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Privacy-preserving Machine Learning as a
Service
Abstract: Machine learning algorithms based on deep
Neural Networks (NN) have achieved remarkable results
and are being extensively used in different domains. On
the other hand, with increasing growth of cloud ser-
vices, several Machine Learning as a Service (MLaaS)
are offered where training and deploying machine learn-
ing models are performed on cloud providers’ infrastruc-
ture. However, machine learning algorithms require ac-
cess to the raw data which is often privacy sensitive
and can create potential security and privacy risks. To
address this issue, we present CryptoDL, a framework
that develops new techniques to provide solutions for
applying deep neural network algorithms to encrypted
data. In this paper, we provide the theoretical founda-
tion for implementing deep neural network algorithms
in encrypted domain and develop techniques to adopt
neural networks within practical limitations of current
homomorphic encryption schemes. We show that it is
feasible and practical to train neural networks using en-
crypted data and to make encrypted predictions, and
also return the predictions in an encrypted form. We
demonstrate applicability of the proposed CryptoDL us-
ing a large number of datasets and evaluate its perfor-
mance. The empirical results show that it provides ac-
curate privacy-preserving training and classification.
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1 Introduction
Machine learning algorithms based on deep Neural Net-
works (NN) have attracted attention as a breakthrough
in the advance of artificial intelligence (AI) and are the
mainstream in current AI research. These techniques
are achieving remarkable results and are extensively
used for analyzing big data in a variety of domains such
as spam detection, traffic analysis, intrusion detection,
medical or genomics predictions, face recognition, and
financial predictions [9, 10, 24, 27, 32, 38, 44, 54]. How-
ever, training the models requires access to the raw data
which is often privacy sensitive and can create potential
privacy risks.

Furthermore, with increasing growth of cloud ser-
vices, machine learning algorithms can be run on the
cloud providers’ infrastructure where training and de-
ploying machine learning models are performed on cloud
servers. Once the models are deployed, users can use
these models to make predictions without having to
worry about maintaining the models and the service.
In a nutshell, this is Machine Learning as a Service
(MLaaS), and several such services are currently of-
fered including Microsoft Azure Machine Learning [33],
Google Prediction API [16], GraphLab [18], and Ersatz
Labs [12]. Machine learning algorithms typically consist
of two phases: (i) the training phase during which the
algorithm learns a model w from a data set of labeled
examples, and (ii) the classification phase that runs a
classifier C over a previously unseen feature vector x,
using the model w to output a prediction C(x,w). Ei-
ther of these phases or both could be outsourced to the
cloud. In applications that handle sensitive data, it is
important that the training data, the feature vector x
and the model w remain secret to one or some of the
parties involved.

In this paper, we present CryptoDL, a client-server
solution to apply neural network algorithms to en-
crypted data and allow the parties to provide/receive
the service without having to reveal their sensitive data
to the other parties. The main components of CryptoDL
are homomorphic encryption and neural networks.

Threat Model: We consider a client-server model
where the client owns the data and the server uses this
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data to build a model and provide prediction service
to the client. In the training phase, the server gets the
training dataset from the client in an encrypted format,
and can train a model on that data without learning
anything about the training dataset. Since training is
performed on encrypted data, the server doesn’t learn
the parameters of the trained model or the final model.
The trained model is encrypted under the client’s public
key, and only this client can use the final model for clas-
sification of new instances. In the classification phase,
the client sends encrypted input to the server, the server
performs an inference on the encrypted data, and the
client gets the encrypted prediction. Hence, the server
cannot access the input data or the prediction.

The original fully homomorphic encryption (FHE)
scheme presented in Gentry’s seminal paper [14] was
highly inefficient but since then, significantly more prac-
tical schemes have been developed. In order to have ef-
ficient and practical solutions for computations in en-
crypted domain, we typically use somewhat homomor-
phic schemes or leveled homomorphic schemes instead of
fully homomorphic encryption. The most notable short-
coming of practical homomorphic encryption schemes is
that operations in practical schemes are limited to addi-
tion and multiplication. Consequently, we need to adopt
neural network algorithms within these limitations. The
computation performed over sensitive data by neural
network algorithms is very complex and neural networks
cannot simply be translated to encrypted versions with-
out modification. Some examples of activation functions
in neural networks are Sigmoid function ( 1

1+e−x ) and
Rectified Linear Unit (ReLU, f(x) = max(x, 0)) and
they should be replaced by a function that only uses
addition and multiplication such as polynomials.

However, a solution that builds upon homomor-
phic encryption schemes should be restricted to com-
puting low degree polynomials in order to be practical
[49]. Hence, presenting the desired computation as low-
degree polynomials is an important task in making prac-
tical use of homomorphic encryption schemes for apply-
ing neural network algorithms to encrypted data. Poly-
nomials of degree 2 are used to substitute the Sigmoid
function in neural networks [10] and polynomials of de-
gree 3 are used to estimate the natural logarithm func-
tion [44]. However, these are arbitrary solutions which
enable us to work around certain problems, but there
is no generic solution to the problem of approximating
a function with low degree polynomials. Our goal is to
provide a framework capable of handling general cases.

Once the polynomial approximations are generated,
we design and evaluate privacy-preserving training and

classification of neural networks by replacing the acti-
vation functions with these polynomial approximations.
Our goal is to adopt neural networks within practical
limitations of homomorphic encryption while keeping
accuracy as close as possible to the original model.

Our main contributions in this paper are as follows:

– To the best of our knowledge, our proposed Cryp-
toDL is the first work that provides a solution for
training neural network models using homomorphic
encryption.

– We provide the theoretical foundation and prove
that it is possible to find lowest degree polynomial
approximation of a function within a certain error
range.

– We propose two methods for approximating contin-
uous functions -ReLU, Sigmoid and Tanh functions-
with low degree polynomials and utilize these poly-
nomials in neural networks and analyze the perfor-
mance of the new algorithms.

– We implement full neural networks over homomor-
phically encrypted data where activation functions
(Sigmoid and ReLU) are replaced with polynomial
approximations. To avoid costly bootstrapping of
homomorphic encryption, our proposed approach
allows some communications between client and
server to manage the noise.

– We use a large number of datasets from the UC
Irvine Machine Learning Repository [29], MNIST
dataset [51] and CIFAR-10 dataset [28] to perform
experiments and present empirical results of both
training and classification phases.

– We provide detailed comparison with state-of-the-
art approaches based on homomorphic encryption
(HE) and secure multi-party computation (SMC).
The results show that CryptoDL provides accurate
and privacy-preserving training and classification
and outperforms both HE-based and SMC-based
approaches.

The rest of this paper is organized as follows: In Sec-
tion 2, we provide the theoretical foundation for polyno-
mial approximation and describe our proposed solution
in Section 3. In Section 4, we provide results for build-
ing models based on encrypted datasets. In Section 5,
we review related work. In Section 6, we conclude the
paper and discuss future work.
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2 Theoretical Foundation:
Polynomial Approximation

Since our goal is to adopt a neural network to work
within practical homomorphic encryption constraints,
we focus on operations performed inside a neural net-
work rather than its structure. Besides activation func-
tions inside neurons (e.g. the "Sigmoid function"), all
other operations in a neural network are addition and
multiplication, so they can be implemented over en-
crypted data. Activation functions, on the other hand,
cannot be implemented within practical homomorphic
encryption schemes. Hence, in order to operate a com-
plete neural network over encrypted data, we replace
activation functions with approximations that are com-
patible with practical HE schemes as discussed below.

Among continuous functions, perhaps polynomials
are the most well-behaved and easiest to compute. Thus,
it is no surprise that mathematicians tend to approxi-
mate other functions by polynomials. Materials of this
section are mainly folklore knowledge in numerical anal-
ysis and Hilbert spaces. For more details on the subject
refer to [4, 50].

