
Proceedings on Privacy Enhancing Technologies ; 2018 (3):181–202

Michael Schliep*, Eugene Vasserman, and Nicholas Hopper
Consistent Synchronous Group Off-The-Record Messaging
with SYM-GOTR
Abstract: We describe SYM-GOTR, a protocol for se-
cure Group Off-The-Record (GOTR) messaging. In con-
trast to previous work, SYM-GOTR is the first proto-
col to offer confidential, authenticated, and repudiable
conversations among a dynamic group with the addi-
tional properties of message unlinkability and the guar-
antee that all users see the same conversation, while
providing efficient use of network and CPU resources.
SYM-GOTR achieves these properties through the use
of a novel optimistic consistency check protocol that
either determines that all users agree on a transcript
with constant-size messages or identifies at least one
user that has not followed the protocol. We provide an
implementation of SYM-GOTR as a Java library along
with a plugin for the Jitsi instant messaging client. We
analyze the performance of SYM-GOTR in a real world
deployment scenario and discuss the challenges of pro-
viding a usable implementation without compromising
the security of the conversation.

DOI 10.1515/popets-2018-0027
Received 2017-11-30; revised 2018-03-15; accepted 2018-03-16.

1 Introduction
Recent disclosure of state level surveillance on citizens
around the globe [1] has caused an increased interest
in secure means for electronic communication. What it
means to have secure communication can be difficult to
define with the myriad of devices and services in use
today, and many systems have been introduced to fill
this need each with varying adversarial models and se-
curity properties. An early example of these systems is
PGP, which provides confidentiality to emails, while a
more modern approach is WhatsApp, offering private
real time messaging to 1 billion users. Our goal is to
provide an online equivalent to Off-The-Record (OTR)

*Corresponding Author: Michael Schliep: University of
Minnesota, E-mail: schli116@umn.edu
Eugene Vasserman: Kansas State University, E-mail:
eyv@ksu.edu
Nicholas Hopper: University of Minnesota, E-mail: hop-
pernj@umn.edu

face-to-face group conversations without the need of a
proprietary service provider.

A natural first approach to secure electronic conver-
sations is to encrypt and sign the chat messages. This
is efficient and provides confidentiality and authentica-
tion. But the act of signing the messages leaves a record
that a user participated in a conversation and what that
user said. This record is a loss in security from offline
conversations. In addition to maintaining repudiability,
online group conversations present further challenges;
there is also an implicit agreement to the participants
of an offline conversation by seeing everyone involved,
and an agreement on the transcript of the conversation
by virtue of every user hearing the same conversation.

Earlier works have attempted to address these prob-
lems. Borisov, Goldberg, and Brewer [2] introduced the
challenges of providing similar security properties for
online conversations and offline conversations, and pro-
posed the original OTR protocol, which provides these
properties but is limited to a two user setting. Multi-
party OTR (mpOTR) [3] was introduced for secure
group conversations. While offering confidentiality, au-
thentication, participant consistency and repudiation,
mpOTR does not provide message unlinkability, since
all messages from the same sender in a transcript can
be linked together; transcript consistency, since an ad-
versary controlling the network can cause participants
to terminate with differing transcripts; or a mechanism
for dynamic groups.

Two more recent systems have the functionality
to handle dynamic groups, BD-GOTR [4] and Sig-
nal [5](formerly known as TextSecure). BD-GOTR is
similar to our work, but lacks message unlinkability and
does not provide participant consistency or strong tran-
script consistency. Signal’s goals are different from the
previously mentioned works, in that Signal focuses on
asynchronous messaging. Schliep, Kariniemi, and Hop-
per [6] have shown Signal does not provided speaker
integrity, a global transcript, or participant consistency.

We describe a new protocol for group OTR instant
messaging, Symmetric Group-Off-the-Record (SYM-
GOTR). SYM-GOTR is the first protocol to simulta-
neously provide message unlinkability, participant con-
sistency, and strong transcript consistency for dynamic
groups, allowing an online group chat with similar prop-
erties to private offline conversations. SYM-GOTR pro-

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 182

vides high-security for small synchronous groups where
as previous protocols have made a trade-off in terms of
security properties provided to support larger or asyn-
chronous groups. Compared to previous work, SYM-
GOTR is efficient in terms of the number and size of
protocol messages; under benign conditions all opera-
tions require a constant number of messages sent be-
tween all pairs of users and all messages are of constant
size.

At a high level, SYM-GOTR works as follows. First,
each pair of users constructs a secure deniable peer-
to-peer (p2p) channel between them. Using these p2p
channels, each user shares a group-wide secret, and each
pair perform a participant consistency check to verify
that all users agree on the participants of the group.
To send a broadcast message, a symmetric key for each
user is derived from the shared secrets of all partici-
pants. This key is used to encrypt the message, then it
is broadcast to all users – in contrast to BD-GOTR, the
broadcast message has constant size in the number of
participants. Because any group member can compute
the encryption key of any other group member, these
broadcasts are deniable. To achieve the global transcript
property users then pairwise compare the digest of the
received broadcast – message origin is authenticated in
this step. The p2p digest sharing messages are signed
with an ephemeral key which encourages participants
to behave honestly or be detected and exposed as mali-
cious. When a user joins or leaves the group, users share
new group secrets and perform another participant con-
sistency check. With these new secrets the group can
again send secure broadcast messages.

Along with the protocol description we provide an
open-source Java library implementing SYM-GOTR1.
We analyze the overhead of this implementation and
show its practicality for everyday use. We also provide
a plugin2 for the Jitsi instant messaging client to bring
SYM-GOTR to XMPP Multi-User Chats.

In Section 2 we formally describe the goals of SYM-
GOTR and discuss the current state of private group
messaging. Section 8 describes the protocol with Sec-
tion 4 overviewing the security of SYM-GOTR. We an-
alyze our implementation’s performance in Section 5.
We conclude by discussing challenges of implementing
a secure messaging application in Section 6.

1 https://github.com/mschliep/gotr4j
2 https://github.com/mschliep/jitsi

2 Private Group Messaging

2.1 Goals

Unger et al. [7] perform an analysis of multiple secure
message designs and implementations. They present a
list of goals a secure messaging protocol may provide.
Below we describe the goals of our system in terms con-
sistent with their work.
Conversation properties. Basic properties of a secure
group conversation protocol should include:
– Confidentiality A message may only be read by

conversation participants.
– Integrity No honest party will accept a modified

message.
– Authentication Participants receive proof of pos-

session of a long term secret from every other par-
ticipant. Additionally, all participants can verify the
author of a broadcast message.

– Participant Consistency All honest parties agree
on the set of participants.

– Destination Validation Honest parties can verify
they are an intended recipient of a message.

– Forward and Backward Secrecy Previous and
future messages are secure when the key material is
compromised.

– Anonymity Preserving The protocol does not
undermine the anonymity features of the underlying
messaging service or transport.

– Speaker Consistency All honest parties agree on
the sequence of messages sent by any one partici-
pant.

– Causality Preserving Messages may only be dis-
played after messages that causally proceed them
have been displayed. If two messages (m2, m3) are
both sent in response to m1, a causality-preserving
protocol can display the messages in the order (m1,
m2, m3) or (m1, m3, m2), even if m2 arrives before
m3.

– Global Transcript All participants agree on the
order of all messages before processing the next mes-
sage. A global transcript implies speaker consistency
and causality preservation.

Deniability properties. Unger et al. also enumerate
several properties related to deniability of conversations.
Adapted to our setting these include:
– Message Unlinkability Proving authorship of one

message does not prove authorship of any other mes-
sage.

https://github.com/mschliep/gotr4j
https://github.com/mschliep/jitsi

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 183

– Message Repudiation There is no way to prove
a user authored any message.

– Participation Repudiation There is no way to
prove a user participated in a chat.

Group properties. Finally, we also include the fol-
lowing goals that make sense when a conversation has
three or more participants, as this is an explicit goal of
SYM-GOTR.
– Computation Equality All participants perform

the same computations.
– Trust Equality All participants are trusted to the

same degree.
– Contractible Membership Participants can

leave without restarting the protocol.
– Expandable Membership Participants can join

without restarting the protocol.

Unger et al. [7] discussed additional properties that are
sometimes mutually exclusive to ours. The properties we
do not offer focus on asynchronous protocols without a
global transcript. These properties are:
– Out-of-Order Resilient The ability to process a

message that has been delayed in transit.
– Dropped Message Resilient Messages may be

processed without receipt of all previous messages
– Multi-Device Support Users can participate in a

conversation from multiple devices. This is a techni-
cal detail that we do not address in this work. With
SYM-GOTR users can act as a unique participant
for each device used in the session.

– Subgroup Messaging All messages in SYM-
GOTR must be sent to all participants of the con-
versation. If users wish to communicate with a sub-
group they can form a new SYM-GOTR session
with the subgroup of participants.

Finally, SYM-GOTR cannot protect against Denial of
Service (DoS). DoS is trivial in a group communication
system with computation and trust equality. To pro-
vide a global transcript every user must see a receipt
for a message from every other participant. If an adver-
sary can cause a DoS of this receipt the protocol cannot
guarantee transcript consistency. SYM-GOTR halts un-
til the DoS ends or the user is removed from the group.
We draw an analogy to an in person group conversa-
tion. If a member of the conversation does not wish to
participate and abstains from the group that member is
causing a DoS on the group conversation. The group can
simply continue the conversation without the disruptive
participant, SYM-GOTR can be continued in a similar

fashion. This is an inherent problem of group conversa-
tions without a leader. A weaker global transcript defi-
nition could allow conversations to make progress while
under DoS. This weaker property is akin to an asyn-
chronous communication model.

2.2 Related Work

The original OTR protocol [2] provided the security
properties we desire for two party communication but
there does not exist a mechanism to scale the protocol
to a group setting. Goldberg et al. proposed a multi-
party OTR protocol (mpOTR) [3] with a subset of
our goals. They were the first to discuss deniability in
the group setting, both in terms of message deniabil-
ity and also the requirement of participant repudiation.
mpOTR provides secure group messaging for a static
set of users. Briefly, the mpOTR protocol operates as
follows. Out of band, users agree to the set of partici-
pants. Then in-band, users perform a group consistency
check, set up deniable peer-to-peer (p2p) channels be-
tween each pair of users, and then share an ephemeral
signature verification key. After this the group performs
a Group Key Agreement (GKA), the details of which
are not addressed. When a user wishes to send a mes-
sage, they encrypt it with the group key, and sign it
with their ephemeral signing key. After the conversa-
tion is complete, users sign and share the lexicograph-
ical ordered digest of the entire chat, along with any
unreceived messages.

