
Proceedings on Privacy Enhancing Technologies ; 2019 (1):5–25

Nisarg Raval, Ashwin Machanavajjhala, and Jerry Pan

Olympus: Sensor Privacy through Utility Aware
Obfuscation
Abstract: Personal data garnered from various sensors
are often offloaded by applications to the cloud for ana-
lytics. This leads to a potential risk of disclosing private
user information. We observe that the analytics run on
the cloud are often limited to a machine learning model
such as predicting a user’s activity using an activity
classifier. We present Olympus, a privacy framework
that limits the risk of disclosing private user informa-
tion by obfuscating sensor data while minimally affect-
ing the functionality the data are intended for. Olym-
pus achieves privacy by designing a utility aware ob-
fuscation mechanism, where privacy and utility require-
ments are modeled as adversarial networks. By rigorous
and comprehensive evaluation on a real world app and
on benchmark datasets, we show that Olympus success-
fully limits the disclosure of private information without
significantly affecting functionality of the application.

Keywords: machine learning, mobile, privacy

DOI 10.2478/popets-2019-0002
Received 2018-05-31; revised 2018-09-15; accepted 2018-09-16.

1 Introduction
A large number of smart devices such as smartphones
and wearables are equipped with sophisticated sensors
that enable fine-grained monitoring of a user’s environ-
ment with high accuracy. In many cases, third-party
applications running on such devices leverage this func-
tionality to capture raw sensor data and upload it on the
cloud for various analytics. Fine-grained collection of
sensor data contains highly sensitive information about
users: images and videos captured by cameras on smart
phones could inadvertently include sensitive documents
[42], and a user’s health status could be inferred from
motion sensor data [40, 51]. We observe that in many
cases, sensor data that are shipped to the cloud are pri-

Nisarg Raval: Duke University, E-mail: nisarg@cs.duke.edu
Ashwin Machanavajjhala: Duke University, E-mail: ash-
win@cs.duke.edu
Jerry Pan: Duke University, E-mail: qiyuan.pan@duke.edu

marily used as input to a machine learning (ML) model
(e.g. a classifier) hosted on the cloud. In this work, we
investigate whether we can avoid the disclosure of pri-
vate sensor data to the cloud in such scenarios.

Consider Alice who uses a driver safety app (e.g.
CarSafe [50]) that helps her from distracted driving. The
app uses a smartphone camera to record Alice, performs
activity recognition on the cloud using a deep neural
network (DNN) and alerts her when she is distracted.
While she is comfortable allowing the app to monitor ac-
tivities related to distracted driving (such as detecting
whether she is drowsy or inattentive), she is not com-
fortable that the raw camera feed is uploaded to the
cloud. She has no guarantee that the app is not moni-
toring private attributes about her such as her identity,
race or gender. Our goal is to develop a mechanism that
allows Alice to send as little information to the cloud
as possible so as to (a) allow the driver safety app to
work unmodified, (b) minimally affect the app’s accu-
racy, while (c) providing her guarantee that app cannot
monitor other attributes that are private to Alice.

We address the problem of utility aware obfusca-
tion: design an obfuscation mechanism for sensor data
to minimize the leakage of private information while
preserving the functionality of the existing apps. Build-
ing upon prior work [18, 22], we formulate this prob-
lem as a game between an obfuscator and an attacker,
and propose Olympus, a privacy framework that uses
generative adversarial networks (GAN) [20] to solve the
problem. Unlike prior work, where utility is formulated
using a closed form mathematical expression, Olympus
tunes the obfuscator to preserve the functionality of tar-
get apps. This ensures that the obfuscated data works
well with the existing apps without any modifications.

In Olympus, a user can specify utility using one
or more apps whose functionality must be preserved. A
user can specify privacy using a set of labeled examples
on data collected from the sensors. Given this training
data and access to the target app(s), Olympus learns
an obfuscation mechanism that jointly minimizes both
privacy and utility losses. Moreover, if the private prop-
erties are correlated with the objective of the app’s ML
model, Olympus allows the user to tradeoff between the
privacy and utility losses (since they can no longer be
simultaneously minimized). At runtime, Olympus uses



Olympus: Sensor Privacy through Utility Aware Obfuscation 6

the learned obfuscation mechanism to interact with the
unmodified target apps.

Continuing our driver safety example, given access
to the app and a few example images of people driving
labeled by their identity, Olympus learns to obfuscate
the images such that it hides the identity of drivers while
allowing the app to detect distracted driving.

We make the following contributions in this paper:
1. We design Olympus, a privacy framework that

solves the utility aware obfuscation problem wherein
inputs to a machine learning model are obfuscated
to minimize the private information disclosed to the
model and the accuracy loss in the model’s output.

2. To the best of our knowledge we present the first
proof-of-concept implementation of a utility aware
obfuscation mechanism, deploy it on a smartphone,
and evaluate it against a real-world mobile app. Our
evaluation on a real-world handwriting recognition
app shows that Olympus allows apps to run un-
modified and limits exposure of private information
by obfuscating the raw sensor inputs.

3. Olympus allows users to tradeoff privacy and util-
ity, when the two requirements are at odds with one
another. We empirically demonstrate that Olympus
provides better privacy-utility tradeoffs than other
competing techniques of image obfuscation.

4. Olympus works across different data modalities.
On image analysis tasks, we empirically show that
Olympus ensures strong privacy: the accuracy of an
attacker (simulated as another ML model) trained
to learn the private attribute in the obfuscated data
was only 5% more than the accuracy of a random
classifier (perfect privacy). For example, on a dis-
tracted driver detection dataset (StateFarm [6]) the
attacker’s accuracy of identifying drivers were 100%,
15.3% and 10% on unperturbed images, images per-
turbed by Olympus and images perturbed by an
ideal obfuscation mechanism, respectively. On the
other hand, Olympus suffers only a small loss in ac-
curacy (<17%) across all image datasets. On motion
sensor data, the accuracy of an attacker is slightly
better, but no more than 13% higher than the ac-
curacy of a random classifier, but with no loss in
accuracy of the machine learning task.

5. We empirically show that Olympus supports mul-
tiple target applications with a single obfuscation
mechanism. We also demonstrate that Olympus
supports apps with different kinds of classifiers,
namely, DNN and logistic regression.
The rest of the paper is organized as follows. Sec-

tion 2 provides an overview of Olympus along with its

key design principles. Section 3 describes the methodol-
ogy of learning the utility aware obfuscation. Section 4
provides the implementation details of training and de-
ploying Olympus on a smartphone to obfuscate data in
real-time. We evaluate Olympus on an Android app as
well as on various real-world datasets, and present our
results in Section 5. Finally, we summarize related work
in Section 6 and conclude in Section 7.

2 Olympus Overview
In this section, we begin with a description of the utility
aware obfuscation problem. Then, we outline key design
principles of Olympus. Finally, we give an overview of
our privacy framework.

2.1 Problem Setting

Our goal is to design a utility aware obfuscation: given
a set of ML models U that take as input x, and a spec-
ification of private attributes in the input S, construct
an obfuscation mechanismM such that the privacy loss
and the accuracy loss are jointly minimized. We achieve
this by developing a privacy framework – Olympus, in-
spired by the idea of adversarial games [20]. In an ad-
versarial game, two players compete against each other
with conflicting goals, until they reach an equilibrium
where no player can improve further towards their re-
spective goals. Similarly, Olympus constructs the ob-
fuscation mechanism by competing against an attacker
whose goal is to break the obfuscation.

