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Abstract: The growing availability of genomic data
holds great promise for advancing medicine and re-
search, but unlocking its full potential requires adequate
methods for protecting the privacy of individuals whose
genome data we use. One example of this tension is run-
ning Similar Patient Query on remote genomic data: In
this setting a doctor that holds the genome of his/her
patient may try to find other individuals with “close"
genomic data, and use the data of these individuals to
help diagnose and find effective treatment for that pa-
tient’s conditions. This is clearly a desirable mode of
operation. However, the privacy exposure implications
are considerable, and so we would like to carry out the
above “closeness” computation in a privacy preserving
manner.
In this work we put forward a new approach for highly
efficient secure computation for computing an approx-
imation of the Similar Patient Query problem. We
present contributions on two fronts. First, an approxi-
mation method that is designed with the goal of achiev-
ing efficient private computation. Second, further opti-
mizations of the two-party protocol. Our tests indicate
that the approximation method works well, it returns
the exact closest records in 98% of the queries and very
good approximation otherwise. As for speed, our pro-
tocol implementation takes just a few seconds to run
on databases with thousands of records, each of length
thousands of alleles, and it scales almost linearly with
both the database size and the length of the sequences in
it. As an example, in the datasets of the recent iDASH
competition, after a one-time preprocessing of around
12 seconds, it takes around a second to find the nearest
five records to a query, in a size-500 dataset of length-
3500 sequences. This is 2-3 orders of magnitude faster
than using state-of-the-art secure protocols with exist-
ing edit distance algorithms.
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1 Introduction
Consider the task of a medical doctor who wants to
compare a patient’s DNA against a remote genomic
database, e.g., to determine the patient’s pre-disposition
to various medical conditions. The database contains
a list of individual genome sequences, each labeled
with the medical conditions of that person. The doc-
tor needs to find the few individuals in the database
whose genome sequence (in the relevant segment) most
resembles that of the patient, and learn the medical con-
ditions of these individuals. We define resemblance (or
closeness) in terms of edit distance.

This mode of operation is important for recogniz-
ing the subtype of cancer a patient might have. As each
cancer is unique, comparing the genome of a patient
will help pinpoint which mutations are behind the dis-
ease, and will also help to avoid painful treatments that
would not cure the disease. According to the Global
Alliance for Genomics and Health (GA4GH) institu-
tion [GA4], this mode of operation is expected to be
used in a scale of hundreds of millions of patients within
about a decade. Genome sequencing can help patients
find out which treatments to select or avoid, and a more
accurate prognosis and guidance to the most suitable
clinical trial.

Sending the patient’s DNA sequence to the database
has severe privacy implication, thus, we would like to
find an effective privacy preserving solution to this
task. More specifically, we seek a solution to the fol-
lowing k-closest-match problem: We have a server that
holds a database DB of genomic sequences (S1, . . . , Sm),
whose approximate length and position inside the hu-
man genome are known. The client (doctor) holds a se-
quence query Q, and wishes to find the identities of the
k sequences in the DB that have the smallest edit dis-
tance from Q (where k is a public parameter). The goal
is to perform this computation in a privacy-preserving
manner (see Figure 1). We target security in the pres-
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ence of an honest-but-curious adversary. Our work was
motivated by the recent “secure genome analysis com-
petition” run by iDASH [iDA16].

Unfortunately, the straightforward solution of com-
puting the exact edit distance of Wagner-Fischer
[WF74] (or even the near-linear-time approximation of
Andoni and Onak [AO12]) using a secure-computation
protocol would be prohibitively slow. Using state-of-
the-art secure-computation techniques, such protocols
would take many minutes (maybe even hours) per query,
and certainly will not scale to large datasets and long
sequences.

In this work, we develop an efficient privacy-
preserving protocol for computing the k-match function
from above. Our solution reduces the secure computa-
tion portion by following two principals: (1) Off-loading
computation to the parties in the clear, even at the cost
of increasing their local computation, and (2) Exploit-
ing as much as possible the specific setting of the prob-
lem that we are solving. While targeting a somewhat
restricted case study, the techniques that we develop
can also be applied in other settings of computing k-
closeness, as we will elaborate below.

These principles are demonstrated in our solution
as follows. As for (1), our solution lets the client and
server preprocess their respective inputs to the protocol.
This preprocessing includes many edit-distance compu-
tations (linear in the size of the database), however,
these are all carried out in the clear, and saves signif-
icant work for the secure computation portion. More-
over, this preprocessing is reusable and can be used by
the server to answer an unlimited number of queries. As
for (2), we develop an approximation function for the k-
closeness problem that utilizes the application domain.

We show that the implementation of this approxi-
mation can handle databases with hundreds of records
and sequences of length thousands of alleles. We ran our
solution on a few databases of various sizes in regions
featuring high divergence among individual genomes
(variability of around 5%). Our experiments yielded ex-
cellent results both with respect to the accuracy and
runtime (see §5 for details). Furthermore, our protocol
was tested by external referees as part of the partici-
pation in the iDash competition in which we won the
first place for the fastest runtime and for accuracy and
efficiency.

Similar accuracy and performance results to the val-
ues that we report were confirmed. After a one-time
preprocessing of around 12 seconds, our solution can
answer many queries in about a second each, where
each query consists of finding the five closest sequences

Fig. 1. The problem statement. The client (Doctor) holds a single
sequence, and it looks for the identities of the k-closest sequences
in a remote database (Hospital). Privacy should be preserved for
both the sequences in the database as well as the doctor’s query.

in a database of 500 sequences, each of length approx-
imately 3470 nucleotides. Our solution scales well for
larger databases, as we explain in §6. As for accuracy,
our protocol returns the exact k-closest records in 98%
of the queries, and returns a very close set to the exact
one otherwise.

In summary, our contributions include the following:

– Developing new approximation function for edit dis-
tance that highly utilizes the application domain, that
is, the distribution of genomic data.

– We design two-party protocol for computing this ap-
proximation function, and make further optimizations
of the two-party protocol.

Applications beyond genomics. A large part of the
paper is devoted for the development of the approxima-
tion function and understanding its properties. This ap-
proximation function heavily relies on the specific data
distribution and is tailored to the application domain
of finding similar patients in genomic data. In contrast,
our secure protocol is suitable, as is, for other scenar-
ios in which one has to compute distance of some query
from a remote database. The protocol can also compute
k-closest vectors for some query vector, where closeness
is in terms of hamming distance, as long as each coor-
dinate is over a small alphabet. This task has many ap-
plications, such as finding closest codeword for a given
string, matching biometrics in a remote database, de-
tecting abnormality in network logs, finding similar pa-
tients in structural medical database, and more.

Related work. The most relevant previous work is that
of Wang et al. [WHZ+15], and the relevant concurrent
works are those of Zhu and Huang [ZH17], and Al Aziz,
Alhadid and Mohammed [AAM17]. All works deal with
a similar problem to ours—computing edit-distances
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while targeting genomic applications. [WHZ+15] targets
regions of the genome with smaller divergence and is not
sensitive enough to approximate well the distances in re-
gions with higher diversity as addressed in this paper.
Both concurrent works achieve significantly slower run-
ning times. We elaborate on these works in Appendix A.

Jha et al. proposed in [JKS08] some techniques
for secure edit distance using garbled circuits, and
shows that the overhead is acceptable only for small
strings. (For example, handling 200-character strings
takes about 2GB of bandwidth.) Using some further
optimizations, they showed that 500-character string in-
stances can be computed in almost an hour. Computing
edit distance is also a common benchmark for analyzing
improvements in general secure computation techniques
and frameworks (see [HEKM11, HSE+11, ALSZ13], to
state a few). These works compute accurate edit dis-
tance, and do not utilize the specific input distribution
of genomic data.

Recent years saw a large body of work on using
secure computation protocols for genomic data, some
surveys include [NAC+15, ABOcS15].

Security implications of computing an approx-
imation. Feigenbaum et al. [FIM+01] observed that
computing an approximated version of a function may
have security implications, in that the approximated
version may leak information which is not revealed by
the exact version. This concern applies to our solu-
tion, as well as to other works that compute approxi-
mation (e.g., [WHZ+15, AAM17]). For instance, when
asking for the closest-5 sequences and the exact result
returns ids {6,25,88,192,994}, our approximating pro-
tocol might return {6,25,97,192,994}, revealing infor-
mation about patient 97 that was not supposed to be
revealed by the exact computation. We elaborate on this
in §7.

2 Overview
We develop a new (approximate) edit distance algo-
rithm with the goal of achieving efficient private com-
putation. In the following, we overview the ideas behind
our approximation function.

The approximation function. We develop an effi-
cient approximation algorithm that utilizes the distri-
bution of genomic data. We heuristically expect (and
empirically verify) that our algorithm provides an ex-
cellent approximation of the desired functionality.

Fig. 2. Flow of the preprocessing of the database at the server
side. (1) The database. (2) The server compares all sequences to
the reference genome, and breaks each sequence into blocks. (3)
The number of different values in each block is small. The client
has to compare its query to few values (in this contrived example,
v ≤ 3). *** denotes a fake string, and is used for padding.

We first replace the edit-distance function with
a block-wise approximation of it. Using a specially
tailored method (that we describe below) we break
the query Q into n blocks (Q1, . . . , Qn), and similarly
break each sequence Si in the database into blocks
(Si,1, . . . , Si,n), where the blocks are very small (typ-
ically, no more than 15 letters). Denoting by ED the
edit-distance function, we first define the approximation
to be:

ApproxED(Q,Si) ≈
n∑
`=1

ED(Q`, Si,`). (2.1)

This approximation alone reduces the cost signif-
icantly, from O(|Q|·|Si|) to O(|Q|+|Si|), as computing
the distance of ED(Q`, Si,`) when |Q`|, |Si,`| are is rela-
tively cheap, and so the computation of ApproxED(Q,Si)
can be done in linear time. As answering the query re-
quires computing the edit distance between Q and many
sequences S1, . . . , Sm, and given that we are dealing
with genomic data we can further optimize the run-time.