In regards to transcript consistency mpOTR as-
sumes a weaker adversarial model than SYM-GOTR.
Their adversarial model does not consider an adversary
with full control of the network. Additionally mpOTR
can only accommodate conversations between a static
group. mpOTR does not provide message unlinkability,
causality consistency, or a global transcript. In partic-
ular, message unlinkability is violated by the use of a
single ephemeral signing key for an entire session. More-
over, causality consistency and global transcript consis-
tency is violated since the signed digests are over lex-
icographically ordered messages. Finally, mpOTR only
provides partial forward and backward secrecy between
sessions, not during a single session.

Liu, Vasserman, and Hopper [4] proposed an im-
proved group OTR (GOTR) protocol which we refer to
as BD-GOTR due to its use of the Burmester-Desmedt
group key agreement protocol. The design and goals of
their protocol are most similar to our work. As we will
discuss, however, BD-GOTR provides only partial mes-

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 184

sage unlinkability and does not offer participant consis-
tency, or strong guarantees about a global transcript.
The protocol provides optional forward and backward
secrecy at the cost of re-executing the setup phase. Fi-
nally, the size of some messages in BD-GOTR scales
linearly with the size of the group, which makes the
protocol inefficient for larger group conversations.

BD-GOTR works as follows. Out of band, users
agree to the list of chat participants. Users set up se-
cure p2p channels between every pair of users Ui and
Uj . Then Ui and Uj perform a three step process to
compute a Burmester-Desmedt GKA [8] between the
pair. Each user then uses a “Hotplugging” property to
combine their n − 1 (pairwise) group keys into a sin-
gle “circle” key. Each user broadcasts their circle public
key, and all other users are able to compute the circle
key from having participated in a single BD-GKA with
that user. To send a secure message a participant uses
a Key Derivation Function (KDF) to generate a sym-
metric encryption and MAC key from their circle key,
then encrypts the message and chat transcript digest
with the keys. The user then broadcasts the encrypted
message along with their circle public key to the group.
Upon receiving the broadcast all users perform a digest
consistency check over the p2p channels. This allows the
participants to agree upon the author of the message.

BD-GOTR provides partialmessage unlinkability in
that if it can be shown that user Ui contributed some
message to a conversation, the user’s confirmation of
the conversation digest implicitly confirms any previous
messages attributed to the user in the transcript, while
not linking the user to messages appearing later in the
transcript (in contrast to mpOTR, in which confirming
one message sent by Ui confirms all messages sent by Ui

in the transcript).
Signal [5, 9, 10] is an asynchronous secure group

messaging protocol. The goal of Signal is to provide a
secure alternative to text messages. Its security goals
are similar to ours but Signal focuses more on asyn-
chronous communication and abandons the global tran-
script property. Signal requires a service provider to sup-
port authentication and message delivery. The Signal
authors do not provide a formal list of goals, threat
model, or security proofs. Recent academic work has
started to provide these missing pieces. Frosch et al. [11]
analyzed an earlier version of TextSecure and show that
the protocol is an Authenticated Key Exchange. They
also identify an Unknown Key Share attack against the
protocol. Cohn-Gordon et al. [12] analyze the Signal
protocol as a multi-stage key execute protocol. They
also provide the most detailed description of the Sig-

nal protocol as deployed. Kobeissi et al. [13] use a novel
automated verification technique to identify a key com-
promise impersonation attack and a replay attack in
Signal. They show a modified signal protocol protects
against these attacks. Finally, Schliep, Kariniemi, and
Hopper, [6] have shown Signal does not provide speaker
consistency, causality preservation, a global transcript,
or participant consistency.

(n+1)sec [14] is a recently published draft of a
secure group communication protocol. The goals of
(n+1)sec are similar to SYM-GOTR with eventual
transcript consistency. (n+1)sec utilizes an mBD+P
GKA [15] to generate a group sending key and pair-
wise secrets between all participants. Each group mem-
ber generates a signing key used to authenticate mes-
sages. Periodically participants send a consistency check
message that contains their view of the conversation.
The delayed consistency checks allow messages to be
displayed with low latency, but violations to the global
transcript property may not be detected until some out-
of-order messages have already been displayed. (n+1)sec
does not provide a formal security analysis or proofs
that the desired security properties are provided. In
comparison to (n+1)sec, SYM-GOTR prefers simplic-
ity and security at the expense of performance.

2.3 System Model

The system model of SYM-GOTR consists of clients and
a server. No client is trusted more than any other and
all operations are communication and computationally
equivalent. The server is used for group coordination
and routing messages between the clients. There are
two types of messages, peer-to-peer (p2p) and broad-
cast. Peer-to-peer messages may be sent between any
pair of clients. Broadcast messages should be broadcast
from one client to every other client in the group. The
server should maintain a global order of broadcast mes-
sages within the group. Client agreement of the broad-
cast message order is enforced by the protocol.

In practice we provide a plugin for the Jitsi IM
client that allows SYM-GOTR conversations with exist-
ing XMPP servers. The server requires no modifications.
The conversation takes place in an XMPP Multi-User-
Chat (MUC). The clients rely on the server to broadcast
message and participant changes but the conversation
cannot progress until all clients agree on the participants
and transcript.

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 185

2.4 Threat Model

The properties of SYM-GOTR are provided under a
realistic threat model. We describe three threat models
and the properties that hold under each. Multiple threat
models are needed because some properties are trivially
broken by a strong adversary. For example, an adversary
with the ability to corrupt SYM-GOTR participants can
trivially decrypt messages and break the confidentiality
property.

The first adversary we consider has the abilities to
perform active and passive network attacks. The ad-
versary may intercept, drop, inject, and delay messages
between any participants or the routing server. The ad-
versary may also corrupt a subset of the participants. Fi-
nally, this adversary may kick any participant from the
SYM-GOTR session and participate in multiple SYM-
GOTR sessions with the participants. These abilities
are those of an adversarial routing server with corrupt
participants.

Under this first model SYM-GOTR provides mes-
sage integrity, authenticity of participants and their
messages, consistency in the set of participants and
their secrets among participants, destination validation,
speaker consistency, causality preservation, a global
transcript, message unlinkability and repudiation along
with participant repudiation.

The second adversary we consider is that of a mali-
cious routing server. The adversary may perform passive
and active network level attacks, kick participants from
a SYM-GOTR session, and participate in multiple non-
target SYM-GOTR sessions with the victim(s). Message
confidentiality is provided under this threat model.

Our third threat model is that of a passive network
level adversary with access to any participant’s keys at
a given time. This may be an adversary with passive
network access while the SYM-GOTR session is ongo-
ing, or an adversary that has stored all SYM-GOTR ses-
sion network traffic for later attacks. The adversary may
participate in non-target SYM-GOTR sessions with the
victim. Forward and backward secrecy hold under this
third adversarial model.

3 Design

3.1 Strawman Design

A simple protocol would utilize deniable and authenti-
cated two party channels between all pairs of users in a

group to generate ephemeral encryption keys along with
ephemeral signing and verification keys for each user.
Then to send a message the users would simply encrypt
and sign the message then broadcast it to the group. The
group then performs a consistency check on the broad-
cast before processing the next message. This approach
is similar to mpOTR with consistency checks after ev-
ery broadcast. However, this simple protocol does not
achieve message unlinkability. Messages by the same au-
thor within a single session are linked together via the
author’s signatures.

To provide unlinkability, new signing and verifica-
tion keys need to be generated and distributed for every
message. Distributing these new verification keys in an
authenticated and unlinkable manner is not cheap. The
first idea would be to include them in the plaintext of
the previous message. However, this method does not
provide unlinkability. The signature on the previous ci-
phertext commits to the next verification key. These ver-
ification keys must be sent over pairwise deniable, un-
linkable, authenticated, and confidential channels. This
increases the communication cost of the protocol but is
needed to achieve all of the properties we want in secure
group communication.

We now present the SYM-GOTR protocol.

3.2 Primitives

We rely on existing cryptographic primitives for SYM-
GOTR. Let l be the system wide security level in bits.
Symmetric Authenticated Encryption(AEncK(M) and
ADecK(C)) is used to provide confidentiality and in-
tegrity of messages. For authentication we make use of
a group G of prime order p with generator g, where the
Computational Diffie-Hellman assumption holds.

Four collision resistant hash functions H{1,2,3,4} are
used as follows. H1 : {0, 1}∗ 7→ Zp is used during the
secure channel set up and H{2,3,4} : {0, 1}∗ 7→ {0, 1}l for
participant consistency, message consistency, and signa-
ture consistency respectively.

SYM-GOTR requires three cryptographically se-
cure pseudo-random functions as Key Derivation Func-
tions (KDF): KDF1 : (G,G,G,U, U) 7→ {0, 1}l where U
is the set of all possible user identities, is used during
secure channel set up; KDF2 : (G,U,U) 7→ {0, 1}l for
key ratcheting; and finally, KDF3 : {0, 1}∗ 7→ {0, 1}l for
broadcast message keys.

SYM-GOTR uses a signature scheme for accusation
of malicious group members. The signature scheme con-
sists of three functions: KeyGen() to generate a ran-

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 186

dom signing and verification key pair (ski, vki) for user
i, Signsk(m) to sign the message m with key sk, and
V erifyvk(m, sig) to verify the signature sig of m with
verification key vk.

In our implementation the authenticated encryp-
tion scheme uses AES in Counter Mode along with an
HMAC of the ciphertext in an Encrypt-then-MAC fash-
ion as described by Bellare and Namprempre [16]. The
IV is always 0 because symmetric keys are never reused.
The hash functions and KDFs are built upon SHA-256.
The group G is NIST-p256 and ECDSA is used for the
signature scheme.

We also assume a messaging server. The server pro-
vides group coordination such as group set up and par-
ticipant change notification as well as peer-to-peer (p2p)
communication channels between all participants and a
broadcast channel for the group. We also assume the
server attempts to send broadcast messages in a con-
sistent order. This order is verified by all clients be-
fore message are displayed and the conversation can
progress.

When user Ui calls Send(Sid, Uj ,m) the server
sendsm to Uj for session Sid from Ui. Similarly when Ui

calls Recv(Sid, Uj) the function returns the next mes-
sage m sent by Uj in session Sid to Ui. The broadcast
channel provides BcastSend(Sid,m) which broadcasts
the sender Ui and the message m to all users of session
Sid. Finally the broadcast channel also provides Bcas-
tRecv(Sid) returning the next broadcast message m
for session Sid along with the claimed sender Ui. These
methods are not trusted and do not need to provide
any security properties. Sid is a unique session identi-
fier that is determined out-of-band (chatroom name).
Users must only initiate a single SYM-GOTR session
per Sid. The users U of a SYM-GOTR session are also
determined out-of-band. The protocol enforces all par-
ticipants agree on the Sid and participants.