Trust Model

We assume third party apps are honest-but-curious
meaning they follow the protocol but may infer private
information from the available data. We also assume
that the device platform is trusted and properly isolated
from the untrusted third party apps running on the de-
vices. Olympus runs as a part of the trusted platform
on the device and intercepts all sensor data for obfus-
cation. The third party apps can not directly access the
raw sensor data and have access to only obfuscated data.



Olympus: Sensor Privacy through Utility Aware Obfuscation 7

Privacy Goals

Our privacy goal is to prevent curious third party apps
from inferring private user information in the captured
sensor data. To this end, we model the attacker as an
ML adversary who has a complete access to the obfus-
cation mechanism. Thus, it can train on the obfuscated
data (generated by Olympus) to undo the obfuscation.
On the other hand, Olympus learns the obfuscation
mechanism by competing against such ML attackers.

Rather than considering all powerful attackers, we
limit the ML attacker to be one from a known hypoth-
esis class (e.g. a DNN with a known structure). We be-
lieve this is a reasonable assumption since (a) state-of-
the-art attacks on obfuscation methods are performed
using DNN [34, 35], and (b) being a universal approxi-
mator [46], DNN is successfully used to learn many com-
plex functions, making it an apt tool to model a strong
adversary. In Section 3.1, we mathematically model at-
tackers and formalize our privacy goals as an optimiza-
tion problem. In Section 3.2, we describe how Olympus
achieves these privacy goals by solving the optimization
problem. To verify how well Olympus achieves the pro-
posed privacy goals, we empirically evaluate Olympus
against a suit of attackers, namely DNN, logistic regres-
sion, random forest and SVM (Section 5.5).

2.2 Design Principles

A trivial solution to protect user data would be to run
the classifier on a user’s device which would not require
apps to send raw sensor data to the cloud. There are
several issues with this approach. First, the output of
the classifier may itself leak information that a user
may deem private. Second, it requires app developers
to modify the app so that it can run the ML task on a
user’s device. This may be infeasible due to proprietary
reasons or the limited availability of resources on a mo-
bile device. To address above concerns we follow the
following important principles in designing Olympus.

2.2.1 Compatible with Existing Apps

Our primary objective is to develop an obfuscation
mechanism that would let apps run unmodified. Most
of the previous approaches of data obfuscation do
not consider the target apps in designing the mecha-
nism [18, 21, 41]. This could lead to the obfuscated data
being incompatible with the app, or cause a significant

loss in the app’s utility. For instance, we show that the
standard approaches of protecting visual secrets such as
blurring, perform poorly against image classification.

To alleviate this issue, we allow users to specify their
utility requirements in the form of apps. The onus is on
the obfuscation mechanism to ensure that the specified
apps work well with the obfuscated data. Specifying the
utility requirements in terms of apps is not only easy
and intuitive but also provides a natural way to quan-
tify utility guarantees in terms of the accuracy of the
specified apps on the obfuscated data. Moreover, we de-
sign Olympus such that a single obfuscation mechanism
is sufficient for multiple apps.

2.2.2 Privacy-Utility Tradeoff

In certain scenarios, the app-essential information is
tightly coupled with users’ private information. A triv-
ial example is inferring the driver’s activity reveals the
fact that she is in the car. Thus, often it is impossi-
ble to achieve complete privacy without compromising
the functionality of the app and vice-a-versa. We achieve
this crucial balance between privacy and utility through
modeling the obfuscation problem as a minimax opti-
mization. Olympus allows users to control the privacy-
utility tradeoff by specifying a parameter (λ) that gov-
erns the relative importance of privacy and utility.

2.2.3 Holistic Obfuscation

In many cases, hiding only private information may not
be enough to protect users’ privacy. For instance, re-
searchers have shown that blurring faces is not enough
to conceal the identity of a person since it is correlated
with seemingly innocuous attributes such as clothing or
environment [34, 35]. Hence, instead of explicitly de-
tecting and removing the private attribute (e.g. face),
we take a holistic approach to obfuscation. By formu-
lating the obfuscation problem as an adversarial game,
we aim to minimize the information leakage caused by
any such correlation in the data.

2.2.4 Data Agnostic Framework

Many methods of protecting secrets are specifically de-
signed for certain types of private attribute [11, 26, 28]
or data types [12, 23, 24]. We aim to provide a gen-
eral privacy framework that is agnostic to the private



Olympus: Sensor Privacy through Utility Aware Obfuscation 8

Fig. 1. Olympus framework

attribute as well as the data types. Olympus comprises
of multiple DNNs that are responsible for manipulating
sensor data. Thus, one can use Olympus for any data
type by plugging-in an appropriate DNN. By simply
changing the underlying networks, we show that Olym-
pus can be used for protecting private information in
images and in motion sensor data.

2.3 Privacy Framework

As outlined in Figure 1, Olympus has two phases – an
offline phase to learn the obfuscation mechanism, and
an online phase where it uses the learned mechanism
to obfuscate the sensor data. Before describing these
phases, we describe the modules of Olympus.

2.3.1 Modules

Olympus consists of three modules – 1) an App that
simulates the target app, 2) an Attacker that attempts
to break the obfuscation, and 3) an Obfuscator that
learns to obfuscate data to protect private information
without affecting the functionality of the target app.

App: The App module simulates the target app to verify
that the obfuscated data preserve the functionality of
the app, i.e., satisfy the utility requirements. The target
app can be any classifier that takes sensor data as input
and outputs a classification probability for each class.
The inputs to the App module are the obfuscated data
and the associated utility labels. The utility labels are
the true class labels of the obfuscated data and are used
in computing the utility loss. Informally, the utility loss
is a classification loss that captures the performance of
the target app on the obfuscated data.

The App module in the driver safety example uses
obfuscated driver images and their activity labels as
inputs. It uses the target app to get the classification
probability for each driver image and computes the cor-
responding utility loss using the true activity labels.

Attacker: The Attacker module simulates an adversary
that attacks the obfuscation mechanism learned by the
Obfuscator . In other words, it verifies that the obfus-
cated data hide private attributes, i.e., satisfy the pri-
vacy requirements. The inputs to the Attacker are a set
of obfuscated images and their privacy labels, where a
privacy label specifies the value (class) of the private at-
tribute. Using these inputs, the Attacker trains a DNN
to classify obfuscated images into correct privacy labels,
and outputs the privacy loss. Intuitively, the privacy loss
measures how well the Attacker classifies obfuscated im-
ages, i.e., infers the private attributes.

In our driver safety scenario, given obfuscated im-
ages together with their privacy labels (identity of
drivers), the Attacker learns to identify drivers in the
obfuscated images.

Obfuscator: The Obfuscator module learns a transfor-
mation of the data such that the obfuscated data do not
contain any private information but preserve useful in-
formation. The corresponding privacy and utility losses
are estimated using the Attacker and the App modules,
respectively. To satisfy the privacy and utility require-
ments, the Obfuscator learns a transformation function
that minimizes both the privacy and utility losses.

The design of the Obfuscator follows the architec-
ture of an autoencoder [49]. It consists of a sequence
of layers, where both input and output layers are of the
same size, while the middle layer is much smaller in size.
The idea is to encode the input to this compact mid-
dle layer and then decode it back to the original size in
the output layer. This encoding and decoding process
is learned by minimizing the privacy and utility losses
of the output (obfuscated data). The smaller size of the
middle layer forces the Obfuscator to throw away un-
necessary information while preserving the information
required to reconstruct the output. Essentially, the pri-
vacy loss forces the Obfuscator to throw away private
information, while the utility loss forces it to preserve
the information required by the target app.

