
Proceedings on Privacy Enhancing Technologies ; 2018 (3):164–180

Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda

Privacy Pass: Bypassing Internet Challenges
Anonymously
Abstract: The growth of content delivery networks
(CDNs) has engendered centralized control over the
serving of internet content. An unwanted by-product of
this growth is that CDNs are fast becoming global ar-
biters for which content requests are allowed and which
are blocked in an attempt to stanch malicious traffic. In
particular, in some cases honest users — especially those
behind shared IP addresses, including users of privacy
tools such as Tor, VPNs, and I2P — can be unfairly
targeted by attempted ‘catch-all solutions’ that assume
these users are acting maliciously. In this work, we pro-
vide a solution to prevent users from being exposed to a
disproportionate amount of internet challenges such as
CAPTCHAs. These challenges are at the very least an-
noying and at their worst — when coupled with bad im-
plementations — can completely block access from web
resources. We detail a 1-RTT cryptographic protocol
(based on an implementation of an oblivious pseudoran-
dom function) that allows users to receive a significant
amount of anonymous tokens for each challenge solu-
tion that they provide. These tokens can be exchanged
in the future for access without having to interact with
a challenge. We have implemented our initial solution
in a browser extension named “Privacy Pass”, and have
worked with the Cloudflare CDN to deploy compatible
server-side components in their infrastructure. However,
we envisage that our solution could be used more gener-
ally for many applications where anonymous and hon-
est access can be granted (e.g., anonymous wiki edit-
ing). The anonymity guarantee of our solution makes
it immediately appropriate for use by users of Tor/VP-
Ns/I2P. We also publish figures from Cloudflare indi-
cating the potential impact from the global release of
Privacy Pass.

Keywords: Anonymity, Blinded tokens, Oblivious PRF,
Tor, CAPTCHA, Privacy, DLEQ, Content delivery net-
works

DOI 10.1515/popets-2018-0026
Received 2017-11-30; revised 2018-03-15; accepted 2018-03-16.

Alex Davidson: Royal Holloway, University of London
(work completed during an internship at Cloudflare), E-mail:
alex.davidson.2014@rhul.ac.uk

1 Introduction

1.1 Background

An increasingly common trend for websites with glob-
ally high visitation is to use content delivery networks
(CDNs) to host or cache their resources. According to
Cisco, CDNs will serve 71% of all traffic in 2021, up from
52% in 2016 [7]. Some of the most well-known CDNs in-
clude Akamai, Cloudflare, Fastly, and Amazon Cloud-
front. These CDNs typically house data centers across
the globe, meaning that access to websites is sped up
by serving from locations geographically near requests.

On top of this, CDNs usually offer protection ser-
vices to prevent customers from having their websites
taken down by distributed denial of service (DDoS) at-
tacks, or vandalized by spam. Protection of this sort
takes numerous forms, but a common method is to use
public IP-based reputation checking on requests that
target protected websites. These checks involve analyz-
ing whether incoming IPs have been used for past ma-
licious activity before granting access. If an IP address
is deemed to have a ‘poor’ reputation existing CDNs
may use one of the following options [29] for guarding
protected websites:
– block access altogether;
– issue human proof-of-work challenges to prevent ac-

cess from bots (e.g., CAPTCHAs);
– route requests through a web application firewall.

Unfortunately, these measures disproportionately affect
users who happen to be assigned to IPs with poor rep-
utations. In particular, users of Tor and VPN providers
are allocated one of a small number of IP addresses (cor-
responding to exit nodes in the case of Tor). Since dif-
ferent users use these IP addresses, if any one of them
misbehaves then the IP will be assigned a bad reputa-

Ian Goldberg: University of Waterloo, E-mail:
iang@cs.uwaterloo.ca
Nick Sullivan: Cloudflare, E-mail: nick@cloudflare.com
George Tankersley: E-mail: george.tankersley@gmail.com
Filippo Valsorda: E-mail: hi@filippo.io

Privacy Pass: Bypassing Internet Challenges Anonymously 165

tion score. Future users may then have limited access
to CDN-protected websites in the future, regardless of
whether they are honest.

Users of Tor/VPNs are often forced into doing so
due to oppressive internet censorship, so access-limiting
measures of this nature can further degrade internet ac-
cessibility for an important subset of users. It is worth
noting that 1.04% of the global traffic served by Cloud-
flare is challenged. [8] In comparison, the number of re-
quests from Tor users challenged by Cloudflare sits at
17%. Moreover, Cloudflare typically serves over 10 tril-
lion requests per month1 and approximately 0.05% of
this traffic arrives over the Tor network [8]. As such,
Cloudflare handles thousands of requests every second,
and billions of requests every month, from the Tor net-
work alone, not accounting for the numbers of requests
originating from VPNs/I2P shared networks that oper-
ate under similar conditions. Reducing the workload for
these users will clearly have a large, undeniably positive
effect on web accessibility for these users.

In this work, we develop a solution that works in
tandem with any system that uses challenges to ascer-
tain whether a client is honest. In particular, we grant
an anonymous user, deemed to be honest at some point
in the past, the ability to gain access to further web
resources without the need for more challenges. Our so-
lution maintains anonymity of the user — this is crucial
so that CDNs cannot globally link requests and attempt
to subvert anonymization measures.

1.2 Related work

1.2.1 Anonymous e-cash

In essence, our solution grants a user anonymous tokens
for each challenge that they solve; these tokens can be
redeemed later to bypass future challenges. The setup
is reminiscent of anonymous e-cash settings that were
popularized by Chaum [3, 4]. Chaum showed that it was
possible to modify textbook RSA such that a user could
receive signatures from a signer on ‘blinded’ messages.
The user is then able to ‘unblind’ the signature such that
it is a valid signature for the unblinded message. The
blinding prevents the signer from learning the under-
lying message. These techniques were used by Chaum
et al. [5] for an untraceable e-cash system and more

1 https://www.cloudflare.com/case-studies/, accessed on 17
Nov 2017

recently as the backbone of the taxable, anonymous e-
cash service Taler [9] released by the GNU project in
2016. There have been numerous different blind sig-
nature schemes introduced since the blind-RSA vari-
ant [1, 10–12, 24, 25, 27], though these typically are
much more conceptually involved and sometimes require
more than two rounds of communication.

1.2.2 Anonymous blacklisting/whitelisting

Anonymous e-cash systems can be useful in granting
privacy-preserving access to resources. An alternative
method for providing similar functionality is the us-
age of anonymous blacklisting techniques [14]. In these
schemes a user is asked to prove that they are not black-
listed (or that they are part of a whitelist) using some
finite resource that they control. This is very similar to
the situation that we consider, where owning a token is
equivalent to being part of a whitelist or not being black-
listed. In fact, the work of Henry and Goldberg [14] is
motivated by a similar scenario where honest users of
Tor are denied access to resources. Additionally, they
also explicitly consider the potential of using human
challenges or CAPTCHAs as a method for whitelisting.
Their formalization suggests numerous ways for main-
taining an anonymous blacklist including using blind
RSA signatures. They also discuss ‘Nymble-like’ [13, 22]
systems that leverage the use of a trusted third party
for maintaining anonymity during access requests. A
similar situation is considered by Liu et al. [21] when
proposing their solution TorPolice, a privacy-preserving
mechanism that enables access-control policy implemen-
tation with respect to connections originating from the
Tor network.

We ignore the ‘Nymble-like’ designs as they require
an extra trusted party that we do not. While Henry
and Goldberg [14] provide a formalization of multiple
different anonymous blacklisting methods, with various
pros and cons, there is little work detailing the scal-
ability of such systems. Moreover, our solution results
in a browser extension that is easily supported by sim-
ply running a small bit of code at the service provider.
This scales much more efficiently than a service provider
implementing their own blacklisting/whitelisting tech-
niques. Our solution benefits all users, not just those
originating from Tor, and so we provide a more general
browser-based solution than TorPolice [21].

https://www.cloudflare.com/case-studies/

Privacy Pass: Bypassing Internet Challenges Anonymously 166

1.2.3 Privacy-preserving e-ticketing

Another diverging thread of literature focuses on
‘privacy-preserving e-ticketing’. The works of Heydt-
Benjamin et al. [17] and Sadeghi et al. [26] were the
first to propose solutions to privacy-preserving ticketing
for public transportation systems. These solutions were
based on anonymous e-cash systems such as those listed
above and on physically unclonable functions (PUFs).
The work of Kerschbaum et al. [20] analyzed Singa-
pore’s EZ-Link system and showed that it was easy
to extract a traveler’s travel records. They proposed
an encrypted bill processing procedure that allows for
privacy-preserving data mining analysis by the trans-
port company.

While these solutions are similar to the work that we
describe, they are heavily targeted at public-transport
applications. Thus, their solution may not be optimal
when carried across to more generic scenarios involving
internet transactions. Additionally, data-mining analy-
sis on the results of the transactions is the primary mo-
tivation of these works, which we do not share.