Let us denote the family of all continuous real val-
ued functions on a non-empty compact space X by
C(X). Suppose that among elements of C(X), a sub-
family A of functions are of particular interest. For sim-
plicity, one can think of X as a closed, bounded interval
[a, b] in R and A as the set of polynomials in a single
variable with real coefficients. Since linear combination
and product of polynomials are also polynomials, we as-
sume that A is closed under addition, scalar multiplica-
tion and product and also a non-zero constant function
belongs to A (This actually implies that A contains all
constant functions).

We say an element f ∈ C(X) can be approximated
by elements of A, if for every ε > 0, there exists p ∈ A
such that |f(x)−p(x)| < ε for every x ∈ X. The following
classical results guarantee when every f ∈ C(X) can be
approximated by elements of A.

Theorem 1 (Stone–Weierstrass). Every element of
C(X) can be approximated by elements of A if and only
if for every x 6= y ∈ X, there exists p ∈ A such that
p(x) 6= p(y).

Despite the strong and important implications of the
Stone-Weierstrass theorem, it leaves computational de-
tails out and does not give a specific algorithm to gen-

erate an estimator for f with elements of A, given an
error tolerance ε. We address this issue here.

We define ‖f‖∞ (the sup norm of f) of a given func-
tion f ∈ C(X) by ‖f‖∞ = supx∈X |f(x)|,

Then the above argument can be read as: For ev-
ery f ∈ C(X) and every ε > 0, there exists p ∈ A such
that ‖f − p‖∞ < ε. It is easy to see that ‖0‖∞ = 0,
‖λf + g‖∞ ≤ |λ|‖f‖∞ + ‖g‖∞ (subadditivity) and
‖f × g‖∞ ≤ ‖f‖∞ × ‖g‖∞. The function ‖ · ‖∞ on
C(X) is an instance of the norm on the function space
C(X), which also resembles the structure of inner prod-
uct spaces which have nice geometry and one can define
and develop intuitive concepts over them easily. Let V
be an R-vector space, an inner product on V is a function
〈·, ·〉 : V × V → R satisfying the following requirements:

1. 〈f, f〉 ≥ 0;
2. 〈f, f〉 = 0 if and only if f = 0;
3. 〈αf + βg, h〉 = α〈f, h〉+ β〈g, h〉 ≥ 0 for every α, β ∈

R;
4. 〈f, g〉 = 〈g, f〉.

The pair (V, 〈·, ·〉) is called an inner product space
and the function ‖v‖ = 〈v, v〉 1

2 induces a norm on V .
A basis {vα}α∈I is called an orthonormal basis for V if
〈vα, vβ〉 = δαβ , where δαβ = 1 if and only if α = β and
is equal to 0 otherwise. Every given set of linearly in-
dependent vectors can be turned into a set of orthonor-
mal vectors that spans the same sub vector space as the
original. The following well-known theorem gives us an
approach for producing such orthonormal vectors from
a set of linearly independent vectors:

Theorem 2 (Gram–Schmidt). Let (V, 〈·, ·〉) be an in-
ner product space. Suppose {vi}ni=1 is a set of linearly
independent vectors in V . Let u1 := v1

‖v1‖ and (induc-
tively) let wk := vk −

∑k−1
i=1 〈vk, ui〉ui and uk := wk

‖wk‖ .
then {ui}ni=1 is an orthonormal collection, and for each
k, span{u1, u2, · · · , uk} = span{v1, v2, · · · , vk}.

Note that in this theorem, we can even assume that
n =∞.

Let B = {v1, v2, . . . } be an ordered basis for
(V, 〈·, ·〉). For any given vector w ∈ V and any initial seg-
ment of B, say Bn = {v1, . . . , vn}, there exists a unique
v ∈ span(Bn) such that ‖w − v‖ is the minimum as
shown in the following theorem.

Theorem 3. Let w ∈ V and B be a finite orthonormal
set of vectors (not necessarily a basis). Then for v =∑
u∈B〈u,w〉u, ‖w − v‖ = minz∈span(B) ‖w − z‖.
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For proof see [4, 50].
Now, let µ be a finite measure on X and for f, g ∈

C(X) define 〈f, g〉 =
∫
X
fgdµ. This defines an inner

product on the space of functions. The norm induced
by the inner product is denoted by ‖ · ‖2,µ. It is evident
that ‖f‖2,µ≤‖f‖∞µ(X), ∀f ∈ C(X),

which implies that any good approximation in ‖·‖∞
gives a good ‖ · ‖2,µ-approximation. But generally, our
interest is the other way around. Employing Gram–
Schmidt procedure, we can find ‖·‖2,µ within any desired
accuracy, but this does not guarantee a good ‖ · ‖∞-
approximation. The situation is favorable in finite di-
mensional case. Take B = {p1, . . . , pn} ⊂ C(X) and
f ∈ C(X), then there exists Kf > 0 such that for every
g ∈ span(B ∪ {f}),

Kf‖g‖∞ ≤ ‖g‖2,µ≤‖g‖∞µ(X). (1)

Since X is assumed to be compact, C(X) is sepa-
rable, i.e., C(X) admits a countable dimensional dense
subvector space (e.g. polynomials for whenX is a closed,
bounded interval). Thus for every f ∈ C(X) and ev-
ery ε > 0, one can find a big enough finite B, such
that (1) holds. In other words, “good enough ‖ · ‖2,µ-
approximations of f give good ‖ · ‖∞-approximations”,
as desired. This is particularly useful, since the Gram–
Schmidt procedure provides a concrete algorithm to
compute best ‖ · ‖2-approximations, while just comput-
ing ‖ · ‖∞ in general is an NP-complete task.

In practice, X = [a, b] and the countable dimen-
sional subspace is the algebra of polynomials which sat-
isfies the assumption of the Stone–Weierstrass theorem
and the set of monomials is admissible in the Gram–
Schmidt process. Different choices of µ, gives different
systems of orthogonal polynomials. Two of the most
popular measures are dµ = dx and dµ = dx√

1−x2 . By
using dµ = dx on [−1, 1], the generated polynomials are
called Legendre polynomials and by using dµ = dx√

1−x2

on [−1, 1] the generated polynomials are called Cheby-
shev polynomials.

These two polynomial sets have different applica-
tions in approximation theory. For example, the nodes
we use in polynomial interpolation are the roots of the
Chebyshev polynomials and the Legendre polynomials
are the coefficient of the Taylor series. For more details
about these polynomials, see [4, 50].

In this paper, we experiment with polynomial ap-
proximations of the Sigmoid function 1

1+e−x over a sym-
metric interval [−l, l] using two different orthogonal sys-
tem of polynomials. As the first choice, we consider

Chebyshev polynomials on the stretched interval which
come from the measure

dµ = dx

l
√

1− (x/l)2
. (2)

Our second choice comes from the measure.

dµ = e−(l/x)2
dx. (3)

We note that the measure for Chebyshev polyno-
mials mainly concentrates at the end points of the in-
terval which causes interpolation at mostly initial and
end points with two singularities at both ends. While
the second measure evens out through the whole real
line and puts zero weight at the center. This behav-
ior causes less oscillation in the resulting approximation
and hence more similarities of derivatives with the Sig-
moid function.

We provide two different output sets from our ap-
proximation algorithms in Tables 8 and 9 of Appendix.
We first choose the interval [−103, 103] for approxima-
tion and approximate the Sigmoid function with four
different degrees, {3, 5, 7, 9}. For each degree, we have
two polynomials from two orthogonal systems of poly-
nomials. The reason we choose these specific intervals
is that homomorphic encryption schemes only accept
integers. We use SageMath [8] to find the coefficients
of polynomial approximations for the Sigmoid function
(code is available on [15]).

As can be seen in Table 8, the higher degrees give
a better approximation and we expect that a better ap-
proximation to be a better replacement for the Sigmoid
function in the neural network. However, when the de-
gree increases, the coefficients become very small, for
example 9.888 ∗ 10−31. We truncate the coefficients and
only show three digits precision.

Next, we keep the degree fixed (equal to 5) and
approximate the function on intervals [−10i, 10i] for
1 ≤ i ≤ 4. As we can see in Table 9, the approximation
is more accurate on small intervals. Another observation
is that we have smaller coefficients on larger intervals.

