation by proving each
case separately.

1. The case in which t 6∈ {0, 1, . . . , n} is 0 by the
definition of the problem.

2. The case in which t = 0 occurs when all ele-
ments in

⋃
S fail to hash to a particular position. The

probability that an element fails to hash to a particu-
lar position is the complement of the probability that
it does hash to this position. For the case of fully uni-
form hashing, the latter probability is 1/m, and the for-
mer is ϕ = 1− 1/m. By fully uniform hashing, all these
events are also independent and thus their conjunction
is simply the product of individual probabilities, which
is ϕk|

⋃
S|, in which k is the number of the hash func-

tions used by the Bloom filter. We assume that k = 1
for the entire paper for simplicity of presentation. The
interested reader can substitute a different value for k
in this formula and the result will be valid.

3. The case in which t = n is simply defined
as the complement of all the other cases in which t < n

since the probability vector P sums to 1. Its components
are mutually exclusive since a bit position be associated
with exactly one value of t at a time.

4. The case in which 0 < t < n is the most inter-
esting case. We first note that since S is a multiset, it is
guaranteed that |F | = |S \ F | will always equal t, and
thus the second parameter in the expression P (F, t, t) is
valid (since it should be equal to |F |). The event which
we wish to compute the probability for is

⋃
F⊂S
|F |=n−t


⋂
s∈F

Fails(s)

⋂(⋂
s∈F

Succeeds(s)

) ,

in which Fails(s) indicates the event that no item in
the set s is hashed to the bit position under considera-
tion, while Succeeds(s) indicates the event that at least
one element in s is hashed to it. Both

(⋂
s∈F Fails(s)

)
and

(⋂
s∈F Succeeds(s)

)
are the intersection of non-

independent events since the sets in F and F may
share elements. However, by construction, F and F

do not share any elements. Adding that to the fact
that the hash function used is fully uniform and thus
does not introduce dependencies between otherwise un-
related elements, we conclude that

(⋂
s∈F Fails(s)

)
and(⋂

s∈F Succeeds(s)
)
are independent events and conse-

quently that the probability of their intersection is equiv-
alent the product of their respective probabilities. Their
probabilities have been shown in the beginning of this

proof (i.e., the cases in which t = 0 and t = n) to be
equivalent to P (F , n− t, 0) and P (F, t, t). It remains to
show that the union is over mutually exclusive events
and thus its probability is simply the sum of the proba-
bilities of individual events. The case in which the union
is over at most one event is trivial. Consequently, we as-
sume that the union is over at least two events. Take any
two distinct events in the domain of the union, an event
indexed by F 1 and the other indexed by F 2. Since F 1
and F 2 are distinct multisets and are of the same pos-
itive cardinality (since t < n), then there exists a set s
with positive cardinality c in F 1 which has cardinality
c′ < c in F 2. Since F2 is a function of the complement
of F 2 then, there is a subset s′ of s which has positive
cardinality c′′ > c− c′ > 1 in F2. The event indexed by
F 1 then asserts that no element in s (and consequently
in s′) hashes to a particular bit position, while the event
indexed by F 2 asserts that s′ contains at least one ele-
ment which hashes to that particular bit position. Hence,
the events are mutually exclusive (i.e., if one of them oc-
curred, the other does not).

Conjecture B.6.

Pt =
∑

06i6n

(−1)i+n−t
(

i

n− t

)
Ψi . (3)

Proof. This is a conjectured form of the formally-proven
recurrence relation provided in Theorem B.5.

Lemma B.4.
Ψ = UJP ′ .

Proof. Follows directly from Conjecture B.6.

B.4 From T to Φ

Lemma B.7. Let the vector T be the “t-out-of-n dis-
tinct count” vector as defined in Definition 4.1. Then
T = Q−1Φ. That is Ti =

∑
16j6n(−1)n+i+j−1( j

n−i
)
Φj .

Proof. We proceed by showing that Φ = QT , i.e.,

Φi =
∑

16j6n

[(
n

i

)
−
(
n− j
i

)]
Tj . (4)

Uniqueness: In this proof, we will show the existence of
a third linear operator Q mapping T to Φ, such that the
following diagram commutes.