We observe that in this setting, each block position
has only a few distinct values (such as {TT, AGT, AGG})
that actually appear in that location. That is, after
breaking all sequences in the database into blocks, there
are only few possible combinations for each location. To
be more precise, for each ` (where ` = 1, ..., n) the cardi-
nality of the set of values T` = {Si,`}mi=1 is much smaller
than m. In our test of public genomic datasets we only
had v = max`{|T`|} ≤ 10 (even for a dataset of size 500).
This means that hundreds of edit distances can be com-
puted at the cost of computing ED(Q`, Si,`) for only 10
values, and saves a considerable amount of the work. In
addition, in almost all cases (> 99%), the block Q` of
the query is also one of the values in the set T`, and so
the edit distance values are from the set ED(u, Si,`) for
all u ∈ T`.We utilize these facts in order to speedup the
computation.
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Let v be a known bound on the number of distinct
values in each block. We denote the elements of the set
T` as (u`,1, . . . , u`,v); if the number of elements in T` is
less than v, then dummy values are added (see Figure 2
for a demonstration). We define a bit variable χ`,j that
indicates whether or not u`,j = Q`, for u`,j ∈ T`. If the
value Q` happens to be equal to one of the u`,j ’s, then
for every Si,` we have

ED(Q`, Si,`) =
v∑
j=1

χ`,j · ED(u`,j , Si,`). (2.2)

Namely, in this case we can compute the values that are
needed for Eq. (2.1) as a simple linear combination in-
volving the (few) bits χ`,j and the values ED(u`,j , Si,`).
Importantly, this means that the actual edit distance
between Q` and the Si,` never has to be computed ex-
plicitly! That is, we approximate the edit distance be-
tween Q and Si by computing

ApproxED(Q,Si) =
n∑
`=1

v∑
j=1

χ`,j · ED(u`,j , Si,`). (2.3)

The only part of this equation that depends on Q` is
χ`,j , which is a simple equality comparison and so can
be efficiently computed privately. We note that in the
case where Q` /∈ T`, the expression on the right-hand
side of Eq. (2.2) is always zero, so these cases introduce
more error to our approximation. Nevertheless, our em-
pirical tests on real genomic data show that the effect
of this added error is very minor (see Appendix D.2).
Summing up, a query is solved by securely computing
the approximate k-closest-match function, defined as:

ApproxClosestk,m(Q, {S1, . . . , Sm}) = i1, . . . , ik, (2.4)
where Si1 , . . . , Sik have the smallest
ApproxED(Q,Si) values.

Ties are broken using the indexes i themselves. We re-
mark that the actual output returned may be the in-
dexes, or may be a label stating the medical conditions
of the patients with the matching sequences.

As we will see, this function can be securely com-
puted with extremely high efficiency, as many of the el-
ements in this function can be computed locally in the
clear by the owner of the dataset and the query holder
(details below). This leaves the question of how to parti-
tion the sequence into blocks to yield not only run-time
efficiency but also accuracy.

Partitioning into blocks. A crucial detail of our ap-
proximation is the method that we use to partition the
sequences Si and the query Q into blocks. The simplest

possibility would be to partition them into fixed-length
blocks, but this simplistic partitioning yields a poor ap-
proximation. For example, a small shift close to the
beginning of the query (perhaps just inserting a single
character) can lead to many misalignments in the con-
secutive blocks, causing this single error to be counted
multiple times (see an example below).

To get a better partitioning method, we utilize spe-
cific features of our application domain,1 specifically the
existence of a public “reference genome” R. This refer-
ence genome was created by the “Reference Genome
Consortium” with the purpose of being a representative
of the human genome. As a result of its design prin-
cipals it is somewhat close to both the query Q and
the database sequences Si. Our partitioning method be-
gins with applying the simplistic partitioning above to
the reference genome R, using a block-size parameter b.
Then, each party separately aligns its input sequence(s)
to the reference sequence (using the Wagner-Fischer al-
gorithm [WF74]), and we use the fact that the align-
ments of Q vs. R and Si vs. R are close, to induce a
good alignment between Q and Si. We stress that al-
though R is broken into blocks of size b in a naive way,
the alignment method used for breaking Q and the Si se-
quences into blocks results in blocks of varying lengths.
We denote by b′ an upper bound on the size of blocks in
Q,S1, . . . , Sm (i.e., all of the blocks are of size 0, . . . , b′).

Using this method for partitioning the blocks rel-
atively to a publicly known sequence yields very good
results: In our tests, our approximation algorithm re-
turned exactly the k closest sequences in more than
98% of the runs, and a very good approximation in
the remaining 2%, see more details in §5. Our exper-
iments show similar results for all different regions of
the genome that we checked.

In Example 2.1, we show the significance of break-
ing the sequences with alignment relative to a refer-
ence genome R, as opposed to breaking them into fixed-
length blocks. Our partitioning allows flexibility with
respect to the breaking points of the sequences, signif-
icantly improving the accuracy of the block-wise edit-
distance approximation.

1 We remark that using an application-specific partitioning
method is the best we can hope for: Any general-purpose parti-
tioning that yields linear-time processing (and guarantees accu-
racy) will violate a conditional lower bound on the complexity
of edit-distance calculations [BI15]. We stress that the align-
ment of Q and the Si’s to R is done locally and in the clear by
each party. Description of this procedure and an estimate of its
accuracy can be found in §4.



Privacy-Preserving Search of Similar Patients in Genomic Data 108

Fixed-Size Partitioning Total: 7
Q TTTA ATGG TTAT
Si TTAA TAGT TAGA

ED(Q`, Si,`) 1 3 3

Our Partitioning Total: 4
R TTTA ATAG TTAG
Q TTTA ATGG TTAT
Si TTA ATAG TTAGA

ED(Q`, Si,`) 1 1 2

Example 2.1. Comparing between block-wise edit dis-
tance approximation where the sequences are split ac-
cording to fixed-size partitioning and our partitioning. In
this example, Si = TTAATAGTTAGA, Q = TTTAATGGTTAT,
and the reference genome is R = TTTAATAGTTAG, where
we break the blocks to blocksize b = 4. In the exact solu-
tion, the edit distance is 4.

Efficient secure computation. Transforming the ap-
proximation procedure above into a secure protocol is
not a straightforward application of generic transforma-
tions (e.g., Yao [Yao86] or GMW [GMW87]). Rather we
use the specific form of our approximation to get a faster
implementation.

The protocol begins with a preprocessing phase.
The server first breaks all the genomes into blocks as
described above, and then it computes the sets T` =
{u`,1, . . . , u`,v} for every ` = 1, . . . , n. Likewise, the
client also breaks its query Q into blocks Q1, . . . , Q` ac-
cording to the same reference genome R. Moreover, the
server computes all the intra-block edit-distance values
defining a matrice L` such that L`[j, i] = ED(u`,j , Si,`),
for ` = 1, . . . , n, j = 1, . . . , v and i = 1, . . . ,m. That is,
the value L`[j, i] represents the contribution of the `th
block to the approximation of ED(Q,Si), in case where
that block of the query is the jth value in the set T`,
i.e., Q` = u`,j .

Once these matrices are precomputed and held by
the server (in the clear), the problem of computing
Eq. (2.3) is reduced to securely computing matrix-vector
multiplication. That is, the parties first compute shares
of the vector of bits χ`,j (recall that bit χ`,j indicates
whether or not Q` = u`,j), and the result is obtained
by securely computing the product of a matrix held by
the server and the vector of bits χ`,j shared between the
parties.

Since the χ`,js must be secret, and are a function of
private inputs, the vector needs to be computed using
a secure protocol, and the output must be shares of the
vector so that neither party learns it. In order to carry
out this computation of shares of χ`,j , the parties engage
in a standard secure computation protocol for comput-

ing a random XOR sharing of all the bits χ`,j , using
an optimized variant of Yao’s garbled circuits. Then for
each j, ` the parties execute a 1-out-of-2 oblivious trans-
fer protocol to get a random additive sharing of the
value χ`,j ·L`[j, i] = χ`,j ·ED(u`,j , Si,`), which is of course
accelerated using OT-extension [ALSZ13, KOS15]. This
utilizes a method for securely multiplying a string and
a shared bit using OT.

The parties then locally sum up their shares as per
Eq. (2.3), thus obtaining an additive sharing of the ap-
proximate edit distance values ApproxED(Q,Si) for ev-
ery i = 1, . . . ,m. Finally a standard secure computation
protocol, using an optimized variant of Yao’s garbled
circuits, yields the indexes of the k smallest values. In
order to ensure that enough “wires” are allocated for
each value, we assume a publicly known upper-bound
d on the maximum edit distance. Since this has little
effect on the efficiency of the solution, a coarse upper
bound can be taken. We prove that:

Theorem 2.2 (informal). The protocol sketched above
securely computes the function ApproxClosestk,m from
Eq. (2.4) in the semi-honest adversary model.

Implementation and performance. We imple-
mented our protocol using the C++ version of the Se-
cure Computation API library (SCAPI) [EFLL12], and
tested it on a few databases with hundreds of real ge-
nomic sequences. Furthermore, the protocol was evalu-
ated by external referees as part of the iDASH compe-
tition.
In our tests, the most costly aspect was the pre-
processing on the server side (which is performed in the
clear, and only needed to be done once). We did not
optimize this part and it took under 12 seconds for our
500-sequence database (with the length of each sequence
≈ 3500). We expect an optimized implementation to be
much faster, as our implementation is somewhat naive.

For the online secure computation itself (which is
done for every query), the overall number of non-XOR
gates is only about 1M AND gates, and we use roughly
the same number of OTs. Using efficient implementa-
tions of Yao’s garbled circuits [KS08, ZRE15] and OT
extensions [ALSZ13, KOS15], it took about 1 seconds to
fully process each query and find its 5 closest sequences
in the database. As a comparison, for the same sequence
length, an accurate edit-distance computation of a query
and a single sequence in the database is roughly ≈ 40
million gates, even when leveraging some upper bounds
on the maximal possible distance (reducing the circuits
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by 20× factor). Computing the task of finding the clos-
est sequence in a set of 500 sequences, would result in a
circuit of ≈ 20 billion gates. Thus, our solution is faster
by a factor of approximately 20, 000.

Organization. The rest of this paper is organized as
follows. We start with the secure computation protocol
in §3. Followed by the description of how to break the
sequences into blocks in §4. We report the accuracy of
our protocol in §5, and the implementation in §6. We
conclude with some discussions and extensions in §7 In
the appendices we report on some of our experiments, as
well as some supplementary data for decisions we made
in our design.