In the driver safety use case, the Obfuscator obfus-
cates the input image such that the features required to
identify drivers are removed, but the features important
for activity detection are preserved.



Olympus: Sensor Privacy through Utility Aware Obfuscation 9

2.3.2 Offline Phase

In the offline phase, Olympus learns an obfuscation
mechanism that minimizes information leakage while
maintaining the utility of the applications. The user
specifies privacy and utility requirements by providing
training data that includes examples with their respec-
tive privacy and utility labels. It is crucial to protect the
training data as it contains private information. Note
that the training data is only used during an offline
phase and it never leaves the Olympus system. Thus, we
require the offline phase to be executed in a secure envi-
ronment, either on the device or on the trusted server.
Moreover, the target app always receives the obfuscated
data, even during the training phase.

Given the training data, the offline phase learns an
obfuscation function M : X → X such that M(·) sat-
isfies given privacy and utility requirements. Here, X
refers to the domain of the data. In the next section, we
provide an algorithm to learnM.

2.3.3 Online Phase

During the online phase, Olympus simply uses the
learned obfuscation M to obfuscate the data. In par-
ticular, when an app requests sensor data, Olympus
intercepts the request and obfuscates the data usingM
before sending it to the app.

3 Utility Aware Obfuscation
In this section, we mathematically formulate the prob-
lem of designing an obfuscation functionM that satis-
fies given privacy and utility requirements, and describe
how Olympus learnsM using adversarial games.

3.1 Problem Formulation

Let X be the domain of the data that need to be obfus-
cated (e.g., images, sensor readings, etc.). Let s denote
a private attribute associated with each x ∈ X (e.g.,
race, gender, identity, etc.). We use the notation x.s = z

to denote the fact that the private attribute associated
with x takes the value z. Here, z is a privacy label of
x and it takes a value from a set Zs which we denote
as privacy classes. For instance, if s is gender then Zs

= {male, female}, and x.s = female implies that the
gender of x is female.

Similarly, u denotes a utility attribute associated
with each x ∈ X (e.g., activity, expression, etc.). Again,
we denote by x.u = y the fact that the utility attribute
associated with x takes the value y. Here, y is a utility
label of x and it takes a value from a set Yu which we
denote as utility classes. For example, if u is activity
then Yu = {walking, running, ... }, and x.u = walking
implies that the activity associated with x is walking.

Let Dus = {(xi, yi, zi)}ni=1 be a training dataset
consisting of n examples drawn i.i.d. from a joint dis-
tribution Pus over random variables (X ,Yu,Zs). Here,
yi ∈ Yu and zi ∈ Zs are the corresponding utility and
privacy labels of xi ∈ X. LetM : X → X denote a de-
terministic obfuscation function and H denote the hy-
pothesis space of all obfuscation functions. Next, we for-
malize the privacy and utility requirements ofM.

Privacy Requirements

The privacy requirement is to protect the private at-
tributes in the obfuscated data. As mentioned earlier in
Section 2.1, the adversary is an ML model that learns to
identify private attributes in the obfuscated data. The
perfect privacy (i.e., the ideal obfuscation) is achieved
when the attacker cannot perform better than randomly
guessing the privacy labels, i.e., when the attacker’s
probability of predicting the correct privacy label is
1/|Zs| for the private attribute s. Thus, we measure pri-
vacy loss in terms of how well the attacker performs over
random guessing.

Let Cs : X → [0, 1]|Zs| be an attacker (classifier)
that predicts the privacy label z = x.s given M(x) as
input. The output of Cs is a probability distribution ps
over privacy labels Zs, where ps(M(x))[zi] is the pre-
dicted probability ofM(x) having privacy label zi, i.e.,
Pr(z = zi|M(x)). For a given s, the privacy loss of the
mechanism M with respect to an attacker Cs can be
measured using the cross entropy loss as follows.

LP (M, Cs) = − 1
n

n∑
i=1

∑
z∈Zs

1
|Zs|

log[ps(M(xi))[z]] (1)

The above privacy loss essentially measures the differ-
ence between two probability distributions, namely a
uniform distribution (random guessing) and the distri-
bution predicted by the attacker. The privacy loss in-
creases as the probability of predicting the correct pri-
vacy label diverges from the uniform distribution. Thus,



Olympus: Sensor Privacy through Utility Aware Obfuscation 10

minimizing the above privacy loss ensures that the ad-
versary cannot perform better than random guessing.

Utility Requirements

The utility requirement is to preserve the utility at-
tributes in the obfuscated data that are required by the
target apps. Let Cu : X → [0, 1]|Yu| represent an app
classifier that predicts the utility label y = x.u given x
as input. Given an obfuscated inputM(x), the output of
Cu is a probability distribution pu over utility labels Yu,
where pu(M(x))[yi] is the predicted probability ofM(x)
having utility label yi, i.e., Pr(y = yi|M(x)). To mea-
sure the impact of the obfuscation on the performance
of the classifier, we measure the classification error using
the following utility loss function.

LU(M, Cu) = − 1
n

n∑
i=1

log[pu(M(xi))[yi]] (2)

Here, yi is the true utility label of xi. The above utility
loss is the cross entropy loss that is 0 when the classi-
fier correctly predicts the utility labels, and increases as
the classification error increases. Thus, minimizing the
above utility loss ensures that the functionality of the
target app is preserved.

Obfuscation Mechanism

Our aim is to design an obfuscation mechanismM that
1) hides the private attribute (s) of the data and 2) pre-
serves the utility attribute (u) required by the target
app. This can be achieved by designing M that min-
imizes both the privacy loss (LP) and the utility loss
(LU) defined above. Minimizing the utility loss ensures
that the obfuscated data works well with the target
app’s classifier Cu. However, minimizing the privacy loss
only protects the private attribute against a particular
attacker Cs. To ensure that the obfuscation mechanism
protects against a class of attackers (e.g., DNN, SVM,
etc.), we minimize the maximum privacy loss across all
attackers belonging to a particular class. Thus, the op-
timal obfuscation mechanism is a solution to the below
minimax optimization problem.

arg min
M∈H

λLU(M, Cu) + (1− λ)[ max
Cs∈Hs

LP (M, Cs)] (3)

Here, Hs is a hypothesis space of attacker models. For
example, in case of an SVM adversary, Hs is a set of
all hyperplanes and Cs ∈ Hs is a particular hyperplane

learned by SVM. Even though the size of Hs is usually
very large, we show that the optimal attacker (one with
the maximum privacy loss) can be computed using var-
ious optimization techniques such as gradient descent.

We control the privacy-utility tradeoff using a
hyper-parameter λ ∈ [0, 1]. If we set λ = 0, then the util-
ity loss is ignored, and the optimal mechanism achieves
uniform conditional distribution, ensuring no informa-
tion about the private attribute are leaked. An example
of such an obfuscation mechanism is a constant function,
i.e., M(x) = c,∀x ∈ X, where c is some constant. On
the other hand, if we set λ = 1, then the privacy loss is
completely ignored, and the optimal obfuscation mech-
anism is the identity function, i.e., M(x) = x,∀x ∈ X.
In Section 5.6, we show that by setting an appropriate
value of λ, we can achieve the desired trade-off between
privacy and utility.