1.3 Our contributions

In this work, we detail a deployable browser-based so-
lution that allows honest users to drastically reduce the
number of internet challenges that they are required to
solve. Our solution retains anonymity for the user via
the use of a cryptographic protocol engaged with a CDN
that protects the requested resource. In particular, we
provide a detailed case study of the effectiveness of our
solution in the form of a public integration with the
architecture used by Cloudflare. We refer to this archi-
tecture generically as the ‘edge’ throughout.

Our cryptographic protocol makes use of an adapta-
tion to the ‘oblivious pseudorandom function’ (OPRF)
protocol introduced by Jarecki et al. [18, 19] for
password-protected secret sharing. An OPRF protocol,
in brief, allows for a user to ask for PRF evaluations on
inputs that are hidden from the PRF key holder. An
OPRF can be instantiated simply and efficiently using
elliptic curve techniques, but the protocol is otherwise
similar to that used in a blind-RSA interaction. In our
design the OPRF key holder is the edge service provider,
while the user requesting a resource sends inputs to the
OPRF. The OPRF protocol results in a 1-RTT proto-
col for both signing and redemption — no current blind
signing protocols operate in less than 1-RTT so this is
comparable with the most efficient previous work. Our

work is also heavily related to recent advances in con-
structing elliptic curve verifiable random functions by
Papadopoulos et al. [23] and constructions of elliptic
curve OPRFs by Burns et al. [2].

The work of Jarecki et al. [18] uses a non-interactive
zero-knowledge (NIZK) proof of discrete log equality
(DLEQ) to provide verification of the OPRF result to
the user. Their construction is hence a ‘verifiable’ OPRF
or VOPRF and is proven secure in the random-oracle
model. We adapt their construction slightly to use a
‘batch’ DLEQ proof allowing for much more efficient
verification; in short this allows a user to verify a sin-
gle NIZK proof that states that all of their tokens are
signed by the same private key. This prevents the edge
from using different key pairs for different users in an
attempt to launch a deanonymization attack; we give
more details in Section 3.2. The security proofs from
the above works [18, 23] immediately imply that our
protocol maintains the privacy of the user in the inter-
action, though we also provide short arguments as to
why the protocol meets more specific security goals in
Section 5. We also analyse the success of out-of-band
attacks on our protocols in Section 8.

Finally, we provide data in Section 7.1 from the de-
ployment of our solution in the form of a browser ex-
tension named ‘Privacy Pass’ for Chrome and Firefox.
Privacy Pass interacts with Cloudflare’s edge server to
store and spend tokens that are received when a user
provides a valid Cloudflare CAPTCHA page solution.
We show that our solution results in very little change
to a user’s browsing habits in terms of the time taken
for cryptographic operations to complete. To aid presen-
tation of this impact we provide a detailed overview of
Cloudflare’s edge architecture. While we focus predomi-
nantly on Cloudflare, our protocol is sufficiently general
that it can be used in any situation where anonymous
whitelisting is appropriate.

1.3.1 Alternative CDN-level solutions

Privacy Pass aims to be used in tandem with current
challenge-response mechanisms used by CDNs that aim
to reduce the influx of malicious requests. As a result,
if a CDN implemented no such security measures then
the utility of Privacy Pass would be limited. Privacy
Pass will decrease the number of challenges presented to
honest users by a factor of N , where N is the number of
tokens issued for a correct challenge solution. However,
a CDN that has a high false-positive rate for a particular
class of users (for example, those very users connecting

Privacy Pass: Bypassing Internet Challenges Anonymously 167

via Tor or a VPN) would require a higher value of N ,
but this comes with additional security disadvantages,
as highlighted in Section 8.

In summary, Privacy Pass does not represent a
panacea. The success of our solution is somewhat de-
pendent on the way that a CDN implements security
measures and this is considered in our Cloudflare case
study in Section 7.1.

2 Current client-edge workflow
To give better intuition for the problem that we are
attempting to solve, we illustrate the workflow that is
currently initiated between a user/client and an edge
provider/CDN. An edge provider is a reverse proxy
that examines connections from clients and determines
whether they are allowed access to the requested origin
site, and if so, serves a cached version (if possible), or
forwards the request to the true origin site otherwise
(for dynamic content, for example). The access check
is one part of the security functionality provided by
CDNs such as Cloudflare. These CDNs offer a num-
ber of different security and efficiency enhancements;
we focus specifically on the mechanism that is used for
challenging users who are suspected to be malicious.
Typically, the challenge is some manual ‘proof-of-work’
that is completed by the user. CAPTCHAs are the most
common type of such a test, determining whether the
user is human or not.

2.1 Gauging reputation

Like many CDNs, Cloudflare uses a reputation gauging
system that assigns scores based on activity witnessed
from the client IP address. IP addresses are assigned
malicious-reputation scores (from 0 to 100) suggesting
the confidence that the IP address has been involved
in malicious behavior in the past. As an example, IP
addresses that have been linked to ‘bot-like’ behavior
(such as spamming or DDoS attacks) will likely have
a high score. However, other indicators taken from the
client can also be used to change the score.

2.2 Deciding challenges

Let 0 < τ < 100 be some threshold malicious-reputation
score. Simply, if a user C with reputation ν > τ at-
tempts to access some website protected by the edge

C E W

V

1. REQ(W)

2. CHL

3. SOLN(CHL)

4.
S

O
L

N
(C

H
L

)

5.
Y

/N

6. REQ(W)

7. RESP(W)

8. RESP(W)

Fig. 1. Current workflow for challenge system

(i.e., a customer of the edge) then C will always be
shown a challenge.

While this simplification ignores other possibilities
for routing requests through CDN architecture, it helps
us to generalize the workflow that we consider. Note
that we are only interested in reducing the requirement
for honest, human users to complete internet challenges;
other methods of request routing are not explicitly cov-
ered by our solution.

2.3 Allowing access

In Fig. 1, we detail the workflow that occurs when a
user C with reputation score νC > τ interacts with the
edge provider E to access an origin website W. We also
include a party V known as a validator; this entity val-
idates challenge solutions for E.

In the interaction, we assume that there are mes-
sages REQ() and RESP() that are used respectively
for requesting and responding with content (mirroring
HTTP requests/responses, for example). Furthermore,
there is a message CHL requesting that a challenge be
solved, and a human-involved task SOLN() that takes a
challenge CHL as input and outputs a message contain-
ing a (correct) solution that V can validate. It is impor-
tant that SOLN() is not mistaken for an algorithm that
can be run on a given challenge instance. This mirrors
the complexity of solving a CAPTCHA, for instance.
In the case of an incorrect solution (i.e., V returns ‘N’)
then steps 6 onwards are not undertaken.

A client in the current workflow has to compute
a challenge solution for every request to E that they
make. If there are multiple origins protected by E, then
E could mitigate this by giving the client a method of
authenticating in the future when a challenge is pro-
vided. In the HTTP setting, this is typically done using
cookies. These (single-origin) cookies prevent a client
from having to solve a challenge again for the same ori-

Privacy Pass: Bypassing Internet Challenges Anonymously 168

gin W for some predefined interval of time. However,
the same CDN serves a very large number of origins,
and the client would still have to solve one challenge
for each origin visited. Alternatively, E could use cross-
domain cookies for multiple origins, although at the se-
vere privacy cost of linking the client’s requests across
all origins.

2.4 Introducing tokens

The rest of the work will focus on how we can use cryp-
tographically blinded ‘tokens’ to alleviate the burden of
the SOLN() step above. In particular, these tokens will
be distributed by E on acceptance of a valid challenge
solution. The tokens will be redeemed and verified by
V instead of providing a future challenge solution. We
present our improved workflow in Section 6.

3 Notation and preliminaries
In the introduction we mentioned that our solution ben-
efits users of a variety of PETs, but for ease of discus-
sion we will refer to this entire set of users as Tor users.
We will refer to a ‘user’ or ‘client’ as the initiator of a
connection to some website. We define the ‘edge’ server
as the entity that decides whether a user’s request will
be allowed or denied. We use a ‘challenge’ generally to
refer to some task that the edge provides to a user to
perform to prove that they are acting in an ‘honest’ way
(for CAPTCHAs this check simply proves the requests
originates from a human). By an ‘honest’ user we simply
mean a user that should be granted access to a website
and conversely for a ‘malicious’ user. We will use the
notion of a ‘protected’ page to refer to a website that
uses the edge to supply users with challenge pages for
granting access.

For positive integers m, we write i ∈ [m] to denote
that i takes some value in the set {1, . . . m}. For an al-
gorithm A(·) we write z ← A(x) to denote that z takes
the value of the output of A on input x. If we do not
say otherwise then z ∈ {0, 1}µ where µ = poly(λ). For a
set S we write z←$S to indicate that z is sampled uni-
formly from S. We will use the acronym PPT to mean
probabilistic polynomial time with respect to algorithms
and adversaries A in security arguments. We denote by
negl(λ) a ‘negligible’ function whereby, for all polyno-
mials p(λ), then negl(λ) < 1/p(λ) for sufficiently large
λ. We write b ?= b′ to indicate checking that b equals

b′ before proceeding with further steps in a protocol. If
b 6= b′ then we assume that the protocol is aborted at
this point (with a message ⊥ sent to the client indicating
as such). We use || to denote concatenation of elements.