3 Privacy Preserving Protocol
In this section we present our semi-honest secure pro-
tocol for computing the ApproxClosest function from
Eq. (2.4): The client has a query string, the server has
a database of records, and the client needs to learn the
indices (or labels) of the k closest records to its query, as
specified in Functionality 3.1 below. The functionality
is given the parameters b, b′, v, R (see discussion in §7).
Recall that R is the public reference genome, b is the
block size for breaking up the reference genome R, b′ is
an upper bound on the size of the blocks in the query
and sequences after alignment with the blocks of R, v
is the maximum number of possible different values in
a block, and d is an upper bound on the maximum edit
distance.

As described in the Introduction we do not compute
the exact edit distance between the query and the se-
quences in the database, but rather an approximation of
this value which is amenable to an efficient secure com-
putation. The exact function that we compute depends
on our procedure for breaking the sequences and query
into blocks, which we describe in detail in §4 below.
That procedure computes the blocks Q = (Q1, . . . , Qn)
and Si = (Si,1, . . . , Si,n) (where n = d|R|/be). For each
block location we define a set, T` = {S1,`, . . . , Sm,`} of
values that occur in that block position The approxi-
mate edit distance function that we compute is:

ApproxED(Q,Si) =
n∑
`=1

∆(Q`, Si,`), where, (3.1)

∆(Q`, Si,`) =
{

ED(Q`, Si,`) if Q` ∈ T`
0 otherwise .

We remark that although computing ED(Q`, Si,`)
also for blocks where Q` 6∈ T` would improve accuracy,

this improvement is minor. This is due to the fact that
the case of Q` 6∈ T` is rare, as verified empirically and
discussed in Appendix D.2.

Observe that the ApproxED function depends on the
parameters b, b′ and v, as well as on the reference
genome R (since this determines the blocks) and on the
set S = {S1, . . . , Sm}. The dependence on S is due to
the fact that this determines the values in each set T`.
Thus, formally, one should write ApproxEDS,R,b,b′,v(·, ·);
for clarity, we write ApproxED only, with the understand-
ing that this dependence on the parameters is necessary
for fully defining the function.

See Functionality 3.1 for a formal description of
the ideal functionality computing the k closest records,
based on our approximate edit distance function defined
in Eq. (3.2). Observe that the functionality returns the
indexes in lexicographic order; this ensures that which
sequence is closest, second closest and so on, is not re-
vealed.

Functionality 3.1: (Approximate) Closest k

Records Functionality

– Public parameters: The database sizem, output size
k < m and the parameters b, b′, v and R.

– Private inputs: The client holds a sequence query
Q. The server holds a database DB of m sequences
(S1, . . . , Sm).

– The functionality:
1. Let ẽi = ApproxED(Q,Si) be the approximate edit

distance between Q and Si, as defined in Eq. (3.2)
for the parameters b, b′, v, R and set {S1, . . . , Sm}.

2. Let Ik be the set of indexes of the k-smallest values
in ẽ1, . . . , ẽm, breaking ties according to the lexico-
graphic order.

– Output: The client outputs Ik (ordered lexicographi-
cally), the server has no output.

Securely computing the ideal functionality. Our
protocol for realizing Functionality 3.1 consists of a lo-
cal preprocessing stage, followed by two main protocol
stages:
Preprocessing: In this stage the parties break their
sequences into blocks, and the server computes several
tables. We describe this stage in §3.1.
Stage I: computing additive sharing of the ap-
proximations. This stage is the crux of our protocol,
and is described in §3.2. The client and the server in-
teractively compute a secret sharing of the vector of ap-
proximated edit distances. Specifically, the parties com-
pute an additive sharing (inside Zd) of the following
vector L:

L
∆= (ApproxED(Q,S1), . . . ,ApproxED(Q,Sm)). (3.2)
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Stage II: computing the k-minimal values. In the
second stage of the interaction, the client and the server
compute the k minimal values of the secret-shared vec-
tor L, and learn the indices of these values. This stage
is described in §3.3.

3.1 The One-Time Preprocessing Stage

The preprocessing stage relies on a procedure
BreakToBlocks that the two parties use to break each
of their respective sequences into blocks. That proce-
dure is described in §4, and it has the property that for
each block location there are only a few distinct val-
ues that occur there, and moreover that the two par-
ties know a bound v on the number of values in each
block. The (Q1, . . . , Qn) = BreakToBlocksR,b(Q) proce-
dure receives a sequence Q and returns its partitioning
to blocks, based on the public reference sequence R and
blocksize parameter b.

The client. On input the query Q, the client sets
(Q1, ..., Qn) := BreakToBlocksR,b(Q).

The server. On input the database, S1, ..., Sm, the
server proceeds as follows:

1. Set (Si,1, ..., Si,n) := BreakToBlocksR,b(Si) for i =
1, . . . ,m.

2. For each block location ` = 1, ..., n, compute the set

T` = {Si,` : i = 1, . . . ,m} = {u`,1, . . . , u`,v} (3.3)

of all the values in the `th block. The server pads all
sets T` to be of the same size v using some dummy
values.2

3. For every block location ` = 1, . . . , n, every sequence
Si (i = 1, . . . , n), and every value u`,j ∈ T` (j =
1, . . . , v), the server computes the edit distance be-
tween u`,j and Si,`, setting L`[j, i] := ED(u`,j , Si,`).
Below we denote the row L`[j, ·] by L`,j , namely

L`,j :=
(
ED(u`,j , S1,`), . . . , (ED(u`,j , Sm,`)

)
. (3.4)

(Jumping ahead, each vector L`,j represents the con-
tribution of the `’th block to the final edit distances
approximations, for the case where Q` = u`,j .)

The preprocessing of the server is done only once,
and then multiple queries can be computed.

2 This is achieved by introducing also one more character to the
alphabet and therefore each DNA character is represented using
3 bits, and not 2. This also increases the size of the circuits.

Computing Eq. (3.2). We observe that for each i, `,
the value ∆(Q`, Si,`) from Eq. (3.2) can be expressed as

∆(Q`, Si,`) =
v∑
j=1

χ`,j · ED(u`,j , Si,`)︸ ︷︷ ︸
=L`[j,i]

, (3.5)

where χ`,j is 1 if Q` = u`,j , and 0 otherwise. Therefore
we have for all i

ApproxED(Q,Si) =
n∑

`=1

∆(Q`, Si,`) =
n∑

`=1

v∑
j=1

χ`,j · L`[j, i].

Thus, the vector of approximations (ApproxED(Q,Si))i
can be computed as

L = (ApproxED(Q,S1), . . . ,ApproxED(Q,Sm))

=
n∑
`=1

v∑
j=1

χ`,j · L`,j . (3.6)

3.2 Stage I: Computing Additive Sharing
of the Vector L

After preprocessing, the client holds a vector of blocks
(Q1, ..., Qn), and the server holds all the (ordered) sets
T1, . . . , Tn and the edit-distance vectors L`,j for ` =
1, . . . , n and j = 1, . . . , v. Our goal in the first stage
of interaction is to compute an additive sharing of the
approximate-distance vector L. We use additive sharing
(rather than XOR sharing), since this enables the par-
ties to locally add their shares from all blocks in order to
obtain additive sharing of the overall approximate edit
distance. Formally, we need to realize the functionality
described in Functionality 3.2.

Functionality 3.2: Additive Sharing of Approxi-
mate Edit-Distances, Lc − Ls = L

– Parameters: Let d be a public upper bound on
maxi∈m ApproxED(Q,Si).

– Input: The client inputs the blocks (Q1, . . . , Qn). The
server inputs the tables T` = {u`,1, . . . , u`,v}`∈[n] and
vectors {L`,j}`∈[n],j∈[v].

– The functionality:
1. Let L =

∑n

`=1

∑v

j=1 χ`,j · L`,j ∈ Zm
d

(L`,j , χ`,j are defined in Eq. (3.4), Eq. (3.5), re-
spectively);

2. Choose a random vector Ls ∈ Zm
d and set Lc :=

L+ Ls mod d.
– Output: The client outputs Lc while the server out-

puts Ls.

The protocol for realizing Functionality 3.2 consists of
two main steps:
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– First, the parties compute XOR shares of the indi-
cator bits χ`,j . That is, for every ` ∈ [n], j ∈ [v], the
client and server receive random bits χc`,j , χs`,j , respec-
tively, s.t. χc`,j ⊕ χs`,j = χ`,j .

– Next they use oblivious transfer to convert their
shares of χ`,j (and the value L`,j held by the server)
into additive shares of χ`,j · L`,j . That is, they inter-
actively compute random vectors Lc`,j , Ls`,j such that
Lc`,j − Ls`,j = χ`,j · L`,j (mod d).

Then the client and server locally sum their shares: The
client computes Lc =

∑n
`=1
∑v
j=1 L

c
`,j mod d, and the

server computes Ls =
∑n
`=1
∑v
j=1 L

s
`,j mod d. Hence

Lc − Ls=
n∑
`=1

v∑
j=1

Lc`,j − Ls`,j =
n∑
`=1

v∑
j=1

χ`,j · L`,j = L ,

where the computation is performed (mod d).

Step 1: Indicator bits. This step realizes the Func-
tionality 3.3:

Functionality 3.3:
Computing XOR sharing for the indicator bit
(χc

`,j ⊕ χs
`,j = χ`,j)

– Input: The client inputs the block Q`.
The server inputs u`,j , which is the jth value in the
set T`.

– The functionality: Let χ`,j = 1 if Q` = u`,j , and
χ`,j = 0 otherwise.
Choose a random bit χs

`,j and set χc
`,j = χs

`,j ⊕ χ`,j .
– Output: The client outputs χc

`,j while the server out-
puts χs

`,j .