3.3 Overview

The high level view of our protocol is to set up deniable,
unlinkable, forward and backward secure, authenticated
channels between every pair of users. These secure p2p
channels are used to communicate group state and check
the consistency of the transcript. Each user Ui generates
a long-term DH public-private key pair (lpki, lski). This
key pair may be used between protocol sessions to main-
tain the same identity. Ui also generates an ephemeral
secret si of l random bits and an ephemeral signing key
pair (ski, pki) that will be used when performing the

Algorithm 1 SYM-GOTR protocol
1: for all Uj ∈ U \ {Ui} do
2: ChannelSetup(Sid, Uj)
3: state← GroupSetup(Sid, U)
4: while state 6= ⊥ do
5: (Uj , c,m)← SecRecvBcast(Sid, state)
6: sigs← BcastConCheck(Sid, Uj , c,m, state)
7: state← SigConCheck(Sid, Uj , c, sigs, state)

message consistency checks later. Ui shares the secret,
the verification key, and a digest of the group partici-
pants over a secure p2p channel with all other partici-
pants of the session.

Using the shared values of all participants, symmet-
ric encryption keys are generated with a Key Deriva-
tion Function. Each participant has a unique sending
key that every other participant can generate. When
Ui wishes to send a secure group message she encrypts
the message with her sending key and broadcasts the
ciphertext to all other participants. Since SYM-GOTR
requires secure pairwise channels we do not need a com-
plicated Group Key Agreement protocol. We simply
compute symmetric keys from the secret input of all
participants.

Upon receiving a secure broadcast message a con-
sistency check is performed. To perform the consistency
check all participants share, over the secure p2p chan-
nel, a digest of the received broadcast message. Ui will
sign her consistency check message with her ephemeral
signing key. Then users compare all signed consistency
check messages they have received to detect any dishon-
est participants. A user must only perform a consistency
check on a single message at any one time. This enforces
ordering of the messages. New key inputs are shared
during the consistency check allowing SYM-GOTR to
be forward and backward secure. All protocol messages
are encrypted with unique keys, resisting replay attacks.

Algorithm 1 describes the SYM-GOTR protocol.
There are four main steps to the protocol: secure p2p
channel setup (lines 1-2), group setup (line 3), broadcast
consistency check (line 6), and signature consistency
check (line 7). The secure p2p channel setup builds the
deniable, authenticated, forward, and backward secure
channels. The group setup phase shares the keys to be
used for communication. The message consistency check
guarantees that every user has seen the same message
and agree on the authorship of the message. Finally, the
signature consistency check guarantees that the whole
group has accepted the message.

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 187

Algorithm 2 Group Setup
1: func GroupSetup(Sid, U)
2: S ← [], V K ← []
3: si ← {0, 1}l

4: (ski, vki)← KeyGen()
5: S[i] = si, V K[i] = vki

6: gvi = H2(Sid, U)
7: for all Uj ∈ U \ {Ui} do
8: SecSend(Sid, Uj , si, vki, gvi)
9: sj , vkj , gvj ←SecRecv(Uj , Sid)

10: if gvj 6= gvi then
11: return ⊥
12: S[j] = sj , V K[j] = vkj

13: return (S, V K, ski)

Algorithm 3 Receive Secure Broadcast
1: func SecRecvBcast(Sid, (S, V K, ski))
2: Uj , c← BcastRecv(Sid)
3: Kj ← KDF3(Sid, (Uj , S[j]),

(U1, S[1]), . . . , (Un, S[n]))
4: m← ADecKj

(c)
5: if m 6= ⊥ then
6: return (Uj , c,m)
7: else
8: SecRecvBcast(Sid, (S, V K, ski))

3.4 SYM-GOTR Protocol

We first describe the SYM-GOTR protocol assuming we
have a protocol for a confidential, deniable, unlinkable,
authenticated p2p channel. With a secure p2p channel
the group setup phase is simple. User Ui generates a
group-wide secret si ∈ {0, 1}l. These group-wide secrets
are used to generate the ephemeral encryption keys used
for secure group messages. Ui also generates a signing
key ski and a corresponding verification key vki for mes-
sage consistency checks. Finally, Ui generates a group
view gvi as a hash of all group participants. This group
view is used to check that honest participants agree on
the group. The group-wide secrets, verification keys, and
group views are shared over the secure p2p channels.

Algorithm 2 describes the GroupSetup function as
executed by user Ui. GroupSetup outputs the list of
group-wide secrets S, list of verification keys V K, and
the users signing key ski.

After GroupSetup completes users can now
send and receive secure broadcast messages. When
user Ui wishes to broadcast a secure message m,
she first computes ephemeral sending key Ki =

Algorithm 4 Broadcast Consistency Check
1: func BcastConCheck(Sid, Uj , c,m, (S, V K, ski))
2: valid = []
3: invalid = []
4: if Ui = Uj and Ui did not send c then
5: di ← H3(“reject”||c)
6: sigi ← Signski

(di)
7: invalid[i]← (Ui, di, sigi)
8: m← ⊥
9: else

10: di ← H3(“accept”||c)
11: sigi ← Signski

(di)
12: valid[i]← (Ui, di, sigi)
13: for all Uk ∈ U \ {Ui} do
14: SecSend(Sid, Uk, di, sigi)
15: dk, sigk ←SecRecv(Sid, Uk)
16: if dk 6= di or not verifyV K[k](dk, sigk) then
17: invalid[k]← (Uk, dk, sigk)
18: m← ⊥
19: else
20: valid[k]← (Uk, dk, sigk)
21: if m 6= ⊥ then
22: DisplayBcast(Uj ,m)
23: return (valid, invalid)

KDF3(Sid, (Ui, si), (U1, s1) . . . , (Un, sn)). In KDF3 she
places herself at the front of the input as well as in the
list of all inputs. This approach allows a recipient to in-
fer the sender and receivers. It also ensures that a key
will never be reused even if two participants attempt
to send a message at the same time. This approach is
used consistently throughout the protocol. She then en-
crypts the message as c = AEncKi

(m) and broadcasts
the ciphertext, BcastSend(Sid, c).

When Ui receives a broadcast mes-
sage c from Uj , Ui computes Kj =
KDF3(Sid, (Uj , sj), (U1, s1), . . . , (Un, sn)) and checks
that c is an authenticated encryption with Kj . If c does
not authenticate it is dropped and the next broadcast
is received. Algorithm 3 describes the process. When an
authentic c is received a broadcast consistency check is
performed (Alg. 1, line 6).

The broadcast consistency check guarantees all par-
ticipants have received the same c from Uj and that
Uj authored the message, then the plaintext m =
ADecKj

(c) is displayed. Algorithm 4 describes the
broadcast consistency check. To check the consistency
of a ciphertext c, Ui computes a digest of the ciphertext
along with the string “accept” or “reject”. This digest

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 188

Algorithm 5 Signature Consistency Check
1: func SigConCheck(Sid, Uj , c, sigs, (S, V K, ski))
2: S′ ← [], V K′ ← []
3: S′[i]← {0, 1}l

4: (sk′i, V K′[i])← KeyGen()
5: sharei ← OptimizeShare(c, sigs)
6: sucess← true

7: for all Uk ∈ U \ {Ui} do
8: SecSend(Sid, Uk, sharei, S

′[i], V K′[i])
9: sharek, S

′[k], V K′[k]←SecRecv(Sid, Uk)
10: if sharek 6= sharei then
11: sucess← false

12: Warn the user.
13: Share inconsistent signatures.
14: if success = true then
15: ConfirmBcast(Uj ,m)
16: return (S′, V K′, sk′i)

is then signed with the ephemeral signing key ski and
shared to all participants over the secure p2p channels.
The message is only displayed for Ui if all participants
notified Ui that they have “accept”ed the broadcast as
valid from Uj . If Uj did not author c, Uj should “re-
ject” the ciphertext. If there is a malicious participant
and they try to convince Ui to display the message and
another user to not display the message, the malicious
participant will be identified in the next phase.

Following the broadcast consistency check a signa-
ture consistency check is performed to identify misbe-
having participants or confirm the message was dis-
played to all users. The simplest method would be to
share all of the received signatures sigs, but this is ex-
pensive as it grows with the size of the group. We per-
form an optimistic optimization by hashing all of the
entries of sigs that “accept” the broadcast, then share
all entries that do not. Under benign conditions this op-
timization shares a small constant sized message. This
method also distributes new ephemeral group-wide se-
crets (si, vki) to provide forward and backward secrecy
of group messages.

Algorithm 5 describes the signature consistency
check. Algorithm 6 describes how the optimization is
computed.

3.4.1 Churn

We describe how SYM-GOTR handles churn in regards
to a single user. We discuss handling churn in reference

Algorithm 6 Optimize Share
1: func OptimizeShare(c, (valid, invalid))
2: input = “”
3: for all (Uj , dj , sigj) ∈ valid do
4: input← input||(Uj , sigj)
5: h = H4(input)
6: dvalid ← H3(“accept”||c)
7: return (dvalid, h, invalid)

to Algorithm 1. When a new user is added to an existing
SYM-GOTR session each existing user simply executes
ChannelSetup with the new user and continues ex-
ecution from line 3. If the session is in the middle of
the processing a broadcast, lines 6-8, the existing users
finish processing the broadcast before adding the new
user.

Removing a user is not as simple, e.g. a user may
lose network connectivity while processing a message. If
a user Uj is notified of a user leaving the group before
line 5, they can simple remove the user from their list
and continue execution from line 3. If a user is removed
after a broadcast is received but before the broadcast
consistency check the broadcast cannot be guaranteed
to be seen by all users and must be dropped. If a user
is removed while performing the broadcast consistency
check or the signature consistency check some users
may have already displayed the broadcast, so a warning
should be displayed notifying the users that the previ-
ous message may not have been seen by all participants.
In any case execution should continue from line 3.

3.4.2 P2P Secure Channel

The SYM-GOTR protocol does not require a specific
secure p2p channel protocol. It only requires that the
p2p channel be encrypted, authenticated, forward and
backward secure, deniable, and unlinkable. We could
have used OTR as the p2p channel but for efficiency we
implemented a simpler secure p2p protocol that meets
our needs.