3 Polynomial Approximation in
Neural Networks

Once the polynomial approximations are calculated, we
replace the activation function in the neural network
with polynomial approximations and analyze the perfor-
mance of the neural network shown. We utilize Neural
Network Toolbox [37] to implement the neural network
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and use a large number of datasets from the UC Irvine
Machine Learning Repository [29] as shown in Table 1
to evaluate the polynomial approximations.

Table 1. Datasets (I, F and C represent Instances, Features and
Classes respectively)

Name #I # F #C
1 Arcene 900 10000 2

2 Banknote
Authentication 1372 4 2

3 Blood Transfusion
Service Center 748 4 2

4 Breast Tissue 106 9 6

5 Cardiotocography
(3 classes) 2126 21 3

6 Cardiotocography
(10 classes) 2126 21 10

7 Climate Model
Simulation Crashes 540 17 2

8 CNAE-9 1080 857 9

9
Connectionist Bench
(Sonar, Mines
vs. Rocks)

208 60 2

10 Connectionist Bench
(Vowel Recognition) 528 10 2

11 Crab 200 6 2

12 Daphnet Freezing
of Gait 1048576 10 2

13 Fertility 100 10 2

14 First-Order
Theorem Proving 6118 51 6

15 Ovarian 216 100 2
16 Wine 178 13 3

17 Sensorless Drive
Diagnosis 58509 49 11

3.1 Performance of Neural Networks with
Polynomial Approximations

We compute polynomial approximations for the Sigmoid
function based on four different parameters: degree, er-
ror, intervals and precision of coefficients. We change
the degree of polynomials from 2 to 9. Our approxi-
mation method gets an error values as the input. We
consider the following values for the error parameter:
{0.1, 0.01, 0.001, 1e − 07, 1e − 11}. We also choose inter-
vals as follows: [−10i, 10i], 0 ≤ i ≤ 5. The coefficients
are very small and we have to truncate them. For this
reason, we truncate coefficients with different precisions:
10, 20, 30 and 40 digits. We also calculate the ‖ ·‖2,µ for
each polynomial for a more precise analysis. We gener-

ate 1920 polynomials (by assigning all the possible val-
ues to all the parameters) and train the neural network
using each polynomial.

To compare the performance of our polynomial ap-
proximations with other studies, we use several ac-
tivation functions for training: the Sigmoid function
f1(x) = 1

1+e−x , another variation of the Sigmoid func-
tion f2(x) = 2

1+e−4x −1, and the square function f3 = x2

which was proposed in [31] and [10]. We use the four dif-
ferent activation functions and if we choose the interval
properly based on the dataset, our model could achieve
the best accuracy among all four activation functions.
In order to find the interval that gives the best accuracy,

Input: Dataset, MaxDegree, ActivationFunction
Output: A set of Polynomials

MeanArray ← {};
Mean = 0;
PolynomialSet← {};
for i← 1 to #Features do

mean← mean of Feature[i];
MeanArray ←MeanArray ∪ {mean};

end
Mean← mean of MeanArray;
for i← 1 to MaxDegree do

poly ← Approximate the ActivationFunction
in the interval [−Mean,Mean] with
precision 10 and degree i;
PolynomialSet← PolynomialSet ∪ {poly};

end
return PolynomialSet;

Algorithm 1: Generating Polynomial Approxima-
tions

we extract three values from each dataset. We first build
a vector for each dataset where each item in the vector
is the mean of the feature values. Then, we compute
maximum (maxMean), minimum (minMean) and mean
(meanMean) of values in this vector and generate poly-
nomials in these intervals: [-maxMean, maxMean], [-
minMean, minMean] and [-meanMean, meanMean]. We
train the neural network for each interval and the results
show that the interval [-meanMean, meanMean] has the
best accuracy. As it can be seen in Table 2, in our exper-
iments, neural networks with polynomial approximation
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Table 2. Performance of the neural network model based on the following activation functions in layer 2 only: f1(x) = 1
1+e−x ,

f2(x) = 2
1+e−4x − 1, the square function f3 = x2 and the polynomial approximation. a, i, d and n represent accuracy -

(TP+TN)
(TP+TN+FP+FN) -, number of iterations, degree of polynomial and ‖ · ‖2,µ respectively. Precision -the value for truncating the coef-
ficients of the polynomial- is equal to 10, except Datasets 3 and 9 which are 20 and 15. We report the polynomial approximation with
minimum degree. Refer to Table 1 for the list of datasets.

Nom f1(x) f2(x) f3(x) Polynomial
a i a i a i a d i n

1 86.67% 18 56.67% 7 30.00% 1000 90.00% 2 40 0.005
2 100.00% 69 100.00% 85 40.29% 6 100% 3 34 0.118
3 79.46% 15 81.25% 25 83.93% 13 83.93% 3 38 0.005
4 67.00% 30 68.75% 16 18.75% 1000 75.00% 2 23 0.001
5 98.58% 30 89.34% 43 79.31% 1000 99.37% 2 42 0.001
6 82.45% 55 83.07% 74 15.67% 1000 89.97% 2 45 0.001
7 95.37% 21 91.36% 11 87.65% 11 96.30% 2 23 0.001
8 96.30% 179 66.05% 107 7.40% 1000 97.53% 2 106 0.001
9 77.42% 15 83.87% 22 54.84% 1000 93.55% 3 27 0.000
10 86.67% 33 75.84% 66 12.08% 52 96.30% 2 23 0.001
11 100% 45 100% 31 66.66% 1000 100% 2 30 0.001
12 90.14% 448 90.19% 243 90.27% 49 90.26% 3 63 0.000
13 86.67% 24 86.67% 13 40.00% 8 86.67% 2 7 0.001
14 100% 48 100% 51 16.45% 1000 100% 2 48 0.001
15 93.75% 25 96.87% 1000 56.25% 41 96.87% 2 13 0.001
16 96.29% 37 96.29% 45 44.44% 7 96.29% 2 20 0.001
17 86.29% 359 86.29% 368 42.22% 1000 89.87% 2 373 0.001

as activation function achieve the best accuracy in all
cases.

Algorithm 1 shows the process of choosing the best
polynomial approximation based on the dataset and its
features. Informally, we first extract the mean of values
from features (meanMean) and then generate the poly-
nomial approximation in the [-meanMean, meanMean]
interval. Based on our extensive experiments, this ap-
proach always lead to the best polynomial approxima-
tion [45].

3.2 Error Rate of Neural Networks with
Polynomial Approximations

In the previous section, we showed that current acti-
vation functions in neural networks could be replaced
with polynomial approximation without causing any ac-
curacy loss on the model. To further confirm the suit-
ability of the polynomial approximations, we also com-
pare the error rate of neural networks with the orig-
inal activation function (Sigmoid function) and with
polynomial approximations as replacement. To provide
a precise and fair comparison, we calculate the error
rate over the same test set for all activation functions.
This approach was previously used in [26] for comparing
performances of different activation functions. We first

split the dataset into training set and test set. We then
train the neural network using the training set phase by
phase. We start with the first 10% of the training set to
build the model and calculate the error rate, then add
another 10% of the training data and repeat the process
until we have used the entire training data. The train-
ing set is kept the same during all the corresponding
phases for all the activation functions. We report the
results for four datasets, and as shown in Figure 1, the
error rate in the case of the polynomials is almost the
same as in the case of other activation functions. Now,
we conclude with higher confidence that approximation
of an activation function with a polynomial using our
proposed method is a practical replacement for the cur-
rently used activation functions in neural networks.

4 Experimental Results
In this section, we present results of implementing neu-
ral networks over encrypted data. We used the HELib
for implementation and all the computations were run
on a virtual machine with 48GB RAM, 12 CPU cores
and Ubuntu 14.04. First, we train the models based on
the encrypted data and measure the running time for
the training process. Then, we use the trained model to
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Fig. 1. Comparing the error rate of the models generated using polynomial approximation and Sigmoid function for four different
datasets.

classify encrypted instances and measure the accuracy
of the model as well as the running time.