We realize Functionality 3.3 using a direct applica-
tion of Yao’s protocol. Let Q` = σ1, . . . , σt and u`,j =
τ1, . . . , τt, represent the inputs Q`, u`,j (each padded to
some bound b′ and converted to binary using suffix-
free encoding.3 The server chooses a random bit χs`,j
(which will also be its output of the protocol), and
we use a standard secure protocol (e.g., Yao’s proto-
col) in which the client learns the output bit χc`,j =
χs`,j ⊕

∧t
k=1(σk ⊕ τk ⊕ 1). Note that if Q` = u`,j then

σk = τk for every k and so χc`,j = χs`,j ⊕ 1, resulting
in χc`,j ⊕ χs`,j = 1. In contrast, if Q` 6= u`,j then there
exists a k for which σk ⊕ τk ⊕ 1 = 0 and so χc`,j = χs`,j ,
resulting in χc`,j ⊕χs`,j = 0. At the end of this stage, the

3 In our case the original strings were over a 4-ary alphabet, so
to get suffix-free encoding we need to set at least t = 2b′ + 1.

client and the server hold the appropriate bits χc`,j , χs`,j
(resp.) for every ` = 1, . . . , n and j = 1, . . . , v.

Step 2: Additive sharing. This step realizes Func-
tionality 3.4.

Functionality 3.4: Computing additive sharing for
χ`,j · L`,j

– Parameters: The edit-distance bound d.
– Input: the client has χc

`,j , and the server has χs
`,j and

the vector L`,j .
– The functionality: Set χ`,j = χc

`,j ⊕ χ
s
`,j . Choose a

random vector Ls
`,j ∈ Zm

d and set Lc
`,j = Ls

`,j + χ`,j ·
L`,j .

– Output: The client outputs Lc
`,j and the server out-

puts Ls
`,j .

We realize Functionality 3.4 using 1-out-of-2 obliv-
ious transfer, as described in Protocol 3.5. We recall
the definition of 1-out-of-2 oblivious transfer function-
ality, denoted as (λ, Lσ) = FOT((L0, L1), σ). The sender
holds two strings L0, L1 ∈ Zmd and the receiver holds a
bit σ ∈ {0, 1}. The receiver receives Lσ while the sender
outputs the empty string λ.

In order to realize Functionality 3.4, the server
chooses a random vector L0

`,j , and its output share
would always be Lc`,j = L0

`,j . In addition, it sets L1
`,j =

L`,j+L0
`,j . The output of the client would be Lc`,j = L0

`,j

in case χ`,j = 0 (and thus Lc`,j −Ls`,j = 0) or Lc`,j = L1
`,j

in case χ`,j = 1 (and thus Lc`,j−Ls`,j = L`,j). Determin-
ing which one of the outputs the client receives is done
using an oblivious transfer. We prove the security of the
protocol in Theorem C.2.

Protocol 3.5: Realizing Functionality 3.4 (in the
FOT-hybrid model)

– Parameters: The edit-distance bound d.
– Input: Client inputs is χc

`,j , server inputs is χ
s
`,j and

the vector L`,j .
– The protocol: (all additions are done (mod d))

1. The server chooses a random vector L0
`,j and sets

L1
`,j = L0

`,j + L`,j .
2. The server and the client engage in a 1-out-of-2

oblivious transfer. The client as the receiver with
the choice bit χc

`,j , and the server as the sender
with inputs:
– (L0

`,j , L
1
`,j) = (L0

`,j , L
0
`,j) + (0, L`,j) if χs

`,j = 0,
– (L1

`,j , L
0
`,j) = (L0

`,j , L
0
`,j) + (L`,j , 0) if χs

`,j = 1.
Let Lc

`,j denote the output that the client receives
from the OT protocol.

– Output: The server outputs Ls
`,j = L0

`,j and the client
outputs Lc

`,j .
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Putting it all together – realizing Functional-
ity. 3.2. We realize functionality 3.2 in Protocol 3.6
using Functionalities 3.3 and 3.4. The overview of the
protocol was already presented in the beginning of this
section (i.e., §3.2), and its security is proven in Theo-
rem C.3.

Protocol 3.6: Realizing Functionality 3.2 (Using
Functionalities 3.3 and 3.4)

– Parameters: Let d be a public upper bound on
maxi∈m ApproxED(Q,Si).

– Input: The client inputs the blocks (Q1, . . . , Qn). The
server inputs the tables T` = {u`,1, . . . , u`,v}`∈[n] and
vectors {L`,j}`∈[n],j∈[v].

– The protocol: (all additions are done mod d)
1. For every ` = 1, . . . , n and j = 1, . . . , v:
(a) Invoke Functionality 3.3, with client input Q`

and server input u`,j . Let χc
`,j , χ

s
`,j be the out-

puts of the client and server, respectively.
(b) Invoke Functionality 3.4 with client input χc

`,j

and server input the bit χs
`,j and the vector L`,j .

Let Lc
`,j , L

s
`,j be the output of the client and

server, respectively.
2. The client computes Lc =

∑n

`=1

∑v

j=1 L
c
`,j ,

the server computes Ls =
∑n

`=1

∑v

j=1 L
s
`,j .

– Output: The client outputs Lc, the server outputs Ls.

3.3 Stage II: Finding k Minimal Values

After computing an additive sharing of the approximate
edit distances between Q and the m records S1, . . . , Sm,
the parties engage in a protocol to find the k smallest
distances. The full specification is found in Functional-
ity 3.7.

The protocol to realize Functionality 3.7 is just a
direct application of Yao’s protocol, applied to the fol-
lowing circuit. The circuit outputs m bits, where the
ith bit denotes whether Si is in the k minimum set, and
works as follows:

– Compute L = (L1, . . . , Lm) = Lc − Ls mod d.
– Repeat the following for k times:
– Find the minimum in the list.
– Compare the found minimum with each one of the

elements in the list; When found, set the bit for that
output array to 1.

– OR each value with its set bit in the output array.
Note that this makes the minimum value all-ones
and therefore it will not be the minimum in the
next iteration.

This requires about 5 non-XOR gates per input bit per
layer (where k is the number of layers).

Functionality 3.7: Find the k-Minimal Values

– Parameters: number of records m, output size k, dis-
tance bound d.

– Input: Client and server hold Lc, Ls ∈ Zm
d , respec-

tively.
– The functionality:

1. Let L = Lc − Ls mod d, and denote L =
(L1, . . . , Lm)

2. Find the k smallest values in the sequence L, using
the indexes 1, . . . ,m to break ties.

Output: The client gets m bits (σ1, . . . , σm), where
σj = 1 if L[j] is one of the k smallest values. The
server has no output.

Protocol 3.8: Realizing Functionality 3.1 (using
Functionalities 3.2 and 3.7)

– Parameters: Database size m, output size k < m,
distance bound d. Moreover, reference genome R, v,
block size b and a bound b′.

– Input: The client holds a sequence queryQ. The server
holds a database DB of m sequences (S1, . . . , Sm).

– The protocol:
1. The clients and the server perform the preprocess-

ing stage. The client holds the blocks Q1, . . . , Qn,
and the server holds the tables T1, . . . , Tn and the
vector {L`,j}`∈[n],j∈[v].

2. The parties invoke Functionality 3.2, where the
client inputs Q1, . . . , Qn and the server inputs the
vector {L`,j}`∈[n],j∈[v] and the tables {T`}n

`=1.
The client receives vector Lc and the server receives
the vector Ls.

3. The parties invoke Functionality 3.7, where the
client inputs Lc and the server inputs Ls. The client
receives the m bits (σ1, . . . , σm).

– Output: The client outputs (σ1, . . . , σm).

Realizing Functionality 3.1 is now a straightforward
application of the components above, as summarized in
Protocol 3.8 below. We prove that the protocol securely
realizes Functionality 3.1 in Theorem C.4.

3.4 Security Analysis

Below we sketch the security analysis of our protocol.
We follow the standard definition of static semi-honest
security in the standalone model (cf. [Gol04]; see also
§C.2). We argue the security in a bottom-up fashion:
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– We first instantiate the building blocks that we use.
For Functionalities 3.3 and 3.7 we use Yao’s proto-
col, and refer to [LP09] for deriving security in the
presence of semi-honest security. As for FOT, we refer
to [Gol04] for semi-honest protocols that realize this
functionality.

– Next, in Theorem C.2 we prove the security of Pro-
tocol 3.5 that realizes Functionality 3.4 (sharing of
χ`,j ·L`,j). In Theorem C.3 we prove that Protocol 3.6
privately realizes Functionality 3.2 (sharing of L).

– Finally, in Theorem C.4 we put everything together
and prove security of the entire protocol (Proto-
col 3.8).

Note that only the last two bullets require new proofs,
everything else holds by assumption on the components
that we use. Moreover, we derive the security of the pro-
tocol using the standard stand-alone composition the-
orem [Can00, Gol04]. In Appendix C.2, we prove the
following theorem:

Theorem 3.9 (Overall protocol). Protocol 3.8 realizes
Functionality 3.1 against static corruptions in the semi-
honest adversary model.

4 Breaking Sequences into Blocks
As stated in the Introduction the main idea underlying
our solution is to approximate the edit distance between
two sequences S and Q by partitioning both sequences
into n blocks each, then summing up the edit distances
across all blocks, returning

∑n
`=1 ED(Q`, S`). In this sec-

tion we describe the method that we use to partition the
sequences into blocks.

The idea of approximating the edit distance by
computing the edit distance on small blocks is appeal-
ing as it yields an extremely efficient secure compu-
tation. However, the simplest manner of breaking the
sequence/query into equal size blocks did not yield a
good approximation of the edit distance over the full
sequence. Thus, the question arose whether we can en-
able both parties to break their sequences into blocks
that would also yield a good approximation of the edit
distance.

4.1 Utilizing a Public Reference Genome
In order to refine the method of breaking the query
and sequences into blocks, we utilize a publicly known

reference genome R and have both the server and the
client break their sequences in relation to R. Utilizing
the fact that we work on genomic data, the sequences
are somewhat close to each other and also to the ref-
erence genome R. Thus, this enables us to break the
sequences and query into blocks in a manner that yields
a better “alignment” between the blocks of the query
and the blocks of the sequences in the database, giving
a better approximation of the exact edit distance. We
use the public reference genome of [GRC].

The sequences and query are broken into blocks by
computing an edit distance between the sequence/query
and the reference genome. These are local edit distance
computations on known data, and are thus much more
efficient than any secure computation. Moreover, as we
have seen, the preprocessing is re-usable, and for a large
amount of queries this overhead becomes minor.

In our solutions we rely on a reference genome R
of roughly the same length as the sequences that we
want to break. To break a sequence S (or a query Q)
into blocks, we run the Wagner-Fischer edit distance al-
gorithm (for full details see Appendix B) to compute
the edit distance between R and S. The algorithm also
returns the PTR matrix that keeps the alignment be-
tween R and S. From the upper-left corner of the PTR
to the lower-right corner it traces the path of how the
minimum edit-distance can be obtained.