3.4.3 P2P Channel Setup

Set up of the secure p2p channel uses the NAXOS [17]
deniable Authenticated Key Exchange. Since we do not
assume a Public Key Infrastructure we simply send the
long-term key with the ephemeral key in the first mes-

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 189

Algorithm 7 P2P Secure Channel Setup
1: func ChannelSetup(Sid, Uj)
2: eski ← {0, 1}l

3: hi ← H1(eski, lski)
4: Send(Sid, Uj , g

hi , glski)
5: epkj , lpkj ← Recv(Sid, Uj)
6: Kij ← KDF1(epklski

j , lpkhi
j , epkhi

j , Ui, Uj)
7: Kji ← KDF1(epklski

j , lpkhi
j , epkhi

j , Uj , Ui)

sage. User identity and key verification are addressed
later.

Algorithm 7 describes the deniable AKE between
user Ui and Uj where lski is the long-term secret key of
user Ui.

After the deniable AKE completes, each user Ui can
generate a pair of ephemeral, deniable, and authenti-
cated sending and receiving keys Kij ,Kji with every
other participant ∀Uj ∈ U \ {Ui}

3.4.4 P2P Key Ratcheting

The keys for the p2p channels are ratcheted forward ev-
ery message to provide forward and backward secrecy.
SYM-GOTR ratchets these keys similar to OTR [2].
When Alice sends a message to Bob she includes a new
DH public key. To send the next message she uses her
last sent DH share and the DH public key she most
recently received from Bob to compute a shared secret
and encrypt the message. All p2p protocol messages sent
in SYM-GOTR expect a response. This allows SYM-
GOTR to use the keys generated during the secure p2p
channel setup phase as the first sending and receiving
keys to bootstrap the DH key ratcheting. Algorithm 8
describes the functions of the secure p2p channel and
key ratcheting. SecSend describes Ui sending m to Uj

and SecRecv describes Ui receiving m from Uj , Sid is
the session id for the SYM-GOTR session. Participants
must only maintain a single p2p channel per pair of user
per session.

3.5 User Authentication

The deniable AKE between all participants does not
provide full user authentication. The AKE only guaran-
tees that the remote party knows the long-term secret
that corresponds to the long-term public key. To au-
thenticate a remote user and associate that user with
their long-term public key we use the Socialist Million-

Algorithm 8 P2P Key Ratchet
Require: idi is the id of last sent DH public key and

idj is the id of the most recently received DH public
key. Si contains DH private keys of i for j and Sj

contains the DH public keys of j for i.
1: func SecSend(Sid, Uj ,m)
2: r ∈R Zp

3: Si[idi + 1]← r

4: priv ← Si[idi]
5: pub← Sj [idj]
6: Kij ← KDF2(pubpriv, Ui, Uj)
7: c← AEncKij

(m, gr)
8: Send(Uj , Sid, idj , c)
9: func SecRecv(Sid, Uj)

10: idi, c← Recv(Uj , Sid)
11: priv ← Si[idi]
12: pub← Sj [idj]
13: Kji ← KDF2(pubpriv, Uj , Ui)
14: m, pubnew ← ADecKji

(c)
15: Sj [idj + 1]← pubnew

16: Delete old key ratchet material.
17: return m

aire Protocol (SMP) [18]. SMP must be executed be-
tween every pair of participants with inputs being their
long-term public keys and a pre-shared secret. If SMP
is successful the pair of users can trust the remote user
is the expected party. This trust is linked to the long-
term public key of a user and may be applied in future
SYM-GOTR sessions. That is the SMP need only be
executed once between a pair of users to build trust in
a user seen in multiple sessions.

4 Security
In this section we discuss the security properties of
SYM-GOTR under the threat models described in Sec-
tion 2.

In terms of our goals stated earlier, we achieve
confidentiality, integrity, and message authentica-
tion through the underlying authenticated encryption
scheme. Forward and backward secrecy are provided by
the key ratcheting of the p2p channels and the new
group keys generated before every broadcast message.

SYM-GOTR provides participant consistency with
the simple consistency check on line 10 of Algorithm 2.
Participant Authentication is enforced by the NAXOS
AKE executed between all pairs of participants.

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 190

The anonymity preserving property is provided be-
cause SYM-GOTR does not incorporate any informa-
tion about the transport channels and a participant may
generate fresh long-term keys and pseudonyms for every
session. To avoid generating fresh long-term keys and
pseudonyms the two party secure channel setup may
be modified to provide anonymity preservation. As de-
scribed in Section 8 the first step is to send an ephemeral
DH public key and the long-term DH public key in plain-
text. To preserve anonymity an unauthenticated DH key
exchange may be executed first, then the long-term pub-
lic key can be hidden within the resulting anonymous
encrypted channel.

Destination validation is implied by the broadcast
sending key derivation requiring input from all intended
recipients.

Since the consistency checks are performed after ev-
ery broadcast message and only on a single message at a
time, SYM-GOTR is speaker consistent, causality pre-
serving, and maintains a global transcript. These con-
sistency checks only contain information about a single
broadcast, thus providing message unlinkability.

SYM-GOTR can be simulated by anyone who pos-
sess the long-term public keys of the participants, all
encryption and signing keys used for communication are
ephemeral. Because of this the sessions have participant
repudiation and message repudiation.

We now sketch in more detail proofs of the secu-
rity properties specific to SYM-GOTR. Due to space
constraints full proofs of the security properties are de-
ferred to Appendix A.

Our properties rely on standard security assump-
tions and we prove them in a series of games. We as-
sume our authenticated encryption scheme is IND-CPA
and INT-PTXT secure. We also assume NAXOS is se-
cure, that is, an adversary cannot distinguish between
a valid symmetric key generated with NAXOS and a
random bit string. The last assumption we make is the
Decisional Diffie-Hellman problem is hard. An adversary
given (gx, gy, gz) cannot distinguish between gz = gxy

or gz ←R G.

4.1 Confidentiality

Confidentiality is similar to the IND-CPA of symmet-
ric encryption. To break the confidentiality of SYM-
GOTR an adversary M must either learn the group
sending key of a user or break the confidentiality of our
authenticated encryption scheme. To learn the group
sending key M must learn all of the inputs to KDF4.

These inputs are sent over the secure p2p channels, so to
learn these inputs M must either learn the p2p channel
keys (breaking NAXOS) or break the confidentiality of
the p2p channels. If M cannot break the confidentiality
of the p2p channels M must break the confidentiality of
the broadcast channel encryption.

4.2 Message Integrity and Authentication

Message Integrity and Authentication are similar to
the INT-PTXT game for symmetric encryption and in-
tegrity. If an adversary M can cause an honest party
to accept a forged message from another honest party,
M must be able to inject forged consistency checks into
the secure p2p channel between the two honest parties.
For M to forge p2p messages, M must either learn the
p2p sending keys (by breaking NAXOS) or break the
integrity of the authenticated encryption scheme.

4.3 Participant Consistency

Participant consistency relies on the integrity of the p2p
channels. If two honest parties complete the setup phase
with differing participant lists for the same session, an
adversaryM must have forged their p2p communication
that sends the group view key. Similarly to message au-
thentication, for M to forge p2p channel message M

must learn the p2p sending keys or break the integrity
of the authenticated encryption scheme.

4.4 Forward and Backward Secrecy

Forward and Backward Secrecy are the properties that
if the state of an honest participant is leaked a limited
number of messages are compromised. In SYM-GOTR
forward and backward secrecy rely on the confidentiality
of our authenticated encryption scheme and the Deci-
sional Diffie-Hellman Assumption (DDH). To break for-
ward and backward secrecy an adversary must either
break the confidentiality of the symmetric encryption
scheme or learn the Diffie-Hellman shared secrets used
to compute the symmetric keys of the p2p channels.

4.5 Participant Repudiation

We describe participant and message repudiation in
a similar manner to that of Raimondo, Gennaro, and
Krawczyk [19] deniable authentication and key ex-

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 191

change. We show that SYM-GOTR is deniable because
a session can be simulated to produce a transcript that
is identically distributed to a transcript of a real SYM-
GOTR session. Since any SYM-GOTR protocol tran-
script could have been forged by running a simulator,
a user appearing in an alleged transcript can plausibly
deny their involvement by claiming that the transcript
was forged. All simulators are simple extensions to the
simulator for the p2p deniable AKE.

We define participant repudiation under two threat
models. One where the adversary has knowledge of the
long-term secret key of corrupt participants and one
where the judge only knows the public keys. The ad-
versary produces a protocol transcript T by executing
SYM-GOTR with a single honest party. A simulator S
takes as input T and the adversary’s long-term secrets s
for session T . S generates a protocol transcript T ′ that
includes the honest party where T 6= T ′. A judge that
takes as inputs T ∗ and the adversary’s secrets s outputs
a single bit guess on the input being T or T ′. Participant
repudiation requires that for every adversary there is a
simulator such that no judge can distinguish between T
and T ′.

A sketch of the simple simulator S follows. The sim-
ulator runs the SYM-GOTR protocol using the secrets
of the corrupt parties and generating random values for
the honest party as described in the protocol. The sim-
ulator uses the user identifier and long-term public key
of the honest user. Since NAXOS is a deniable AKE it
can be simulated. We omit the details here, but it is
a simple 3-DHE protocol. The output T ′ is identically
distributed to T , so the judge has no advantage.

4.6 Message Repudiation

Message repudiation is similar to participant repudia-
tion, except that the adversary produces a chat tran-
script τ . The protocol transcript T is produced by run-
ning a SYM-GOTR session with an honest party. The
simulator’s input is the same as the participant repu-
diation simulator and also includes the chat transcript
and produces T ′ to be a protocol transcript of τ . The
judge takes τ and T ∗ as input and guesses if T ∗ = T or
T ′.

The simulator is almost identical to the simulator
for participant repudiation. The message repudiation
simulator executes the participant repudiation simula-
tor then follows the protocol as described in Section 8 to
produce a transcript for τ that is identically distributed
to T . It is a simple extension to the participant repu-

diation simulator because all inputs of the message and
signature consistency checks are ephemeral values gen-
erated during the SYM-GOTR session. Message repu-
diation is provided for the group conversation since the
underlying p2p protocol provides message repudiation.

4.7 Message Unlinkability

Message unlinkability is the property that proving au-
thorship of a message to a third party does not prove
authorship of any other message to the third party. It
is similar to message repudiation and is achieved in
SYM-GOTR due to the fact that any communication
in SYM-GOTR relates to only a single broadcast. The
message consistency check only includes the digest of
the current broadcast and no information about the rest
of the chat transcript. SYM-GOTR also maintains for-
ward and backward secrecy for every chat message, so
no broadcast messages are encrypted or signed with the
same keys.