For generating encryption schemes in the HELib,
we set values for input parameters as k = 80 (security
level which is equivalent to AES-128) and s = 0 (num-
ber of slots in the ciphertext) which allows the HELib
to automatically pick the best number of slots. Another
important value is L which is set to 20 in our experi-
ments. We report the average running time from differ-
ent rounds of algorithms and the standard deviation of
running times is less than 3.0% in all cases.

In this paper, we focus on fully connected feed-
forward neural networks. Current implementations
which work with plain data, usually have three classes:
net, layer and neuron. Each neuron stores input values,
output values, weights and other required parameters.
A layer is an array of neurons and neural network is a
combination of these layers in a specific order. During
the feed-forward or back-propagation functions, we go
through all layers and in each layer, we process all the
neurons in that layer.

We should also consider the growing noise in the
ciphertexts during computations. As mentioned before,
one technique to deal with the noise is bootstrapping.
However, bootstrapping comes with heavy computation
cost. To address this problem, we use an alternative ap-
proach where the server checks the level of the noise
in the ciphertext after each operation. If the noise level
is above the threshold, the server sends the ciphertext
to the client and the client decrypts and encrypts it
again and sends the fresh ciphertext back to the server.
Therefore, in each round of communication, one cipher
refreshed by the client for reducing the noise.

The number of operations allowed on the ciphertext
depends on the value of L. If we set a small value for L,

we need more communications between the client and
the server whereas for higher values of L, less commu-
nications are required. However, by increasing the value
of L, both the size of ciphertexts and the amount of
transferred data increase.

4.1 Results of Training Phase

The training phase in neural network is a one time pro-
cess and requires heavy computation. The process of
training is based on two main functions: feed-forward
and back-propagation. When the network gets encrypted
instances, first it runs the feed-forward and then the
back-propagation functions on them. The network goes
through all instances and at the end, outputs a model.
Since we feed a large dataset to the network for training,
noise growth is a big challenge. To efficiently implement
the training phase, we define a neuron class and define
a ciphertext for each variable like weight or output. In
this approach, we can use paralleled structure and the
noise growth is manageable. However, the size of net-
work grows quickly.

We implement neural networks over encrypted data
with different numbers of hidden layers (1, 2, 3, 4 and
5). We implement the neural networks in the HELib and
use three different datasets: Crab, Fertility and Climate
Model (see Table 1) to perform the experiments. The
results are shown in Tables 3a, 3b and 3c. The results
show that if we use batch learning, the performance of
the training phase is acceptable.

The HELib supports SIMD feature and the run-
ning time for one instance is the same as the time for
a batch of instances. We also train the neural network
with different sizes of batch as an input (282, 576, 1420,
3668 and 6144) and calculate the running time for feed-
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Table 3. Training Neural Network over Encrypted Data (batch input size of 576 and L = 20; standard deviation is less than 2.9%). NC
and #C represent Network Creation and Number of Communications.

(a) Crab dataset.

#Hidden layer(s) NC(s) Feedforward(s) Backpropagation(s) #C Noise Reduction(s) Total Time(s)
1 42.33 59.80 109.81 77 149.03 217.07
2 56.97 130.26 202.12 192 312.27 394.38
3 96.22 289.88 412.85 452 682.82 803.95
4 119.22 383.72 548.42 600 912.07 1056.5
5 125.63 407.64 582.13 640 969.58 1120.70

(b) Fertility dataset.

#Hidden layer NC(s) Feedforward(s) Backpropagation(s) #C Noise Reduction(s) Total Time(s)
1 55.24s 65.30 121.83 77 160.17 247.89
2 72.42s 138.17 220.69 192 331.60 436.99
3 112.66s 305.51 440.44 452 718.36 864.60
4 131.20s 390.96 562.10 600 926.35 1089.86
5 140.52s 419.80 602.63 640 995.61 1168.47

(c) Climate Dataset

#Hidden layer(s) NC(s) Feedforward(s) Backpropagation(s) #C Noise Reduction(s) Total Time(s)
1 92.73 86.69 170.85 77 210.98 357.40
2 11.34 161.42 273.74 192 388.69 553.61
3 112.66 333.65 497.64 452 780.07 989.26
4 165.77 416.37 638.44 600 1011.63 1228.38
5 175.25 430.35 843.84 640 1229.50 1456.7

forward, back-propagation and noise reduction for one,
two, and five hidden layers. Figures 2a, 2b and 2c show
the result for one, two and five hidden layers respec-
tively. As it can be seen, when we increase the size of
the batch by 30 times, the running time only doubles. In
the above experiments, we only run the experiment for
one iteration. To analyze how the the number of iter-
ations affects the feed-forward, back-propagation, noise
reduction times and the number of communications, we
repeat the neural network training with varying number
of iterations.

Our empirical results show that training over en-
crypted data is efficient when batch learning is used,
and the network performance is acceptable. For exam-
ple, we reach the training rate of 0.68 seconds per in-
stance (6 features) for a batch size of 576 and two hid-
den layers (see Table 3a). By increasing the batch size
to 6144, the training rate decreases to 0.10 second per
instance for a neural network with two hidden layers.
It is worth mentioning that although larger batch sizes
lead to faster training, they also increase the size of the
network. Hence, a trade-off between the memory and
running time is needed and we should choose a proper
batch size based on the size of the dataset.

4.2 Results of Classification Phase

In the classification phase, we only run the feed-forward
step and can perform the computation in parallel for a
batch of unseen instances. Note that we implement clas-
sification over encrypted data while the model is also
encrypted. In this phase, noise growth is not a big chal-
lenge and the run-time is more important. The results
are shown in Tables 4a, 4b and 4c. For the classifica-
tion with a batch size of 576, we reach 0.04 second per
instance for one hidden layer and 0.1 second per in-
stance for two hidden layers. If we choose a batch of
size of 6144, we reach 0.014 second per instance for one
hidden layer and 0.036 second per instance for two hid-
den layers. The model is encrypted in all training and
classification experiments and also we did not use any
parallelization techniques in our implementation.
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(a) Neural network with one hidden layer

(b) Neural network with two hidden layers

(c) Neural network with five hidden layers

Fig. 2. Running time for different batch sizes.

Table 4. Classification over Encrypted Data (batch size 576 and
L = 20; standard deviation is less than 3%.) #HL and #C repre-
sent for number of hidden layers and number of communications.

(a) Crab dataset.

#HL(s) Classification(s) #C Noise Reduction(s)
1 28.62 0 0
2 61.17 0 0
3 154.20 0 0
4 229.28 10 155.87
5 234.65 21 171.20

(b) Fertility dataset.

#HL(s) Classification(s) #C Noise Reduction(s)
1 35.94 0 0
2 68.86 0 0
3 160.49 0 0
4 236.72 10 152.34
5 255.70 21 169.84

(c) Climate dataset.

#HL(s) Classification(s) #C Noise Reduction(s)
1 55.85 0 0
2 61.78 0 0
3 178.25 0 0
4 249.54 10 149.10
5 269.39 21 166.89

4.3 Comparison with state-of-the-art
HE-based Approaches

In this section, we compare our results with the state-of-
the-art privacy-preserving neural networks based on ho-
momorphic encryption. CryptoNets is the closest work
to ours where it aims to implement neural networks clas-
sification using HE [10].

The main difference between our approach and
CryptoNets is that our approach performs both training
and classification phases over encrypted data whereas
CryptoNets only considers the classification phase which
is much simpler compared to the training. The authors
of CryptoNets assume that the model is trained based
on plain data and then use this model for classifying en-
crypted instances. In our approach, the model is built
using encrypted data and the final model is encrypted.
When the model is trained using plain data, the final
model is also in plain format and works much faster
than an encrypted model.