Next, we extend our formulation to design an ob-
fuscation mechanism that protects multiple private at-
tributes against multiple target apps. Let S denote a set
of private attributes that user wants to protect and U

denote a set of utility attributes required by the target
apps. To design an obfuscation mechanism that protects
all the private attributes in S while preserving all the
utility attributes in U , we modify the above optimiza-
tion function as follows.

arg min
M∈H

λ[max
u∈U

LU(M, Cu)]+

(1− λ)[max
s∈S

max
Cs∈Hs

LP (M, Cs)]
(4)

Here, we measure the max privacy loss across all
the private attributes (maxs∈S) to minimize the max-
imum expected information leakage across all the pri-
vate attributes. One can easily replace the max with a
sum (average) to minimize the total (average) privacy
loss across all the private attributes. Similarly, one can
also consider the total/average utility loss instead of the
max utility loss. Next, we present an iterative learning
algorithm to solve the above optimization problem.

3.2 Learning to Obfuscate

So far, we have formulated the problem of designing
an obfuscation mechanism as a minimax optimization.
In order to solve this optimization, we use the concept
of adversarial nets [20], originally proposed for learning
an unknown data distribution using samples from that
distribution. The problem of learning the distribution
was formalized using a minimax optimization which was
solved via training a pair of networks in an adversarial



Olympus: Sensor Privacy through Utility Aware Obfuscation 11

(a) Obfuscator (b) Attacker

Fig. 2. Olympus architecture for image data.

Algorithm 1 Obfuscation learning
Require: D, Pu(·, θu), Ps(·, θs), M(·, θM ), λ
Ensure: Optimal obfuscation mechanismM∗

Randomly initialize θs and θM

for number of training iterations do
for each minibatch (X,Y, Z) ∈ D do

. Train Attacker
Generate obfuscated data M(X, θM )
Update θs using equation (5)
. Train Obfuscator
Update θM using equation (6)

end for
end for
M∗ = M(·, θM )

fashion. We adapt this training approach to learn the
optimal obfuscation mechanismM∗.

The method for learning the obfuscation mechanism
is outlined in Algorithm 1. For simplicity, we describe
the learning algorithm for the case where a user wants to
protect a single private attribute against one target app.
It can be easily extended to support multiple private
attributes with multiple applications.

Let M denote the Obfuscator network that takes as
input x ∈ X and outputs the obfuscated dataM(x, θM ),
where θM is the parameter of the Obfuscator network.
Let Ps denote the Attacker network that learns to pre-
dict the privacy labels from the obfuscated data. It takes
as input the obfuscated data and outputs the probabil-
ity distribution ps(M(x, θM ), θs) over privacy labels Zs,
where θs is the parameter of the Attacker network. Sim-
ilarly, Pu denotes the App network that takes as input
the obfuscated data and outputs the probability distri-
bution pu(M(x, θM ), θu) over utility labels Yu, where θu
is the parameter of the App network.

Olympus uses an iterative optimization algorithm
to jointly train the Obfuscator and the Attacker net-
works as follows1. On each iteration, we alternate the

1 We do not train the App network (i.e., learn θu) as it simulates
the pretrained classifier of the target app.

training between the Attacker and theObfuscator . First,
we generate obfuscated data using the Obfuscator and
train the Attacker to classify the obfuscated data into
correct private labels. Formally, we train the Attacker
network using the following objective function.

arg max
θs

− 1
n

n∑
i=1

log[ps(M(xi, θM ), θs)[zi]] (5)

Here, zi is the true privacy label of xi. The above
loss captures the attacker’s ability to infer private at-
tributes in the obfuscated data. It finds the attacker
with a highest success rate in breaking the obfuscation
mechanism. Note that maximizing the privacy loss (LP)
defined in Equation (1) may have multiple worst case at-
tackers. By maximizing Equation (5), we pick the worst
case attacker that not only outputs a probability dis-
tribution that is far from the uniform distribution, but
also correctly predicts the private attributes.

Next, we train the Obfuscator to minimize the pri-
vacy and utility losses computed using the Attacker and
the App networks, respectively. Formally, the Obfusca-
tor is trained via the following objective function.

arg min
θM

−λ 1
n

n∑
i=1

log[pu(M(xi, θM ), θu)[yi]]

−(1− λ) 1
n

n∑
i=1

∑
z∈Zs

1
|Zs|

log[ps(M(xi, θM ), θs)[z]]
(6)

Here, the first term corresponds to the utility loss
(LU) and the second term corresponds to the privacy
loss (LP). We train both the networks until they reach
an equilibrium, i.e., when the Attacker cannot perform
better than random guessing. Since we are alternating
the training between the Attacker and the Obfuscator ,
together equations (5) and (6) give a solution to the
minimax optimization problem defined in Equation (3).
Thus, at the equilibrium, the final Obfuscator M(·, θ∗M )
gives the optimal obfuscation mechanismM∗.



Olympus: Sensor Privacy through Utility Aware Obfuscation 12

(a) Obfuscator (b) Attacker

Fig. 3. Olympus architecture for motion sensor data.

4 Implementation
We developed a prototype implementation of Olympus,
deployed it on a Nexus 9 tablet, and evaluated on an An-
droid app. The implementation of Olympus consists of
three steps – 1) instantiating its underlying modules, 2)
training the Obfuscator (offline phase), and 3) deploying
the Obfuscator on device (online phase).

4.1 Constructing Olympus

Constructing Olympus involves materializing its under-
lying modules – App, Attacker and Obfuscator . The App
module uses the classifier from the target app. Olym-
pus supports any app as long as its classifier (a) outputs
probability scores, (b) uses known loss function that is
continuous and differentiable, and (c) uses raw sensor
data as inputs. Any app that uses DNN for classifica-
tion is supported by Olympus since all of the above
assumptions are true for DNN. The trend in ML is that
most classifiers are gravitating towards DNNs because
they achieve higher accuracy, and jointly perform fea-
ture computation and classification. In case of tradi-
tional classifiers, many of them satisfy assumptions (a)
and (b) (e.g. Logistic Regression which we use in our
experiments). Assumption (c) is not necessarily true as
some classifiers involve arbitrarily complex feature com-
putation steps that are hard to reason about. However,
again, the trend is to use the last layers of standard
DNNs to compute features, which can be readily inte-
grated with Olympus.

Both Attacker and Obfuscator are constructed us-
ing DNNs. The architecture of these networks depends
on the type of the sensor data. For images, we use con-
volutional neural network (CNN) [30], while for motion
sensor data we use DNN with fully connected layers.
Figure 2 and 3 outline the architecture of the underly-
ing networks of Olympus for image and motion sensor
data, respectively. Due to space constraints, we provide
more details about the networks in Appendix C.

4.2 Training Olympus

While training, Olympus requires access to an app’s
classifier to ensure that the performance of the classi-
fier is not hindered by the obfuscation. The exact pro-
cess of accessing the classifier varies based on the target
app. For instance, many apps use TensorFlow [10] for
classification tasks such as activity and speech recog-
nition [4, 5]. Using TensorFlow, an app developer can
either train a custom classifier or use a pre-trained clas-
sifier from a public repository of models [8]. The trained
classifier can either be embedded in the app for on-
device classification or it can be hosted on the cloud
and accessed via APIs. If the classifier is embedded in
the app, it can be easily extracted and used by Olym-
pus during the training phase. On the other hand, for
cloud-based classification, Olympus can use the APIs
to query the classifier to retrieve class probabilities.