More formally assume an adversary can convince a
judge that a message was authored by a user. This pro-
vides the judge with knowledge of the ephemeral sym-
metric key inputs and ephemeral public verification keys
used to encrypt and sign the message and the consis-
tency checks, i.e. the state of the adversary. Message
unlinkability is provided if the adversary cannot prove
these keys are linked to another message and the mes-
sages consistency checks. To show an adversary cannot
prove linkability two simulators are needed. One that
produces a transcript up until and including the com-
promised message that is identically distributed to that
of the real transcript. This simulator provides unlink-
ability for all previous messages. The other simulator
produces a transcript that is identically distributed to
that of the real transcript including and after the com-
promised message. This simulator provides unlinkabil-
ity for all messages after the compromise. We quickly
sketch the simulators as they are almost identical to the
simulator for message repudiation.

Both simulators take as input a chat transcript τ
and protocol transcript T . For the first simulator the
transcripts are all messages before the compromised
message. The second simulator transcripts are for all
messages after the compromised message. The simula-
tors also takes as input c the ciphertext of the mes-
sage and state the state of the adversary including all
si, vki,Kij ,Kji and keys used to ratchet forward all of
the p2p channels.

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 192

The first simulator simply executes the message re-
pudiation simulator for all messages before the compro-
mise and uses the adversary’s state for all ephemeral
keys shared in the last consistency check before the com-
promise. The second simulator executes the message re-
pudiation simulator using the compromised state as the
keys for the first message. Both simulators simply exe-
cute the protocol with the adversary’s provided inputs
for the single compromised message. These simulators
produce protocol transcripts T ′ that are identically dis-
tributed to that of a real transcript and contain the
compromised message and state.

Message repudiation and unlinkability is trivial
when all operations on messages use ephemeral keys dis-
tributed over deniable and unlinkable p2p channels and
all protocol operations only operate on inputs provided
by a single message.

4.8 Global Transcript

We define global transcript as all participants agreeing
on the order of all broadcast messages sent during a
chat, and the guarantee that all participants see every
broadcast. An adversary cannot convince a subset of the
participants to accept a message without being caught.

A global transcript is provided by construction of
the protocol only processing a single message at a time.
The two part consistency check and the ephemeral sign-
ing keys guarantee message receipt and display. A mes-
sage is not accepted until it has been approved by all
participants, indicating all participants have received
the message. For a message to be rejected by a subset of
participants, an adversary would have to send a reject
message to them signed with the adversary’s ephemeral
signing key. The signature consistency check performed
next would reveal the adversary has signed two mes-
sages, one accepting and one rejecting the broadcast.
Our protocol does not guarantee all participants have
seen a broadcast under strong adversarial conditions but
does allow us to identify the adversary and notify the
users that not all participants have seen the previous
broadcast. We can guarantee that all users have seen
the broadcast under the covert model.

4.9 GOTR Improvements

We quickly discuss the differences between SYM-
GOTR, BD-GOTR, and Signal in terms of security

properties. Table 1 compares the security properties
provided by each protocol.

Participant Consistency exists in SYM-GOTR
due to the participant consistency check during group
setup. BD-GOTR and Signal do not provide a similar
mechanism and are vulnerable to participants not shar-
ing the same view of the group.

Participant Repudiation is not provided by BD-
GOTR as described in [4]. The authors claim the p2p
channels do not need to be deniable. Only that they are
confidential and authenticated channels. If BD-GOTR
is implemented with deniable p2p channels then the pro-
tocol provides participant repudiation.

Message Unlinkability only partially exists in
BD-GOTR. The broadcast messages of BD-GOTR con-
tain the digest of the chat transcript thus far. This
builds a chain of all the broadcast messages. Once au-
thorship of a single message is proven acceptance of all
previous messages is proven as well as authorship of all
messages using the same keys.

Global Transcript is not clear in BD-GOTR. The
BD-GOTR protocol relies on a transcript consistency
check but does not describe how it should be imple-
mented or the properties it provides. SYM-GOTR pro-
vides a global transcript due to our two part consistency
check and can identify an adversary via the signatures
on the consistency check message. Signal does not make
any guarantees about a global transcript.

Forward and Backward Secrecy is only par-
tially provided by BD-GOTR. BD-GOTR only ratchets
keys when requested. In comparison SYM-GOTR ratch-
ets all keys on every message with little additional over-
head. Due to Signal assuming an asynchronous model it
cannot provide forward and backward secrecy for every
message.

5 Performance Evaluation
We implemented the SYM-GOTR protocol as a Java li-
brary and a plugin for the Jitsi IM client. We measured
the performance using the library and a $10/month vir-
tual private server hosted on linode [20]. Our clients ran
across a cluster of ten machines each with an Intel i7
3.4GHz Quad-Core processor and 32 GB of RAM. Our
server was an ejabberd XMPP server. The server had
a 1 Gb network connection and the clients shared a 1
Gb connection. The round trip time between the clients
and server was approximately 100 ms. Care needs to
be taken when choosing a communication service due

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 193

Table 1. Conversation and Deniability properties provided by SYM-GOTR, BD-GOTR, and Signal

C
on

fid
en
tia

lit
y

In
te
gr
ity

Pa
rt
ic
ip
an
t

C
on

sis
te
nc
y

D
es
tin

at
io
n

V
al
id
at
io
n

Fo
rw
ar
d
an
d

B
ac
kw

ar
d
Se

cr
ec
y

A
no

ny
m
ity

P
re
se
rv
in
g

Sp
ea
ke
r

C
on

sis
te
nc
y

C
au
sa
lit
y

P
re
se
rv
in
g

G
lo
ba
l

Tr
an
sc
rip

t

M
es
sa
ge

U
nl
in
ka
bi
lit
y

M
es
sa
ge

R
ep
ud

ia
tio

n

Pa
rt
ic
ip
an
t

R
ep
ud

ia
tio

n

A
sy
nc
hr
on

ou
s

SYM-GOTR a a a a a a a a a a a a d

BD-GOTR a a d a s a a a s s a s d

(n+1)sec a a a a a a s s s d a a d

Signal a a d a s d d d d a a a a

a= provides; s= partially provides; d= does not provide

Fig. 1. The time (25th, 50th, and 90th percentile) and network traffic to set up a secure chat room with SYM-GOTR and BD-GOTR.

to SYM-GOTR benefiting from consistent ordering of
broadcast messages. The two common group messaging
standards; XMPP and IRC do not enforce this property,
but some server implementations provide consistent or-
dering.

For performance analysis we consider groups of a
practical size to enforce authentication between all par-
ticipants. We base our groups sizes on analysis of social
graphs in the Facebook social network [21]. We would
like to know the average clique size for a set of friends. If
the participants did not form a clique they would not be
able to pairwise authenticate, negating the security pro-
vided by SYM-GOTR. The results of the study did not
reveal the clique size but did discuss the median degree
of a user and a local clustering coefficient. The median
degree of a user is 100 with a local clustering coefficient
of 14%. This implies that the maximum clique size for
an average user is ∼37.

For comparison we also implemented BD-GOTR
with a single round consistency check executed after ev-

ery broadcast. The BD-GOTR paper does not describe
the details of the consistency check or how often to per-
form it. We executed 100 runs of each operation for
both SYM-GOTR and BD-GOTR. To coexist with cur-
rent XMPP servers and clients when SYM-GOTR users
would like to start or join a SYM-GOTR session they
send an insecure broadcast message to inform the group.
Clients not supporting SYM-GOTR will simply display
the message while clients supporting SYM-GOTR will
broadcast their support and proceed to set up secure
p2p channels with other supported clients. This adds
a small amount of overhead which describes the lack
of symmetry between received and sent network traffic
during setup and participant changes.

5.1 Setup

For each round of secure chat setup we created a Multi-
User-Chat (MUC) with n participants then initiated the

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 194

Fig. 2. The time (25th, 50th, and 90th percentile) and network traffic to broadcast a message to a secure group chat.

GOTR protocol. After the protocol reached the secure
state we shutdown the protocol. We measured the cost
as the time it takes from initiating the protocol to reach-
ing the secure state.

Figure 1 compares the cost of setting up a secure
chat session with n users. The number of messages a
user sends during the setup phase is O(n) for both SYM-
GOTR and BD-GOTR. SYM-GOTR sees a significant
improvement in time and network traffic as a result of
constant sized messages compared to message sizes of
O(n) with BD-GOTR.

We also analyzed the performance of participant
modification events in established SYM-GOTR conver-
sation. For 10, 20, 30, and 40 participants SYM-GOTR
required approximately 275, 420, 660, and 980 ms to
add a participant and 150, 305, 545, and 780 ms to re-
move a participant. The network overhead is similar to
that of setting put the conversation.

5.2 Broadcast

We measured the cost of a broadcast message to be
sent and a consistency check performed by all partic-
ipants in the group. We wait for the signature consis-
tency check to complete providing a full representation
of the time and network overhead of SYM-GOTR. We
first set up a secure chat of n users, then we start our
measurements and instruct a single client to broadcast a
message. Once the message has been received and both
consistency checks have completed we end our measure-
ment. We perform this 100 times for groups of each size.
The same measurement is performed for BD-GOTR but
there is only a single consistency check.

Figure 2 shows a group of 30 users takes 820ms
and 65 KB of network traffic down to perform a secure
broadcast with SYM-GOTR. BD-GOTR is faster for
broadcast operations due to a weaker single round con-
sistency check that does not offer message unlinkability
or digest accountability. It requires only sending n − 1
p2p messages where as SYM-GOTR requires 2(n − 1).
The difference is small enough to be worth the addi-
tional properties. This difference is also not noticeable
to the user due to broadcasts being displayed after the
message consistency check. The signature consistency
check only warns the user on failures which should not
normally occur. The message consistency check of SYM-
GOTR and BD-GOTR have the same size and complete
in the same time. The network overhead of BD-GOTR
comes from broadcast messages being O(n) in size.

5.3 CPU Usage

The plots also include the median CPU time of each
operation. Finally we analyze the CPU time of each op-
eration. All operations have p2p pairwise communica-
tion that execute in parallel but the total CPU time is
represented in the plots. The “Setup” and “Add” opera-
tions are cheaper for SYM-GOTR due to the symmetric
group key agreement. The main computation expense
for SYM-GOTR “Broadcast” is due to the signing, ver-
ification, and signature key generation. The “Remove”
CPU cost is less for BD-GOTR since existing users do
not need to generate new group keys.

