
Proceedings on Privacy Enhancing Technologies ; 2018 (4):51–63

Lucas Foppe, Jeremy Martin*, Travis Mayberry*, Erik C. Rye, and Lamont Brown

Exploiting TLS Client Authentication for
Widespread User Tracking
Abstract: TLS, and SSL before it, has long supported
the option for clients to authenticate to servers using
their own certificates, but this capability has not been
widely used. However, with the development of its Push
Notification Service, Apple has deployed this technol-
ogy on millions of devices for the first time. Wachs
et al. [42] determined iOS client certificates could be
used by passive network adversaries to track individ-
ual devices across the internet. Subsequently, Apple has
patched their software to fix this vulnerability. We show
these countermeasures are not effective by demonstrat-
ing three novel active attacks against TLS Client Certifi-
cate Authentication that are successful despite the de-
fenses. Additionally, we show these attacks work against
all known instances of TLS Client Certificate Authenti-
cation, including smart cards like those widely deployed
by the Estonian government as part of their Digital
ID program. Our attacks include in-path man-in-the-
middle versions as well as a more powerful on-path at-
tack that can be carried out without full network con-
trol.

Keywords: TLS, privacy, device tracking, client-
certificates, device identifiers, anonymity

DOI 10.1515/popets-2018-0031
Received 2018-02-28; revised 2018-06-15; accepted 2018-06-16.

1 Introduction
Commodity devices like cell phones, tablets, and lap-
tops with always-on connectivity increasingly provide
consumers a robust, unconstrained mobile user expe-
rience. However, with this added convenience comes a
range of privacy and tracking concerns due to the fact

Lucas Foppe: U.S. Naval Academy
*Corresponding Author: Jeremy Martin: The MITRE
Corporation, U.S. Naval Academy, E-mail: jbmartin@mitre.org
*Corresponding Author: Travis Mayberry: U.S. Naval
Academy, E-mail: mayberry@usna.edu
Erik C. Rye: U.S. Naval Academy
Lamont Brown: U.S. Naval Academy

that those devices are constantly sending and receiving
network traffic, often unprovoked by and unknown to
the user themselves.

Many people naïvely believe they are anonymous on
the Internet, but researchers have repeatedly uncovered
scenarios in which mobile devices transmit unencrypted,
unique identifiers across a network [11, 26, 42]. When
these identifiers are sent over the Internet, or even a lo-
cal network, it makes tracking of the associated devices
and correlation of their traffic possible.

For example, researchers have found the way many
devices utilize 802.11 Media Access Control (MAC) ad-
dresses and cellular International Mobile Equipment
Identities (IMEI) and International Mobile Subscriber
Identities (IMSI) can make them particularly vulnerable
to tracking [15, 25, 29, 30, 34]. As such, Operating Sys-
tem (OS) vendors and network standards bodies have
implemented protocols and policies to mitigate these
vulnerabilities. Specifically, Android’s Marshmallow OS
and iOS 8 introduced MAC address randomization, al-
beit with mixed results [31, 40].

Exposing a device’s unique identifiers to mobile ap-
plications has likewise raised significant privacy con-
cerns [19, 21]. In response, Android and Apple have
implemented stricter safeguards limiting an applica-
tion’s access to these persistent device identifiers [10].
Similarly, applications may construct their own unique
and persistent software identifiers, unwittingly creating
tracking identifiers outside the OSes purview and pro-
tection [20, 39].

The niche use of TLS Client Certificate Authenti-
cation (CCA), in addition to hardware and application
identifiers, is another privacy concern. The use of CCA
for mutual client-server web authentication while not
widespread, has been increasingly utilized for a variety
of country-wide digital ID systems [6, 33]. By design,
CCA relies on client certificates which contain param-
eters that are unique to the user and can unintention-
ally create trackable identifiers. These attributes can be
tied to a user’s network activity and mobility behavior,
which may cause a significant privacy concern. An at-
tacker can further correlate a user’s traffic by combining
the observed certificate attributes with previously men-
tioned persistent, globally unique identifiers.



Exploiting TLS Client Authentication for Widespread User Tracking 52

CCA when implemented using the current Trans-
port Layer Security (TLS) 1.2 standard, transmits the
unique client certificate to the server prior to the point
in the TLS handshake where encryption is established.
As such, the certificate and unique client attributes are
exposed as plaintext communication [24, 35].

Recent work by Wachs et al. [42] identified a signif-
icant privacy risk [2] in the use of CCA in conjunction
with Apple’s Apple Push Notification service (APNs).
Since client certificates are sent unencrypted to the
server, exposing unique information within the client
certificate, they can allow adversaries to identify users
and/or profile their online behavior [42]. This attack was
particularly alarming because it applied across the en-
tire Apple ecosystem, and Apple makes up a large share
of mobile devices currently in use.

Wachs et al. [42] coordinated with Apple to fix the
vulnerability they discovered and protect the privacy of
APNs CCA by deferring the transmission of client cer-
tificates until after the TLS handshake. Additionally,
Parsovs [35] and Johansson [24] have suggested exten-
sions to TLS and modifications to client browsers to
likewise protect the confidentiality of client certificates
during CCA.

1.1 Contributions

In our paper we show that the existing techniques to
protect client privacy during CCA are insufficient. We
provide three novel attacks, two in-path and one on-
path, circumventing all known CCA privacy protection
techniques. For the distinction between in-path and on-
path, see the work of Marczak et al. [28]. First, we em-
ploy these attacks to defeat Apple’s initial mitigations
for CCA privacy vulnerabilities. We worked with the
Apple security team to ensure responsible disclosure of
these vulnerabilities, and with Apple’s release of iOS
11 and macOS High Sierra OSes they were effectively
patched. Additionally, our disclosure directly resulted
in the APNs CCA mitigation protection for Windows
devices running Apple iTunes.

We extend the practicality of these attacks with a
variety of TCP reset techniques, further highlighting the
real-world impact of the vulnerabilities exposed. TCP
reset attacks are not novel on their own, however, when
used in tandem with our TLS attacks they provide a
robust attack framework which illustrates a practical
use case.