In order to provide a fair comparison, we change our
implementation discussed earlier and follow the same
process as the CryptoNets: train a model based on
the plain data and then classify encrypted instances.
In CryptoNets, the authors implement a Convolutional
Neural Network (CNN) with two convolutional layers
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and two fully connected layers. They replace the Max
Pooling layer with Average Pooling layer and replace
the activation function (i.e., Sigmoid function) with
the square function. We design a CNN with the same
depth (the number of multiplication required) and simi-
lar structure. We use an average pooling layer similar to
CryptoNets. The MNIST dataset [51] is used for experi-
ments which includes 60000 images where 50000 images
are used for training and 10000 images for testing, each
image us a 28 × 28 pixel, and each pixel is an integer
value in the interval [0, 255].

We train the same model with ReLU as the acti-
vation function instead of the Sigmoid function. In this
case, the accuracy of the trained model is 99.02% and
when we replace the activation function (i.e., RELU)
with polynomial approximation, the accuracy is 99.00%
whereas the accuracy of the similar model in Cryp-
toNets is 98.95%. When we used more complex neural
network, we were able to achieve 99.25% accuracy which
is very close to the accuracy of the same model that
uses the ReLU function and significant improvement
over CryptoNets. The accuracy of this model with the
Sigmoid function as activation function is 99.10% and
when we replace the Sigmoid function with the poly-
nomial approximation, we achieve 99.15% accuracy. For
the Tanh function as the activation function, the orig-
inal accuracy is 97.27% and the accuracy with polyno-
mial approximation is 98.15%.

In terms of throughput, our approach significantly
outperforms CryptoNets. When we classify ciphertext
with the batch size of 8192 (the same batch size used in
CryptoNets), our approach can make 163840 predictions
per hour whereas CryptoNets makes only 51739 pre-
dictions per hour. The running time for classifying this
batch input size is 570 for CryptoNets whereas in our ap-
proach, the running time is 320 seconds. The size of the
data transferred from the client to the server in Cryp-
toNets is 570Mb and in our approach is 336.7MB. Note
that to provide a fair comparison, we use machines with
similar configuration (Intel Xeon E5-1620 CPU running
at 3.5GHz with 16GB of RAM in CryptoNets and Intel
Xeon E5-2640, 2.4GHz with 16GB RAM in our case)
for the experiments.

To further show applicability of our proposed ap-
proach for more complicated network architectures, we
use the CIFAR-10 [28] which is one of the widely used
benchmark datasets for deep learning, to train a neu-
ral network and implement it over encrypted data. The
CIFAR-10 dataset consists of 60000 32 × 32 colour im-
ages categorized in 10 classes, with 6000 images per
class. There are 50000 training and 10000 test images.

We trained convolutional neural networks using the
CIFAR-10 dataset and achieved 91.5% accuracy with
polynomials as the activation functions whereas the ac-
curacy with the original activation function (ReLU) is
94.2%. As expected, the CIFAR-10 is much slower com-
pared to the MNIST since both the dataset and the
CNN are much more complex.

4.4 Comparison with state-of-the-art
SMC-based Approaches

Although our approach is based on homomorphic en-
cryption, it does not use bootstrapping due to huge
computation cost and instead requires some commu-
nications between the client and the server. One may
argue that why not use secure multi-party computa-
tion (SMC) instead of homomorphic encryption. Al-
though our approach requires some communications, it
has several advantages over SMC-based approaches as
discussed below.

While privacy-preserving machine learning based on
secure multi-party computation techniques have been
studied in the literature, those approaches focus on tra-
ditional machine learning algorithms such as linear re-
gression [6], decision trees [2, 5, 53] and linear classifiers
[5, 19]. There are a few recent works that focus on neural
networks and aim to develop privacy-preserving training
[34] and prediction [25, 39, 41].

To the best of our knowledge, SecureML [34] is the
only work based on SMC techniques that considers both
training and classification phases. The others only focus
on classification phase. In the following, we provide a
detail comparison of our proposed approach with these
efforts.

The recent work of Mohassel and Zhang [34] aims
to develop privacy-preserving training and classification
of neural networks using SMC techniques. In their pro-
posed approach which uses HE as one building block of
SMC, a data owner shares the data with two servers and
the two servers run the machine learning algorithm us-
ing two-party computation (2PC) technique. They focus
on three different algorithms: linear regression, logistic
regression and neural network. Their protocol is divided
into two phases: online and offline. In the offline phase,
they use oblivious transfer (OT) for generating multi-
plication triplets and in the online phase, they securely
compute the activation function in logistic regression
and neural network training. We only look at their neu-
ral network algorithm which is closely related to our
work.
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Table 5. Comparing the number of communications in our approach and SMC-based approach for different number of hidden layers
and different batch sizes for the input (HL represents for Hidden Layers).

1 HL 2 HLs 3 HLs 4 HLs 5 HLs
Batch Size CryptoDL [34] CryptoDL [34] CryptoDL [34] CryptoDL [34] CryptoDL [34]

282 77 6042 192 12216 452 29940 600 77148 640 129144
576 77 7507 192 15151 452 37095 600 95543 640 159919
1420 77 10452 192 21036 452 51420 600 132348 640 221484
3668 77 12778 192 25714 452 62850 600 161762 640 270706
6144 77 13924 192 28036 452 68548 600 176452 640 295300

The main advantage of our approach over SMC-
based solutions is the communication overhead which
consists of the number of communications between the
client and the server and the amount of data transferred
in the communications. In SMC protocols, we need a
number of communications between the client and the
server for each operation whereas in our approach, the
server does not need to communicate with the client
unless the amount of noise reaches a threshold. If the
same neural network is implemented using SMC pro-
tocols, the number of communications is much higher
compared with the HE based protocols.

The SMC-based approach of [34] implements two
solutions based on linearly homomorphic encryption
(LHE) and oblivious transfer (OT) and results are pro-
vided for both LAN and WAN settings. In their LHE-
based solution, the running time for LAN and WAN is
almost the same. However, the accuracy of the model
is very low. To improve the accuracy, higher degree
polynomials should be used which will introduce sig-
nificant computation and communication overhead. Al-
ternatively, they present an OT-based solution which
achieves better accuracy. However, there is a huge gap
between communication overhead of LAN and WAN
settings (e.g., 0.86s for LAN and 43.2s for WAN, see
Table 2 from [34]). As mentioned by the authors, the
reason for this gap is the communication overhead since
the number of communications increases drastically as
the neural networks become more complex. Since we
assume a client-server model, the WAN setting is more
important and we use the number of communications
as one of the metrics for comparison.

To provide a comparison for the number of com-
munications, we look at the approach proposed in [34].
The number of communications is O(t·

∑m
i=1(|B|·di−1 +

di−1 · di)) where t, m, |B| and di are the number of it-
erations, number of layers, size of the batch input and
the number of neurons in layer i relatively (refer to sec-
tion III-D of [34]). It is not as straightforward in our
approach to calculate the number of communications,

because the number of communications depends on the
level of the noise in the ciphertext. However, it is pos-
sible to estimate the number of communications based
on the architecture of the neural network.

In our approach, when the level of the noise gets
close to the threshold, the server sends the ciphertext to
the client and receives the refreshed ciphertext. There-
fore, one communication needed between client and
server for reducing noise in each ciphertext. This ci-
phertext could be a weight or a variable in the process
of the algorithm. Suppose the network has l layers and
di is the number of neurons in layer i. D is the de-
gree of the polynomial used as the activation function
and based on the input parameters for the HE scheme,
the number of allowed multiplication is L. Each iter-
ation (one feed-forward and one back-propagation) in-
cludes (l − 1) + (2D − 1)(l − 2) multiplications (call it
M). Therefore, ML is the number of communications
for each variable to reduce the noise in one iteration.
On the other hand, the number of weights in a network
is

∑l−1
i=1 di · di+1 (call it W). We can estimate the to-

tal number of communications for t iterations with this
equation: t ·ML ·W. In our solution, the number of com-
munications is independent of the batch size whereas
in [34], the size of the batch contributes to the num-
ber of communications. Table 5 shows the number of
communications for one iteration of our approach and
SMC-based approach for different number of hidden lay-
ers and different batch sizes. As shown, there is a huge
difference in the number of communications in our so-
lution and the proposed solution in [34].