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 195

5.4 Complexity

Due to lack of control of the Signal network we can-
not produce a meaningful comparison of SYM-GOTR
and Signal but we do provide an asymptotic compari-
son of each operation. In comparison to Signal, SYM-
GOTR requires sending more p2p messages to offer the
additional consistency properties. Signal does not at-
tempt to offer group consistency which allows for effi-
cient setup and participant changes. Signal also does not
guarantee message consistency or ordering allowing for
cheaper message broadcasts. Table 2 shows the asymp-
totic complexity for each operation under SYM-GOTR,
BD-GOTR, and Signal.

5.5 Practical Example

To show SYM-GOTR performs well in practice, we sim-
ulated one year’s worth of IRC meetings from the Open-
Stack High Availability group [22]. We simulated all
meetings from 2016. There are 38 meetings between
January 04, 2016 and December 21, 2016. Each meet-
ing had on average 5 participants with 127 messages
and lasted 35 minutes. We first replayed the meeting
log without SYM-GOTR to record statistics under our
network conditions. Then we replayed the meeting logs
using SYM-GOTR. SYM-GOTR introduced an average
delay of 127 milliseconds to display a message which
extended the conversation by 16 seconds on average.
This experiment demonstrates a realistic deployment of
SYM-GOTR and shows it is practical for day-to-day
use.

As expected, participants did not join or leave dur-
ing the meetings. Churn is an uncommon occurrence
in these synchronized messaging applications. We ana-
lyzed the churn of the OpenStack Ansible channel. We
choose the Ansible channel because outside of meetings
the High Availability channel is generally idle. For the
year of 2016 there was on average 539 join and leave
events per day in the channel with 137 seconds before
and after each event and the next event or message.
This shows churn is relatively uncommon and our per-
formance is practical.

6 Discussion
Implementing a secure messaging application is difficult
to do in practice even if the underlying protocol is se-

cure. We quickly discuss the challenges faced by these
applications and layout future work.

6.1 Usability

From a usability perspective developers attempt to
accommodate unmotivated users. These users impose
many challenges to secure software. Thinking only of
user authentication there does not exist a consistent
user interface to inform a local user that a remote
user(friend) is who they claim to be. The problem be-
comes even more difficult for messages. A user can re-
ceive a message from an unauthenticated user or an au-
thenticated user. The distinction must be apparent in
the user interface and also consistent for messages re-
ceived prior to authentication. In group communication
sessions not all users may have seen a given message.
This is also important information that may be relevant
to the participants. A developer must consider these se-
curity concerns when designing the user interface but
must also not add a bright red error for every situation.
This will only cause warning fatigue and encourage users
to ignore the security concerns the application intends
to address.

6.2 Key Verification

Key verification is another challenge without a clear so-
lution. In terms of SYM-GOTR we choose to utilize the
Socialist Millionaire Protocol allowing users to authen-
ticate each other using a pre-shared secret. We do not
claim this is the best or only mechanism for key ver-
ification. Any other technique could be deployed with
SYM-GOTR. Another existing system attempting to
address this problem is keybase.io which links a users
online identity to a long-term public key by connect-
ing it to a users Twitter [23], reddit [24], facebook [25],
or a handful of other online accounts. Other solutions
include a web-of-trust, Public Key Infrastructure, or a
Password Authenticated Key Exchanges (PAKE).

7 Conclusion
We propose a solution for secure group Off-The-Record
instant messaging. Our protocol offers all of the secu-
rity properties of existing works, e.g. confidentiality, au-
thentication, repudiation, etc.; along with the additional
properties of participant consistency, message unlinka-

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 196

Table 2. Asymptotic complexity for each operation. The top line is the size of the broadcast message and the bottom is the maximum
number of p2p messages sent by an individual. All p2p messages are of constant size. The last two columns represent the computa-
tional complexity of the operation.

Setup Broadcast Add Remove Sending Receiving
SYM-GOTR 0 1 0 0 O(n) O(n)

2(n − 1) 2(n − 1) 2(n − 1) (n − 1)
BD-GOTR 8n 8n 8n 8n O(n) O(n)

5(n − 1) (n − 1) 5(n − 1) 0
Signal 0 0 0 0 O(n) O(1)

(n − 1) (n − 1) (n − 1) (n − 1)

bility and a global transcript. SYM-GOTR achieves this
with little overhead in terms for computation and net-
work bandwidth, requiring each user to send O(n) mes-
sages of constant size for any operation of the group.

Our implementation of SYM-GOTR is efficient and
practical for day-to-day communication. We also pro-
vide a Jitsi plugin making secure group communication
available now.

8 Acknowledgments
We thank Roger Dingledine and Aaron Johnson for key
discussion on the system model and properties of se-
cure messaging. We also thank Nik Unger for helping
us clarify the presentation of this work and the anony-
mous reviewers for their helpful feedback. This work was
partially supported by the NSF under grant 1314637.

References
[1] N. Weaver, “A close look at the NSA’s most powerful

internet attack tool.” http://www.wired.com/2014/03/
quantum/. Accessed: 19 May 2017.

[2] N. Borisov, I. Goldberg, and E. Brewer, “Off-the-record
communication, or, why not to use pgp,” in Proceedings
of the 2004 ACM Workshop on Privacy in the Electronic So-
ciety, WPES ’04, (New York, NY, USA), pp. 77–84, ACM,
2004.

[3] I. Goldberg, B. Ustaoğlu, M. D. Van Gundy, and H. Chen,
“Multi-party off-the-record messaging,” in Proceedings of
the 16th ACM Conference on Computer and Communica-
tions Security, CCS ’09, (New York, NY, USA), pp. 358–
368, ACM, 2009.

[4] H. Liu, E. Y. Vasserman, and N. Hopper, “Improved group
off-the-record messaging,” in Proceedings of the 12th ACM
Workshop on Workshop on Privacy in the Electronic Soci-
ety, WPES ’13, (New York, NY, USA), pp. 249–254, ACM,
2013.

[5] O. W. Systems, Open Whisper Systems. https://
whispersystems.org/.

[6] M. Schliep, I. Kariniemi, and N. Hopper, “Is bob sending
mixed signals?,” in Proceedings of the 2017 on Workshop
on Privacy in the Electronic Society, WPES ’17, (New York,
NY, USA), pp. 31–40, ACM, 2017.

[7] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Gold-
berg, and M. Smith, “Sok: Secure messaging,” in Security
and Privacy (SP), 2015 IEEE Symposium on, pp. 232–249,
IEEE, 2015.

[8] M. Burmester and Y. Desmedt, “A secure and efficient con-
ference key distribution system,” in Advances in cryptology
EUROCRYPT’94, pp. 275–286, Springer, 1994.

[9] M. Marlinspike and T. Perrin, “The x3dh key agreement
protocol,” 2016.

[10] M. Marlinspike and T. Perrin, “The double ratchet algo-
rithm,” 2016.

[11] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk,
and T. Holz, “How secure is textsecure?,” in Security and
Privacy (EuroS&P), 2016 IEEE European Symposium on,
pp. 457–472, IEEE, 2016.

[12] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and
D. Stebila, “A formal security analysis of the signal mes-
saging protocol,” in Security and Privacy (EuroS&P), 2017
IEEE European Symposium on, pp. 451–466, IEEE, 2017.

[13] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated
verification for secure messaging protocols and their imple-
mentations: A symbolic and computational approach,” in
IEEE European Symposium on Security and Privacy (Eu-
roS&P), 2017.

[14] eQualit.ie, (n+1)sec protocol specification - draft. https:
//equalit.ie/introducing-n1sec-a-protocol-for-distributed-
multiparty-chat-encryption/.

[15] M. Abdalla, C. Chevalier, M. Manulis, and D. Pointcheval,
“Flexible group key exchange with on-demand computation
of subgroup keys.,” Africacrypt, vol. 10, pp. 351–368, 2010.

[16] M. Bellare and C. Namprempre, “Authenticated encryption:
Relations among notions and analysis of the generic com-
position paradigm,” J. Cryptol., vol. 21, pp. 469–491, Sept.
2008.

[17] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger secu-
rity of authenticated key exchange,” in Provable Security,
pp. 1–16, Springer, 2007.

[18] C. Alexander and I. Goldberg, “Improved user authentication
in off-the-record messaging,” in Proceedings of the 2007
ACM workshop on Privacy in electronic society, pp. 41–47,

http://www.wired.com/2014/03/quantum/
http://www.wired.com/2014/03/quantum/
https://whispersystems.org/
https://whispersystems.org/
https://equalit.ie/introducing-n1sec-a-protocol-for-distributed-multiparty-chat-encryption/
https://equalit.ie/introducing-n1sec-a-protocol-for-distributed-multiparty-chat-encryption/
https://equalit.ie/introducing-n1sec-a-protocol-for-distributed-multiparty-chat-encryption/

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 197

ACM, 2007.
[19] M. Di Raimondo, R. Gennaro, and H. Krawczyk, “Deniable

authentication and key exchange,” in Proceedings of the
13th ACM conference on Computer and communications
security, pp. 400–409, ACM, 2006.

[20] linode, linode. https://linode.com/.
[21] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The

anatomy of the facebook social graph,” arXiv preprint
arXiv:1111.4503, 2011.

[22] OpenStack IRC meetings. http://eavesdrop.openstack.org/.
[23] twitter, twitter. https://twitter.com/.
[24] reddit, reddit. https://reddit.com/.
[25] Facebook, Facebook. https://facebook.com/.
[26] R. Canetti and H. Krawczyk, “Analysis of key-exchange

protocols and their use for building secure channels,” in
Proceedings of the International Conference on the Theory
and Application of Cryptographic Techniques: Advances in
Cryptology, EUROCRYPT ’01, (London, UK, UK), pp. 453–
474, Springer-Verlag, 2001.

A Proofs
We prove the properties of SYM-GOTR with a series of
games approach. All games have an Initialize function
that sets up the game and a Finalize function that
returns the result of the game. All other functions of
the games perform a specific opertion.

A.1 Assumptions

We base our proofs of the security properties of SYM-
GOTR on standard security assumptions under the
Random Oracle Model.

First we assume our authenticated encryption
scheme (Encrypt-Then-MAC) is IND-CPA and INT-
PTXT secure as shown by Bellare and Chanathip [16].