Although Apple has patched the vulnerability on
their devices, our attack remains relevant due to slow

adoption rates of new mobile OS software. We estimate
from published data that nearly 50% of iOS devices re-
main vulnerable to our attacks [8]. Additional real-world
tests, depicted in Table 1, were conducted on a large cor-
porate network and are consistent with these reports. As
such, our attacks remain effectively employable against
a large population of the Apple ecosystem.

Next, we evaluate our attacks against CCA-enabled
secure websites. Prior to conducting our active attacks,
we inspect the status of CCA privacy related mitiga-
tion strategies. Surprisingly, our analysis of Estonia’s
digital ID infrastructure revealed a large percentage of
web servers still failing to protect the exposure of the
client certificate from existing passive attacks. Approxi-
mately ∼40% of the 78 tested Estonian websites are con-
figured to transmit CertificateRequest messages prior
to encryption establishment during the TLS handshake,
thereby exposing the client certificate. Disturbingly, this
figure actually represents an increase from ∼33% re-
ported by a 2014 study [35].

While the mitigation strategies proposed by Parsovs
[35] and Johansson [24] exhibit low adoption rates, we
evaluate the effectiveness of our attacks against these
strategies. Our tests indicate two attacks are viable, in-
cluding our in-path replay attack which is universally
effective regardless of TLS server configurations.

Finally, we discuss possible mitigation strategies for
our attacks. In the case of Apple, having control of the
entire APNs CCA client-server infrastructure affords
the luxury of implementing a proprietary, application
layer solution. CCA systems supporting traditional web
login services, however, are unable to enforce client-side
privacy actions, as they cannot compel specific client
behaviors in response to our attacks.

As such, we posit that widespread, successful mit-
igation of our attacks requires full-scale adoption of
TLS 1.3. TLS 1.3 introduces a new handshake protocol
that mandates encrypted transmission of client certifi-
cates. Unfortunately, eliminating the privacy and track-
ing concerns enumerated in our work entirely necessi-
tates revoking support for TLS 1.2 on both clients and
servers in order to prevent downgrade attacks. Since
TLS 1.3 is still years from widespread adoption, we
echo the recommendation of [35] that browser manu-
facturers include notifications when TLS client certifi-
cates are sent unencrypted, which would indicate either
a poorly configured server or a potential Man in The
Middle (MiTM) attack. To that end we have disclosed to
major browser vendors (Microsoft, Apple, Mozilla, and
Google) and are currently coordinating with Mozilla
and Apple towards such a solution.



Exploiting TLS Client Authentication for Widespread User Tracking 53

2 Background
TLS is used ubiquitously across the Internet to provide
authentication and confidentiality to communications
between clients and servers [17, 38]. In the most preva-
lent use case, the server authenticates to the client using
an X.509 certificate containing a valid chain of trust.
After the server authenticates itself, a secure channel is
established based on a session key derived by the client
and server during the handshake. At this point, if the
client needs to authenticate to the server (say, to login
to their account) then they send a password over this
secure channel at the application layer and it is verified
by the server.

However, TLS also supports the ability for clients to
verify their identity to the server using their own X.509
certificate. This option, called CCA, is initiated by the
server, who sends a CertificateRequest message along
with its ServerHello to indicate the client should send
a certificate. The client then responds to the server with
a ClientCertificate message which includes their cer-
tificate. Figure 2a illustrates this process.

While it is possible for a client certificate to be man-
ually installed into a web browser, in practice CCA often
uses certificates stored on a smart card inserted into a
device’s smart card reader. When the browser receives
a CertificateRequest message from the server, it dis-
plays a modal dialog box to the user to confirm which
certificate the user would like to send for authentication.
After the client interacts with the dialog box, the cer-
tificate is sent to the server. Figure 1 shows an example
of this dialog box in a modern browser.

Once a client certificate is sent across the network,
an adversary that observes this traffic can uniquely iden-
tify the user that sent it. Oftentimes, this certificate
includes the user’s full name, email address, and/or a
national- or corporate-specific identifier [6, 24, 35]; at
the very least, it contains a certificate serial number
that can be used to correlate traffic from the same user.
An attacker seeking to take advantage of this privacy
vulnerability may capture client certificates anywhere
along the network path from the client to the server. For
example, CCA taking place on an unencrypted wireless
access point at a coffee shop exposes users’ certificates
to adversaries within 802.11 transmission range. Inter-
net Service Providers, from residential to Internet back-
bone Autonomous Systems, transit the client certificates
of their customers; recent work suggests eavesdropping
capabilities on less than a dozen networks globally al-
lows the tracking of ∼80% of APNs messages. [42]

Fig. 1. Example certificate selection dialog on macOS X (Safari)

3 Methodology
We evaluate the use of CCA in two ecosystems: first,
the Apple APNs infrastructure and second, secure web-
site digital-ID-based authentication. Our observations
reveal a remarkable inconsistency in adoption of privacy
mitigation strategies. Furthermore, even when effort has
been employed to protect the CCA-based exposure of
Personally Identifiable Information (PII) our analysis
reveals inherent TLS flaws preventing such mitigation
attempts.

3.1 Ethical Considerations

In order to evaluate the novel attacks we present in this
work, we conduct a variety of experiments on lab de-
vices owned by the authors and the authors’ institu-
tions. These devices were allowed to communicate with
legitimate network services. Each of the attacks pre-
sented here were against our devices, and when suc-
cessful, resulted in the exposure of our lab related cer-
tificates and associated PII. Given the nature of our
data experiments, we consulted with our Institutional
Review Board (IRB).

The primary concerns of the IRB centered on: i) the
information that we collected, and ii) whether the ex-
periment collects data “about whom” or “about what.”
Because we limit our analysis to TLS packets of our own
devices, we do not observe sensitive PII. Our experiment
was therefore determined to not be human subject re-
search. Finally, in consideration of beneficence and re-
spect for persons, our work presents no expectation of
harm, while the concomitant opportunity for network
measurement and security provides a societal benefit.