As mentioned before (Section 2.1), our attacker
model assumes that the third-party apps are honest-
but-curious and they follow the protocol to ensure
Olympus learns the optimal obfuscation mechanism.
More specifically, the target app must provide correct
classification scores for the obfuscated data during the
training phase. We argue that it is in the interest of
the app to cooperate with Olympus, otherwise it may
impact the functionality of the app due to incorrect es-
timation of the utility loss. Note that the privacy is en-
forced via an independent attacker (not controlled by
the app) making it harder for an uncooperative app to
affect privacy guarantees. Learning an optimal obfus-
cation under adversarial setting (where the target app
provides malicious labels) is an interesting future work.

Olympus also requires appropriate training data to
train the Obfuscator . The training data consists of sev-
eral examples with their utility and privacy labels. For
standard requirements (such as protecting identity), one
can easily use publicly available benchmark dataset (e.g.
celebA [31]) that fits the criteria. In cases when this is
not feasible, the user needs to capture the dataset with
appropriate labels. One can think of a data collection
app that helps user collect appropriate data for training
Olympus. For instance, we developed a mobile app that
allows users to collect training data for training Olym-
pus to hide identity of the writer while preserving the
ability to recognize the handwritten text. More details
about the app and the case study of the handwriting
recognition app are given in Section 5.1.

Given the appropriate training data and an access
to the app’s classifier, we train the Obfuscator using
Algorithm 1 as described in Section 3.2. In our driver



Olympus: Sensor Privacy through Utility Aware Obfuscation 13

Fig. 4. An illustration of how Olympus intercepts and obfuscates
images requested by the target app Classify.

safety use case, the training data consists of several im-
ages of drivers with their activities (utility labels) and
identities (privacy labels). Using these training data and
the app, Olympus learns the obfuscation that hides
driver’s identity by minimizing the attacker’s ability to
identify drivers in the obfuscated images. At the same
time, it ensures that the obfuscated images preserve the
activity by maximizing the app’s accuracy of identify-
ing the activity in the obfuscated images. To improve
usability, we envision a repository of pretrained obfus-
cators that users can simply use to protect their privacy
against various third party apps.

4.3 Deploying Olympus

Olympus intercepts and obfuscates sensor data before
they are received by the target app. This is achieved by
instrumenting Android OS using Xposed [43], an open
source framework that provides means to alter the func-
tionality of an Android app without modifying the app.
Xposed provides APIs to intercept method calls, modify
method arguments, change the return values, or replace
the method with custom code. Using these APIs, we
built an Xposed module to intercept an app’s request to
sensor data and apply obfuscation on-the-fly before the
requested data reach the app.

Since Android provides standard APIs to access the
sensor data, one can easily hook those API calls to ap-
ply the obfuscation. Consider an Android app – Classify
that allows a user to select an image from the Gallery
and finds objects in the selected image using a classifier.
It launches the Gallery app by invoking the startActiv-
ityForResult method for the user to select an image.
Upon selection, the Gallery app wraps the selected im-
age in a special class called Intent and returns it to
the Classify app via the onActivityResult method. The
Classify app then extracts the image from the received
Intent and sends it to the classifier to detect objects.

Figure 4 demonstrates how Olympus obfuscates
images requested by the Classify app. Since the app

gets image data through the onActivityResult method,
Olympus hooks this method using the APIs provided
by Xposed. The installed hook intercepts every call to
the onActivityResult method, runs the Obfuscator on
the image selected by the user and returns the resulting
obfuscated image to the Classify app. Thus, the Classify
app always receives an obfuscated image.

Similarly, one can apply appropriate hooks to obfus-
cate the sensor data based on the target app. Note that
this approach does not require any modifications to the
app. However, we need to install appropriate hooks for
each target app. In the future, we envision the Olym-
pus framework to be a part of the operating system
that seamlessly performs obfuscation on sensor requests
based on the target apps.

5 Experiments
In this section, we evaluate Olympus and compare
it with the existing approaches of protecting secrets.
Through rigorous empirical evaluation, we seek answers
to the following questions on an Android app (Qns 1-3)
as well as on benchmark datasets (Qns 1-6).
1. What is the impact of obfuscation on the function-

ality of the target app?
2. How well does the obfuscation protect private infor-

mation?
3. What is the overhead of obfuscating sensor data?
4. How well does the obfuscation mechanism tradeoff

privacy for utility compared to existing approaches?
5. How well does the obfuscation mechanism scale with

multiple applications?
6. How well does the obfuscation mechanism perform

against different kinds of app classifiers?

5.1 Experimental Setup

In this section, we describe the target app, benchmark
datasets, and metrics we used to evaluate Olympus.

Android App Case Study: Handwriting
Recognition

Consider a following use case: Alice wants to use a mo-
bile app that transcribes text as she writes on the de-
vice. However, she does not want to reveal her hand-
writing style to the app, as that could reveal private at-



Olympus: Sensor Privacy through Utility Aware Obfuscation 14

Dataset Data Type Target App Private #Utility #Privacy Training Obfuscation
Information Classes Classes time (s) time (ms)

KTH Image Action recognition Identity of people 6 6 862 0.15
StateFarm Image Distracted driving detection Identity of people 10 10 607 0.11
CIFAR10 Image Object recognition Face 10 2 3384 0.04
HAR Inertial sensors Action recognition Identity of people 6 30 173 0.05
OPPORTUNITY Motion sensors Action recognition Identity of people 5 4 7222 0.03

Table 1. Summary of benchmark datasets used for evaluating Olympus. The training time shows the mean time (in seconds) to learn
the obfuscation mechanism while the obfuscation time shows the mean time (in ms) to obfuscate one sample on a GPU.

tributes like her identity [52] or personality [48]. Hence,
she wants to use Olympus to obfuscate the app’s input.

Motivated by this scenario, we evaluate Olympus
on a handwritten digit recognition app – DL4Mobile [2]
downloaded from the Google Play Store. DL4Mobile al-
lows users to draw a digit between 0 to 9 and recognizes
it using a DNN. Our goal is to learn an obfuscation
mechanism that protects the writer’s identity while al-
lowing DL4Mobile to correctly classify the written dig-
its. To obtain training data with utility labels (digit)
and privacy labels (user identity), we developed an An-
droid app to collect images of handwritten digits. Using
this app, we collected data from two users with 30 im-
ages per person per digit.

We consider two variants of DL4Mobile, the first
performs on-device classification and the other performs
classification on the cloud. The original app uses an em-
bedded DNN to perform on-device classification using
the TensorFlow library [7]. We modified the original app
to create a variant that uses the same DNN to per-
form classification on the cloud using the Google Cloud
API [3]2. Since in both the variants the target classifier
is the same, we train a single obfuscation mechanism for
both. We use the DNN architectures described in Sec-
tion 4.1 for the Attacker and the Obfuscator networks.

We evaluate Olympus’s obfuscator on a 10% sam-
ple of the examples (held out as a test set) through
the DL4Mobile app instrumented using Xposed. As ex-
plained in Section 4.3, we install hooks in both variants
of the DL4Mobile app to intercept the original digit im-
age and replace it by the corresponding obfuscated im-
age via the Obfuscator .

Benchmark Datasets

We also evaluate Olympus on three image datasets and
two motion sensor datasets. Table 1 gives the summary
of all the datasets along with their privacy and utility

2 The source code of DL4Mobile is available here – https://
github.com/nalsil/TensorflowSimApp.

requirements. Due to space constraints, the detailed de-
scription of the datasets is provided in Appendix A.