Figure 3 details the IND-CPA game. An adversary
M is said to win the game if M can determine which of

Fig. 3. IND-CPA Game

func Initialize(l)
k ←R {0, 1}l

b←R {0, 1}

func LR(M0,M1)
c← Enck(Mb)
return c

func Finalize(d)
return (d = b)

Fig. 4. INT-PTXT Game

func Initialize(l)
k ←R {0, 1}l

S ←R {}

func Enc(m)
c← Enck(m)
S getsS ∪ {m}
return c

func VF(c)
M ← Deck(c)
if m 6= ⊥ and m /∈ S then

win← true

return (m 6= ⊥)

func Finalize(d)
return win

Fig. 5. NAXOS Game

func Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

func Send(A,B, comm)
Send comm to A on behalf of B
return A’s response

func Long-Term Key Reveal(A)
return Long-term key of A

func Ephemeral Key Reveal(sid)
return Returns the ephemeral key of a possibly

incomplete session si.

func Reveal(sid)
return Session key of completed session sid

func Test(sid)
if b = 1 then

C ←Reveal(sid)
else

C ←R {0, 1}l

return C

func Finalize(d)
return (d = b)

https://linode.com/
http://eavesdrop.openstack.org/
https://twitter.com/
https://reddit.com/
https://facebook.com/

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 198

Fig. 6. DDH Game

func Initialize
b←R {0, 1}
x←R Zp∗
y ←R Zp∗
if b = 0 then

z ← x ∗ y
else

z ←R Zp∗
return (gx, gy, gz)

func Finalize(d)
return (d = b)

two chosen plaintext has been encrypted. The advantage
of M is defined as AdvIND−CP A(M) = Pr[Mwins]− 1

2 .
Figure 4 details the INT-PTXT game. An adver-

sary M is said to win the game if M can forge a valid
ciphertext of a plaintext that has not been queried.
The advantage ofM is defined as AdvIND−P T XT (M) =
Pr[Mwins].

We also assume the NAXOS AKE is secure in the
game detailed in [17]. The authors of NAXOS define an
extended Canetti-Krawczyk [26] model (eCK) to prove
NAXOS secure under a stronger adversary.

Figure 5 describes the NAXOS AKE game. An ad-
versary M is allowed to create multiple sessions and
reveal the long-term, ephemeral, and session keys of
users. Defining Session IDs is a important part of key
agreement models. Our definition is consistent with
the eCK model. That is the Session ID of a p2p ses-
sion is defined as the transcript of messages sent be-
tween the parties. This p2p Session ID is different from
SYM-GOTR group Session IDs. The adversary wins the
game if M can distinguish between a valid NAXOS ses-
sion key and a random bit string if both parties are
not compromised. The advantage of M is defined as
AdvNAXOS(M) = Pr[Mwins]− 1

2 .
We assume the Decisional Diffie-Hellman(DDH)

problem is hard. Figure 6 describes the DDH problem
in terms of a game. An adversary wins the DDH game if
given (gx, gy, gz) the adversary can distinguish between
gz = gxy and gz ←R G. The advantage of an adversary
M is defined as AdvDDH = Pr[Mwins]− 1

2 .
Finally, since SYM-GOTR does not require a spe-

cific key verification mechanism we assume a trusted
PKI in the proofs. We assume all users have secure ac-
cess to the PKI and verify the long-term public key of
remote users for every secure p2p session. If the long-
term key sent during channel setup is incorrect the ses-

Fig. 7. SYM-GOTR Game Functions

func SetupSession(Sid, Ui, U)
Setup session Sid with Ui for group U
return Ui’s response to session setup

func AddUser(Sid, Ui, Uj)
Add user Uj to session Sid of user Ui

return Ui’s response to adding Uj .

func RemoveUser(Sid, Ui, Uj)
Remove user Uj to session Sid of user Ui

return Ui’s response to removing Uj .

func Broadcast(Sid, Ui,m)
Ui sends m securely in session Sid.
return Ui’s network traffic to send the message

func RevealLongTermKey(Ui)
return Ui’s long-term key

func RevealSessionState(Sid, Ui)
return Ui’s session state for session Sid.

func Send(Ui, Uj , comm)
Ui sends comm to Uj

return Uj ’s response to comm

sion terminates. In all of our games we allow the adver-
sary to corrupt a user and reveal the long-term private
key.

A.2 Model

The SYM-GOTR security properties are proved with
the following games. The games contain common oper-
ations setup, adding/removing users, and sending mes-
sages. These functions all return the network traffic gen-
erated by the session. In an active network adversary
game these functions do not send the traffic to the users,
instead they return the traffic and await for it to be sent
by the adversary with the Send function. Send will re-
turn any new network traffic generated from receiving
the input. Under a passive adversary the SYM-GOTR
operation functions perform the entire operation and
return all network traffic.

These games also have reveal functions when appro-
priate. These functions reveal information to the adver-
sary e.g. long-term keys or session state. We define a
corrupt user to be a user whom has had the long-term
secret key revealed by the adversary. When revealing
session state for Ui in session Sid the adversary learns
all session state from line 3 of Algorithm 1 along with
all of the p2p ephemeral key material in use, that is

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 199

Fig. 8. SYM-GOTR Confidentiality Game

func Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

func Test(Sid, Ui,M0,M1)
Ui sends Mb in session Sid.
return Ui’s network traffic to send the message

func Finalize(d)
return (d = b)

Ui’s current ephemeral secret key and the remote parties
ephemeral public key. Figure 7 describes the functions
that are consistent between all SYM-GOTR games.

A.3 Confidentiality

The confidentiality property states a message may only
be read by a conversation participant. This is equivalent
to the indistinguishable chosen plaintext game. Figure
8 describes the additional functions of the confidential-
ity game for SYM-GOTR. The Test function allows
the adversary to force Ui to send a test secure broad-
cast in session Sid. The adversary may then guess the
bit b by calling Finalize. A session is defined as clean
if the adversary has not revealed the long-term key or
the session state for any participant in the session. The
adversary wins if the session is clean and the guess is
correct. The advantage of adversary M is defined as
Advconf (M) = Pr[Mwins]− 1

2 .

Theorem A.1. SYM-GOTR is confidential if all hash
and key derivation functions are modeled as random or-
acles. For any confidentiality adversary M that runs in
time at most t, establishes at most s sessions with at
most w users per session and establishes at most n p2p
channels. We show that there exists a NAXOS adver-
sary N , an IND-CPA adversary P0, and an IND-CPA
adversary B such that

Advconf (M) ≤ n ·AdvNAXOS(N)
+ n ·AdvIND−CP A(P0)
+ sw ·AdvIND−CP A(B)

Where N , P0, and B run in time O(t).

Proof. The adversary M can win the confidentiality
game in two ways. They can learn the group sending
key of the target user or win the IND-CPA game against
our authenticated encryption. Since KDF3 is modeled

as a random oracle to learn the group sending key, M
must query the random oracle with the same inputs as
the sending user. These inputs are shared over the secure
p2p channels. ForM to learn these inputsM must either
brake the NAXOS protocol or win the IND-CPA game
against our authenticated encryption. We construct an
adversary N that can win the NAXOS game and an ad-
versary P0 that can win the IND-CPA game of the p2p
channels and an adversary B that can win the IND-
CPA game against the broadcast ciphertext given an
adversary M that can win the confidentiality game.

First, we assume M wins by computing the p2p
keys. M can then decrypt the p2p traffic and com-
pute the group sending key. Using the group sending
key M can trivially win the confidentiality game. For
M to compute the p2p keys M must break NAXOS.
We can use M to construct an adversary N that wins
the NAXOS game. N is defined as follows, N behaves
as a normal SYM-GOTR confidential challenger except
during p2p channel setup. During initialization N ini-
tializes a NAXOS game. When N would normally setup
a NAXOS session at line 2 of Algorithm 1, N sends the
start communication to the NAXOS game between Ui

and Uj . When M Sends p2p channel setup communi-
cation to N , N forwards it along to the Naxos game.
N chooses one session at random invokes Kij ← Test
on NAXOS session between Ui and Uj to retrieve a
test p2p key for the session. When M calls Reveal-
LongTermKey N returns Long-Term Key Reveal.
When M calls RevealSessionState N returns both
Ephemeral Key Reveal and Reveal of the NAXOS
game.N executes Reveal on the other NAXOS sessions
to learn their p2p keys. N continues the SYM-GOTR
protocol as normal. ForM to compute the p2p key for a
pair of user (Ua, Ub M must have queried theKDF1 ran-
dom oracle for (epklska

b , lpkha

b , epkha

b , Ua, Ub). N watches
M ’s random oracle queries and checks if any of the out-
puts match Kij if so N guesses 1 else N guesses 0. N
has probability 1

n of guessing the correct p2p session.
The advantage is Advconf (M) ≤ n ·AdvNAXOS(N).

The second game assumesM cannot break NAXOS
but instead can learn the inputs to the group sending
key derivation function. We now describe a challenger
P0, given M , that acts as an adversary to the IND-CPA
game. P0 behaves as a normal confidentiality challenger
and initializes an IND-CPA game for a random p2p
session between Ui and Uj . P0 generates two sets of
group secrets(lsecrets, rsecrets) for Ui. When Ui shares
the secrets over the p2p channel to Uj , P0 makes a
LR(lsecrets, rsecrets) query to the IND-CPA game and
sends the response to the remote peer. P0 then watches

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 200

Fig. 9. SYM-GOTR Authentication Game

func Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

func Finalize()
return true if a message m′ was displayed by U ′j

with author U ′i in session Sid′ that was not broad-
cast with Broadcast(Sid′, U ′i ,m′) and U ′i and U ′j
are honest.

M ’s queries to the KDF3 random oracle.M must query
the output on either the left or right secrets. P0 then
guesses left or right based onM ’s oracle query and wins
with Advconf (M) ≤ n ·AdvIND−CP A(P0). P0 has prob-
ability 1

n of guessing the right p2p session.
If all p2p traffic appears random to M , he must

be able to win the IND-CPA game with our authen-
ticated encryption scheme over the broadcast channel.
We construct a challenger B that plays the confiden-
tiality game with M and wins the IND-CPA game. B
behaves as a normal SYM-GOTR challenger and initial-
izes an IND-CPA game during initialization for a ran-
dom user Ui of a random session Sid. When M calls
Test(Sid, Ui,M0,M1) B executes c ← LR(M0,M1).
B uses c as the ciphertext to broadcast Mb. When
M guesses d, B guesses d to the IND-CPA chal-
lenger. B will win with advantage Advconf (M) ≤ sw ·
AdvIND−CP A(B). B has probability 1

sw of guessing the
correct user and session.

If M cannot distinguish between the p2p messages
or the broadcast messages and random. The network
traffic must be independent of b.

A.4 Integrity and Authentication

Integrity and message authentication are captured in
the same game. Integrity is the property that all mes-
sages displayed were not modified in transit and message
authentication is the property that participants agree on
the authorship of a message.