Exploiting TLS Client Authentication for Widespread User Tracking 54

Client Server

ClientHello (apns-v2)

ServerHello

Certificate, ServerKeyExchange,

CertificateRequest, ServerHelloDone

ClientCertificate

(a) Pre iOS 10.2, macOS 10.12.2

Client Server

ClientHello (apns-v3)

ServerHello

Certificate, ServerKeyExchange, ServerHelloDone

ClientKeyExchange, ChangeCipherSpec

ChangeCipherSpec

Application Data(CertificateRequest)

Application Data(ClientCertificate)

(b) iOS 10.2.1+ and macOS 10.12.3+ with APNs v3

Fig. 2. APNs Plaintext Certificate Exposure – Pre/Post Mitigation

3.2 Infrastructure Setup

We construct our research network using personally and
institutionally owned equipment in order to observe nor-
mal, unaltered TLS communications between our client
devices and TLS CCA-enabled services on the Internet.
Our design allows us to easily extended our experiments
to inspect client and server transmitted packets, mod-
ify any observed transmissions, and inject our modified
traffic back into our network.

Additionally, we conducted test cases where we as-
sume the role of a weaker active adversary we call an
on-path attacker. Unlike an in-path attacker, an on-path
attacker can observe client transmitted packets and in-
ject their own packets to the client or server, but is un-
able to modify any traffic sent by the legitimate client
or server. This models a scenario like an open WiFi net-
work, where other clients do not control the network but
can spoof messages.

This simple design is implemented using a
commodity-grade laptop running Arch Linux 2017 con-
figured with two 802.11 wireless interfaces. The first in-
terface connects to our Internet gateway, the second, us-
ing create_ap, acts as a bridged interface. Using Wire-
shark we capture all client and server-based commu-
nications, as well as any data we inject into our net-
work. Our initial observations evaluate the parameters,
attributes, and client-server messages transmitted dur-
ing CCA. Furthermore, we evaluate and document the

observed modifications to the TLS handshake when pri-
vacy mitigation strategies have been employed for CCA.

After completing the evaluation of current CCA im-
plementations we proceed to test a variety of in-path
MiTM attacks using Scapy to conduct packet inspection
and injection. Lastly, an additional laptop, acting as an
on-path attacker, injects crafted packets with Scapy di-
rectly onto the local network of the targeted client de-
vice.

4 Analysis

4.1 Apple Push Notification Client Service

Wachs et al. [42] suggest the use of TLS 1.3 as a solution
to APNs client certificate privacy leakage by moving
the CertificateRequest message until after the TLS
encryption handshake has been completed, thereby ob-
scuring fields that can be used to create cryptographi-
cally unique fingerprints of devices utilizing APNs. As a
result, Apple implemented this client certificate obscu-
ration feature of TLS 1.3 in TLS 1.2 using an application
layer protocol extension. Figure 2a depicts the behavior
in Apple devices prior to iOS 10.2.1 and macOS 10.12.3;
Figure 2b shows the client certificate sent to the server
as encrypted application data in devices running iOS
version 10.2.1 or macOS 10.12.3 and later. The updates
were implemented using an upgraded Application Layer



Exploiting TLS Client Authentication for Widespread User Tracking 55

Protocol Negotiation (ALPN), specifically a transition
from apns-security-v2 to apns-security-v3 within
the TLS 1.2 standard.

We explore the effectiveness of this mitigation tech-
nique and highlight three novel attacks that circumvent
this practice. First, we evaluate the CCA TLS hand-
shake process prior to Apple’s mitigation deployment.
Next, we examine the CCA behavior using Apple’s pro-
tected CCA framework derived from [42]. Several key
observations were identified revealing significant imple-
mentation flaws within the TLS protocol. These flaws,
which we illustrate in practice, allow for the systematic
retrieval of CCA derived PII.

4.1.1 In-Path ALPN Downgrade Attack

An initial active attack on APNs use of CCA requires
an attacker be positioned in the path between the client
device and the APNs server the client is attempting to
authenticate with. Unlike the previous vulnerability, in
which the client PII was trivially exposed, this requires
an active attacker who can observe and modify trans-
mitted packets between the server and client.

This attacker, upon intercepting the ClientHello
message sent by the client device, modifies the
ALPN extension attribute from apns-security-v3 to
apns-security-v2, thereby indicating to the APNs
server that the client does not support the recently im-
proved privacy safeguards. The server responds with the
previously vulnerable sequence of messages; namely, the
server sends the CertificateRequest message prior to
the TLS encryption handshake establishment, causing
the client to respond with its certificate with crypto-
graphically unique identifiers exposed. Figure 3a demon-
strates how an in-path attacker might intercept the
ClientHello message to downgrade the apns-security
version used.

4.1.2 In-Path CertificateRequest Replay Attack

A second in-path attack, depicted in Figure 3b, requires
that a previous CertificateRequest has been saved
by the attacker from a less secure apns-security-v2
session – any CertificateRequest will suffice, as it is
client device agnostic. Presumably, attackers in all three
threat models described in [42] – local network, regional,
or global adversaries – will have access to a myriad of
unencrypted CertificateRequest messages.

The attack is carried out when a client at-
tempts to establish a connection with an APNs server.
The attacker first observes the ServerHello and cor-
responding ServerCertificate, ServerKeyExchange,
and ServerHelloDone messages. The attacker simply
modifies these messages to include the previously stored
CertificateRequest and updates relevant TCP and IP
header values accordingly. As before, the client responds
with the client certificate, exposing its unique identi-
fiers.

We believe this behavior is most likely due to an
oversight when implementing apns-security-v3. Os-
tensibly, if the client is connecting with version 3 of the
protocol, it should not respond to CertificateRequest
messages, but the API in iOS requires that the potential
client certificates be specified before the connection is
initiated. This means the client does not know whether
it will ultimately negotiate to use version 2 or 3 at the
point that it has to specify client certificates to the TLS
layer. iOS 11 appears to fix this problem by disallowing
TLS client certificates entirely, making it impossible to
use apns-security-v2.

4.1.3 On-Path APNs Server Spoofing

The last attack, an on-path attack, does not require the
attacker to modify either client or server packets in cases
when the attacker is merely an observer on the same
transmission medium; an attacker observing a client on
an open 802.11 network is a likely and relevant threat.
This method requires the attacker to prepare a modified
version of the expected server response in advance as
described below.

Prior to an attack the adversary must first gather
the required server-based messages. The attacker must
force an APNs server to respond with a cipher suite
that does not include ephemeral Diffie-Hellman key
exchange. This is necessary as an ephemeral key ex-
change includes an additional ServerKeyExchange mes-
sage which contains a signature that protects against re-
play attacks. The APNs appear to support only elliptic-
curve ephemeral Diffie-Hellman (ECDHE) and RSA, so
this amounts to removing elliptic-curve cipher suites as
an option.