Let b be a parameter representing our desired block
size (on the selection of b see §6; concretely, b is arbi-
trarily small, e.g., b = 5). With S being recorded at the
top of the matrix we break it as follows. We traverse the
minimum edit distance path in PTR and whenever we
have moved down b rows we break the sequence in that
position into a block. Note, that the sizes of the blocks
in this partition will vary. Most blocks are of size b, but
some are shorter or longer. A full specification of the
partitioning algorithm can be found in Algorithm 4.1.

In §5.1 we provide intuition for why this breaking
into blocks algorithm yields a good approximation. In
a nutshell, computing the full edit-distance between a
sequence S and the reference genome R allows us to
find the optimal alignment (and the minimal number of
ways) of transforming S into R. Thus, this allows us to
find the optimal partitioning of S into the blocks of R.

5 Accuracy of Our Approximation
We examine the accuracy of our approximation both
theoretically and empirically. In §5.1 we provide a the-
oretical analysis of our approximation algorithm. While
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Algorithm 4.1: BreakToBlocksR,b(S) – Partition a
Sequence into Blocks

– Parameters: A reference sequence R = (ρ1, . . . , ρr),
block-size parameter b.

– Input: A sequence S = (σ1, . . . , σs)
1. Invoke ED(R,S), and store the table PTR.
2. Start at the top-left corner of PTR for each multiple

of b, i.e. b, 2b, ... find the index j1, j2, . . . such that
(ib, ji) is on the minimum edit-distance path. (If
there is more than one pair for the same value i · b,
store the index j that is closest to i · b.)

3. Denote n = dr/be (observe that the previous steps
defines exactly n − 1 indexes). Let j1, . . . , jn−1 be
the stored indexes, set j0 = 0 and jn = s. Define the
blocks S` = (σ1+j`−1 , . . . , σj`

) for every 1 ≤ ` ≤ n.
– Output: Output the blocks S1, . . . , Sn.

the bounds in this analysis are somewhat coarse, the
analysis still shows that the algorithm is accurate if the
reference genome is “close” to the database, or when all
sequences in the database are equally-far from the refer-
ence genome. In §5.2, we show an empirical evaluation
of our algorithm on real genomic datasets, validating
that in practice this assumption does hold on various
datasets and various different regions of the genome.

5.1 Theoretical Analysis

Intuition for accuracy. The following disregards the
case of a “block miss”, which we discuss in Appendix D.
That is, we focus now on the quality of approximating
the edit-distance between two sequences X and Y by
computing block-wise distances, where partitioning into
block is performed with respect to a common reference
genome as described in Algorithm 4.1.

In more detail, suppose we have two sequences X
and Y and we wish to compute their edit-distance
ED(X,Y ). Our approximation algorithm first breaks
each one of the sequences into blocks X1, . . . , Xn
and Y1, . . . , Yn. Then, it computes ApproxED(X,Y ) =∑n
`=1 ED(X`, Y`). First, it is clear that

ED(X,Y ) ≤ ApproxED(X,Y ) =
n∑
`=1

ED(X`, Y`) .

This is because there are many ways one can “trans-
form” sequence X into sequence Y . In our case, we
transform each block of X into the corresponding block
of Y , and sum the number of operations these block-
wise transformation consumes. The term ED(X,Y ) min-
imizes over all possible ways to transforms X into Y ,
including that specific aforementioned possibility.

Let R = (R1, . . . , Rn) be the strings of the reference
genome, after breaking it into b-size blocks. For every
` ∈ {1, . . . , n}, it holds that

ED(X`, Y`) ≤ ED(X`, R`) + ED(R`, Y`) .

This holds from a similar reasoning as before: There
are many ways to transform X` into Y`. The optimal
way consumes ED(X`, Y`) operations, whereas the right
hand-side is just one possible way – transforming X`
into R`, and then transforming R` into Y`.

Moreover, we claim that ED(X,R) =∑n
`=1 ED(X`, R`). In order to see that, first note that

the term ED(X,R) is the number of minimal operations
that are required for transforming X to R. Moreover,
the term

∑n
`=1 ED(X`, R`) is a specific way to make this

transformation, by taking the optimal transformation
for transforming X1 into R1, then the optimal trans-
formation of X2 into R2, etc. While other partitions
of X into blocks could have added restrictions when
considering block-by-block alignments, the specific par-
titioning of X that we are considering does not add
such restrictions as it was constructed from the optimal
alignment path of ED(X,R). From a similar reason, it
also holds that ED(Y,R) =

∑n
`=1 ED(Y`, R`).

Putting it all together, since
∑n
`=1 ED(X`, Y`) ≤∑n

`=1 (ED(X`, R`) + ED(R`, Y`)) = ED(X,R) +
ED(Y,R), we conclude the following upper bound:

ED(X,Y ) ≤ ApproxED(X,Y ) ≤ ED(X,R) + ED(Y,R) .

While this bound is coarse, still it provides some mean-
ingful insights:

– First, if the reference genome has relatively the same
distance from X and Y as any other sequence in
the database (i.e., all values ED(X,Y ), ED(X,R) and
ED(Y,R) are similar), this is a 2-approximation.

– Second, if the two sequences X and Y are obtained by
adding random mutations to the reference genome in
different distinct locations, then this approximation is
in fact, exact. Our experiments show that in practice,
this is more likely to be the case.

5.2 Empirical Evaluation

We empirically evaluate the accuracy of our approxima-
tion protocol. We specifically target “high-divergence”
regions of the genome, since we seek to verify that we
still get good results even for such regions. We tested
our approach on various datasets and on different chro-
mosomes:
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Dataset # Samples Length Avg. ∆ (stdev) Max-∆ Pair Max-∆ Ref Variability

ZNF717 501 3470 91.33 (94.24) 175 184 ≤ 5.04%
TEKT4P2 51 2087 27.49 (28.55) 54 57 ≤ 2.58%
CDC27P1 101 714 12.41 (13.42) 33 50 ≤ 4.62%
CDC27P2 101 1950 29.31 (30.46) 65 68 ≤ 3.33%

ABHD17AP5 15 1570 3.01 (3.51) 6 18 ≤ 0.38%

Table 1. Our datasets. Avg. ∆ is the average of all edit distances between pairs in the datasets. Max-∆ Pair – is the maximal edit
distance among all pairs in the dataset. Max ∆-Ref – is the maximal distance between a sequence and the reference genome. Variability

is the maximal distance divided by the size of the region.

Our main dataset: ZNF717. Our main dataset
was provided by the organizers of the iDash compe-
tition [iDA16]. It contains relatively many (501) gene
sequences extracted from the publicly available 1000
Genomes Project [Int18]. It was extracted from human
chromosome 3 (75785026-75788496), of length just un-
der 3500, within the coding region of gene ZNF717. The
iDASH organizers explained the choice of this particular
gene by its high divergence among individual genomes.

Other datasets. From a set of 170 complete sequences,
and with the help of the iDash organizers, we extracted
several other regions with high-divergence. For each re-
gion we chose only a subset of the samples to make
the task more challenging. That is, we excluded sam-
ples that were identical to each other within that region
(since the approximation is exact in such a case). The
following datasets were extracted:

– TEKT4P2: Chromosome 21 (9907190–9909277) of
size under 2100.

– CDC27P1: Chromosome 2 (133019901–133020615)
of size under 750.

– CDC27P2: Chromosome Y (10027986-10029907) of
size under 1950.

– ABHD17AP5: Chromosome 22 (22720578–
22722138) of size under 1570, within the coding region
of gene ABHD17AP5. Here the region has very low
variability. We therefore extracted only 15 samples,
testing our algorithm also for a “toy” database.

The datasets, including some basic properties, are
given in Table 1. We remark that looking the datasets
have a nice variety in the type of queries we examined,
where there are queries in which the set of k closest
sequences is easily recognizable (as the distance between
the k+1’th closest element and the query is significantly
greater than the distance between the query and the
k’th closest element), and in most cases the set is much
harder to be recognized (these two distances are very
small or even identical).

Accuracy. The main results of our accuracy test are
summarized in Table 2. Our algorithm performs remark-
ably well on all tested datasets: It returned the exact re-
sult in almost all tests, and very close results otherwise
(most of the cases, a result with the same edit distance
as the edit distance of the k’th element, or one farther).

We ran the following experiment for each one of the
datasets: We chose ≈ 10% random sequences from the
dataset as queries and the rest of the dataset was set
to be the database. We ran the preprocessing phase of
our protocol, and compared the set of sequences that
the protocol returned to the correct values, for differ-
ent threshold parameters – k = 1, 3, 5 and 10 (that is,
finding the closest sequence, the set of three closest se-
quences, etc.). We repeated the experiments 10 times,
for independent random choice of queries. The block size
was set to b = 3, while similar results are obtained to
other choices of this parameter.

Table 2 summarizes the accuracy results of our ap-
proximation algorithm in the different datasets for dif-
ferent k. The table consists of the following columns:

– Dataset.
– k is the threshold parameter – how many sequences

to return.
– Average ED is the (true) average edit distance be-

tween the query and the set of the kth closest sequence
in the database.

– Average-∆ is the average of how much farther the far-
thest record returned by the algorithm was than the
k’th-closest record. As the numbers are so low this
represents that when the algorithm returns a record
that it should have not returned, it returns a record
that is very close to the one it should have returned.

– Precision: Among the set of the true k closest ele-
ments, how many (correct) elements did the approx-
imation algorithm return. This is the standard no-
tion of precision: number of true positives (records
that are supposed to be returned) over the sum of
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Dataset k Ave. ED Ave. -∆ Precision

ZNF717

1 2.07 0 100%
3 2.96 0 100%
5 4.68 0.01 98.85%
10 28.98 0.25 97.48%

TEKT4P2

1 13.14 0 100%
3 16.29 0.80 96.66%
5 18.5 0.73 96.66%
10 21.39 0.60 97.33%

CDC27P1

1 2.81 0.02 95.91%
3 4.39 0.18 94.56%
5 5.47 0.33 94.28%
10 6.87 0.57 96.94%

CDC27P2

1 13.08 0 100%
3 16.75 0 100%
5 18.27 0.03 99.67%
10 20.55 0 99.67%

ABHD17AP5

1 0.92 0 100%
3 2.75 0.6 86.67%
5 3.17 0.2 92%
10 4.92 0 98%

Table 2. Accuracy of our algorithm, for the various datasets and
various choices of k.