In our protocols, we will use the notation C and S
to denote the client and server respectively.

3.1 VOPRF description

The main building block of our construction is a veri-
fiable oblivious pseudorandom function (VOPRF) [18].
An OPRF is a protocol between a server and a user. The
server holds a key k for a PRF F , while the user holds
some element x that they intend to use as an input. At
the end of the protocol the user learns Fk(x) and the
server learns nothing (i.e., ⊥).

A VOPRF protocol extends the functionality to also
include a fixed descriptor Y that serves as a commitment
to the private key k. Then, much like a digital signature,
Y can be used to verify that a claimed output Fk(x)
is the (unique) correct value, but does not allow the
computation of Fk(x).

3.2 Discrete log equivalence proofs
(DLEQ)

We next detail a zero-knowledge protocol for proving
that two pairs of values have the same discrete log rela-
tion (e.g., that for Y = Xk1 and Q = P k2 , then k1 = k2).
We point readers towards prior work [6, 16, 18, 19]
for arguments as to why this construction satisfies the
soundness and security guarantees required for a NIZK
proof.

Let G be a group with prime order q, let X,P be
generators of G, and let H3 : G6 → Zq be a hash func-
tion modeled as a random oracle. Let Y = Xk and
Q = P k for some k ∈ Zq and X,P ∈ G. Chaum and
Pedersen [6] showed that it was possible to generate a
proof Dk that logX(Y) = logP (Q). We can think of the
server and client that we defined previously as a prover
and verifier in this interaction, respectively. Both are
given X,Y, P,Q while the prover knows k as a secret.
1. The prover samples a random nonce t←$ Zq and

commits to t with respect to X,P by computing
A = Xt and B = P t.

2. The prover computes c = H3(X,Y, P,Q,A,B) and
s = (t− ck) mod q.

3. The prover sends Dk = (c, s) to the verifier.
4. The verifier computes A′ = Xs ·Y c and B′ = P s ·Qc.

Privacy Pass: Bypassing Internet Challenges Anonymously 169

5. The verifier calculates c′ = H3(X,Y, P,Q,A′, B′)
and checks c′ ?= c.

If c′ = c, then the verifier can be assured with over-
whelming probability (except for negligible soundness
error of size 1/q) that the discrete logs logX(Y) and
logP (Q) are equal. We use this proof system to verify
that tokens in our protocol are all signed with the same
private key. In the following, we will denote the com-
putation of the proof Dk by Dk ← DLEQk(X,Y, P,Q)
where k is the common exponent.

An important property of NIZK proofs such as this
is that an entity who has control over the random or-
acle H3 can forge proofs without knowing k: this en-
tity picks random c, s←$ Zq, computes A = Xs ·Y c and
B = P s ·Qc, and programs the random oracle H3 such
that H3(X,Y, P,Q,A,B) outputs c. This is useful in re-
duction proofs, as we will see later.

3.2.1 Batch DLEQ proofs

Henry [16] showed that it was possible to batch the
above proof system to verify many instantiations in one
go. We detail a simplified parallelized Schnorr protocol
for the common-exponent case from Henry and Gold-
berg [15] with adaptations for non-interactivity. Let m
denote the number of instantiations of the DLEQ proof
system above; that is, for all i ∈ {1, . . . ,m} we aim to
prove that Dk,i ← DLEQk(X,Y, Pi, Qi) is a valid proof
for each proof instance (Pi, Qi) with common X and Y ,
with Y = Xk. Assume that the prover and verifier are
aware of the same parameters as above.
1. The prover calculates a seed

w ← H(X,Y, {Pi}i∈[m], {Qi}i∈[m])

where H : {0, 1}∗ → Zq is a random oracle.
2. The prover seeds a pseudorandom number generator

PRNG : Zq → Zmq with w to sample c1, . . . , cm ←
PRNG(w).

3. The prover generates composite group elements:

M = (P c1
1) · . . . · (P cm

m), Z = (Qc1
1) · . . . · (Qcm

m)

and sends the proof (c, s) ← DLEQk(X,Y,M,Z) to
the user.

4. The user recalculates w using knowledge of the Pi
and Qi, samples c1, . . . , cm ← PRNG(w), and re-
computes M and Z as in the previous step.

5. The user then verifies that logX(Y) ?= logM (Z) us-
ing (c, s) as in the procedure above.

That this verification procedure is valid is immediate
from the fact that Qi = P ki for each i ∈ [m]. That it is
sound and zero-knowledge (ZK) follows from Henry [16,
Thm. 3.17]. We denote a batched proof, D̄k, for m in-
stances by

D̄k ← m-DLEQk(X,Y, {Pi}i∈[m], {Qi}i∈[m])

where k is again the common exponent.

4 Overview of our VOPRF
protocol

Before we describe our adaptations to the workflow from
Section 2 to reduce the number of user challenges, we
give details on the underlying cryptographic protocol
that we will use. As mentioned previously, our VOPRF
is based on the 2HashDH-NIZK realization provided by
Jarecki et al. [18] in the random oracle model. We en-
hance the construction to have two extra features:
– a batch DLEQ proof verifying a commitment to the

same private key for all VOPRF evaluations;
– a redemption phase where the user and server es-

tablish a shared key based on the VOPRF output
and verify a MAC.

We first give an overview of how the protocol is per-
formed; in Section 5 we give a more formal treatment
along with correctness and security guarantees.

Let G be a group of prime order q with a generator
denoted by X. The secret key is chosen as an element
k←$ Zq and a ‘public key’ is computed as Y = Xk. Let
H1, H2, H3 be three hash functions modeled as random
oracles: H1 hashes into the non-identity elements G∗ of
the group G, H2 hashes into strings of length κ = κ(λ),
and H3 hashes into Zq. Let MACK(·) denote a secure
MAC algorithm, keyed by some key K. The parameters
q, X, and Y are known to both parties but only the
server has possession of k.

Our protocol has two phases: a signing phase and
a redemption phase; the following subsections describe
each of these phases respectively. The user seeks access
to a particular resource and generates and redeems to-
kens accordingly. The server signs tokens and verifies
redemptions to allow access to said resource.

Privacy Pass: Bypassing Internet Challenges Anonymously 170

4.1 Token signing

1. The user samples N random values
t1, . . . , tN ←$ {0, 1}λ and N ‘blinding factors’
r1, . . . , rN ←$ Zq, where N is the size of a ‘batch’.

2. The user computes Ti = H1(ti) and Pi = T ri
i and

sends Pi to the server for each i ∈ [N].
3. The server computes Qi = P ki and a batched proof

D̄k ← N -DLEQk(X,Y, {Pi}i∈[N], {Qi}i∈[N])

which is computed using the hash function H3.
4. The server sends ({Qi}i∈[N], D̄k) to the user
5. The user verifies D̄k as in Section 3.2
6. The user unblinds each Qi by calculating Q1/ri

i =
T ki = Wi and stores pairs of the form (ti,Wi).

4.2 Token redemption

1. The user calculates some request binding data R.2

2. The user pops a stored, unspent pair (t,W).
3. The user calculates a shared key K ← H2(t,W) and

sends a pair of the form (t,MACK(R)) to the server.
4. The server recalculates their observed request bind-

ing data R′.
5. The server checks that t has not yet been redeemed.
6. The server calculates T ′ = H1(t), W ′ = (T ′)k and

K′ = H2(t,W ′)
7. The server checks that MACK′(R′)

?= MACK(R) and
stores t for checking double-spending later.

8. If verification passes then the server provides the
user with the requested resource.

4.3 Overview of requirements

For our protocol to be deemed correct, we require that
any MAC value that is computed using a key that is
derived from (ti,Wi) received in the signing phase will
ultimately be verified successfully by the server in the
redemption phase.

For security, we require an unlinkability property
— informally requiring that any given signing phase is
unlinkable to an instantiation of a redemption phase —
and a one-more-token security property; requiring that
the client is unable to forge validly signed tokens using
information it learns in the signing phase.

2 It must be possible for the server to generate the sameR where
R is specifically bound to the resource that the user requests.

5 Concrete protocol
To illustrate our two protocols we use a series of generic
algorithms and show how these can be instantiated us-
ing our scheme. We can then define a working protocol
with correctness and security guarantees based on stan-
dard assumptions.