In addition to the the number of communications,
we compare the amount of data transferred between the
client and the server. When we have simpler neural net-
works, SMC-based approach has smaller communication
overhead but our approach is much better when the
neural network becomes more complex. For example,
for a neural network with 2 hidden layers and batch
size of 512, the amount of data transferred in [34] is
12MB whereas for our approach, it is 33MB. However,
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Table 6. Training Neural Network over the Encrypted MNIST Data (batch input size of 192 and L = 20).

#Hidden layer(s) Feedforward(s) Backpropagation(s) # of Communications Noise Reduction(s) Total Time(s)
2 2884.31 6301.26 6740 8939.40 10476.29

Table 7. Training different Neural Network architectures over the Encrypted Data (L = {5, 10, 20}).

Topology L Feedforward(s) Backpropagation(s) Noise Reduction(s) # of Communications Total Time(s)
[6 1 1 10] 5 9.58 24.62 34.65 164 37
[12 2 2 10] 5 17.39 46 63.31 314 67.25
[24 4 4 10] 5 44.28 113.23 157.46 788 165.36
[48 8 8 10] 5 134.22 331.64 465.74 2432 488.53

[93 16 16 10] 5 654.98 1357.19 2012.08 8504 2086.27
[6 1 1 10] 10 23.45 40.27 63.64 106 71.49
[12 2 2 10] 10 42.53 71.29 113.68 190 125.8
[24 4 4 10] 10 105.77 160 265.5 448 289.52
[48 8 8 10] 10 315.25 464.39 779.48 1324 842.675

[93 16 16 10] 10 1157.17 1631.88 2788.78 4516 2999.14
[6 1 1 10] 20 28.46 60.64 86.89 34 118.93
[12 2 2 10] 20 58.83 105.44 158.8 62 204.07
[24 4 4 10] 20 127.19 214.33 322.55 130 419.02
[48 8 8 10] 20 608.87 882.1 1339.14 314 1860.77

[93 16 16 10] 20 1527.85 1927.16 3020.29 874 4469.96

for a neural network with 5 hidden layers and batch
size of 512, the amount of data in [34] is 159MB while
in our solution, it is 155MB. If we use larger batch sizes
(i.e., 3668), our approach outperforms [34] in neural
networks with 4 hidden layers and higher (151 MB for
our approach v.s. 161 MB for [34]). These results show
that [34] has much higher communication overhead com-
pared to our approach and the main reason is that the
number of communications in [34] grows significantly as
the neural networks become more complex.

We implemented a neural network similar to the
one used in [34] and performed experiment using the
encrypted MNIST dataset. The results shown in Table
6 for one iteration of training and indicate that the com-
munication has a huge overhead on the running time.
Besides the number of communications, the size of data
transferred in each communication impacts the running
time. The size of data in each communication is the
same as the size of a ciphertext. Although we can de-
crease the size of the ciphertext by decreasing the value
of L, decreasing the value of L results in higher num-
ber of communications. Table 7 shows the result for
L = {5, 10, 20} and different topologies of the neural
network for one iteration of training. As it can be seen,
although we have higher number of communications for
L = 5, the whole run time is less than L = 10. The
reason is that the size of the ciphertext is larger when
L = 10. To improve the run time, we can run the code in

parallel or using Graphics Processing Unit (GPU) which
is part of our future work. Note that we did not use any
parallelization techniques and the performance can be
further improved if we we use parallel implementation.

In terms of the accuracy, the model trained by
our proposed approach can reach 95.15% using polyno-
mial as the activation function over plain-text MNIST
dataset while the model trained by the protocol in [34]
can only reach 93.4% accuracy. The running time for pri-
vacy preserving prediction in our model is better com-
pared with the solution in [34].

Another advantage of our approach is the polyno-
mial approximation method we used for approximating
the Sigmoid function. In our approach, the degree of
polynomial is 2 or 3 in all cases which allows the imple-
mentation to be efficient. However, in [34], the perfor-
mance of the model drops considerably when low degree
polynomials are used and it requires a high degree poly-
nomial (i.e. 10) to achieve a reasonable accuracy (refer
to Table 1 in [34]). As discussed before, computing the
high degree polynomial over encrypted data is very in-
efficient.

The approach in [34] needs two different servers in
addition to the client and assumes that the servers do
not collude with each other. This is a weaker security
assumption compared to ours and if the servers collude
with each other, the privacy of the client’s data is not
preserved anymore. In addition, to improve the perfor-
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mance of their model, they proposed a client aided ap-
proach where the client operates part of the compu-
tation. In this scenario, if a subset of clients collude
with one of the servers, their approach leaks information
about the data from honest clients (see [34], Section V).

Darvish et al. present DeepSecure that enables dis-
tributed clients (data owners) and cloud servers to
jointly evaluate a deep learning network on their private
assets [41]. It uses Yao’s Garbled Circuit (GC) protocol
to securely perform deep learning. Liu et al. propose a
privacy-preserving classification protocol based on the
Oblivious Transfer (OT) and HE schemes [25]. Riazi et
al. propose a solution based on Garbled Circuits (GC)
and Aditive Secret Sharing (SS) [39]. They all perform
experiments on the MNIST dataset and report the re-
sults.

The accuracy of the models trained with the MNIST
dataset in these approaches is 98.95%, 99.31%, and 99%
respectively whereas in our approach, the accuracy is
99.25%. The throughput of their approaches are 2759
instances per hour, 2812 instances per hour, and 1333
instances per hour respectively (these numbers calcu-
lated by extrapolation), whereas in our solution the
throughput is 163840 instances per hour. [25] imple-
ments a deeper CNN and achieves a slightly better ac-
curacy (99.0%) but the throughput drops to only 386
instances per hour.

For classifying a batch input with size 8192, the
running times for [41] and [25] are 10649 and 10485.76
seconds respectively, while in our solution, the running
time is only 320 seconds. The amount of data trans-
ferred in one round of protocol in these two approaches
are 722GB and 390GB respectively, whereas in our ap-
proach it is only 336.7MB. These papers provide results
for one instance and do not discuss the impact of higher
batch input size on the running time; we assume that
the running time increases linearly and calculate these
numbers by extrapolation.

For classifying one instance, the running time and
the amount of data transferred in [39] are 2.70 seconds
and 12.9MB. However, for classifying a batch input with
100 instances, the running time and the amount of data
transferred increase to 153.47 seconds (392 seconds in
our solution) and 1289.4MB (320MB in our solution).
For a batch input with size 8192, the amount of trans-
ferred data and the running time in our solution remains
the same, however in [39], they increase drastically and
make the solution inefficient for large input size. As can
been seen, our approach significantly outperforms all
three approached in all aspects.

In addition to having a much better performance,
our approach has several advantages over SMC-based
approaches. Unlike SMC-based approaches, the struc-
ture of the client does not need to be changed in our
approach when the architecture of the neural network
is changed. The only operations in the client side are en-
cryption and decryption and the server can perform dif-
ferent machine learning algorithms with the same client.
Another advantage of our approach is that it preserves
the privacy of the model compared with the SMC-based
solutions. In SMC-based solutions, the client partici-
pates in the computations and information about the
model could possibly leak to the client. For example,
the client can learn information such as the number of
layers in the neural network, the structure of each layer
and the activation functions. Although there are some
solutions like adding more dummy layers to the model
to mitigate this issue, these will add to the already large
computation cost. On the other hand, in our approach,
the only operations in the client side are encryption and
decryption (and possibly division in the case of networks
with high number of layers). Hence, the client cannot
learn any information about the structure of the neural
network.