For each dataset, we use Olympus to learn an obfus-
cation mechanism that protects respective private infor-
mation (e.g. faces, identity of people, etc.) while preserv-
ing the ability to perform a specified classification task
(e.g. object recognition, action recognition, etc.). We
construct Olympus based on the type of the dataset as
explained in Section 4.1. We use the same architecture
across datasets except minor modifications required for
handling the data (e.g. input size). The complete spec-
ification of all the networks is available in Appendix C.

For each dataset, we simulate the target app by
training a DNN to classify unperturbed data into corre-
sponding utility labels. We randomly split each dataset
into train, validation and test set, with 80%, 10% and
10% splits, respectively. We train Olympus for 100 iter-
ations (epochs) using the training set, use the validation
set to choose the best obfuscation model, and evaluate
it using the test set.

All the networks are implemented in Keras [16] and
are trained on a NVIDIA Tesla K80 GPU. For training,
we used the Adam optimizer [27] with a learning rate
of 0.001 and fixed the value of λ to 0.5. All reported
results are averaged over 10 independent runs.

Evaluation Metrics

We used the following metrics to evaluate Olympus.

5.1.1 Privacy

The privacy is measured in terms of the accuracy of an
attacker who attempts to infer private information in
the obfuscated data. It is a common practice to provide
privacy guarantees relative to perfect privacy. In our
case, the perfect privacy is achieved when the attacker
cannot perform better than random guessing. The accu-
racy of random guessing is 1

# privacy classes , which differs
for different applications. So we decided to measure pri-
vacy loss in terms of how much better an adversary is

https://github.com/nalsil/TensorflowSimApp
https://github.com/nalsil/TensorflowSimApp


Olympus: Sensor Privacy through Utility Aware Obfuscation 15

User Digits Utility Privacy Execution Time (ms)
0 1 2 3 4 5 6 7 8 9 On-Device On-Cloud

User A 0.94

(±0.009)

0.32

(±0.04)

36.2

(±0.9)

338.3

(±62.14)
User B

User A 0.93

(±0.04)

0.01

(±0.02)

44.48

(±0.9)

346.6

(±60.1)
User B

Table 2. Evaluation results on DL4Mobile without Olympus (first two rows) and with Olympus (last two rows). Utility is the digit
classification accuracy of the app classifier. Privacy is the attacker’s accuracy to identify users measured in terms of the improvement
over random guessing.

compared to random guessing. Given a set of privacy
classes Z, we define the attacker’s score as follows.∣∣∣∣# samples correctly classified by the attacker

total number of samples − 1
|Z|

∣∣∣∣
(7)

The range of the attacker’s score is from 0 (perfect pri-
vacy) to (1− 1

|Z| ) (no privacy).

5.1.2 Utility

We measure the utility of our obfuscation mechanism
in terms of the classification accuracy of the target app.
The utility score is defined as follows.

utility score = # samples correctly classified by the app
total number of samples

(8)
Hence, the utility score ranges from 0 (no utility) to
1 (highest utility). Unlike privacy, relative utility score
(app’s accuracy on unperturbed data - accuracy on per-
turbed data) is not a suitable metric in our case as it
may lead to a negative utility score, making it harder to
explain the results. Sometimes Olympus learns better
features which results in higher accuracy on the per-
turbed data than on the unperturbed data. In particu-
lar, we observed this phenomenon when the app’s clas-
sifier is a weaker model (for example see Table 4).

5.1.3 Overhead

We evaluate the efficiency of our mechanism by report-
ing the time to obfuscate the sensor data.

5.2 Evaluation on Android App

We evaluate Olympus on DL4Mobile using a Nexus 9
tablet running Android 7.1 (Nougat) and Xposed ver-

sion 88. We compare our results by running DL4Mobile
on an unmodified Android OS. Table 2 summarizes the
results of evaluating DL4Mobile without Olympus (first
two rows) and with Olympus (last two rows).

Without Olympus, the adversary’s accuracy of cor-
rectly predicting user’s identity from the handwritten
digits is 82% (64% improvement over random guessing)
which shows that handwriting contains unique patterns
that can be exploited to identify users. With Olym-
pus, the adversary’s accuracy of identifying user’s iden-
tity drops to 51% which is close to random guessing
(50%) as there are only two users in the dataset. On
the other hand, Olympus incurs a minor drop (1%) in
digit classification accuracy compared to the accuracy
on the unperturbed images. These results show that
Olympus successfully protects users’ identity without
affecting the functionality of DL4Mobile.

The high privacy and high utility come at a small
cost of obfuscating the image. The average time to train
the Obfuscator was 718 seconds on a GPU. The mean
time to obfuscate an image on Nexus 9 was 8.28 ms
resulting in 22.9% and 2.4% overhead when classifying
images on-device and on the cloud, respectively.

Table 2 also shows a randomly selected digit se-
quence from each user with the corresponding obfusca-
tion. In many cases, the same digit is drawn differently
by each user which makes it easy for the adversary to
identify a user based on her digits. However, the obfus-
cated images of the same digit across different users look
very similar, making it harder for the adversary to iden-
tify the user. On the other hand, the obfuscated images
across different digits are different, allowing the classi-
fier to easily distinguish different digits. Even though
the obfuscated images are visually very different from
the unperturbed images, the classifier (trained only on
unperturbed images) can still classify them with high
accuracy. Note that we do not re-train the DL4Mobile
classifier to recognize digits in the obfuscated images.
Instead, the Obfuscator learns to obfuscate images such



Olympus: Sensor Privacy through Utility Aware Obfuscation 16

(a) KTH (b) StateFarm (c) CIFAR10 (d) HAR (e) OPPORTUNITY

Fig. 5. Accuracy of App (in blue) and Attacker (in red) networks on obfuscated data while training the Obfuscator . Olympus quickly
learns to hide private information while preserving useful information.

(a) Single target app (b) Multiple target apps

Fig. 6. Classification accuracy of the target apps on unperturbed
and perturbed data. In Figure 6b, we report the accuracy aver-
aged over all target apps and the values in the bracket indicate
the number of target apps.

that it preserves features required by the DL4Mobile
classifier for recognizing digits. Thus, the target app is
able to complete the classification task with high accu-
racy on the obfuscated image without retraining.

5.3 Evaluation on Benchmark Datasets

Figure 5 shows the accuracy of the App and the Attacker
networks while training the Obfuscator . In the initial
stage of learning, the output of the Obfuscator is some-
what random due to random initialization of network
parameters. Hence, the accuracy of both the networks
are low. As the training proceeds, the Obfuscator learns
to preserve information that is useful for the target app
while hiding the private information. Over time, the ac-
curacy of the App network increases and saturates at
some point across all the datasets. On the other hand,
the accuracy of the Attacker remains low due to the ob-
fuscation of the private attributes. This shows that the
output of the Obfuscator is somewhat private to begin
with due to the random initialization. All that Obfus-
cator needs to learn is to produce the output with the
utility attributes that are required by the target appli-
cation. Of course, the privacy loss ensures that the Ob-

fuscator should not leak any private information in the
output while learning to preserve the utility attributes.

In Table 1, we report the training time (in seconds)
and the obfuscation time (per sample in ms) averaged
over 10 independent runs on a GPU. The training time
varies from 2 minutes to a little over 2 hours while the
obfuscation time across all the datasets is always under
1 ms. The high variation in the training time across dif-
ferent datasets is due to the varying size of the training
data and the complexity of the underlying networks. We
argue that the training time in the order of hours is ac-
ceptable since it is a one-time process that happens in
the offline phase.