5.1 Scheme

Let G be a group (written multiplicatively) of prime
order q with generator X. Let H1 : Zq → G∗, H2 : Zq ×
G → {0, 1}κ and H3 : G6 → Zq be the hash functions
modeled as random oracles previously, and let sk = k ∈
Zq. The hash function H3 is used in the computation of
the batch DLEQ proof below.
– T ← GenToken(t): Output H1(t).
– (T̃ , r) ← Blind(T): Sample r←$ Zq and output

(T̃ , r) = (T r, r).
– T ′ ← Unblind(T̃ ′, r): Output T ′ = (T̃ ′)1/r.
– fk(T̃)← Sign(T̃ , k): Output fk(T̃) = T̃ k.
– ck ← Commit(k): Output ck = Y = Xk.
– πk ← Prove(k, ck, {T̃i}i∈[m], {fk(T̃i)}i∈[m]): Output

D̄k = m-DLEQk(X,Y, {Pi}i∈[m], {Qi}i∈[m]),

where Pi = T̃i and Qi = T̃ ki
i .

– b ← VerifyPrf(πk, ck, {T̃i}i∈[m], {fk(T̃i)}i∈[m]): Out-
put the result of verifying πk = D̄k using
(X, ck, {T̃i}i, {fk(T̃i)}i).

– K ← sKGen(a,B): Outputs K = H2(a,B), where K
is a permissible key for MAC algorithm below.

– s← MACK(R): Outputs HMAC(K,R) where HMAC
is the standard HMAC algorithm accepting keyK ∈
{0, 1}κ and some input data R.

– b ← Verify(t, R,M, k): Check that
MACsKGen(t,Sign(GenToken(t),k))(R) ?= M and output
‘1’ if it verifies, and ‘0’ otherwise.

5.1.1 Other algorithms

We use the following algorithms without requiring ex-
plicit instantiation as they are sufficiently generic.
– Store(x,B): Stores the value x in the data store B
– b ← Check(x,B): Checks if x is stored in B and

outputs b ∈ {0, 1} where b = 1 if x is stored.
– x0 ← B.pop(): Outputs the item x0 with index 0

and removes it from a data store B. Also re-orders

Privacy Pass: Bypassing Internet Challenges Anonymously 171

C S
t←$ Zq

T ← GenToken(t)
T̃ , r ← Blind(t)

T̃

fsk(T̃)← Sign(T̃ , sk)
πsk ← Prove(sk, csk, T̃ , fsk(T̃))

(fsk(T̃), πsk)

b← VerifyPrf(πsk, csk, T̃ , fsk(T̃))
b

?= 1
fsk(T)← Unblind(fsk(T̃), r)
Store((t, fsk(T)), BC)

Fig. 2. An overview of the token signing protocol.

B so that the item xi with index i is moved to index
i− 1 for i > 0.

5.2 Formal protocol

We describe a formalized protocol, P, using the algo-
rithms that we have defined above, splitting P into a
‘signing’ and ‘redemption’ phase as we have done pre-
viously. The notation that we use could be expanded to
a generic framework for such protocols using different
underlying schemes (e.g. using explicit blind signature
schemes).

5.2.1 Signing phase

The signing phase between a server S and a client C can
be constructed as described in Fig. 2. We assume that sk
is the signing key known to S and that csk ← Commit(sk)
is known to both. The description below is illustrated
for the signing of one token but can easily be generalized
for more.

We write fsk(T)← P.SignPhase(t) to indicate a suc-
cessful signing phase between C and S using the nota-
tion above. If the signing phase is not successful, then
the output will be denoted by ⊥ instead.

5.2.2 Redemption phase

The redemption phase allows C to redeem a signed to-
ken (obtained in Fig. 2) in order to receive a resource
res. Let R ∈ {0, 1}` be the request binding data associ-
ated with this request, known to both parties. We give
an explicit description in Fig. 3.

C S
(t, fsk(T))← BC.pop()
K ← sKGen(t, fsk(T))
s← MACK(R)

(t, s)

Check(t, BS) ?= 0
T ′ ← GenToken(t)
K′ ← sKGen(t, fsk(T ′))
s′ ← MACK′ (R)
s′ ?= s
Store(t, BS)

res

Fig. 3. An overview of the token redemption protocol.

We write b ← P.RedeemPhase(t, fsk(T)) to indicate
the response of the server in the redemption phase. We
say that b = 1 if res is received by the client and b = 0
if ⊥ is received.3 If b = 1 (resp. 0), then we say that the
redemption phase is successful (resp. unsuccessful).

5.3 Correctness

We give a generic correctness definition for protocols P
implementing the signing and redemption phases from
Fig. 2 and Fig. 3 respectively. Correctness is evaluated
with respect to the scheme Γ implementing the algo-
rithms from Section 5.1.

Definition 1. The protocol P is correct if:

Pr
[
1← P.RedeemPhase(t, fsk(T))

∣∣∣ t←$ Zq

fsk(T)←P.SignPhase(t)

]
> 1− negl(λ) .

We can therefore prove the correctness of P using the
explicit properties of the scheme Γ that we use.

Lemma 1. Let Γ detail the instantiation of the scheme
given in Section 5.1. Then Γ instantiates a protocol P
satisfying the notion of correctness from Definition 1.

Proof. Let (T̃ , r)←$ Γ.Blind(Γ.GenToken(t)) where
t←$ Zq, therefore T̃ = T r.4 Let sk = k; when S re-
ceives T̃ it first computes T̃ k = fk(T̃) ← Γ.Sign(T̃ , k).
It then computes 1−DLEQk(X,Y, T̃ , T̃ k) = D̄k =
Γ.Prove(k, ck, fk(T)) and sends (T̃ k, D̄k) back to C.

3 C receives ⊥ if P is aborted due to a failed verification.
4 We prove correctness in the case of one token but this is easily
generalizable to m.

Privacy Pass: Bypassing Internet Challenges Anonymously 172

Since D̄k is a valid DLEQ proof as given in Sec-
tion 3.2, then b← Γ.VerifyPrf(D̄k, X, Y, T̃ , T̃ k) and b = 1
(as long as the commitment X,Y is valid). Therefore,
the client computes T k ← Γ.Unblind(T̃ k, r) and the sign-
ing phase is complete.

For the redemption phase, C computes a shared
key K ← H2(t, T k) and sends (t,Γ.MACK(R)) to
S.5 Given t, S calculates T k = Γ.Sign(Γ.GenToken(t))
and computes Γ.MACH2(t,Tk)(R). Since K = H2(t, T k)
by definition, we conclude that Γ.MACK(R) =
Γ.MACH2(t,Tk)(R) and thus 1 ← P.RedeemPhase(t, T k),
settling correctness.

5.4 Security properties

Here we give a treatment of the security model and
properties that we require the protocol P to uphold.
– We show that our protocol achieves unlinkability —

a notion that states that the signing and redemption
phases are completely independent (Theorem 1).

– Also, we achieve one-more-token security — this
proves that a malicious client cannot use knowledge
of validly signed tokens to forge a signature on a
newly generated token (Theorem 2).

– In Section 5.5 we also show that the server must
commit to a single signing key — this prevents the
server from using client-specific key pairs in an at-
tempt to partition the clients’ anonymity set.6

We argue that these properties are fundamental to the
operation of our protocol. Unlinkability provides the
client with the assurance that no server is going to be
able to link disparate sessions together — this is the
main premise of our solution. One-more-token security
prevents the client from blatantly subverting the pro-
tocol to commit token forgery and thus bypass the se-
curity mechanisms in the current workflow. The proof
of unlinkability is unconditional, and the proof of one-
more-token security follows from a standard assumption
on the El Gamal cryptosystem.

There are undoubtedly more security properties
that we could choose to prove here. This is not to say
that we cannot prove more interesting properties, such
as design modifications that may prevent tokens being

5 We safely assume that the request binding data R is public
since it will be available via the request (e.g., specific headers
and the HTTP path).
6 We do not prove this explicitly as it follows naturally from
the definition of the proof that we use (Section 3.2.1).

used by other identities. We regard analysis of wider se-
curity models as an interesting and important avenue
for future work.

5.4.1 Security model

An adversary attempting to break the security of
the protocol P has oracle access to the functions
P.SignPhase(·) and P.RedeemPhase(·) and we define the
‘view’ of the adversary A to be A.view(P.SignPhase(·))
and A.view(P.RedeemPhase()), respectively. By view,
we essentially mean the set of all messages and out-
puts that A witnesses during a phase execution.
Therefore if A plays the role of the server then
A.view(P.SignPhase(t)) equates to (T̃ , fsk(T̃), csk, πsk) for
csk ← Γ.Commit(sk), πsk ← Γ.Prove(sk, csk, T̃ , fsk(T̃)).
Additionally, A.view(P.RedeemPhase(t, fsk(T))) equates
to (t, T, fsk(T)). We put no restrictions on how A makes
calls to the oracles apart from that it runs in PPT.

5.4.2 Unlinkability

The notion of unlinkability captures the inability of an
adversarial server S to link together a redemption phase
of the protocol to any individual signing phase. A proto-
col satisfying unlinkability is necessary for meeting the
anonymity guarantees that we require.

Definition 2. (Unlinkability) The signing and redemp-
tion phases of the protocol P are unlinkable if the view
of the server S in the signing phase is indistinguishable
from a uniformly sampled element in G and independent
of the view of S in the redemption phase.

Intuitively and in terms of our protocol, when a seed t
is revealed in a redemption phase the best chance that
S has in linking this to a particular signing interaction
is randomly guessing.