4.5 Discussion and Limitations

We do not use any parallel programming techniques
(such as openmp library [35]) or Graphics Processing
Unit (GPU) in our implementation. In each layer of
the neural network, the computations inside neurons
are independent of each other, and the computations
for the neurons in each layer could be performed in par-
allel. This will significantly reduce the running time,
especially, when the number of neurons in each layer is
high. The performance can also be further improved us-
ing GPU-based implementation. These are left to future
work.

A limitation of our proposed work is that our ap-
proximation only considers continuous functions. Al-
though our approximation covers a number of widely
used activation functions in deep neural networks, there
are non-continuous functions used in deep learning al-
gorithms that are not covered. We will extend our ap-
proximation work to include non-continuous functions.

There are several attacks like membership infer-
ence [43], model inversion [13] and model extraction
[47] against machine learning algorithms. For example,
in membership inference attack, the client registers for
a machine learning service and uses the model as a
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black-box. A malicious client aims to understand that
an instance was part of the training set or not. Both
SMC-based and HE-based approaches are susceptible to
these attacks, because they target underlying machine
learning algorithms regardless of whether the data is
encrypted or not. There are countermeasure proposed
in the literature that could be used to mitigate these
attacks [13, 43, 47]. However, defending against attacks
that target the underlying machine learning algorithms
is outside the scope of this work and the main focus of
this work is to provide privacy-preserving training and
classification in neural networks.

5 Related Work
Graepel et al. use a somewhat homomorphic encryption
scheme to train two machine learning classifiers: Lin-
ear Mean and Fisher’s Linear Discriminate (FLD) [19].
They propose division-free algorithms to adopt to lim-
itations of homomorphic encryption algorithms. They
focus on simple classifiers such as the linear means clas-
sifier, and do not consider more complex algorithms.
Also, their approach considers a weak security setting
in which the client can learn the model. Bost et al. use a
combination of three homomorphic systems (Quadratic
Residuosity, Piallier, and BGV schemes), and garbled
circuits to provide privacy-preserving classification for
three different machine learning algorithms, namely Hy-
perplane Decision, Naive Bayes, and Decision trees [5].
Their approach only considers the classification phase,
is based on SMC, and is only efficient for small data sets.
Our proposed protocol is based only on homomorphic
encryption and we consider both training and classifica-
tion phases. Mohassel and Zhang propose a protocol for
privacy-preserving training and classification based on
SMC techniques [34]. A detailed comparison with this
work is presented in section 4.4.

Xie et al. discuss theoretical aspects of using poly-
nomial approximation for implementing neural network
in encrypted domain [49]. Building on this work, Dowlin
et al. implement a neural network classifier on encrypted
data [10]. They use a leveled homomorphic encryption
scheme which supports SIMD. They replacemax pooling
with scaled mean-pooling for solving the issue of hav-
ing no division operation available for encrypted values
and use function f(z) := z2 as an activation function.
They build the model using plain data and then use this
model for classifying encrypted data. Our approach, on
the other hand, provides a solution for both training and

classifying encrypted instances. A detailed comparison
with this work is presented in section 4.3. Yuan et al.
in [52] propose a protocol for privacy-preserving train-
ing and classification based on SMC techniques and HE
schemes. Three types of components participate in the
protocol: clients, system and cloud. The clients encrypt
the data using the public key of the system and send it
to the cloud. As part of their protocol, they implement
secure sharing of scalar product and sum using secret
sharing.

Aslett et al. propose methods for implementing sta-
tistical machine learning over encrypted data and imple-
ment extremely random forests and Naive Bayes clas-
sifiers over 20 datasets [2]. The majority of operations
are addition and multiplication and they show that per-
forming algorithms over encrypted data without any
multi-party computation or communication is practi-
cal. They also analyze current homomorphic encryption
tools for use in statistical machine learning [3]. Several
methods have been proposed for statistical analysis over
encrypted data, specifically for secure computation of a
χ2-test on genome data [27, 32, 54].

Shortell et al. use the Taylor expansion of ln(x) to
estimate the natural logarithm function by a polyno-
mial of degree 5 [44]. Although Taylor expansions are
more convenient and easier to compute, the accuracy
of estimation is not always consistent. We used Taylor
expansions to estimate the Sigmoid function and com-
pared the result with other approximation techniques.
While in some cases they produce accuracies as high as
other approximations, often times the accuracy drops
significantly when using Taylor expansions. Livni et al.
analyzed the performance of polynomial as an activation
function in neural networks [31]. However, their solution
cannot be used for our purpose because they approxi-
mate the Sigmoid function on the interval [-1,1] while
the message space in homomorphic encryption schemes
is integers. Our methods is able to generate polynomial
approximation for an arbitrary interval by using Cheby-
shev polynomials to find the best approximation based
on the ‖ · ‖2,µ.

There is another line of research which is not di-
rectly related to our problem, but is worth mention-
ing here. Togan et al. propose an algorithm for finding
a maximum over encrypted data [46]. In their imple-
mentation, the client sends the encrypted data to the
server, which computes the maximum without learning
the value of the maximum or its index. Liu et al. propose
a protocol for computing scalar product, Secure Scalar
Product in MapReduce (S2PM) [30]. They use the BGN
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homomorphic encryption scheme and the HELib library
in implementation.

There has also been some work on adding division
to homomorphic encryption schemes. Veugen considers
a semi-honest model where client A has some encrypted
number [x], and the server B has the decryption key
K [48]. Party A would like to divide the integer x by
some integer d. Chen et al. analyze the performance of
integer arithmetics over encrypted data and propose an
algorithm for the division operation [7]. They use the
HELib for implementation and their results show that
division for large numbers cannot be supported without
using bootstrapping. The division operation has more
limitations than advantages for our solution, because
we should use a FHE which is not practical. We assume
that homomorphic encryption schemes do not support
division and try to find a solution based only on addition
and multiplication operations.

There are also approaches based on differential pri-
vacy to privacy-preserving deep learning. Shokri and
Shmatikov in [42] propose a privacy-preserving ap-
proach for learning from distributed data that allows
multiple parties to jointly learn a neural network model
without sharing their input datasets. Their approach is
based on differential privacy where each party builds the
model using its own data, and only shares a small part
of the model’s parameters with other parties. Abadi et
al. in [1] propose a framework for differentially private
training of neural networks. It includes a differentially
private stochastic gradient descent (SGD) algorithm,
the moments accountant, and hyperparameter tuning.
They develop new algorithmic techniques, provide an
analysis of privacy costs within the framework of dif-
ferential privacy, and implementation strategies based
on the TensorFlow software library for machine learn-
ing. Differential privacy based approaches should make
a trade-off between privacy and utility which affects ac-
curacy of the trained model. Our threat model is differ-
ent than differential privacy. In our approach, the server
does not learn anything about the model whereas in dif-
ferential privacy, the server will learn the model. Since
the model is encrypted, reverse engineering cannot be
used either.

6 Conclusion and Future Work
In this paper, we developed new solutions for running
neural network algorithms over encrypted data. In or-
der to implement neural networks within limitations of

homomorphic encryption schemes, we introduced new
techniques to approximate activation functions with low
degree polynomials. We developed a theoretical founda-
tion for this purpose and provided an approach to gener-
ate those approximations based on Chebyshev polyno-
mials. We then used these approximation to train neu-
ral networks. We also performed experiments to eval-
uate computation cost of operating these polynomi-
als over encrypted data and implemented the neural
networks with polynomial approximation as activation
function over encrypted data. Our results show that
polynomials, if chosen properly, are suitable replace-
ments for activation functions to adopt neural networks
within homomorphic encryption schemes limitations.
Our proposed approach provides accurate and privacy-
preserving training and classification and outperforms
state-of-the-art approaches based on homomorphic en-
cryption and secure multi-party computation.