5.4 Utility Evaluation

We evaluate the utility of Olympus by comparing the
classification accuracy of the target app on the unper-
turbed data and the obfuscated data. The results are
summarized in Figure 6a. In the case of the motion sen-
sor data, the classification accuracies on unperturbed
data and the obfuscated data are comparable. Thus,
the functionality of the target app is preserved even af-
ter obfuscation. For image data, we see a slight drop in
the accuracy. The maximum drop occurs in the case of
the CIFAR10 dataset which is about 17%. Note that in
CIFAR10, we artificially added faces on to the images
that may cover parts of the object. Due to this occlu-
sion, it is hard to classify the objects correctly. This is
also evident from the low classification accuracy on the
unperturbed images of CIFAR10. In summary, Olym-
pus preserves the functionality of the target app in the
case of motion data, while achieving comparable accu-
racy in the case of image data.

5.5 Privacy Evaluation

Traditional methods of protecting secrets (especially vi-
sual secrets) have focused on protecting secrets from



Olympus: Sensor Privacy through Utility Aware Obfuscation 17

(a) Results on KTH (left), StateFarm (center) and CIFAR10 (right) datasets (b) Obfuscation time

Fig. 7. Comparison with existing approaches. Olympus achieves higher privacy and utility compared to the existing approaches with a
minor overhead of time to obfuscate data. In Figure 7a the top-right quadrant represents high utility and high privacy.

Dataset Unperturbed Perturbed
(A1) A1 A2 LR RF SVM

KTH 0.83 0.01 0.005 0.07 0.06 0.07
StateFarm 0.9 0.05 0.01 0.1 0.1 0.12
CIFAR10 0.5 0.04 0.03 0.07 0.03 0.06
HAR 0.7 0.008 0.008 0.09 0.09 0.02
OPPORTUNITY 0.75 0.11 0.13 0.16 0.43 0.17

Table 3. Accuracy of attackers on obfuscated data measured in
terms of the improvement over random guessing. The standard
error is within (±0.09) across all the reported results.

human adversaries. In our case, the obfuscated data is
human imperceptible and thus is as good as random
noise to any human adversary as evident from the ex-
amples given in Table 2. However, that does not mean
it is secure against machines. Recently, researchers have
shown that DNN can be trained as an adversary to re-
cover hidden information in the obfuscated images [34].
Thus, we employ similar attacks by training five ML
models to evaluate privacy of our mechanism.

– The first attacker (A1) is a DNN similar to the At-
tacker network that is used in training Olympus.

– The second attacker (A2) is also a DNN similar
to A1, but with an additional layer. Using A2 we
attempt to simulate more complex (and possibly
stronger) adversary than the one used in training
Olympus.

– The remaining three attackers are logistic regres-
sion (LR), random forest (RF), and support vector
machine (SVM).

All attackers are trained on obfuscated data with
the corresponding privacy labels, to classify a given ob-
fuscated image into the correct class. Both A1 and A2
are trained using the same parameters (e.g. epochs, op-
timizer, etc.) that we used to train the Obfuscator . For
the remaining three attackers, we set the regularizer pa-
rameter of LR to 1, the number of estimators of RF to
10, and used RBF kernel with c=1 for SVM. In the case
of image datasets, we train these three attackers on the

HOG (Histogram of Oriented Gradients) feature repre-
sentation computed as described in [17].

Table 3 summarizes the results across various at-
tackers and datasets. On unperturbed data, A1 achieves
significant improvement over random guessing. In fact,
A1 is able to infer almost all the private information
(100% accuracy in classifying private attributes), across
all the datasets. Compared to this, Olympus offers a sig-
nificant improvement in protecting private information
against all the attackers across all the datasets. Both
A1 and A2 perform poorly (<5% improvement in accu-
racy over random guessing) in inferring private informa-
tion from the obfuscated data except in the case of the
OPPORTUNITY dataset. Thus, the obfuscation mech-
anism successfully protects private information against
such adversaries, namely DNNs.

On the other hand, the traditional attackers (LR,
RF and SVM) perform better than DNN attackers. This
is because the underlying attacker model of Olympus is
DNN. Moreover, in case of images, the inputs to these
attackers are sophisticated HOG features that are spe-
cially design to capture various patterns pertaining to
human detection. Even though we do not explicitly train
against traditional attackers, Olympus protects against
those adversaries to some extent. For all the attackers,
the accuracy of inferring private information is <17%,
except in the case of RF on OPPORTUNITY dataset.
This is because the OPPORTUNITY dataset contains
many different sensors which makes it harder to obfus-
cate. In the future, we plan to investigate this further
and aim to improve our mechanism for multimodal data.

5.6 Privacy-Utility Tradeoff

We use image datasets to analyze how Olympus bal-
ances privacy-utility tradeoff and compare our results
with the following existing approaches.



Olympus: Sensor Privacy through Utility Aware Obfuscation 18

– Blur: Blurring is a popular mechanism to hide pri-
vate information in images and videos [9]. It is a
convolution operation that smoothen the image by
applying a Gaussian kernel. The size of the kernel
determines the amount of blurring. Hence, increas-
ing the kernel size gives more privacy.

– Mosaic: Mosaicing is also an averaging operation
that applies a grid over an image and replace the
values of all the pixels overlapping a cell with the
average value of all the pixels that fall in that cell.
Increasing the cell size results in averaging over a
larger region and thus provides more privacy.

– AdvRep: AdvRep refers to a recent work on protect-
ing visual secrets using GAN [41]. The main idea is
to hide the private object by minimizing the recon-
struction error and privacy loss given by an attacker
network. It is not trained towards preserving the
utility of any particular app. Like Olympus,AdvRep
also has a parameter λ that controls privacy-utility
tradeoff. Similar technique have also been used to
hide sensitive text in images [18].

We evaluate above mentioned methods as well as
Olympus on three image datasets with the goals of pro-
tecting respective private attributes and preserving the
functionality of the corresponding target app, i.e., the
classifier. We obfuscate images using each method and
then evaluate the obfuscation in terms of privacy and
utility metrics defined previously. For the utility mea-
sure, we use the classification accuracy of the target
app, i.e., the utility score. We measure privacy using
the attacker A1, and report the privacy score as (1 - at-
tacker’s score) for ease of representation. Thus, higher
values mean higher privacy which makes it easy to com-
pare against the utility score.

To generate different degrees of obfuscation, we vary
the kernel (cell) size from 3 to 50 in the case of Blur
(Mosaic) method, and vary λ from 0 to 1 in the case
of AdvRep and Olympus. The resulting privacy-utility
tradeoff graph is shown in Figure 7, where * indicates
the privacy and utility of the unperturbed data. Olym-
pus outperforms other methods in terms of providing
the best privacy-utility balance across all the datasets.
In particular, the Blur and Mosaic methods provide ei-
ther high privacy or high utility, but not both. The Ad-
vRep mechanism provides good tradeoff in the case of
CIFAR10 but fails in the other two datasets. This is
because it learns to reconstruct the given image while
removing the private information from it. This strategy
works well when the private information is separate from
the useful information such as faces vs. objects in the

case of CIFAR10. But, it does not perform well when
the private and useful information are blended as in the
case of other two datasets (identity vs. activity).