V T

C Φ

Z

R Q

Z
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From the diagram observe that T = ZV and Φ =
ZRV , we solve for Q that satisfies ZR = QZ. The
rank of the left-hand side (LHS) is Rank(ZR) =
min{Rank(Z),Rank(R)} = n and thus the we have n2

linearly-independent equations to solve. Since Q has n2

unknowns, then the system has a unique solution.
Existence: Thus ZR = QZ reduces that for each

i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , 2n − 1} the following
must hold Qi,|χ(j)| =

∑
16k6n[|χ(k)| = i][χ(k) · χ(j) >

0], in which [p] is 1 if the predicate p is true, and 0
otherwise. From all 2n − 1 possible values of χ(k), only(
n
i

)
of them satisfy |χ(k)| = i. Of of them, those which

do not satisfy χ(k) · χ(j) > 0 have zeros jointly in |χ(j)|
positions, therefore the i ones that χ(k) have must be
chosen among n − |χ(j)| specific positions, and there
are

(
n−j
i

)
ways of doing that. Consequently, the right-

hand side equals
(
n
i

)
−
(
n−|χ(j)|

i

)
, and crucially, does not

depend on j itself, or χ(j), but solely on |χ(j)|, which
means the left-hand side is well-defined.

B.5 From Φ and Ψ to Bias

Lemma B.8.

Ψ = (Φ− eT ) lnϕ+ v .

Proof. For all t ∈ {1, 2, . . . , n} we know by definition
that Ψt ,

∑
j ϕ

aj for some sequence a of length
(
n
t

)
.

Rewriting ϕx as exp(x lnϕ) we get Ψt =
∑
j exp(aj lnϕ),

which, by Taylor expansion around 0, turns to Ψt =∑
i>0(lnϕ)i(

∑
j a

i
j)/i!. Then by expanding the first two

terms in the series Ψt = (
∑
j a

0
j ) + (lnϕ)(

∑
j aj) +∑

i>2(lnϕ)i(
∑
j a

i
j)/i!. Therefore, with the convention

that 00 = 1 and the fact that by definition Φt ,
∑
j aj

and (eT )t , −
∑
i>2(lnϕ)i−1(

∑
j a

i
j)/i!

Ψt =
(
n

t

)
+ (lnϕ)Φt +

∑
i>2

(lnϕ)i(
∑
j

aij)/i!

= vt + (lnϕ)

Φt +
∑
i>2

(lnϕ)i−1(
∑
j

aij)/i!


= vt + (lnϕ) [Φt − (eT )t] .

B.6 From Bias to T and P

Lemma B.1 (Bias relation to T and P ).

eT = QT +QP / lnϕ .

Proof.

QT +QP / lnϕ = QT + (v − UJP ′)/ lnϕ Lem B.2
= QT + (v −Ψ)/ lnϕ Lem B.4
= Φ + (v −Ψ)/ lnϕ . Lem B.7

which simplifies to eT when we substitute for Ψ using
Lemma B.8.

C Proof of Additive Error

Theorem 4.4 (Estimator’s Additive Error). Let Q−1

is the matrix whose i, j entry is (−1)n+i+j−1( j
n−i
)
for

1 6 i, j 6 n and ϕ be equal to 1− 1/m, for m being the
size of the Bloom filters. Then the additive error of T̂

(cf. Equation (1) in Definition 4.3) is:

T − T̂ = Q−1eT + (eH + eF )/ lnϕ . (2)

Proposition C.1.

P = E[D] .

Proof. Let [Bi = t] equal 1 if t =
∑n
j=1 b

j
i (cf. Defini-

tion 4.2), and 0 otherwise. Then, for each t:

E[Dt] = E

[
1
m

∑
i

[Bi = t]

]
= 1
m

∑
i

E [[Bi = t]] = Pt .

Proof of Theorem 4.4.

T̂ = D̂/ ln(1/ϕ)
= (D + eF )/ ln(1/ϕ)
= (E[D] + eH + eF )/ ln(1/ϕ)
= (P + eH + eF )/ ln(1/ϕ) Prop C.1
= P / ln(1/ϕ) + (eH + eF )/ ln(1/ϕ)
= −P / lnϕ− (eH + eF )/ lnϕ
= T − T − P / lnϕ− (eH + eF )/ lnϕ
= T −Q−1eT − (eH + eF )/ lnϕ . Lem B.1

D Proof of Upper Bound

Lemma 4.5 (Upper Bound). If the un-flipping step es-
timator used was that of [5], then the upper bound Γξ on
the error ‖T − T̂ ‖, ignoring eH , is, for sufficiently large
m:

Γξ = ‖Q
−1K(x 7→ x2)‖

2m +O(η−n)
2ξ
√
− ln(β) ln(n+ 1)
− ln(ϕ)

√
2m

,
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with probability at least 1−β, in which all the norms are
the max norm; ‖x‖∞ , maxi |xi|, or its induced norm
for matrices, and ξ ∈ (0, 1) is the precomputed multiplier
described in [5].

Lemma D.1.

(eT )t ∼
1

2m‖a‖
2
2 = O(1/m) .