The attacker must prepare a server certificate, as
would normally be sent during any TLS connection,
but this certificate must include an RSA public key and
not an elliptic curve one. This is because when elliptic
curve public keys are used for key exchange the TLS
protocol also includes an additional signature field that



Exploiting TLS Client Authentication for Widespread User Tracking 56

Client ServerAttacker

ClientHello (apns-v3)

ClientHello (apns-v2)

ServerHello

Certificate, ServerKeyExchange,

CertificateRequest, ServerHelloDone

ClientCertificate

?

?
(a) ALPN Downgrade Attack

Client ServerAttacker

ClientHello (apns-v3)

ServerHello

Certificate, ServerKeyExchange, ServerHelloDone

Certificate, ServerKeyExchange,

CertificateRequest, ServerHelloDone

ClientCertificate

?

?
(b) CertifcateRequest Replay Attack

Fig. 3. In-Path Attacks

prevents replay attacks. Since we are basically execut-
ing a modified replay attack, and we do not actually
have the private key, we cannot produce that signature
and the attack would fail. Therefore we must have an
RSA-based certificate which will not cause the client
to expect any signature. The default certificate that
APN servers transmit does use an elliptic curve public
key, however by sending a carefully crafted ClientHello
message we can force the APN to send an RSA certifi-
cate instead, which can be used to carry out an on-path
attack. More generally, this means that a similar attack
on other servers can only work if those servers have pub-
lished an RSA certificate. Fortunately RSA certificates
are the most common TLS certificates by far [22].

To obtain a non-ephemeral response, we generate
modified ClientHello messages advertising no support
for ECDHE cipher suites or elliptic curve extensions,
as well as removing support for most RSA suites, as
some RSA suites were identified through trial and er-

ror to fail to establish a TLS client response from
the server. Specifically, the attacker removes all ellip-
tic curve cipher suites, elliptic curve signature algo-
rithms, ALPN, status request, signed certificate
timestamp, and extended master secret fields from
its forged ClientHello message. The server responds
with non-elliptic curve ServerHello, Certificate,
CertificateRequest, and ServerHelloDone messages.

Additionally, when presented with these cipher
suites as options the server responds by choosing TLS
1.0 instead of TLS 1.2. To obtain a proper client re-
sponse to this message, we further modify the server
messages by changing the TLS version from 1.0 back
to 1.2, adding the ALPN apns-security parameters
into the SeverHello, and modify the cipher suite cho-
sen by the server from TLS_RSA_WITH_AES_128_CBC_SHA
to TLS_RSA_WITH_AES_128_CBC_SHA256. The resulting
data is saved for later use.



Exploiting TLS Client Authentication for Widespread User Tracking 57

Client ServerAttacker

ClientHello (apns-v3)

ServerHello

Certificate, CertificateRequest, ServerHelloDone

ClientCertificate

?

?

?

Fig. 4. Eavesdropper Attack (On-Path)

The actual attack, depicted in Figure 4, is carried
out when an eavesdropper observes a ClientHello mes-
sage on the network. The attacker spoofs a response
from the server using the aforementioned saved server
response messages, considering carefully the TCP and
IP header field values in its forged server response.
The adversary must, for example, be aware of both the
client’s and server’s next expected sequence numbers in
order to be in the TCP receive window of client device.

Furthermore, all Apple client devices were observed
using the TCP Timestamp Option defined in [23], which
requires additional state to be tracked by an attacker in
order to successfully impersonate the APNs server. In
order for a forged TCP segment to be accepted by the
victim device’s TCP implementation, the attacker must
echo the Timestamp Value (TSval) field of the victim
device’s last segment in its spoofed packet’s Timestamp
Echo Reply (TSecr) field. Although we experimentally
determined that the IP Time-To-Live field need not be
within any range of the actual APNs server’s packets’ IP
TTL when it reaches the victim, previous work [14] has
suggested monitoring received packet TTL values as a
defense mechanism against accepting forged data from
attackers (though other research shows that legitimate
IP TTL values vary wildly in practice, and suggest that
IP TTL-based spoofing countermeasures are an unreli-
able defense at best [44].)

Nevertheless, as a best practice, we suggest an ad-
versary attempting to execute this attack inject server
messages with an IP TTL that closely matches that of
the legitimate traffic from the APNs server. Upon prop-
erly adjusting our spoofed traffic’s IP and TCP header
values and injected our forged server response, the client
responds with the client certificate, completing the at-
tack by exposing its certificate.

4.1.4 Attack Extensions via TCP Reset

An important limitation of these attacks is the adver-
sary must be present and active during the initial TLS
handshake in order to execute them. This is somewhat
limiting, especially in the Apple scenario, because TLS
sessions can be built on top of long-lived TCP connec-
tions that last for hours.

In order to exploit these vulnerabilities at will, an
attacker also then needs a method to force a new TLS
handshake. One way to do this is to force the underlying
TCP connection to close. Malicious actors, both in and
on the path between communicating end systems, and
those off-path or blind to the end systems’ communica-
tions, have long attempted to use specially crafted TCP
messages to terminate established connections [43, 46].
Off-path adversaries face the difficulty of guessing the
active sequence number space being used by both end-
points of the communication, and much work has been
done to quantify the difficulty of off-path connection re-
sets, decrease the likelihood of an attacker’s success, and
survey the state of adoption of mechanisms designed to
thwart off-path attackers in the wild [27, 36, 37].