Block Size (b) b′ # Values Average-∆ (stdev)

3 10 6 0 (0)
5 12 8 0.01 (0.1)
8 15 10 0 (0)
12 19 10 0.01 (0.1)

Table 3. Algorithm accuracy as function of block size b.
Average(stdev) edit-distance between query and 5’th closest

sequence is 4.15(8.37).

true positives and false positive (wrong records that
were returned). We break ties according to the lexi-
cographically order. This implies that in case of a tie
in which the approximation algorithm returned a se-
quence with the right edit distance but greater id than
the lexicographically smallest one, we count it as an
error.

It is important to note that our approximation al-
gorithm returns fairly accurate results even for rela-
tively small databases. For instance for both datasets
ABHD17AP5 (15 sequences) and TEKT4P2 (51 se-
quences) the algorithm always succeeds to identify the
closest record in the database, and in case it is wrong
for larger k’s it always returns records that are very
close to those it should have returned. This is an impor-
tant property, as for several rare diseases the sample set
that a real hospital holds can be rather small (couple of
dozens patients).

b = 5 b = 8
Dataset Max-b′ Max-v Max-b′ Max-v

ZNF717 12 8 15 10
TEKT4P2 5 7 8 10
CDC27P1 7 4 12 4
CDC27P2 8 4 12 4

ABHD17AP5 5 2 8 2

Table 4. The maximum number of block size and number of
different values in each table observed in the various datasets.

The ZNF717 dataset. The dataset in which we had
the most number of samples, as well as the most varied
types of queries is the dataset ZNF717. This was the
database chosen by the iDash organizers [iDA16], who
are domain experts for this task. We report some more
detailed results for that dataset.

We observe that the block-size parameter does not
effect much the accuracy of the algorithm. Nevertheless,
it does effect the performance of the protocol, as larger
block size means less blocks to process, and therefore
overall less workload. Table 3 summarizes the perfor-
mance and accuracy results of our approximation algo-
rithm as a function of the blocksize parameter b, when
returning the closest 5 (approximate) distances. The ta-
ble consists of the following columns:

– b′ is the largest actual blocksize obtained for any of
the sequences (i.e., after breaking the sequences into
blocks, some blocks can be larger than b.)

– # Values is the largest number of distinct values
found in any block (i.e., the parameter v should upper
bound this value).

– Average-∆ is how much farther is the farthest record
returned by the algorithm than the true k’th-closest
record.

In this experiment, we chose ≈ 1% ≈ 5 sequences as
query sequences, and the other records were chosen to be
the database. We repeated this choice 100 times, and the
“Average-∆” values are computed over these 100 runs,
together with the standard deviation (in parenthesis).

On the parameters b′ and v. Our overall aim is to
compute edit-distance in genomic setting with higher
efficiency. Besides exploring the accuracy of our algo-
rithm, we also wish to explore the values of b′ and v

as these two parameters are important also for the effi-
ciency of our protocol. The parameter b′ is important for
realizing Functionality 3.3 using Yao’s circuit. The pa-
rameter v reflects the amount of times we will invoke the
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Dataset DB Size Length
Server CPU Time Query CPU Time #AND gates #AND gates
Preprocessing (s) Server (s) Client (s) Compare k-min Naive

ZNF717 500 3470 11.86 1.22 0.48 1000800 505825 ≈ 20 · 109

TEKT4P2 50 2087 0.69 0.45 0.23 603360 44948 ≈ 400 · 106

CDC27P1 100 714 0.46 0.17 0.09 207360 95618 ≈ 230 · 106

CDC27P2 100 1950 0.91 0.45 0.23 554400 95618 ≈ 875 · 106

ABHD17AP5 15 1570 0.37 0.32 0.19 450720 11080 ≈ 30 · 106

Table 5. Running times for the various datasets. In all runs k = 5, b = 5, b′ = 12, v = 15, and bandwidth is smaller than 80MB.

DB Size
v = Preprocessing Query Server CPU Bandwidth

# AND-gates
# values (s) Compare (s) OTs (s) k-min (s) (MB)

1000 25 30 1.51 4.36 0.16 180 1399480
2000 30 61.8 2.1 11.7 0.31 340 2035415
4000 35 119 2.8 28.2 0.6 660 3149350

Table 6. Running times for varying DB sizes with fake data for k = 5, b = 4 and b′ = 16.

underlying subprotocols. In Table 4, we show how these
two parameters appear in the datasets. The experiment
is the same as in Table 2. The column Max-v reflects
the number of different values in each block as was seen
in the experiment, whereas the Column Max-b′ repre-
sent the largest block size appeared after breaking all
sequences into block. We intentionally do not call these
parameters as v and b′, in order to distinguish between
the values that were observed in the experiments and
the parameters of the protocol, where the latter should
upper bound these values.

6 Evaluation and Performance
We implemented our protocol over the C++ version of the
Secure Computation API library (SCAPI) [EFLL12].
We use the state-of-the-art improvements, include
Yao with free-XOR technique [KS08] and half-
gates [ZRE15], and the recent improvements in OT-
extension [ALSZ13, KOS15]. Table 6 presents the per-
formance results for varying database size, these num-
bers were obtained by running the protocol on a single
x86_64 machine using the loopback device for client-
server communication.

In our implementation, the most costly aspect was
the pre-processing on the server side (which only needs
to be done once per database). This part requires many
edit distance computations (in the clear), and we did
not attempt to optimize it.

Table 5 shows the running times for all datasets,
with distance bound d = 512 (while the maximal edit
distance between pair never exceeded 190), b = 5,
b′ = 12 and v = 15. We chose these parameters some-

what arbitrarily, such that they satisfy the conditions of
Table 4. For each dataset, we exclude one sequence and
took it as the query, while all other sequences were set
to be the database. We repeated this process for every
sequence in the dataset. As a result, e.g., the ZNF717
(which contains 501 total sequences) reflects the average
of 501 different executions, where in each execution the
DB size is 500. The bandwidth never exceeded 80 MB
in all executions. We also consider the expected number
of gates using the naive solution (with the optimization
that considers the bound of maximal edit-distance be-
tween a pair in the DB). We expect roughly 10 minutes
per 1 billion gates using GMW [KOS15].
Simulated dataset. We wanted to test the scalability
of our secure protocol when processing databases with
many more records. As there is a lack of availability of
such a large genomic dataset, we used fake data. Due to
the fact that the data was simulated we ran the protocol
just to test the runtime and not the accuracy.

We checked 100 queries with databases of size m =
1000, 2000 and 4000 records. Each record is of size
roughly 3470 nucleotides. In all these cases, we ran with
k = 5, b = 4, b′ = 16 and we allowed v to increase
with the size of the database. We chose these parame-
ters quite arbitrarily and conservatively as in the case
of real genomic data. In Table 6, we report the maximal
allowed size of the tables (# values, i.e., v in the proto-
col), the times needed for the preprocessing, answering
a query, the bandwidth and the number of AND-gates.

The reference genome and accuracy. Our theoret-
ical analysis shows that the reference genome must be
somewhat “close” to the two sequences that are being
compared, and this is necessary for achieving high ac-
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curacy. The analysis also suggests that with a random
reference genome, our algorithm will be completely in-
accurate. We emphasize that the reference genome is
never chosen by the protocol, and there is a consortium
that is devoted for that [GRC]. Our empirical results
show that this reference genome yields great approxi-
mation results on all tested databases.

To demonstrate the decline in accuracy with a “bad”
reference genome, we give here some experimental re-
sult: We consider dataset CDC27P1, and its associ-
ated reference genome. We synthetically add noise to
its reference genome by iterating over its letters, and
at each position leave the letter unchanged with proba-
bility 83%, and otherwise randomly adding 1 − 3 char-
acters, substitute the current character or remove it.
This increases the distance between the sequences in
the database and the reference genome to around 150
(instead of 50), and decreases the accuracy from around
≈ 95% to ≈ 90%. When increasing the noise even further
and leaving the letter unchanged with probability 50%,
the distance from the reference genome is increased to
330 and the accuracy is degraded to 62%.

7 Extensions and Discussions
Extending the protocol for other settings. We de-
scribed Protocol 3.8 in the context of genomic data.
This protocol can be used also in more general settings.
As for example, consider the following problem: A client
holds a vector x ∈ {0, 1}n, and the server holds m vec-
tors S1, . . . , Sm ∈ {0, 1}n, and assume that m � 2n.
The client should receive the identities of the k-closest
vectors in the database, where closeness is measured in
terms of hamming distance. As here we are working over
a small alphabet (bits) which is also public (i.e., Ti is
always {0, 1}, for every “block”), the client can simply
share the indicator bits and there is no need for secure
computation for that. This protocol results in 2n OTs
(of vectors of length m), which can be fast using OT
extensions. Garbled circuit is then needed only for com-
puting the k-min values out of the m results. Moreover,
this protocol is accurate, and can also easily be adjusted
to weighted hamming distance, in which different coor-
dinates have different weights, or also be generalized for
larger alphabets.
Leakage from approximated results. We prove the
security of our protocol according to the ideal-real sim-
ulation paradigm in the semi-honest settings, where the
simulator receives the output of the approximation func-
tion. This follows the same spirit as the liberal definition

for security of approximation in [FIM+01]. A stronger
security notion called functional-privacy was also intro-
duced in [FIM+01], and requires simulation of the ap-
proximated function from the output of the exact func-
tion. That is, a (possibly randomized) approximation
function g′ is functional-private with respect to a func-
tion g, if there exists a simulator S such that for every
input x in the domain, S(g(x)) is distributed identically
to g′(x). Notably, this is a property of the approxima-
tion function and the task to be computed, and not of
the protocol.

Our approximation function is not functional-
private, yet our protocol is fully simulatable given the
result of the approximation function. An interesting
question is whether an efficient secure protocol can be
designed for some approximation function for this task,
while the approximation function is also functional-
private. We believe that using differential private tech-
niques can transform our approximation function to be
functional-private (by adding noise to the results), how-
ever, at the expense of degrading its accuracy.