For future work, we plan to study approximation
of non-continuous functions used in deep neural net-
work algorithms. We also plan to investigate possibility
of using polynomial approximation and rational func-
tions for more complex computations such as statistical
analysis, solving partial differential equations, etc. over
encrypted data.
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Appendix
Homomorphic Encryption: Homomorphic encryp-
tion (HE) schemes preserve the structure of the message
space such that we can perform operations such as addi-
tion and multiplication over the ciphertext space. Like
other types of encryption schemes, an HE scheme has
three main functions, Gen, Enc, and Dec, for key gen-
eration, encryption, and decryption, respectively. How-
ever, an HE scheme also has an evaluation function,
Eval. Suppose we have a set of plaintext messages {mi}
and relative ciphertexts {ci} for i = {1, · · · , n}. Now,
consider a circuit C. The evaluation function processes
the public key pk, a set of ciphertexts {ci} and a circuit
C such that (see [14])

Dec(sk,Eval(pk,C, c1, · · · , cn)) = C(m1, · · · ,mn) (4)

Homomorphic encryption (HE) was first introduced
in 1978 by Rivest et al. [40]. Other researchers followed
to introduce several other HE schemes [11, 17, 36]. The
idea behind the encryption function Enc is to add a
small value, called noise, tom for encrypting. Therefore,
each ciphertext has a small amount of noise. When we
add two ciphertexts c1 and c2, the result is also a cipher-
text, but with noise that has grown. The Dec function
works correctly if this amount is less than a threshold.
This threshold leads to a bound on the number of com-
putations that can be performed over encrypted data. If
an entity wants to decrease the noise, it should decrypt
the ciphertext and encrypt it again, and for decryption,
it needs the secret key sk. For years, the community was
trying to find out if there is a way to decrease the noise
without having the secret key.

This question was answered in 2009 when first
Fully Homomorphic Encryption (FHE) scheme was de-
signed by Gentry [14]. A Fully Homomorphic Encryp-
tion (FHE) scheme is a homomorphic encryption scheme
that supports circuits with arbitrary depth. In his dis-
sertation, Gentry introduced a technique for handling
an arbitrary depth of computations, called bootstrap-
ping. In the bootstrapping technique, the amount of
noise is decreased without needing to access sk. How-
ever, it has a huge computation cost and is a very slow
process. This limitation makes FHE impractical for ac-
tual use.

Recent advances in homomorphic encryption have
led to a faster HE scheme: Leveled Homomorphic En-
cryption (LHE), see [14]. LHE schemes do not sup-
port the bootstrapping step, so they only allow circuits
with depths less than a specific threshold. If the num-

ber of operations is known before starting the compu-
tations, we can use LHE instead of FHE. The perfor-
mance of LHE schemes is further improved using Single-
Instruction-Multiple-Data (SIMD) techniques [20].

Despite the advantages of using HE schemes, they
have some limitations. The first one is message space.
Almost all HE schemes work with integers. Therefore,
before encrypting data items, we need to convert them
to integers and if this conversion is not done properly, it
could lead to accuracy loss. The second limitation is ci-
phertext size. The size of the message increases consid-
erably after encryption. Another important limitation
is related to noise. After each operation, the amount
of noise in the ciphertext increases. Multiplication in-
creases noise much more than addition. For HE schemes
to work properly, the amount of noise should remain less
than a predefined threshold. The last and most impor-
tant limitation is lack of support for the division oper-
ation. In summary, only a limited number of additions
and multiplications could efficiently be performed over
the encrypted data and complex functions such as the
Sigmoid function used in neural networks are not com-
patible with the current HE schemes.

Neural Networks: At a high level of abstraction,
a neural network is a combination of neurons arranged
in ordered layers. Each neuron gets an input, operates
a function on it and outputs the result of the function.
The structure of this function depends on the layer to
which the neuron belongs. Besides the first layer (in-
put layer) and the last layer (output layer), there is at
least one middle layer, called hidden layer. In fully feed-
forward neural networks, each neuron has a weighted
connection to all neurons in the next layer. Neurons in
different layers are of different types. For example, neu-
rons in the input layer only get one input and output
which is the same value. Neurons in hidden layers are
more complex; they get inputs, compute the weighted
summation of inputs, operate a function on the summa-
tion and then output the value of the function. These
functions could be the Sigmoid (σ = 1

1+e−x ), the ReLU
(ReLU(x) = max(0, x)), Tanh (2σ(2x)−1), max or mean
functions and are called activation functions (or trans-
fer functions). There are two methods for training the
neural network: online training and batch training. In
online training, the weights are updated after feeding
one instance to the network whereas in batch training,
a batch of instances is fed to the network to update the
weights in each step.
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Table 8. Polynomial approximation for the Sigmoid function on the interval [−103, 103]. p1(x) generated by method 1 (Equation 2)
and p2(x) generated by method 2 (Equation 3).

Degree Polynomial Approximations Sigmoid function, p1(x) and p2(x)

3

p1(x) = −(8.606e− 10) ∗ x3 + (1.330e− 17) ∗ x2

+ 0.001 ∗ x + 0.499

p2(x) = −(4.805e− 10) ∗ x3 − (7.088e− 16) ∗ x2

+ 0.0009 ∗ x + 0.500

‖f − p1‖2 = 0.276, ‖f − p2‖2 = 0.270

5

p1(x) = (2.0694e− 15) ∗ x5 − (5.319e− 23) ∗ x4

· · ·+ 0.001 ∗ x + 0.499

p2(x) = (6.653e− 16) ∗ x5 + (9.377e− 21) ∗ x4

· · ·+ 0.001 ∗ x + 0.500

‖f − p1‖2 = 0.226704, ‖f − p2‖2 = 0.094159

7

p1(x) = −(5.917e− 21) ∗ x7 + (2.126e− 28) ∗ x6

· · ·+ 0.002 ∗ x + 0.499

p2(x) = −(1.098e− 21) ∗ x7 − (1.027e− 25) ∗ x6

· · ·+ 0.001 ∗ x + 0.500

‖f − p1‖2 = 0.196167, ‖f − p2‖2 = 0.037212

9

p1(x) = (1.841e− 26) ∗ x9 − (8.478e− 34) ∗ x8

· · ·+ 0.003 ∗ x + 0.499

p2(x) = (2.002e− 27) ∗ x9 + (9.866e− 31) ∗ x8

· · ·+ 0.001 ∗ x + 0.500

‖f − p1‖2 = 0.175104, ‖f − p2‖2 = 0.016006
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Table 9. Polynomial approximation for the Sigmoid function on different intervals. p1(x) generated by method 1 (Equation 2) and
p2(x) generated by method 2 (Equation 3).

Interval Polynomial Approximations Sigmoid function, p1(x) and p2(x)

[-10,10]

p1(x) = 0.00001 ∗ x5 − (4.897e− 14) ∗ x4

· · ·+ 0.160 ∗ x + 0.499

p2(x) = (6.371e− 6) ∗ x5 + (9.377e− 13) ∗ x4

· · ·+ 0.124 ∗ x + 0.500

‖f − p1‖2 = 0.066, ‖f − p2‖2 = 0.008

[−102, 102]

p1(x) = (2.060e− 10) ∗ x5 − (5.329e− 19) ∗ x4

· · ·+ 0.019 ∗ x + 0.499

p2(x) = (6.653e− 11) ∗ x5 + (9.376e− 17) ∗ x4

· · ·+ 0.012 ∗ x + 0.500

‖f − p1‖2 = 0.207, ‖f − p2‖2 = 0.030

[−103, 103]

p1(x) = (2.069e− 15) ∗ x5 − (5.319e− 23) ∗ x4

· · ·+ 0.001 ∗ x + 0.499

p2(x) = (6.653e− 16) ∗ x5 + (9.377e− 21) ∗ x4

· · ·+ 0.001 ∗ x + 0.500

‖f − p1‖2 = 0.227, ‖f − p2‖2 = 0.094

[−104, 104]

p1(x) = (2.069e− 20) ∗ x5 − (5.320e− 27) ∗ x4

· · ·+ 0.0001 ∗ x + 0.499

p2(x) = (6.653e− 21) ∗ x5 + (9.376e− 25) ∗ x4

· · ·+ 0.0001 ∗ x + 0.500

‖f − p1‖2 = 0.229, ‖f − p2‖2 = 0.300