By contrast, our threat model focuses on two dis-
tinct scenarios: i. attackers that are in the path be-
tween the communicating devices (for e.g., Autonomous
System- or nation-state-level adversaries), and ii. ad-
versaries who are on the path sharing a broadcast com-
munication channel or are within range of the channel
in order to passively observe traffic between the victim
and the end system with whom it is communicating (for
e.g., an 802.11 wireless link.) The most infamous exam-
ple of nation-state government censorship, the so-called
“Great Firewall of China”, interferes with established
TCP connections by sending a series of forged TCP Re-



Exploiting TLS Client Authentication for Widespread User Tracking 58

Table 1. An overview of the diversity and vulnerabiltiy of Apple operating systems in the network that we monitored [13]

Operating System Day0 Day1 Day2 Day3 Day4 Day5 Daily Avg (%) Exposed In-path On-path Reset

OS X 10.13.1 43 62 36 47 63 97 15 7 7 7 XOS X 10.13.0 5 4 3 2 4 7

OS X 10.12.6 224 169 88 140 220 226
46 7 X X XOS X 10.12.5 21 15 14 9 22 20

OS X 10.12.4 2 6 0 1 3 0

OS X 10.12.1 0 0 0 1 0 0

39 X n/a n/a X
OS X 10.12.0 4 1 0 3 2 1
OS X 10.11.6 218 147 72 117 153 204
OS X 10.10.5 22 17 9 12 18 24

iOS 11.1.1 0 4 3 8 26 28

78 7 7 7 X

iOS 11.1 10 13 14 9 11 8
iOS 11.0.3 44 38 29 21 25 42
iOS 11.0.2 1 1 0 1 2 3
iOS 11.0.1 3 0 2 1 1 1
iOS 11.0 1 1 0 0 0 0

iOS 10.3.3 13 10 12 9 16 5
20 7 X X XiOS 10.3.2 7 5 3 1 2 2

iOS 10.2.1 0 0 0 1 2 0

iOS 10.2 2 0 0 0 1 2
2 X n/a n/a XiOS 10.1 0 0 0 0 1 0

iOS 10.0.2 0 1 1 2 0 0

set (RST) packets to the endpoint within China, causing
the TCP connection to abort [14, 44, 45]. Further, Com-
cast, a large American Internet Service Provider, was
reported to use forged TCP RST packets in order to
bar the use of the BitTorrent file-sharing system on its
network [16, 18]. In our work, we leverage forged TCP
RSTs to force the close of a (relatively) long-lived TCP
connection to passively observe CCA sent during the
initial TLS handshake, or actively modify TLS connec-
tion establishment messages in order to force identifiers
to be sent prior to message encryption.

In our laboratory environment, we observed the
APNs TLS sessions established were long-lived, persis-
tent TCP connections, which limits the scope of our at-
tacks due to the need to modify or spoof TLS handshake
messages in order to obtain the client certificate. In or-
der to overcome this limitation, we found simple TCP
RST or SYN-based reset attacks forced all iOS devices
to renegotiate a new TCP/TLS connection, thereby al-
lowing us to attack any iOS devices on the network.
A variety of triggers are plausible to initiate such reset
attacks, as the APNs servers are on well-known /8 net-
works, the APNs TLS ports are well-known, and clients
on a LAN will have Apple OUI-based MAC addresses.
Further, attackers on the local network of the victim

device or in the path between the victim and the APNs
server will have access to the TCP and IP header field
values necessary to populate the forged TCP messages
to close these connections, force a new TLS handshake
to occur, and provide an opportunity to mount one of
the three attacks.

4.1.5 APNs Vulnerability Scope

All versions of iOS and macOS, as well as Windows de-
vices running iTunes, are, with the exception of iOS 11+
and macOS High Sierra, vulnerable to each of the three
attacks [3]. Our responsible disclosure efforts resulted in
forthcoming security patches, mitigating attacks against
Windows iTunes clients [4].

Apple’s published operating system adoption rate
statistics, derived from the Apple Store on November
6th 2017 indicate that 48% of iOS devices are vulnerable
to passive exposure as well as our novel attacks [8]. Ad-
ditionally, using the techniques described by Anderson
and McGrew [13] we conduct real-world tests on a large
enterprise network November 9th-14th. Due to the re-
sulting observed low-adoption rates, these ground-truth
results illustrated in Table 1 highlight the significant



Exploiting TLS Client Authentication for Widespread User Tracking 59

number of still vulnerable devices. In particular, lap-
tops running OS X exhibit a significantly low adoption
rate. The observed daily average of High Sierra OS X
devices was 15%, leaving 46% and 39% of observed de-
vices vulnerable to our active attacks and the previously
disclosed passive exposure. We also note these numbers
likely show a higher than average adoption rate for iOS
11 due to the fact that the test was conducted on the en-
terprise network of a technology company, where users
are likely to be more security conscious compared to the
population at large.

Table 1 derived via collaboration with the authors
of Anderson and McGrew [13] is based strictly on the
authors ground truth knowledge of the client device’s
operating system. The table represents the totality of
the iOS and macOS users observed within the testing
window. At no time were our attacks attempted on this
enterprise network. Actual tests of our in-path and on-
path attacks were levied across Apple’s device and OSs.
All tests were conducted solely on our laboratory de-
vices, and as such contain no PII. Apple confirmed our
OS version vulnerability conclusions as part of our dia-
log initiated during responsible disclosure.

4.2 HTTPS CCA via Digital-ID

Gemalto, a global digital security company advertises
support to over 40 national eID programs [6]. While the
overall use of HTTPS CCA is low representative to more
common authentication methods, the increasing imple-
mentation of national digital identification systems il-
lustrates a growing privacy concern.

Estonia claiming to have the most highly-developed
national ID card system in the world [7], serves as a
CCA privacy case study. Over 98% of Estonia’s popula-
tion have been issued a digital government ID allowing
for CCA to banking, medical, government, and many
other national service websites. A 2014 study by Parsovs
[35] evaluated the privacy settings of Estonia’s digital-
ID CCA web servers. Specifically, the author evaluates
the mitigation strategy in which the Apache mod_ssl
SSLVerifyClient parameter is configured to protect the
client certificate from trivial adversarial exposure.

We recreate this test, observing surprising results,
namely a decreased implementation of this privacy pre-
serving technique. Our results indicate that ∼40% of the
78 tested Estonian websites are currently configured to
transmit CertificateRequest messages outside a pro-
tected channel. Disturbingly, this represents an increase
from ∼33% of insufficiently configured web servers. We

conclude a representative portion of Estonia’s digital-
ID CCA infrastructure remains insufficiently protected,
exposing the client certificate, allowing for trivial re-
trieval. Next, we evaluate our active attacks against
CCA-enabled websites, including web servers configured
to protect trivial exposure of the client certificate.