We further note that being non-functional private
does not render our protocol useless. In fact, in real-
world applications, this task would serve as a building-
block and not as a stand-alone system. In some cases, it
is likely that the function to be computed using our ap-
proximation would be functionally-private, even though
our approximation by itself is not. In order to see that,
consider the task that motivated our work in the in-
troduction: a medical doctor would like to examine
whether a particular treatment would succeed for her
client, based on the medical conditions of patients in
a remote database. Assume that the vast majority of
patients in the exact k-set share the same medical con-
ditions. This is a reasonable assumption, as otherwise
such a system would return arbitrary results. Based on
our k-closest approximation function, one can build a
protocol that first finds the (approximated) closest set,
and then determines the results according to the ma-
jority of elements in the returned set. As our k-closest
approximation recognizes almost all elements in the ex-
act k-closest set, the output of our approximation and
the exact function would be the same, and thus this
function would be functionally-private. We believe that
other tasks can be based on our system and result in
functionally-private approximation.

We focused in this work on quantifying the accu-
racy of our approximation. We compared the identi-
fiers that were returned by our approximation to the
identifiers that were returned by the exact function (see
Columns “Precision” in Table 2 and “Average-∆” in Ta-
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ble 2). These measurements would be helpful for one
who would like to use our approximation as a subpro-
tocol.
The semi-honest model and limitations of the
exact functionality. Our solution targets the semi-
honest model of security.The goal is to enjoy the bene-
fits of genomic medicine without violating federal laws
addressing privacy issues and legislations (such as the
Health Insurance Portability and Accountability Act
(HIPAA) [HIP]) that safeguard medical information.

It is not hard to see that when deviating from the
semi-honest model, by engaging in multiple executions
with adversarially chosen queries, a malicious doctor can
choose its queries adversarially and learn significant in-
formation about each individual in the database. We
stress that such attacks can be launched on an “ideal
functionality” computing the exact functionality as well.
That is, even if an incorruptible trusted party computed
the function for the parties, it would still be possible to
carry out such an attack. Thus, such an application can
only be used safely by parties who trust that they will
both behave semi-honestly.

Securely computing the parameters. Our protocol
requires fixing several parameters such as (1) the block
size b for breaking up the reference genome R, (2) an
upper bound b′ on the size of the blocks in the query and
sequences (after alignment with R), (3) the maximum
number of possible different values v in a block, and (4)
an upper bound d on the maximum edit distance. At
first, one may think that these parameters leak informa-
tion about the database. However, as we discuss below,
they can actually be determined from publicly available
data and therefore do not leak any information about
the database or the query.

The reference genome R that we use is GRCh37,
which is publicly available to both the client and the
server, and it can be found online (e.g., [GRC]). As it
is public knowledge, it leaks no information whatsoever
about any individual in the database, nor the query. Our
experiments and theoretical analysis (§5) show that b
has a minor effect on the accuracy of our approach, and
we therefore choose it somewhat arbitrarily. The param-
eters b′, v and d are related to the “variability” of the
range in consideration (i.e., the average ratio between
the distance of sequences from the reference genome and
the length of the range). It is possible to extract these
parameters as well from public datasets, and one can
create a database mapping between genomic regions and
the parameters v and b′ (while taking into account the
size of the database) similarly to other characteristics

that are available for each position in the genome and
are publicly available in genomic browsers such as the
NCBI browser [NCB].

By conservative choices of the parameters based on
public data, no specific database under consideration
would exceed the parameters with very high probabil-
ity. Moreover, the server can monitor whether its actual
database satisfies the parameters prior to answering any
query.

8 Conclusions
In this work we described a privacy preserving protocol
for answering Similar Patient Queries (SPQ) on genome
data. Our protocol was designed to operate in settings
with high divergence between individuals. We developed
an efficient method for approximating the edit distance
that provides very good accuracy even in regions of the
genome with ≈5% variability, while at the same time
being 2-3 orders of magnitude faster than exact calcula-
tion. Our work was motivated by the 2016 iDASH com-
petition for computing on genome data, in which our
solution won the first place. In particular, for the 500-
record dataset used in that competition, we can answer
SPQ in under 1.2 seconds per query (after about 12
seconds of one-time pre-processing of the database).
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Appendix

A Related Work
We provide some more in depth comparison with the
related work of [WHZ+15] and the concurrent works
of [ZH17] and [AAM17].

The work of [WHZ+15]. The most relevant prior
work to ours is by Wang et al. [WHZ+15] (building on
earlier work of Baldi et al. [BBC+11]) that designs a
privacy-preserving protocol for supporting the Similar
Patient Query functionality. Wang et al. developed an
approximation protocol for edit distance that enables
computation in a large scale of the whole genome.

The approach of Wang et al. relies on the fact that
the genomes that they are examining have little diver-
gence.Using this fact, Wang et al. show how to approx-
imate the edit distance by just considering the set of
indexes where the two sequences differ from the refer-
ence genome, and running a set-intersection protocol.
The above assumptions are valid in some instances, es-
pecially when the edit-distance result is very close to
that of the hamming-distance. The approximation was
shown to be very accurate in these cases, and the com-
putation of a single comparison between two sequences
of total 100K variations is performed in several hundreds
of seconds.

However, some regions have high divergence and the
differences are also caused by insertions and deletions,
which are more difficult to deal with in computing edit
distance. For example in some regions that affect the
immune system the distances between two individuals

may be up to 5–7% of the size of the region, and about
25% of the differences between two sequences are due to
insertions or deletions.

We implement the approximation function of Wang
et al., and examined its accuracy. The approxima-
tion function is pretty accurate (> 97%) for databases
ABHD17AP5, TEKT4P2, but its accuracy in CDC27P2
is 93.23% (compared to 98.49% of our algorithm), and
for CDC27P1 its accuracy is 66.16% (compared to
97.74% of our algorithm). The experiments where all
tested with the same randomness for choosing the chal-
lenged queries, and with the same settings as in §5.2.
In all these tests, our approximation was always more
accurate than [WHZ+15].

We remark that while [WHZ+15] deal with 100K
variations (i.e., the sets to be intersected are of size
100K) in few hundreds of seconds (depending on the ac-
curacy level), we compare a single query to a database
of 500 sequences of size 3470 size each at less than a
second (after one-time preprocessing of around 12 sec-
onds). Our problem contain much more characters to
check (roughly factor of 17×) and is still much faster,
showing the power of pushing most of the computation
to preprocessing.

The work of Zhu and Huang [ZH17]. The concur-
rent work of Zhu and Huang computes edit-distance us-
ing garbled circuits, while designing specific gate-level
“gadgets” to accelerate computations of edit-distance
and related tasks, such as weighted edit-distance and
Needleman-Wunsch [NW70]. This approach enables
computation of accurate edit-distance and not approxi-
mation as ours, and also works for other domains rather
than genomic data. Zhu and Huang reported a running
time of 3.7 seconds for a single comparison between two
sequences in the ZNF717 dataset (≈ 3470-long strings,
see §5 for more information regarding the dataset). Us-
ing their approach, answering a single query to find the
5 closest sequences in a database of 500 sequences would
take 1850 seconds (more than 30 minutes).4

The work of [AAM17]. The work of [AAM17] pro-
posed an approximating algorithm for computing the
distances between the query and each sequence of the
database based on “shingling”, a technique used to iden-
tify lexically similar documents in data mining [LRU14].
They first break all sequences into small blocks of con-

4 We emphasize that we did not implement their protocol, and
the only running times that they reported for the same database
as ours is a single comparison.

http://eprint.iacr.org/2017/683
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secutive letters (e.g., the sequence ATTGTTA will be bro-
ken into “shingling” {ATTG,TTGT,TGTT,GTTA}). Then,
they approximate closeness between a query and a se-
quence as the number of elements in the intersection of
their shingling set, which is implemented using private-
set-intersection protocol. This yields a somewhat fast
approximation algorithm with low accuracy: around
50% accuracy when looking for the closest-1 set, less
than 60% when querying for the closest-5 and around
25% when looking for the closest-10. In order to improve
the accuracy of their algorithm, [AAM17] first apply
their fast approximation algorithm to find c · k closest
sequences (for some constant c ≥ 1), and then proceed
to computing accurate edit-distance between these can-
didates and the query using garbled circuits. They also
present optimizations of the garbled circuit for the case
of edit-distance (introducing some error). They report
different variants of their algorithms, where the one with
accuracy that is comparable to ours has a running time
of more than 2000 seconds.

B The Wagner-Fischer Algorithm
The WF algorithm [WF74] is based on dynamic pro-
gramming, for computing the edit distance between two
sequences A = (α1, . . . , αa) and B = (β1, . . . , βb).

The algorithm proceeds by preparing an (a + 1)-
by-(b + 1) matrix D[·, ·], where entry (i, j) is the edit-
distance between the i-prefix of A and the j-prefix of B.
The first row and column are initialized by D[i, 0] = i,
D[0, j] = j for all 0 ≤ i ≤ a and 0 ≤ j ≤ b. Then for
1 ≤ i ≤ a and 1 ≤ j ≤ b the algorithm iteratively sets

D[i, j] =


if αi = βj : D[i− 1, j − 1]

otherwise : min


D[i− 1, j − 1] + 1
D[i− 1, j] + 1
D[i , j − 1] + 1

where the first line relates to a “match”, the second
to “substitution”, the third to “delete” and the last to
“insert”. and finally it returns the answer D[a, b].

This procedure can be augmented to return not only
the edit distance itself but also the sequence of opera-
tions that transforms A to B in D[a, b] steps. Specif-
ically, together with D we also prepare a matrix of
pointers PTR[·, ·] (with the same dimension as D), that
for each entry (i, j) points to the previous entry from
which D[i, j] received its value. Specifically, we initial-
ize PTR[0, 0] =⊥, PTR[i, 0] = (i− 1, 0) for all 1 ≤ i ≤ a

and PTR[0, j] = (0, j− 1) for all 1 ≤ j ≤ b, and then for
1 ≤ i ≤ a and 1 ≤ j ≤ b we iteratively set

PTR[i, j]

=


(i− 1, j − 1) if D[i, j] ≤ D[i− 1, j − 1] + 1
(i− 1, j) if D[i, j] = D[i− 1, j] + 1
(i , j − 1) if D[i, j] = D[i, j − 1] + 1

where the first case corresponds to a match or substi-
tution, the second corresponds to a delete, and the last
case corresponds to an insert. When more than one con-
dition applies, we break ties toward the main diagonal.
Namely, we prefer (i , j − 1) to the other options when
j > i, prefer (i−1, j) when i > j, and prefer (i−1, j−1)
when i = j.