A game-based definition of this security requirement
would see the challenger initiate two signing phases with
an adversarial server. The challenger would then use the
tokens from one of the signing phases in a redemption
phase with the adversary. The adversary would output
a bit corresponding to which signing phase it thinks
the tokens were obtained from. A scheme secure in this
game would require that the adversary had a probability
of success that was negligibly different from 1/2.

A signing protocol trivially satisfies the unlinkabil-
ity security property if the output T̃ of the algorithm

Privacy Pass: Bypassing Internet Challenges Anonymously 173

Blind(T) for some token T is uniformly distributed. This
makes up the entire view of the server. For this reason,
we do not elaborate any further on this formalization.

Theorem 1. P is unconditionally unlinkable w.r.t. Γ.

Proof. In our scheme, T̃ = T r for a randomly selected
r←$ Zq. Since T is a generator of G, T̃ is a uniform
element of G, and contains no information about T or t.
As such, since S.view(P.SignPhase(t)) is dependent only
on T̃ and S.view(P.RedeemPhase(t, fsk(T))) is dependent
on t and T , the phases are independent.

5.4.3 One-More-Token security

The notion of one-more-token security enshrines the in-
ability of the client to access the secret signing key of the
server in a ‘meaningful’ way. By meaningful, we mean
being able to use knowledge of signed tokens, received
during a signing phase, to sign more tokens.

Definition 3. (One-More-Token security) Our scheme
has one-more-token security if a PPT client, after re-
ceiving ` signed tokens from the server, cannot success-
fully redeem `+1 tokens, except with negligible probabil-
ity.

We will reduce this security property to a standard as-
sumption on the El Gamal encryption scheme:

Definition 4. (One-More-Decryption security of
El Gamal) A challenger provides to an adversary a
description of a group G, its prime order q, a generator
X, and a public key Y = Xk where k←$ Zq is known
only to the challenger.

The challenger selects ` + 1 messages Mi←$ G,
encrypts each with El Gamal to form the ciphertexts
{(Ci, Di) = (Xri , Y ri ·Mi}i∈[`+1], and sends the cipher-
texts to the adversary.

The adversary can make ` oracle decryption queries
to the challenger with messages of its choice.7

The adversary wins if it outputs all `+ 1 plaintexts.
El Gamal is secure against a one-more-decryption

attack if any PPT adversary has at most a negligible (in
lg q) probability of winning the game.

7 Unlike in a CCA2 game, there is no restriction on querying
one of the challenge ciphertexts.

We note that Schnorr and Jakobsson [28] prove that
no PPT adversary in the generic group model has a
non-negligible advantage in winning a strictly weaker
version of this game.8 An adversary who can win the
above game can easily win the weaker game as well.

Theorem 2. If El Gamal is secure against a one-more-
decryption attack, then our scheme has one-more-token
security.

Proof. Given an adversary A who can get ` tokens
signed by the server, and then redeem `+1, we will pro-
duce an adversary B who wins the one-more-decryption
game against El Gamal.
B starts the game by being given G, q, X, Y , and

{(Ci, Di)}i∈[`+1]. B initiates A, using (G, q,X) as the
group description and Y as the commitment to the sign-
ing key. B also selects a random permutation π on Zq,
but does not reveal it to A.
A can make two kinds of queries: polynomially many

random oracle queries to H1, H2, and H3, and at most
` token signing queries.

When A makes a token signing query with blinded
token T̃i, B selects a random Fi←$ G, and sends the ci-
phertext (T̃i, Fi) to the decryption oracle, which returns
Mi = Fi/T̃

k
i . B then returns Fi/Mi = T̃ ki to A. It pro-

vides a forged DLEQ proof, which it can do because it
can program the responses of H3.

When A makes a random oracle request for H1(t), B
replies with

∏
j∈[`+1] C

(aj−1)
j , where a = π(t). Only with

negligible probability 1/q will this value be the identity
element of G, in which case B aborts with failure.

When A makes a random oracle request for
H2(t, B), B stores (t, B,K) in a table for a randomly
selected K, and replies with K. If the same H2(t, B) is
queried again, the same K will be returned.

When A makes a random oracle request for H3, B
programs it to forge the DLEQ proof, as above.

At the end of the game, A will redeem `+ 1 tokens
{(ti, Ri,MACH2(ti,Bi)(Ri))}i∈[`+1]. B uses the H2 table
to look up the value of Bi used to generate the MAC
key in each token, and it will be the case that Bi =
H1(ti)k =

∏
j∈[`+1]

(
Ckj
)((π(ti)j−1) for each i ∈ [` + 1].

If V is the (Vandermonde, and thus invertible) matrix
with Vij = π(ti)j−1, and U is the inverse of V , then

8 In their version, the adversary is given d > ` ciphertexts, and
the correct plaintexts in a permuted order, and must simply
match ` + 1 plaintexts to their corresponding ciphertexts using
at most ` queries to the decryption oracle.

Privacy Pass: Bypassing Internet Challenges Anonymously 174

it will be the case that
∏
j∈[`+1] B

Uij

j = Cki for each
i ∈ [`+1]. B then outputsMi = Di/C

k
i for each i ∈ [`+1]

and wins the game.

5.5 Key-consistency

A potential attack on client anonymity is for the server
to use different values of the secret key k for different
clients. A server that does this could then match a token
redemption to the blinded token signing operation that
generated it. To thwart this attack, we ensure that the
server commits to the key it uses, and that clients are
assured that the same commitment is visible to all users
(for example, by placing it in the Tor consensus). The
batch DLEQ proof then assures the client that all of
the tokens are signed using the same key that was used
to form the public commitment. Henry [16, Thm. 3.17]
establishes the security of this batch proof.

6 Reducing challenges
In Section 5 we described an instantiation of a generic
blind signing protocol based on a VOPRF design. In this
section, we show how the current client-edge workflow
from Section 2 can be augmented to include our privacy-
preserving token protocol. The end result is an adapted
workflow that results in many fewer challenges for users,
specifically a reduction by a factor of N , where a user
receives N tokens from a signing phase. We also adapt
the role of the validator V to include the signing and
verification of tokens that are used in the signing and
redemption phases of our protocol.

6.1 Adapted workflow

Recall that the workflow from Section 2 requires a user
to solve a challenge for every access (modulo the use of
cookies). To reduce the number of challenges exposed to
the client without sacrificing the unlinkability require-
ment, we embed the protocol that we constructed in Sec-
tion 5 into this workflow. This allows a client to receive
N unlinkable tokens that can then be used to bypass
challenges on future accesses. We present two high-level
workflows in Fig. 4 and Fig. 5 embedding the protocols
that were discussed in Section 5.

In summary, for every signing workflow as in Fig. 4
completed by a client C, C can engage in N redemption
workflows. These N redemptions provide unlinkable to-

C E W

V

1. REQ(W)

2. (CHL, {cskj
}j)

3. SOLN(CHL),{T̃i}i

4.
S

O
L

N
(C

H
L

),
{

T̃
i
}

i

5.
(Y

,{
T̃

ski
}

i)/N

6. REQ(W)

7. RESP(W)

8. (RESP(W),{[T̃]ski }i, πsk)

Fig. 4. Adapted workflow for token issuance. Here, Ti =
GenToken(ti) for ti ←$ Zq , T̃i ← Blind(Ti), and T̃ sk

i ←
Sign(T̃i, sk) is the signed token returned by the edge. Also,
πsk ← Prove(sk, csk, {Ti}i, {fsk(T̃i))}i is the key-consistency
proof (Section 5.5); {cskj

}j is a list of commitments correspond-
ing to the currently accepted tokens (Section 6.2).

C E W

V

1. REQ(W)

2. (CHL, {cskj
}j)

3. (ti,MAC)

4.
(t

i
,

M
AC

)

5.
Y

/N

6. REQ(W)

7. RESP(W)

8. RESP(W)

Fig. 5. Adapted workflow for token redemption, notation is as in
Fig. 4. The verifier V now verifies the pair (t,MAC) instead of
the challenge solution.

kens, and do not require human participation to solve
challenges. A successful redemption could be exchanged
for a single-origin cookie. These cookies allow clients
to bypass future challenges for the same domain with-
out using more redemption tokens, and without client
browsing being linkable across multiple domains.

6.2 Key rotation

It is important that the server S is able to implement
a key rotation policy, both in the case that a key has
exceeded its lifetime, and to reduce the potency of some
attack vectors (Section 8). Key rotation in these work-
flows requires the server to publish a new commitment
ck∗ = Y ∗ = Xk∗ to each client, where k∗ is the new se-
cret key that is used. This is necessary so that the clients
can verify the key-consistency proofs that are sent by S
in the signing phase.

Privacy Pass: Bypassing Internet Challenges Anonymously 175

Our workflow in Fig. 4 is adapted so that the server
can have multiple keys in play at any one time. This pre-
vents key rotation from immediately rendering all pos-
sessed tokens useless. Essentially, S sends a list of com-
mitments {cskj

}j corresponding to all secret keys that it
accepts. The client checks the list of commitments and
uses a corresponding pair to verify the key-consistency
proof that it receives in the later stages. When a key
is phased out for good, the server simply removes the
commitment from the acceptance list.