Proof. We will proceed by showing that
limm→∞(eT )tm = 1

2‖a‖
2
2.

(eT )t = Φt + vt −Ψt

lnϕ

(eT )tm = Φtm+ vt −Ψt

lnϕ m

= (
∑
j

aj)m+
vt − (

∑
j ϕ

aj )
lnϕ m

= (
∑
j

aj)m+
vt − (

∑
j(1− 1/m)aj )

ln(1− 1/m) m

Replace variables: m′ = 1/m:

= (
∑
j

aj)/m′ +
vt − (

∑
j(1−m

′)aj )
ln(1−m′) /m′

=
(
∑
j aj) ln(1−m′) + vt − (

∑
j(1−m

′)aj )
m′ ln(1−m′)

We use L’hôpital’s rule twice to find the limit at m′ → 0,
since the limit exists for the numerator and denominator
separately.

−(
∑
j aj)/(1−m

′)2 − (
∑
j aj(aj − 1)(1−m′)aj−2)

2/(m′ − 1)−m′/(1−m′)2

which at m′ = 0 (direct substitution) yields:

1
2((
∑
j

aj) + (
∑
j

aj(aj − 1))) = 1
2
∑
j

a2
j .

Proof of Lemma 4.5.

‖T − T̂ ‖ = ‖Q−1eT + (eH + eF )/ lnϕ‖
≈ ‖Q−1eT + eF / lnϕ‖
6 ‖Q−1eT ‖+ ‖eF ‖/ ln(1/ϕ) .

Then, the upper bound on ‖nF ‖ from [5], which holds
with probability at least 1 − β, asserts that ‖eF ‖ 6
O(η−n)

√
2 ln(n+ 1) ln(1/β)/m. Finally, Lemma D.1

shows that for large m, eT asymptotically approaches
K(x 7→ x2)/2m.

E Example

An example of how the error decomposes as described in
Theorem 4.4 appears later in Figure 1. The figure shows
that the error due to deviation of hashing from its ex-
pectation is negligible. Moreover, it also shows that as
expected the error is dominated by bias whenm is small,
and by variance (due to the differentially-private noise),
when m is large. As one source of error increases and an-
other decreases when we vary the Bloom filter size, m,
the choice of m should be taken with care to set a good
trade-off between both sources of error and minimize
the overall error. As a numerical example for the case of
Figure 1, and using the formula for eF from [5] we have,
using Theorem 4.4: (eT )1 = Φ1 + (v1 −Ψ1)/ lnϕ = |A|+
|B|+ (n−ϕ|A|−ϕ|B|)/ lnϕ = 50000 + (2−2ϕ25000)/ lnϕ,
and (eT )2 = Φ2 + (v2 − Ψ2)/ lnϕ = |A ∪ B| + (n −
ϕ|A∪|)/ lnϕ = 40000+(1−ϕ40000)/ lnϕ, We are leavingm
unspecified so we can optimize for it. Then (Q−1eT )2 =
(−ϕ40000 + 2ϕ25000− 10000 lnϕ− 1)/ lnϕ. Next, from [5],
letting the probability β that the bound does not hold
being 0.1, |(eF )2| 6 ‖A−1‖∞

√
2 ln(n+ 1) ln(1/β)/m =

(3η−2 − 1)
√

ln(3) ln(10)/2m, in which we are also let-
ting η be free. Lastly, ignoring eH as insignificant for
our purpose, we have the additive error for the in-
tersection be: T2 − T̂2 6 (Q−1eT )2 + (eF )2/ lnϕ =
2ϕ25000−ϕ40000−1+(3η−2−1)

√
ln 3 ln 10

2m

lnϕ − 10000. Minimizing
this formula directly, for ε = 1 yields the optimal m
as 224, which does not agree with Figure 1. This is
because the expression we used for eF is a very loose
upper bound, which while gives an indication for an
upper bound on the error, is not helpful when we bal-
ance a trade-off. For this purpose, we need a tighter
estimate of the error. Luckily, [5] describes an empirical
way to obtain such a tighter method, by effectively using
T2− T̂2 ≈ (Q−1eT )2 +ξ(eF )2/ lnϕ, for ξ empirically esti-
mated to be approximately 1/4. Using this formula, we
obtain the optimal m as 219, which agrees with Figure 1.
Remark that the knowledge of |A|, |B|, and |A ∪ B| is
needed to apply this formula, which are not available in
real-life scenarios because these values are private data
for whose estimation BLIPs are used. However, if we
have a rough estimate of the order of magnitude of these
values, the formula may still be used, bearing in mind
that bets are off if the original estimate was grossly mis-
taken.
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