In Section 4.1 we introduced three attacks, the first
an in-path attack targeting the ALPN attribute utilized
by APNs to distinguish the security version, whereby
the server and client negotiate a secure client certifi-
cate exchange. As website-based CCA uses no such pa-
rameter to protect the exchange of the client certificate
this downgrade attack is not applicable against HTTPS
CCA schemes.

Implementing our next technique, the
CertificateRequest in-path replay attack, we modify
an observed ServerHello message, injecting a previ-
ously captured CertificateRequest into the message
sequence. All HTTPS CCA utilizing TLS 1.2 or lower,
begins with the RFC defined [38] sequence of messages,
whereby we inject our replayed messages as described
in Section 4.1.2. The resulting observations of our at-
tacks across the breadth of representative web servers
reinforce the fundamental TLS flaw depicted in our
APNs attack evaluations, specifically TLS 1.2 offers no
warning or protection against attacker modified packets
prior to the completion of the TLS handshake. As such
we find 100% of HTTPS CCA remains vulnerable to
our novel attack.

Lastly, we assess the feasibility of the on-path attack
where an adversary spoofs the servers initial TLS hand-
shake messages, including the CertificateRequest
message required to elicit a certificate from the client.
This attack relies on a race-condition scenario where an
attacker is unable to directly modify a server message
but has the ability to inject pre-crafted messages des-
tined for the client network.

This attack works against all known browsers, with
the only practical limitation being that a valid certifi-
cate must be available for the targeted server that in-
cludes an RSA public key. Since the server certificate is
validated before the client responds with its own certifi-
cate, an attacker must send a valid certificate. Further-
more, since elliptic curve cipher suites require the server
to send an additional signature in the ServerHello mes-
sage that prevents replay attacks, this on-path attack
can only be successfully executed with RSA-based key
exchange, and hence and RSA public key in the certifi-
cate. Fortunately, RSA certificates are available for the
vast majority of websites [22].



Exploiting TLS Client Authentication for Widespread User Tracking 60

Using Cisco Umbrella’s website popularity list [9]
we confirm the findings of [22]. We run the cipher-
scan tool [1] using the top 200 thousand websites
identified by Cisco Umbrella, extracting the supported
handshake protocols from the resulting TLS certificate
transactions. Our results show ∼93% of the resulting
182,656 successful connections support RSA-based key
exchanges.

When an RSA certificate is available this attack is
significantly more powerful than the generic in-path at-
tack. It works even when an on-path attacker can only
observe client traffic in which they don’t have any actual
control over the network.

During our analysis of websites implementing CCA,
we discovered several that exhibit the curious behav-
ior of establishing a single, long-lived TLS connection
upon the initial user logon, but then spawn new TLS
connections with CCA when the user interacts with
the website after authentication. These “interaction-
based” TLS CCA connections persist for a relatively
short amount of time, closing after the user-requested
object had been transmitted from the server to the
client. While resetting the long-lived TLS connection
with a TCP RST is a potential avenue for obtaining a
client certificate, we observe that in these situations, the
configuration of the server causing multiple TLS con-
nections offers numerous opportunities to conduct our
in-path and on-path attacks. Further, resetting the per-
sistent, long-lived TLS connection causes the browser
to require user interaction to reselect the desired cer-
tificate to authenticate with the server again; whereas
waiting for user interaction to spawn a short-lived, non-
persistent TCP/TLS connection creates an opportunity
for the attacker to attempt an attack without disrupt-
ing the user experience. In our initial Apple APNs case
study, resetting the long-lived TLS TCP connection is
unlikely to ever be noticed by a user, as push notifica-
tions are not expected to arrive at a particular time.

5 Mitigating Attacks
Strategies for defeating client certificate surveillance at-
tacks fall into two categories: defense against passive
attacks and defense against active attacks.

5.1 Passive Attacks

The most secure defense against these attacks is to move
client authentication out of TLS and into the applica-
tion layer. This allows for the client certificate to be
encrypted at all times and successfully prevents passive
attacks. However, for many applications using TLS (like
HTTPS) it is not possible for the application developer
to make changes to the underlying protocol. There are
some commercial solutions that perform client authen-
tication using, for example, Java applets [5], which are
outside of the normal TLS negotiation, but there are no
standards that we are aware of for performing this type
of authentication.

The best standards-compliant defense against the
passive observation of client certificates is to allow
clients to connect to the server without specifying a
client certificate, and then perform client authentica-
tion during an immediate TLS renegotiation. This has
the benefit of sending the client certificate encrypted
with the already established session key, obscuring it
from eavesdroppers. Such a strategy is possible with
Apache web server, for example, by configuring mod_ssl
with the SSLVerifyClient directive in a directory con-
text [35].

5.2 Active Attacks

Unlike the passive version of this attack, our new active
attack seems to be very difficult to mitigate. Again, if
the client authentication is moved entirely into the ap-
plication layer then theoretically the active attack would
also be prevented. We see this done by Apple in iOS 11
where they incorporate client authentication into their
APNS protocol and configure both the client and server
not to use TLS client certificates. However, this is only
possible for Apple because they have complete control
over both the server and client. For most uses of client
certificates, the client is a generic unmodified browser
and cannot run a custom application layer protocol to
perform authentication.

Defenses that work against passive attacks, like Java
applets or session renegotiation, unfortunately cannot
help against an active attacker because they all come
into effect too late in the protocol. The active attacker
inserts the CertificateRequest into the TLS negoti-
ation at the first server message, before any authen-
tication or integrity information is exchanged. At this
point there is no feasible way for the client to know
whether it legitimately comes from the server or was



Exploiting TLS Client Authentication for Widespread User Tracking 61

inserted fraudulently. Even cipher suites which provide
some extra integrity check during the handshake, like
ECDHE, do not attempt to provide integrity for the
CertificateRequest message and so cannot prevent
this attack.

In TLS 1.3, client authentication is moved to a later
stage of the protocol, after the session key has been es-
tablished. However, not even full implementation of TLS
1.3 (which is still some time away) will entirely mitigate
an active attack as long as clients still support TLS 1.2
as a fallback. An attacker can simply intercept traffic
between the server and client and force them to use
TLS 1.2 or even carry out the handshake entirely with
the client in an on-path attack. Downgrade attacks are
an unfortunate consequence of backwards compatibility,
and have already been shown to be very dangerous in
TLS [12, 32]. We see only two complete defenses against
an active attack:
– Browsers can be modified to provide a setting

that prevents client certificates from being sent un-
encrypted during a TLS negotiation. This would
require manual opt-in by all potentially effected
users, or else risk not allowing connections to non-
complying servers.