When multiple keys are in use, this acts to siphon
the user base into smaller groups and thus increase the
deanonymization potential. As a result, the list of keys
that a service provider should be kept to a relatively low
number; e.g., 2 or 3 at any one time.

7 Browser extension
implementation

To instantiate the workflows shown in Section 6 we have
created a client-side browser extension named “Privacy
Pass” and have written compatible server-side support
in Go that can be run on edge servers. The browser ex-
tension handles the cryptographic operations that need
to be carried out on the client side. Our browser ex-
tension is written in JavaScript and is compatible with
Chrome and Firefox; additionally, the code is open
source and available online.9

7.1 Cloudflare deployment case study

Support for Privacy Pass has been written into existing
Cloudflare infrastructure in order to reduce the num-
ber of CAPTCHAs that are faced by honest users. As
a consequence, this reduces the number of CAPTCHAs
that need to be solved by a factor directly proportional
to the number N of signed tokens received for each ini-
tial solution. Currently N = 30 but the server supports
up to N = 100. We use this upper bound to reduce
the capacity for malicious clients to hoard tokens; see
Section 8.2. The value N = 30 was chosen because it
provides a balance between usability, performance, and
token hoarding considerations.

A second benefit is that sub-resources hosted behind
Cloudflare CAPTCHAs will now be accessible for clients

9 https://privacypass.github.io/

Fig. 6. Left: Website with CSS hosted behind CAPTCHA. Right:
Website when using Privacy Pass.

— even though clients would not previously have been
able to submit CAPTCHA solutions for these URLs.
For example, in Fig. 6 we show a website with various
CSS files hosted on a different origin, and protected by
Cloudflare, before and after using Privacy Pass. Since
the user has no way of solving a CAPTCHA for the CSS
files (other than locating and navigating to the URL),
the website is displayed without the CSS styling and
thus appears with clear errors. Privacy Pass is able to
redeem signed tokens with these resources instead and
thus the user is now able to view the website as it was
intended.

While this is undoubtedly a flaw with the imple-
mentation of CAPTCHAs in general, it is an example
of Privacy Pass being leveraged to make the browsing
experience more pleasant and error-free for users.

7.1.1 Signing

Firstly, assume that a client C (with sufficiently poor IP
reputation νC > ν for some threshold ν) is attempting
to connect via HTTP to a Cloudflare-protected website
W using a browser with Privacy Pass installed and with
no passes available. When a challenge CAPTCHA is
solved by C then Privacy Pass first generates blinded
tokens (as in Message 1 of Fig. 2) and appends these
tokens to the body of the HTTP request containing the
solution. This amended request is sent asynchronously
and the edge verifies whether the CAPTCHA solution is
correct. If it is, the blinded tokens are signed and a key-
consistency proof is generated. The edge now creates a
new HTTP response indicating that the solution was
valid (i.e., status code 200) and returns a single-origin
clearance cookie in the header, and the signed tokens
and the proof in the body of the response.

Privacy Pass parses the signed tokens and the key-
consistency proof, which is validated. If the proof is
valid, then the signed tokens are unblinded and stored

https://privacypass.github.io/

Privacy Pass: Bypassing Internet Challenges Anonymously 176

Table 1. Benchmarks (ms) for operations that are instantiated
using our implementation from Section 5. N is the number of
tokens to be signed in a batch.

Operation Timings

Client

Token generation (GenToken() & Blind()) 120 + 64 ·N
Verify DLEQ (VerifyPrf()) 220 + 110 ·N

Total signing request 340 + 180 ·N
Total redeem request 57

Server

Signing (Sign()) 0.04 + 0.20 ·N
DLEQ Proof (Prove()) 0.32 + 0.55 ·N

Total signing 1.48 + 0.87 ·N
Total redemption 0.8

for future use in the local storage of the browser. Af-
ter storage is completed, Privacy Pass reloads the cur-
rent page, which will now succeed because of the single-
domain clearance cookie.

7.1.2 Redemption

Assume that the clientC has gained tokens as above and
that it has attempted to access another edge-protected
websiteW′. A CAPTCHA will be served and the header
cf-chl-bypass will be present with value ‘1’ in the edge
response. Privacy Pass uses the presence of this header
to initiate the token redemption procedure when it has
signed tokens stored.10

Privacy Pass retrieves an unspent token (t, fsk(T))
from local storage and starts forming a new HTTP re-
quest for W′. Recall that in the redemption protocol of
Fig. 5 the client is required to construct a MAC over
some request binding data; the key for the MAC is de-
rived from the unspent token pair that was retrieved
(see Fig. 3). The request binding data R in this case is
precisely the contents of the ‘Host’ header for the re-
quest concatenated with the HTTP Path.11 The pair
(t,MACK(R)) where K = sKGen(t, fsk(T)) is then ap-
pended to the HTTP request as the value of a header
named ‘challenge-bypass-token’ and the request is
then sent to the edge.

The edge takes the request and verifies the value
of the ‘challenge-bypass-token’ header using the pro-
cedure in Fig. 3. If verification succeeds, E serves the
content of W′ to C and a single-origin clearance cookie.

10 This header was also present in the first case but was not
actually used.
11 This is not quite a unique identifier for the request but is
manageable for preventing various MitM attacks.

Table 2. Size of additional information (bytes) for requests, sent
as part of the protocol implementation from Section 5. N is the
number of tokens to be signed in a batch.

Operation Size (bytes)
Signing request (C→ E) 57 + 63 ·N
Signing response (E→ C) 295 + 121 ·N

Redemption request (C→ E) 396

7.2 Benchmarks

We illustrate the additional client and server overheads
incurred due to the additional structure used for per-
forming the protocol. We compile our data from a series
of benchmarks taken over the key cryptographic opera-
tions that are computed during a protocol run.

We use the NIST P-256 elliptic curve; for each N =
5, 10, 15, . . . , 100, we have the client generate N tokens
at a time and each of these is signed by the server, in-
cluding generation and checking of batch DLEQ proofs,
and redemption of a single token. We repeated this ex-
periment 100 times. In Table 1 we provide a set of
benchmarks for the operations that are computed for
the client and server. In Table 2 we provide the size
of the additional data for requests and responses due
to Privacy Pass. We do not include the redemption re-
sponse size as Privacy Pass does not change this flow.12

As is clear from our results, the overheads incurred
from using Privacy Pass are quite acceptable. In par-
ticular, redemptions are quick for both the client and
server and require very little added communication. For
signing, the biggest costs appear to be the time taken
for the client to generate requests and verify server re-
sponses. On the other hand, the initial cost for acquiring
signed tokens is warranted given that redemptions are so
efficient and client proofs-of-work are then avoided for
the lifetime of the tokens. Finally, the additional com-
munication load is less than 6KB in total for N = 30,
which is unlikely to trouble the browsing experience.

7.3 Cloudflare adoption results

We released the Chrome/Firefox browser extension Pri-
vacy Pass on 8 November 2017, and also released the

12 The signing responses are about double the size of the re-
quests, because for performance reasons, the (JavaScript) client
compresses the elliptic curve points in the signing request, but
the (Go) server does not compress the elliptic curve points in the
response, lest the JavaScript client have to do expensive point
decompressions.

Privacy Pass: Bypassing Internet Challenges Anonymously 177

open-source code for the extension, which would allow
a user to locally install the extension in their browser. In
the following we will detail various numbers acquired di-
rectly in partnership with Cloudflare [8] (we focus only
on distinguishing requests coming from Tor and non-
Tor users). The number of Chrome users by 28 Novem-
ber 2017 stood at 8499 and the number of Firefox users
stood at 3489 — this does not include users manually
installing the extension. Averaging over any given 7 days
in this period, Cloudflare accepted 1.6 trillion requests
with 780 million of those requests coming over the Tor
network. Of these requests, 1.04% were challenged in
general globally, though 17% of Tor traffic is challenged
in the same period.13 This illustrates the disproportion-
ate occurrences of challenges being shown to Tor users.

Fortunately, Privacy Pass alleviates the burden of
these challenges by a factor of N for honest users who
would usually complete the challenge. However, Privacy
Pass may not result in a factor of N reduction in the
total number of challenges witnessed — i.e., we will not
see an optimal drop to (17/N)% of requests being served
challenges in the Tor case. This is due to the fact that
these figures also include challenges that are served to
requests from users that have no intention of solving the
challenge (such as content scrapers).

In terms of operating numbers, the number of re-
demption phases occurring peaked globally at 2000 per
second and for Tor users at 200 per second. Addition-
ally, there were 515 million requests containing clearance
cookies used to bypass challenges globally with 34.5 mil-
lion of those occurring from the Tor network. As a result,
22.58% of requests coming from Tor users contain these
clearance cookies. Using these cookies preserves tokens
for use only on unseen domains, which is advantageous
for users, and they cannot be tracked across domains
due to the single-origin policy.