Figure 9 describes the additional functions of the
game that captures the integrity and authentication
properties. The game is similar to the game for con-
fidentiality but differs in the Broadcast function. The
adversary can ask user Ui to broadcast a message se-
curely to session Sid. The adversary wins the game if
an honest user U ′j displays a message m′ from an honest
user U ′i in session Sid′ where Broadcast(Sid′, U ′i ,m′)
was not invoked by the adversary. Users are said to be

honest if they have not had their long-term key or ses-
sion state revealed for session Sid′. The advantage of ad-
versary M at wining the message authentication game
is defined as Advint(M) = Pr[Mwins].

Theorem A.2. SYM-GOTR provides integrity and
message authentication if all hash and key derivation
functions are modeled as random oracles. For any au-
thentication adversary M that runs in time at most t,
establishes at most s SYM-GOTR sessions, and at most
n p2p channels, we show that there exists a NAXOS ad-
versary N and an INT-PTXT adversary P1 such that

Advauth(M) ≤ n ·AdvNAXOS(N)
+ n ·AdvINT−P T XT (P1)

Where N and P1 run in time O(t).

Proof. Since all users perform a message consistency
check over the p2p channels (line 6, Alg. 1 for M to
win the authentication game M must learn U ′i and U ′j ’s
p2p sending keys or win the INT-PTXT game against
the p2p authenticated encryption scheme. Similarly to
confidential for M to learn a p2p channels sending keys
M must be able to win the NAXOS game. Given M ,
the NAXOS adversary N described above can win the
NAXOS AKE game.

IfM cannot break NAXOSM must produce a valid
ciphertext under (U ′i , U ′j) p2p sending keys. We con-
struct P1 an authentication challenger that can win the
INT-PTXT game given M . P1 acts as a normal SYM-
GOTR challenger. When setup is complete P1 initializes
an INT-PTXT for a random p2p session between Ui and
Uj . When a protocol message m is to be sent over the
p2p channel from Ui to Uj P1 invokes c ← Enc(m) of
the INT-PTXT game and returns c as the ciphertext.
For M to win M must send a ciphertext c′ from Ui to
Uj where c′ 6= c. P1 submits this to VF(c′) of the p2p
INT-PTXT game. P1 wins the INT-PTXT game if M
wins the authentication game by forging valid secure
p2p messages between Ui and Uj . The advantage of N
is Advint(M) ≤ n · AdvINT−P T XT (P1). If M cannot
create a valid p2p message SYM-GOTR must provide
integrity and authentication.

A.5 Participant Consistency

The participant consistency property ensures that all
users agree on the set of participants in a group con-
versation. Figure 10 describes the additional functions
for the participant consistency game. The participant

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 201

Fig. 10. SYM-GOTR Participant Consistency Game

func Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

func Finalize(Sid, Ui, Uj)
return true if Ui and Uj are honest and have

completed the setup phase with differing views of
participants for session Sid.

consistency game is similar to the previous games. The
adversaryM wins the game by producing a (Sid, Ui, Uj)
3-tuple where Ui and Uj are honest parties that have
completed the setup phase(line 3 of Alg. 1) for session
Sid with different sets of users. Users a honest if they
have not had their long-term key revealed or session
state for session Sid. The advantage of M is defined as
Advpart(M) = Pr[Mwins].

Theorem A.3. SYM-GOTR provides participant con-
sistency if all hash and key derivation functions are
modeled as random oracles. For any participant consis-
tency adversary M that runs in time at most t, estab-
lishes at most s SYM-GOTR sessions, and at most n
p2p channels, we show that there exists a NAXOS ad-
versary N and an INT-PTXT adversary P1 such that

Advpart(M) ≤ n ·AdvNAXOS(N)
+ n ·AdvINT−P T XT (P1)

Where N and P1 run in time O(t).

Proof. For M to win Ui must be sent a gvj (line 9, Alg.
2) value that matches gvi. M must either learn the p2p
sending key of Uj or win the INT-PTXT game against
our authenticated encryption scheme for the p2p chan-
nel between Ui and Uj . Adversaries N and P1 described
earliers function as valid adversaries given M to win
the NAXOS game or INT-PTXT game of a p2p ses-
sion. IfM cannot learn the sending keys or cannot forge
valid p2p messages, SYM-GOTR must provide partici-
pant consistency.

A.6 Perfect Forward Secrecy

Forward Secrecy is the property that any message sent
prior to an honest user state reveal is secure against a
passive adversary. Figure 11 details the additional func-
tions of the forward secrecy game. All methods return
the network traffic generated by the group to perform

Fig. 11. SYM-GOTR Perfect Forward Secrecy Game

func Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

func Test(Sid, Ui,m0,m1)
Ui securely sends mb in session Sid
Test may only be called once and must be called

before RevealState
return All network traffic generated for Ui to

send mb to session Sid

func RevealState(Sid, Ui)
May only be called after Test
return All of Ui’s current state for session Sid

along with Ui’s long-term key

func Finalize(d)
return (d = b)

an operation. An adversary M may request an honest
party to send a message with Broadcast. When ready
M may request Ui to send a test message with Test
to a clean session. After sending a test message M may
query for the internal state of a user.M must then guess
if the challenger sent m0 or m1. An adversary’s advan-
tage is defined as Advpfs(M) = Pr[Mwins]− 1

2 .

Theorem A.4. SYM-GOTR provides forward secrecy
if all hash and key derivation functions are modeled as
random oracles. For any adversary M that wins the for-
ward secrecy game and runs in time at most t, estab-
lishes at most s sessions with at most w users per ses-
sion, establishes at most n p2p sessions, and sends at
most r p2p messages, we show that there exists a DDH
adversary D, an IND-CPA adversary P0, and an IND-
CPA adversary B such that

Advfs(M) ≤ r ·AdvDDH(D0)
+ n ·AdvIND−CP A(P0)
+ sw ·AdvIND−CP A(B)

Where D0, P0, and B run in time O(t).

Proof. ForM to win the game he must either compute a
previous sending key which requires knowledge of pre-
vious p2p channel plaintexts. M may either compute
previous p2p channel keys or break the confidentiality
of our authenticated encryption scheme, M may also
break the confidentiality of the authenticated encryp-
tion for broadcast messages.

If M computes previous p2p keys we can construct
a challenger D0 for the forward secrecy game that can

Consistent Synchronous Group Off-The-Record Messaging with SYM-GOTR 202

Fig. 12. SYM-GOTR Backward Secrecy Game

func Initialize(U)
b←R {0, 1}
Initialize PKI for all users in U .

func Test(Sid, Ui,m,m0,m1)
Ui first securely sends m then securely sends mb

in session Sid
Test may only be called once
return All network traffic generated for Ui to

send m then mb to session Sid

func RevealState(Sid, Ui)
May only be called before Test
return All of Ui’s long-term key and current

state for session Sid
func Finalize(d)

return (d = b)

solve the DDH problem if given an adversary that can
win the forward secrecy game. D behaves as a normal
SYM-GOTR challenger. For a random p2p message be-
tween Ui and Uj before Test is invoked, D0 requests
a DDH challenge (gx, gy, gz) and uses gx as Ui’s next
key ratchet pubic key with gy as Uj ’s next key ratchet
public key. gz is the input for the next key derivation
function between the pair. For M to compute the p2p
key used to share the next sending key inputs, M must
query KDF2(gh, Ui, Uj). D0 watchesM ’s random oracle
queries, if gh = gz D guesses gz = gxy. If M computes
the p2p key Advpfs(M) = r ·Advpfs(D0). D0 has prob-
ability 1

r of guessing the correct p2p message.
If M cannot compute previous keys M may break

the authenticated encryption of the p2p channel, in
which case adversary P0 applies. Finally, if the p2p chan-
nels are secureM must break the authenticated encryp-
tion of the group messages adversary B from earlier can
be used to win the IND-CPA game against our authen-
ticated encryption scheme.

If the DDH problem is hard and our authenticated
encryption scheme is secure, SYM-GOTR must be for-
ward secure.

A.7 Backward Secrecy

The backward secrecy property guarantees that after a
users state is revealed only the next message is compro-
mised by a passive adversary. Figure 12 describes the
additional functions of the backward secrecy game. An
adversaryM may reveal the state of a user with the Re-

vealState query. After revealing a state M may issue
Test to instruct Ui to send a message m followed by
test message mb to a clean session. The adversary then
guesses if m0 or m1 was sent. The advantage of M is
defined as Advbs(M) = Pr[Mwins]− 1

2 .

Theorem A.5. SYM-GOTR provides backward se-
crecy if all hash and key derivation functions are mod-
eled as random oracles. For any adversary M that that
wins the backward secrecy game and runs in time at
most t, establishes at most s sessions with at most w
users per session, and establishes at most n p2p ses-
sions, we show that there exists a DDH adversary D1,
an IND-CPA adversary P0, and an IND-CPA adversary
B such that

Advbs(M) ≤ n ·AdvDDH(D1)
+ n ·AdvIND−CP A(P0)
+ sw ·AdvIND−CP A(B)

Where D1, P0, and B run in time O(t).

Proof. For adversary M to win the backward secrecy
game they must be able to compute the next sending
key of Ui or win the IND-CPA game of the broadcast
channel. If M can compute the next sending key M

must either compute the next p2p channel keys or win
the IND-CPA game against the p2p channels.

If M can compute the next p2p sending key we
construct a challenger D1 that can win the DDH prob-
lem. D1 acts as a normal SYM-GOTR challenger before
Test is invoked. When Test is invoked, D1 securely
sends m as normal and queries the DDH challenger for
(gx, gy, gz) for a random pair of users (Ui, Uj). D1 uses
gx as Ui’s next p2p channel public key and gy for Uj .
The next p2p channel sending key for Ui is computed
as Kij = KDF2(gz, Ui, Uj). For M to learn Kij , M
must query the random oracle KDF2(gxy, Ui, Uj). D1
watches M ’s random oracle queries and if M queries
KDF2(gz, Ui, Uj),D1 guesses gxy = gz to the DDH chal-
lenger. D0 wins if the correct p2p channel was selected.
The advantage of D1 is Advbs(M) = n · Advbs(M). D1
has probability n of guessing the correct p2p session.

The adversaries P0 and B discussed previously
demonstrate how to construct a challenger that can win
the IND-CPA game against the p2p channel and broad-
cast channel respectively given an adversary that can
win the backward secrecy game. If M cannot compute
the next p2p sending key or break the IND-CPA game
of our authenticated encryption, SYM-GOTR must be
backward secure.