– Browsers and servers can fully implement TLS 1.3
and refuse to do client authentication with servers
that do not support it.

Neither of these are currently feasible given the broad
range of devices and users that need to be supported by
most web applications.

5.3 TCP Reset

An orthogonal question is whether our TCP reset tech-
nique can be prevented. Ostensibly, once a TLS session
has been established it should be possible to disallow
resets from unencrypted TCP messages, although this
is not currently how the protocol is specified. Völker
and Schöller [41] have shown that one can repurpose
the MD5 signature option within TCP to prevent reset
attacks against established TLS connections. However,
to our knowledge this remains a proof-of-concept work
and is not implemented in any major systems.

5.4 Conclusion

We have demonstrated three new active attacks against
Client Certificate Authentication in TLS 1.2 that can
allow an attacker to identify and track individual users

across the internet. Specifically, we have shown these
attacks can be used against Apple’s Push Notification
Service to track any user with an iOS device prior to
iOS 11, a macOS X device prior to High Sierra or a
Windows machine with any version of iTunes installed.

Our attacks also apply to all technologies that
use TLS client certificates for HTTPS authentication
through a web browser, such as smart cards. We present
several mitigation strategies for these attacks, but be-
cause the core vulnerability we exploit is built into TLS
1.2, full protection from these attacks is unlikely until
TLS 1.3 becomes widely deployed.

Acknowledgment
We thank Blake Anderson and David McGrew for pro-
viding significant time and resources in assisting us with
the APNs vulnerability scope analysis. Additionally, we
would like to thank the Apple privacy team who pro-
vided prompt feedback and guidance. Views and con-
clusions are those of the authors and should not be in-
terpreted as representing the official policies or position
of the U.S. Government. The author’s affiliation with
The MITRE Corporation is provided for identification
purposes only, and is not intended to convey or imply
MITRE’s concurrence with, or support for, the posi-
tions, opinions or viewpoints expressed by the author.

References
[1] cipherscan. https://github.com/mozilla/cipherscan. Ac-

cessed: 2017-12-28.
[2] CVE-2017-2383. https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2017-2383, . Accessed: 2017-
10-17.

[3] CVE-2017-13863. https://support.apple.com/en-
us/HT208112, . Accessed: 2018-02-24.

[4] CVE-2017-13864. https://nvd.nist.gov/vuln/detail/CVE-
2017-13864, . Accessed: 2018-02-24.

[5] URL http://dbsign.com/products/dbsign/uws.
[6] eID card - eID programs. https://www.gemalto.com/govt/

identity. Accessed: 2017-11-28.
[7] e-estonia - e-identity. https://e-estonia.com/solutions/e-

identity/id-card/. Accessed: 2017-11-28.
[8] App Store - As measured by the App Store on November

6, 2017. https://developer.apple.com/support/app-store/.
Accessed: 2017-11-28.

[9] Cisco - Umbrella Popularity List. http://s3-us-west-
1.amazonaws.com/umbrella-static/index.html. Accessed:
2017-12-28.

http://dbsign.com/products/dbsign/uws
https://www.gemalto.com/govt/identity
https://www.gemalto.com/govt/identity
https://e-estonia.com/solutions/e-identity/id-card/
https://e-estonia.com/solutions/e-identity/id-card/
https://developer.apple.com/support/app-store/


Exploiting TLS Client Authentication for Widespread User Tracking 62

[10] What Is A UDID And Why Is Apple Killing Apps That
Track Them? https://www.cultofmac.com/160248/what-
the-hell-is-a-udid-and-why-is-apple-worried-about-them-
feature/. Accessed: 2017-11-28.

[11] China Deputizes Smart Phones to Spy on Beijing Residents’
Real-Time Location. https://www.eff.org/deeplinks/2011/
03/china-deputizes-smart-phones-spy-beijing-residents, Oct
2011.

[12] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry,
M. Green, J. A. Halderman, N. Heninger, D. Springall,
E. Thomé, L. Valenta, et al. Imperfect Forward Secrecy:
How Diffie-Hellman Fails in Practice. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 5–17. ACM, 2015.

[13] B. Anderson and D. McGrew. OS Fingerprinting: New Tech-
niques and a Study of Information Gain and Obfuscation.
IEEE Conference on Communications and Network Security,
2017.

[14] R. Clayton, S. Murdoch, and R. Watson. Ignoring the Great
Firewall of China. In Privacy Enhancing Technologies, pages
20–35. Springer, 2006.

[15] M. Cunche. I Know Your MAC Address: Targeted Tracking
of Individual Using Wi-Fi. Journal of Computer Virology and
Hacking Techniques, 2014.

[16] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gum-
madi. Detecting Bittorrent Blocking. In Proceedings of the
8th ACM SIGCOMM conference on Internet measurement,
pages 3–8. ACM, 2008.

[17] E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3 draft.

[18] P. Eckersley, F. von Lohmann, and S. Schoen. Packet
Forgery by ISPs: A Report on the Comcast Affair. Electronic
Frontier Foundation, 2007.

[19] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: De-
tecting Privacy Leaks in iOS Applications. In NDSS, pages
177–183, 2011.

[20] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun,
L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taint-
Droid: an Information-flow Tracking System for Realtime
Privacy Monitoring on Smartphones. ACM Transactions on
Computer Systems (TOCS), 2014.

[21] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androi-
dLeaks: Automatically Detecting Potential Privacy Leaks in
Android Applications on a Large Scale. Trust, 12:291–307,
2012.

[22] L.-S. Huang, S. Adhikarla, D. Boneh, and C. Jackson. An
Experimental Study of TLS Forward Secrecy Deployments.
IEEE Internet Computing, 18(6):43–51, 2014.

[23] V. Jacobson, R. Braden, and D. Borman. Tcp extensions for
high performance. 1992.