This demonstrates a system that is clearly useful
for clients with the extension installed. In the same
time-frame, median request and response sizes for Tor
users stood at 700–800 bytes and 5–6KB respectively
while the median size of CAPTCHA submissions and
responses were less than 1KB.14 Consequently, the ad-
ditional protocol messages do not result in unmanage-
able request/response sizes.

13 By challenged, we mean the response to the request displays
a Cloudflare CAPTCHA.
14 These figures are slightly different to the benchmarks above
as they include information specific to Cloudflare that we did
not model in the benchmarking tests.

8 Potential attacks and
mitigations

In Section 5 we showed that our protocol satisfied vari-
ous security properties. However, this does not consider
a number of out-of-band attacks that may still be able
to effectively subvert the protocol if mitigations are not
considered. We consider measures that can be put in
place to limit the effectiveness of such attacks here.

8.1 Interception of signing requests

A characteristic of our protocol is that we do not cur-
rently encode any useful information into the tokens
that are signed by the server. This prevents the client
from generating tokens that may inadvertently associate
metadata with the tokens that may lead to a greater
chance of deanonymization/linkability during redemp-
tion. Unfortunately, this leads to the issue that tokens
are not associated with any one client. This increases
the effectiveness of monster-in-the-middle (MitM) ad-
versaries since transmitted tokens are not cryptograph-
ically linked to a specific protocol invocation.

For example, consider a MitM adversary M in the
signing phase of the workflow in Fig. 4. When the client
completes the given challenge and sends blinded tokens
to the server, this message is hijacked byM who simply
forwards the challenge solution under their own identi-
fier along with a set of their own generated tokens. If
the challenge does not have some client-binding hijack-
prevention mechanism, then M will receive signed to-
kens from the server without completing a challenge.

This attack is particularly effective as it removes
the requirement for an adversary to authenticate to a
service in order to receive tokens. For example, consider
if the challenge mechanism were a CAPTCHA and M
was some bot that was ordinarily not able to solve the
CAPTCHA. This attack would allow M to receive to-
kens without computing a CAPTCHA solution and then
bypass future CAPTCHA invocations. In the case of
Cloudflare, the CAPTCHA page is protected by TLS
so this seems hard to hijack, however this remains a
general attack vector.

While this attack is effective, it requires a renew-
able source of authentications/challenge solutions for it
to carry on indefinitely. In this setting, even without
Privacy Pass, such an adversary would essentially have
access to a CAPTCHA solving farm and thus the need
for acquiring tokens to authenticate would be made re-

Privacy Pass: Bypassing Internet Challenges Anonymously 178

dundant anyway (except for a small gain in the speed
that authentication could be performed). Although the
current system requires an online adversary looking to
bypass a CAPTCHA maliciously, using Privacy Pass it
becomes possible to intercept tokens and use them at a
more convenient time in the near future (until the keys
are rotated). However, as long as the maximum number
of signed tokens is fairly small (in the case of Cloudflare
only 100 tokens can be signed for each interaction), then
the effectiveness of the attack is not especially increased.

8.2 Token accumulation

A related attack avenue would be for clients to ‘farm’
signed tokens by repeatedly sending challenge solutions
to invoke the signing phase of the protocol. This would
allow the client to build up a stockpile of unused tokens
that they could then redistribute amongst other clients
or redeem tokens for a large period of time. Redistribu-
tion of token pairs (ti,Wi) is possible due to the lack
of data encoded into them. Building up a large store of
tokens could be useful for launching distributed denial
of service (DDoS) attacks on service providers.

Clearly solving challenges incurs much larger over-
heads than the token redemption process using the
browser extension. Therefore, clients can invoke many
redemptions in the same time that they could solve one
challenge previously. Therefore, it is important that pass
verification is very efficient for the server to carry out to
reduce the threat of a DDoS attack reducing the avail-
ability of the server. Fortunately, as we showed above,
verification of a token redemption occurs in less than
1ms and a few hundred bytes of additional transmit-
ted data. Additionally, carrying out these operations on
powerful server hardware may lead to even faster run-
ning times. However, depending on the size of the stock-
pile, a client that amasses a huge number of tokens may
still be able to cause problems.

For these attacks we implement a number of possi-
ble mitigations. Firstly, the low upper bound of 100 to-
kens signed at a time by Cloudflare means that it would
take a large amount of effort to build up a stockpile
of tokens large enough to launch a credible DDoS at-
tack (1, 000, 000 tokens would require minimum 10, 000
CAPTCHA solutions).

Finally, as described in Section 6.2, we recommend
regular key rotation so that signed tokens are implicitly
related to epochs and are thus invalidated frequently.
This prevents stockpiles of tokens from being useful for
longer than the epoch they belong to. Ideally key rota-

tion would occur over short time periods (such as 3–4
days); a shorter time period directly reduces the number
of useful tokens that can be stockpiled and redeemed. In
our initial software distribution, key rotation is handled
by updating the commitments directly in the browser
extension. Moving forward, CDNs could upload their
commitments to beacons or other globally visible and
consistent locations, such as the Tor consensus.

8.3 Token exhaustion

Privacy Pass uses a finite list of low-entropy character-
istics to determine whether a token should be redeemed
or not. In the case of Cloudflare CAPTCHAs, the exten-
sion looks for the presence of an HTTP response header
and particular status code. Unfortunately, this means
that it is easy to recreate the characteristics that are
required by the extension to sanction a redemption.

To view the attack at its most powerful, consider
a sub-resource that embeds itself widely on many web-
pages that can trigger token redemptions.15 Such a re-
source would be able to drain the extension of all its to-
kens by triggering redemptions until all the tokens were
used. While it is unclear why such an attack would be
useful, it is important to acknowledge that it is indeed
possible to carry out and would thus render the usage of
Privacy Pass useless if the sub-resource was especially
prevalent.

Our mitigation for this attack lies in the extension
itself. First, the implementation of Privacy Pass pre-
vents token redemptions occurring for the same URL in
quick succession by keeping track of where spends have
occurred. This data is refreshed when a single-domain
cookie is removed to allow re-spending at the domain.
This prevents a sub-resource from recursively draining
tokens after each spend; it also spreads out the redemp-
tions considerably. The sub-resource would have to force
cookies to be removed and then schedule a page reload
for each token spend.

A coarser method of stopping these attacks — that
has not been implemented at time of writing in the
Cloudflare deployment — would be to blacklist URLs
from spending after one attempt and then refresh this
state every time the extension reaches 0 tokens. While
this would be a more effective countermeasure, it would
also prevent a client from spending tokens on a URL,
even if the cookie for the URL were removed. Other po-

15 For example, a popular analytics script or JQuery code.

Privacy Pass: Bypassing Internet Challenges Anonymously 179

tential mitigations could include requiring the edge to
sign the appropriate header, or the edge stripping the
cf-chl-bypass header from origin responses.

8.4 Time-based client deanonymization

As with all systems that require some sort of registra-
tion, there is the inherent problem that ‘early adopter’
clients are part of a much smaller anonymity set than is
optimal for enforcing privacy constraints. In particular,
consider a scenario where some user is amongst the first
five to initiate a signing phase with some given CDN,
or after key rotation has occurred. Then when a client
comes to redeem a token, the provider will know that
the client can be linked to one of the five only clients
to have tokens signed. A malicious edge could also arti-
ficially reduce the size of the user base by only signing
tokens for a small number of users or by using artificially
small key windows.

A more detailed analysis may also take into account
patterns of behavior that lead to initiating signing and
redemption phases in predictable ways. For instance, it
may be possible to link token redemptions to signing
queries that are linked to a user profile that predictably
asks for tokens to be signed at certain times.

This threat bypasses the unlinkability of the proto-
col and exploits the fact that linkability is possible based
on the timing of certain requests or via early registra-
tion. The pervasiveness of the potential to deanonymize
clients this way means that, like many PETs including
Tor itself, such privacy solutions are only really effective
when the number of users is quite large. As we men-
tioned previously, 20 days since it was first deployed
the number of Chrome users of Privacy Pass stands at
8499, and at 3489 for Firefox (November 28 2017)[8].
This suggests that linking browsing sessions is likely to
incur significant overheads and high error rates.

8.5 Double-spending protection

It is vital that services use their own private keys for
signing tokens so that tokens cannot be spent multiple
times across different services. Moreover, each service
that supports Privacy Pass should implement double-
spend protection to ensure that tokens cannot be spent
multiple times across their own architecture. Not check-
ing double-spends properly essentially implies that the
stockpile of unspent passes for any client is much larger.
An effective way of managing a large double-spend in-

dex would be to use a hash table, Bloom filter or other
similarly efficient data structure.