The PTR table lets us trace on optimal path, start-
ing from PTR[a, b] and following the pointers to get
both the alignment of the sequences A,B, as well as
the corresponding operations (match, substitute, insert,
delete).

C Security Definitions and Proofs
We provide security proofs according to the standard
definition of secure protocols (cf. [Gol04]) in the semi-
honest model. We briefly describe the definition, and
proceed to the security proofs.

C.1 Definitions

For two distribution ensembles X = {Xs}s and
Y = {Ys}s, we let X

c
≈ Y denote computationally-

indistinguishability. Let f : ({0, 1}∗)2 → ({0, 1}∗)2 be
a probabilistic function, and write f = (f0, f1), where
each fi(x0, x1) = yi for i ∈ {0, 1}. Let π be a protocol
between parties P0 and P1. We let viewi(x0, x1) denote
the distribution of the view of party Pi in the protocol
execution of π, which consists of the random tape of
Pi and all the messages it receives throught the execu-
tion. Likewise, we denote by outputi(x0, x1) to denote
its output distribution of that execution.

Definition C.1. Let π, f be as above. We say that
π securely realizes f in the presence of a semi-
honest adversary, if there exist S0,S1 such that
for every x0, x1 ∈ {0, 1}n and for every i ∈
{0, 1} it holds that {Si(xi, fi(x0, x1)), f(x0, x1)}

c
≈

{(viewi(x0, x1), output(x0, x1)}.
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Modular composition. The sequential composition
theorem [Can00] is a tool for analyzing the security of a
protocol in a modular way. Let πf be a protocol for se-
curely computing f that uses a subprotocol πg for com-
puting g. The theorem states that it suffices to consider
the execution of πf in a hybrid model where a trusted
third party is used to ideally compute g. We rely on this
composition theorem in our proof, and refer the reader
to [Can00] for the formal statement of the theorem.

C.2 Security Proofs

We prove the security of our protocols. As in our case the
parties are a client and a server, we denote the simula-
tors as Ss (simulating corrupted server) and Sc (client).

Theorem C.2 (Sharing of χ`,j · L`,j). Protocol 3.5 se-
curely realizes Functionality 3.4 in the FOT-hybrid
model against static corruptions in the semi-honest ad-
versary model.

Proof: We separate between the case of a corrupted
client and a corrupted server. First, recall that Func-
tionality 3.4 receives the inputs χc`,j , χ`, j

s and L`,j
from the parties, reconstructs χ`,j = χc`,j ⊕ χ`, j

s. It
then chooses a random output for the server, Ls`,j and
then deterministically sets the output of the client to be
Lc`,j = Ls`,j + χ`,j · L`,j .

In order to simulate a corrupted server, note that
the protocol is just an execution of an OT protocol,
and there are no other messages beyond that single in-
vocation. The server has no output from the OT, and
therefore its view is just its randomness, which is solely
L0
`,j = Ls`,j . The simulator Ss receives as input the

output of the server, i.e., Ls`,j , and just outputs this
value. According to the definition of the functionality it
is guaranteed that the two outputs of the parties, i.e.,
Ls`,j , L

c
`,j guarantee Lc`,j − Ls`,j = χ`,j · L`,j . In the real

execution, the OT guarantees that the output of the
client Lc`,j = Ls`,j +χ`,j ·L`,j For a corrupted client, the
simulator Sc receives as input some string Lc`,j as the
output of the client. The view of the client in the proto-
col consists of just the message it receives from FOT, and
therefore the simulator outputs it. The theorem follows.

Theorem C.3 (Sharing of L). Protocol 3.6 securely
realizes Functionality 3.2 against static corruptions in
the semi-honest adversary model.

Proof: Correctness is easy by inspection. As for secu-
rity, assume the case of a corrupted client. The simu-
lator Sc receives as input a random Lc as the output
of the corrupted client, and the output of the server
guarantees Ls = Lc − L. The view of the client dur-
ing the execution is the set of shares {χc`,j}`,j and the
vectors {Lc`,j}`,j . The simulator chooses the set of bits
{χc`,j}`,j uniformly at random, and also chooses the vec-
tors {Lc`,j}`,j at random from Zn·vd under the constraint
that

∑n
`=1
∑v
j=1 L

c
`,j = Lc, and outputs these values.

As the intermediate values {χs`,j}`,j are hidden from the
distinguisher, the bits {χc`,j}`,j that the client receives
from the invocations of Functionality 3.4 are distributed
uniformly. Moreover, as the values {Ls`,j}`,j are also hid-
den from the distinguisher, the vectors {Lc`,j}`,j are all
random under the constraint that they sum-up to the
output of the client. Therefore, the join distribution of
the view of the client and the output of all parties in the
real execution is identical to the distribution of the out-
put of the simulator and the output of the functionality
in the ideal execution.

The case of a corrupted server is proven analogously.

Theorem C.4 (Overall protocol). Protocol 3.8 realizes
Functionality 3.1 against static corruptions in the semi-
honest adversary model.

Proof: Functionality 3.1 is deterministic, and there-
fore we can prove separately correctness and privacy.
Correctness of the protocol is trivial given the definition
of the underlying functionalities, i.e., Functionalities 3.2
and 3.7.

Except for the input and output values, the only
other messages that the parties see in Protocol 3.8 are
the vectors Lc, Ls that are returned by the intermediate
Functionality 3.2, and that these vectors are individu-
ally uniform, irrespective of the input and output. Thus,
in the case of a corrupted client the simulator Sc just
chooses Lc uniformly at random, and in the case of a
corrupted server Ss chooses Ls uniformly at random.

As a conclusion, we derive security for Protocol 3.8
in the plain model using the composition theorem
of [Can00, Gol04] in the stand-alone settings, while com-
bining Theorems C.4, C.2, and C.3 together with the
security of Yao’s Protocol [LP09].
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D Block Misses
Our approach ignores blocks of the client that do not
appear in the database. This introduces some error to
our approximation, but we empirically verify that it is
minor. First, in §D.1 we study the frequency of block-
misses and see that they rarely occur. Second, in §D.2
we study the error that is introduced with each such
block-miss, and see that it is indeed very small.

D.1 Frequency of Block-Misses

Our approach ignores blocks of the clients that do not
appear in the database. Intuitively, assuming that m
independent samples from some distribution (i.e., the
`th block of each one of the sequences) occur in some
very small set (i.e., T`), then the probability that an
additional independent sample (i.e., Q`) will occur in
the same set is close to 1.

In Table 7, we report the frequency of block misses
and show that it is a relatively rare event. The data be-
low is on the real database (ZNF717), where we chose
30 sequences at random to be the queries, and the other
470 sequences to be the DB. We then built the tables
T`, and run our protocol. Overall, more than 99.95% of
the blocks of the queries do appear as one of the blocks
in the DB. In fact, for more than half of the queries, all
their blocks appear in the DB, and the maximal number
of block misses per query that was observed is 3. In Ta-
ble 7 we observe similar results even for small databases,
and even when the number of queries and the number
of sequences in the database are close.

DB Size #Queries
Average # Hits Max # of Misses
per Query (stdev) Qer query

276 224 1155.91 (0.62) 2
340 160 1155.90 (0.61) 3
400 100 1155.88 (0.62) 3
434 66 1155.95 (0.49) 2
470 30 1156.51 (0.66) 2

Table 7. Frequency of number of block of the queries Q` that
appear or do not appear in the corresponding set T` of the DB,
as a function of the DB size. The DB is the real database, where
random number of elements where chosen to be the DB and the
rest where chosen to be the queries. Block size b is always 3, and
so the number of blocks is always 1157.

D.2 Error Introduced by Block Miss

Even though that block misses are relatively rare events,
it is still a question what to do in case they occurs. As-
sume that Q` 6∈ T` for some block ` ∈ {1, . . . , n}. In the
following, we compare between two possible approaches:

– The first approach is to compute the accurate distance
between ED(Q`, Si,`) for every Si,1, . . . , Si,m. This in-
troduces some additional complexity to the protocol,
as we have to hide, both to the client and to the server,
on which blocks Q` it holds that Q` 6∈ T`, as well as
to compute edit-distances (of small blocks) in the on-
line time. The resulting approximation function is as
follows: ApproxED(Q,Si) =

∑n
`=1 ∆(Q`, Si,`) where,

∆(Q`, Si,`) = ED(Q`, Si,`) . (D.1)

– The second approach is the one we chose: we simply
ignore these blocks. This results in the following ap-
proximation function:
ApproxED(Q,Si) =

∑n
`=1 ∆(Q`, Si,`), where

∆(Q`, Si,`) =
{

ED(Q`, Si,`) if Q` ∈ T`
0 otherwise

.(D.2)

In Table 8, we show that the accuracy improvement
is minor when choosing the first approach. This justifies
our choice, as the overhead in computation for comput-
ing full edit-distances in case of block misses is signif-
icant. The experiment is the same as in Table 2, with
the same setting and same random choices of queries.

Approach I: Eq. (D.1) Approach II: Eq. (D.2)

Dataset Average-∆ Precision Average-∆ Precision
(stdev) (stdev)

ZNF717 0.25 (0.82) 96.44% 0.25 (0.82) 97.48%
TEKT4P2 0.54 (2.59) 99.28% 0.60 (3.23) 97.33%
CDC27P1 0.15 (0.69) 97.66% 0.57 (1.48) 96.94%
CDC27P2 1.16 (4.48) 99.02% 0 (0) 99.67%

ABHD17AP5 0 (0) 100% 0 (0) 98%

Table 8. Accuracy loss for block-misses. Comparing between Ap-
proach I: computing ∆(Q`, Si,`) = ED(Q`, Si,`) in case Q` 6∈ T`

(as in Eq. (D.1)), and Approach II: ∆(Q`, Si,`) = 0 in case
Q` 6∈ T` (as in Eq. (D.2)). The datasets, experiments and ran-
dom choices are the same as in Table 2, for k = 10.
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