[24] D. Johansson. Privacy Risks with Using Client Certificates
for Authentication. http://www.infosecurityeurope.com/
__novadocuments/89008?v=635703263638330000. Ac-
cessed: 2017-11-28.

[25] D. Kerr. Russian police spy on people’s mobile data to catch
thieves. https://www.cnet.com/news/russian-police-spy-on-
peoples-mobile-data-to-catch-thieves/, Jul 2013.

[26] T. Kohno, A. Broido, and k. c. claffy. Remote Physical
Device Fingerprinting. IEEE Transactions on Dependable
and Secure Computing, 2(2):93–108, 2005.

[27] M. Luckie, R. Beverly, T. Wu, M. Allman, et al. Resilience
of Deployed TCP to Blind Attacks. In Proceedings of the
2015 ACM Conference on Internet Measurement Conference,
pages 13–26. ACM, 2015.

[28] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield,
S. McKune, A. Rey, J. Scott-Railton, R. Deibert, and
V. Paxson. China’s great cannon. Citizen Lab, 10, 2015.

[29] J. Martin, D. Rhame, R. Beverly, and J. McEachen. Cor-
relating GSM and 802.11 Hardware Identifiers. In IEEE
Military Communications Conference, 2013.

[30] J. Martin, E. Rye, and R. Beverly. Decomposition of MAC
Address Structure for Granular Device Inference. In Proceed-
ings of the 32nd Annual Conference on Computer Security
Applications, pages 78–88. ACM, 2016.

[31] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown,
C. Riggins, E. C. Rye, and D. Brown. A Study of MAC Ad-
dress Randomization in Mobile Devices and When it Fails.
Proceedings on Privacy Enhancing Technologies, pages 365–
383, 2017.

[32] B. Möller, T. Duong, and K. Kotowicz. This POODLE
Bites: Exploiting the SSL 3.0 Fallback. PDF online, pages
1–4, 2014.

[33] E. Network and I. S. Agency. Privacy and Security Risks
when Authenticating on the Internet with European eID
Cards. https://www.enisa.europa.eu/publications/eid-online-
banking/at_download/fullReport. Accessed: 2017-11-28.

[34] B. L. Owsley. Spies in the Skies: Dirtboxes and Airplane
Electronic Surveillance. Mich. L. Rev. First Impressions, 113:
75–75, 2015.

[35] A. Parsovs. Practical Issues with TLS Client Certificate
Authentication. In NDSS, volume 14, pages 23–26, 2014.

[36] Z. Qian and Z. M. Mao. Off-path TCP Sequence Number
Inference Attack-How Firewall Middleboxes Reduce Security.
In Security and Privacy (SP), 2012 IEEE Symposium on,
pages 347–361. IEEE, 2012.

[37] A. Ramaiah, R. Stewart, and M. Dalal. Improving TCP’s
Robustness to Blind In-Window Attacks. Technical report,
2010.

[38] T. Dierks. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246, Aug. 2008.

[39] S. Thurm and Y. I. Kane. Your apps are watching you. The
Wall Street Journal, 17:1, 2010.

[40] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and
F. Piessens. Why MAC Address Randomization is not
Enough: An Analysis of Wi-Fi network discovery mecha-
nisms. In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pages 413–424.
ACM, 2016.

[41] L. Völker and M. Schöller. Secure TLS: Preventing DoS
Attacks with Lower Layer Authentication. In Kommunikation
in Verteilten Systemen (KiVS), pages 237–248. Springer,
2007.

[42] M. Wachs, Q. Scheitle, and G. Carle. Push Away Your pri-
vacy: Precise User Tracking Based on TLS Client Certificate
Authentication. In Network Traffic Measurement and Analy-
sis Conference (TMA), 2017, pages 1–9. IEEE, 2017.

[43] P. Watson. Slipping in the Window: TCP Reset Attacks.
Presentation at, 2004.

[44] N. Weaver, R. Sommer, and V. Paxson. Detecting Forged
TCP Reset Packets. In NDSS, 2009.

https://www.cultofmac.com/160248/what-the-hell-is-a-udid-and-why-is-apple-worried-about-them-feature/
https://www.cultofmac.com/160248/what-the-hell-is-a-udid-and-why-is-apple-worried-about-them-feature/
https://www.cultofmac.com/160248/what-the-hell-is-a-udid-and-why-is-apple-worried-about-them-feature/
https://www.eff.org/deeplinks/2011/03/china-deputizes-smart-phones-spy-beijing-residents
https://www.eff.org/deeplinks/2011/03/china-deputizes-smart-phones-spy-beijing-residents
http://www.infosecurityeurope.com/__novadocuments/89008?v=635703263638330000
http://www.infosecurityeurope.com/__novadocuments/89008?v=635703263638330000
https://www.cnet.com/news/russian-police-spy-on-peoples-mobile-data-to-catch-thieves/
https://www.cnet.com/news/russian-police-spy-on-peoples-mobile-data-to-catch-thieves/
https://www.enisa.europa.eu/publications/eid-online-banking/at_download/fullReport
https://www.enisa.europa.eu/publications/eid-online-banking/at_download/fullReport


Exploiting TLS Client Authentication for Widespread User Tracking 63

[45] X. Xu, Z. M. Mao, and J. A. Halderman. Internet Censor-
ship in China: Where Does the Filtering Occur? In Interna-
tional Conference on Passive and Active Network Measure-
ment, pages 133–142. Springer, 2011.

[46] M. Zalewski. Strange Attractors and TCP/IP Sequence
Number Analysis, 2001.


	Exploiting TLS Client Authentication for Widespread User Tracking
	1 Introduction
	1.1 Contributions

	2 Background
	3 Methodology
	3.1 Ethical Considerations
	3.2 Infrastructure Setup

	4 Analysis
	4.1 Apple Push Notification Client Service
	4.1.1 In-Path ALPN Downgrade Attack
	4.1.2 In-Path CertificateRequest Replay Attack
	4.1.3 On-Path APNs Server Spoofing
	4.1.4 Attack Extensions via TCP Reset
	4.1.5 APNs Vulnerability Scope

	4.2 HTTPS CCA via Digital-ID

	5 Mitigating Attacks
	5.1 Passive Attacks
	5.2 Active Attacks
	5.3 TCP Reset
	5.4 Conclusion