9 Conclusion
In this work we have detailed the use of a VOPRF
construction that can be instantiated using elliptic
curves to achieve the functionality of a blind sign-
ing protocol at much lower cost than a traditional
blind-RSA-based construction. We have implemented
the protocol and created a browser extension Privacy
Pass to offer a generic method of providing easier ac-
cess for Tor users to web resources by reducing the
amount of necessary human participation in completing
CAPTCHA challenges. The protocol does not compro-
mise the anonymity of the user by ensuring that the
signing and redemption of tokens are cryptographically
unlinkable. In addition, support for Privacy Pass within
the Cloudflare infrastructure shows that the extension
works in global-scale deployments and does not add any
significant overheads to either the client or server.

We believe that Privacy Pass represents an innova-
tive and effective way to improve the usability of privacy
enhancing technologies on the internet, while maintain-
ing protections against abuse for content providers. We
hope that support for Privacy Pass will increase as its
benefits, and more use cases, become more apparent.

Acknowledgements
The work benefited from the use of the CrySP RIP-
PLE Facility at the University of Waterloo. Davidson
was supported by the EPSRC and the UK Govern-
ment as part of the Centre for Doctoral Training in
Cyber Security at Royal Holloway, University of London
(EP/K035584/1). Goldberg gratefully acknowledges the
support of NSERC for grant RGPIN-03858. We would
like to thank Eric Tsai, Dan Boneh, Zi Lin, Peter
Wu, and Blake Loring for their participation in various
stages of the project. We would also like to acknowl-
edge helpful feedback from Sharon Goldberg, Christo-
pher Wood, Peter Eckersley, Brian Warner, Zaki Ma-
nian, Tony Arcieri, Prateek Mittal, Zhuotao Liu, Isis
Lovecruft, Henry de Valence, Mike Perry, Trevor Per-
rin, Justin Paine, Marek Majkowski, Eoin Brady, Aaran
McGuire, Yan Zhu, Roger Dingledine, Georg Koppen,
and the anonymous reviewers.

Privacy Pass: Bypassing Internet Challenges Anonymously 180

References
[1] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signa-

tures from the Weil pairing. In Colin Boyd, editor, ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 514–532.
Springer, Heidelberg, December 2001.

[2] Jonathan Burns, Daniel Moore, Katrina Ray, Ryan Speers,
and Brian Vohaska. EC-OPRF: Oblivious pseudorandom
functions using elliptic curves. Cryptology ePrint Archive,
Report 2017/111, 2017. http://eprint.iacr.org/2017/111.

[3] David Chaum. Blind signatures for untraceable payments.
In David Chaum, Ronald L. Rivest, and Alan T. Sherman,
editors, CRYPTO’82, pages 199–203. Plenum Press, New
York, USA, 1982.

[4] David Chaum. Blind signature system. In David Chaum,
editor, CRYPTO’83, page 153. Plenum Press, New York,
USA, 1983.

[5] David Chaum, Amos Fiat, and Moni Naor. Untraceable
electronic cash. In Shafi Goldwasser, editor, CRYPTO’88,
volume 403 of LNCS, pages 319–327. Springer, Heidelberg,
August 1990.

[6] David Chaum and Torben P. Pedersen. Wallet databases
with observers. In Ernest F. Brickell, editor, CRYPTO’92,
volume 740 of LNCS, pages 89–105. Springer, Heidelberg,
August 1993.

[7] Cisco. The zettabyte era: Trends and analysis, 2017. https:
//www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/vni-hyperconnectivity-
wp.html. Accessed Sep 2017.

[8] Cloudflare. Personal communication, 2017.
[9] Florian Dold and Christian Grothoff. GNU Taler: Ethi-

cal online payments for the internet age. ERCIM News,
2016(106), 2016.

[10] Georg Fuchsbauer, Christian Hanser, Chethan Kamath, and
Daniel Slamanig. Practical round-optimal blind signatures
in the standard model from weaker assumptions. Cryptology
ePrint Archive, Report 2016/662, 2016. http://eprint.iacr.
org/2016/662.

[11] Sanjam Garg and Divya Gupta. Efficient round optimal
blind signatures. In Phong Q. Nguyen and Elisabeth Oswald,
editors, EUROCRYPT 2014, volume 8441 of LNCS, pages
477–495. Springer, Heidelberg, May 2014.

[12] Sanjam Garg, Vanishree Rao, Amit Sahai, Dominique
Schröder, and Dominique Unruh. Round optimal blind sig-
natures. In Phillip Rogaway, editor, CRYPTO 2011, volume
6841 of LNCS, pages 630–648. Springer, Heidelberg, August
2011.

[13] Ryan Henry and Ian Goldberg. Extending Nymble-like sys-
tems. In 2011 IEEE Symposium on Security and Privacy,
pages 523–537. IEEE Computer Society Press, May 2011.

[14] Ryan Henry and Ian Goldberg. Formalizing anonymous
blacklisting systems. In 2011 IEEE Symposium on Security
and Privacy, pages 81–95. IEEE Computer Society Press,
May 2011.

[15] Ryan Henry and Ian Goldberg. Batch proofs of partial
knowledge. In Michael J. Jacobson Jr., Michael E. Lo-
casto, Payman Mohassel, and Reihaneh Safavi-Naini, ed-
itors, ACNS 13, volume 7954 of LNCS, pages 502–517.
Springer, Heidelberg, June 2013.

[16] Henry, Ryan. Efficient Zero-Knowledge Proofs and Ap-
plications. PhD thesis, University of Waterloo, 2014.
http://hdl.handle.net/10012/8621.

[17] Thomas S. Heydt-Benjamin, Hee-Jin Chae, Benessa De-
fend, and Kevin Fu. Privacy for public transportation. In
George Danezis and Philippe Golle, editors, Privacy Enhanc-
ing Technologies: 6th International Workshop (PET 2006),
pages 1–19. Springer, 2006.

[18] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk.
Round-optimal password-protected secret sharing and T-
PAKE in the password-only model. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume
8874 of LNCS, pages 233–253. Springer, Heidelberg, De-
cember 2014.

[19] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Ji-
ayu Xu. Highly-efficient and composable password-protected
secret sharing (or: How to protect your bitcoin wallet on-
line). In EuroS&P, pages 276–291. IEEE, 2016.

[20] Florian Kerschbaum, Hoon Wei Lim, and Ivan Gudymenko.
Privacy-preserving billing for e-ticketing systems in public
transportation. In Proceedings of the 12th ACM Workshop
on Workshop on Privacy in the Electronic Society, WPES
’13, pages 143–154, New York, NY, USA, 2013. ACM.

[21] Zhuotao Liu, Yushan Liu, Philipp Winter, Prateek Mittal,
and Yih-Chun Hu. Torpolice: Towards enforcing service-
defined access policies for anonymous communication in
the tor network. In 25th IEEE International Conference on
Network Protocols, ICNP 2017, pages 1–10, 2017.

[22] Peter Lofgren and Nicholas Hopper. BNymble: More anony-
mous blacklisting at almost no cost (a short paper). In
George Danezis, editor, FC 2011, volume 7035 of LNCS,
pages 268–275. Springer, Heidelberg, February / March
2012.

[23] Dimitrios Papadopoulos, Duane Wessels, Shumon Huque,
Moni Naor, Jan Včelák, Leonid Reyzin, and Sharon Gold-
berg. Making NSEC5 practical for DNSSEC. Cryp-
tology ePrint Archive, Report 2017/099, 2017. http:
//eprint.iacr.org/2017/099.

[24] David Pointcheval and Jacques Stern. Provably secure blind
signature schemes. In Kwangjo Kim and Tsutomu Mat-
sumoto, editors, ASIACRYPT’96, volume 1163 of LNCS,
pages 252–265. Springer, Heidelberg, November 1996.

[25] Markus Rückert. Lattice-based blind signatures. In Masayuki
Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 413–430. Springer, Heidelberg, December 2010.

[26] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachs-
mann. User privacy in transport systems based on RFID
e-tickets. Proceedings of the 1st International Workshop on
Privacy in Location-Based Applications (PilBA), 2008.

[27] Claus-Peter Schnorr. Efficient identification and signatures
for smart cards. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 239–252. Springer, Heidelberg,
August 1990.

[28] Claus-Peter Schnorr and Markus Jakobsson. Security of
signed ElGamal encryption. In Tatsuaki Okamoto, editor,
ASIACRYPT 2000, volume 1976 of LNCS, pages 73–89.
Springer, Heidelberg, December 2000.

[29] Tor. List of services blocking Tor, 2017. https:
//trac.torproject.org/projects/tor/wiki/org/doc/
ListOfServicesBlockingTor. Accessed Sep 2017.

http://eprint.iacr.org/2017/111
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
http://eprint.iacr.org/2016/662
http://eprint.iacr.org/2016/662
http://hdl.handle.net/10012/8621
http://eprint.iacr.org/2017/099
http://eprint.iacr.org/2017/099
https://trac.torproject.org/projects/tor/wiki/org/doc/ListOfServicesBlockingTor
https://trac.torproject.org/projects/tor/wiki/org/doc/ListOfServicesBlockingTor
https://trac.torproject.org/projects/tor/wiki/org/doc/ListOfServicesBlockingTor