An interesting observation is that Olympus strives
to achieve high privacy even when λ = 1, i.e., privacy
loss removed from the optimization (Equation 3). For
instance, in case of KTH dataset, Olympus provides
high privacy irrespective of the value of λ. This is be-
cause the features learned by the target app for activity
recognition are not very useful for person recognition.
Since Olympus only attempts to learn the features used
by the target app, the output does not contain enough
information to identify people.

We also investigated the effect of correlation on the
privacy-utility tradeoff achieved by Olympus. The re-
sults of this analysis is available in Appendix B.

5.7 Obfuscation Time

We showed that Olympus outperforms simple obfusca-
tion methods like blurring and mosaicing. However, the
gain in accuracy comes at the cost of the overhead of
learning the mechanism as well as applying the obfus-
cation at run time. As mentioned before, the overhead
of learning is reasonable as it is a one time operation.
Here, we measure the overhead of applying the obfusca-
tion mechanism at run time.

Figure 7b shows the time (ms) it takes to obfus-
cate an image using above mentioned methods. For Blur
(Mosaic), we fix the kernel (cell) size to 25, and fix λ to
0.5 for AdvRep and Olympus. Mosaicing is the fastest
among all since it only involves a single averaging op-
eration per cell. Blurring is the second fastest method
taking slightly more time due to the application of Gaus-
sian kernel. Both AdvRep and Olympus takes similar
amount of time across all the datasets. Overall, the ob-
fuscation time is proportional to the size of the image
across all the methods. Olympus takes about 0.15 ms
to obfuscate an image of size 80 x 60 (KTH dataset)
which is sufficiently good for real-time processing.

5.8 Scaling to Multiple Applications

To understand how well Olympus scales with multiple
apps, we perform the following experiment. For each im-
age dataset, we train a classifier per utility class in one-
vs-rest fashion. Each of these classifiers is considered
as a target app that is interested in the correspond-
ing utility class. Thus, we have in total 6, 10 and 10



Olympus: Sensor Privacy through Utility Aware Obfuscation 19

Dataset Utility (LR) Privacy (DNN)
Unperturbed Perturbed Unperturbed Perturbed

KTH 0.51 0.49 0.20 0.08
StateFarm 0.43 0.74 0.9 0.05
CIFAR10 0.46 0.45 0.17 0.06
HAR 0.93 0.95 0.5 0.02
OPPORTUNITY 0.75 0.86 0.75 0.18

Table 4. Evaluating Olympus using LR as an app classifier. The
standard error is within (±0.03) across all the reported results.

classifiers for KTH, StateFarm and CIFAR10 datasets,
respectively. For each dataset, we train Olympus with
the appropriate set of classifiers as target apps. The App
module queries each classifier to compute the respective
utility loss and averages it over all the classifiers.

From Figure 6b, we can see that the classification
accuracy on obfuscated data is comparable to the ac-
curacy on unperturbed data across all image datasets.
When comparing these results with the results from Fig-
ure 6a (single target app), we see that the accuracy in-
creases significantly in the case of perturbed as well as
unperturbed images. This is not surprising, since each
classifier is responsible to classify only a single utility
class and hence it is a much simpler task.

To evaluate privacy, we measure the accuracy of at-
tacker (A1) on the obfuscated data learned by Olympus
when trained with multiple apps and compare it with
the results we got in the single app setting. We found a
moderate increase in the attacker’s accuracy in the mul-
tiple apps case. The attacker’s accuracy increased from
0.01, 0.05 and 0.04 to 0.04, 0.06 and 0.05, for KTH,
StateFarm and CIFAR10 datasets, respectively.

Note that having multiple target apps only increases
the overhead linearly in terms of querying the target
apps to compute utility loss. It does not affect the
online-phase since we learn a single obfuscation mecha-
nism that works with all the target apps.

5.9 App Classifiers

So far, we have evaluated Olympus only using a DNN as
an app classifier. To see how well Olympus performs on
different kinds of app classifiers, we change the app clas-
sifier to a logistic regression (LR) model. Unlike DNN,
LR takes features as inputs instead of raw sensor data.
Thus, for image datasets, we use HOG features as inputs
to the app classifier. In other words, Olympus learns to
obfuscate features instead of raw images. Since motion
sensor datasets already comprise of features, we directly
use them as inputs to Olympus.

We evaluated Olympus on all the benchmark
datasets with LR as the app classifier. As shown in Ta-

ble 4, the utility on the unperturbed data is low com-
pared to DNN classifiers across all datasets. This is not
surprising given that DNN is a more powerful model
than LR. However, what is surprising is that on some
datasets the utility improves significantly on the obfus-
cated data. We believe this is due to the Obfuscator
learning better features in an attempt to minimize util-
ity loss. Since we are using DNN as an adversary, the
privacy achieved by Olympus is comparable to previous
results of privacy evaluation.

6 Related Work
In this section, we summarize existing approaches of
protecting private information in the sensor data. Many
prior methods of protecting visual secrets primarily rely
on computer vision algorithms to classify images or ob-
jects within the images as sensitive (non-sensitive) and
hide (reveal) their presence [11, 23, 38, 42, 47]. Unlike
Olympus, these methods do not provide an efficient way
to balance privacy-utility tradeoff and are prone to leak
private information against correlation attacks [34, 35].

Erdogdu [19] proposed privacy preserving mapping
for time-series data using information theoretic ap-
proach to optimize for statistical privacy-utility trade-
off. Although this approach provides stronger guaran-
tees, in practice, solving such an optimization prob-
lem is hard in many scenarios. Shokri et al. [45] pro-
posed an optimal user-centric data obfuscation mech-
anism based on a Stackelberg game. The obfuscation
mechanism is a solution of a carefully constructed lin-
ear program that minimizes utility loss under specified
privacy constraints. This approach works well on cer-
tain types of data such as location trajectories that are
easy to discretize. However, it is not clear how we can
use such mechanism on continuous data such as images.
In [36], the authors proposed an approach of learning ad-
versarial perturbations based on a user-recognizer game.
Although the idea of adversarial game is common to our
work, the user-recognizer game model restricts players
to play from a fixed set of strategies and hence is limited.
On the contrary, Olympus does not fix the strategy of
obfuscation/attack, allowing the obfuscator/attacker to
automatically learn the optimal strategy based on the
specified privacy-utility requirements.

SenseGen [12] uses GAN to generate synthetic sen-
sor data to protect user’s privacy. However, it does not
provide any privacy guarantees on the generated syn-
thetic data. The approach proposed in [22] is not appli-



Olympus: Sensor Privacy through Utility Aware Obfuscation 20

cable in our setting as it uses generative models that are
tailored to the statistics of the datasets, and applying
it to real-life signals (such as images) is an open prob-
lem. AttriGuard [25] uses adversarial perturbations to
defend against an attacker that attempts to infer pri-
vate attributes from the data. By defeating a particular
attacker, AttriGuard protects against other similar at-
tackers based on the principle of transferability. In our
work, we take a different approach of adversarial learn-
ing to ensure that the private data is protected against
all ML attackers belonging to a specific class.

Replacement AutoEncoder (RAE) [33] learns a
transformation that replaces discriminative features
that correspond to sensitive inferences by features that
are more observed in the non-sensitive inferences. This
approach only works when the sensitive and non-
sensitive data is clearly separated. On the contrary,
Olympus also handles cases when there is a high over-
lap among sensitive and non-sensitive data. Moreover,
RAE does not protect against an adversary who has
the knowledge of the original gray-listed data, i.e., non-
sensitive inferences. On the other hand, Olympus pro-
tects against an adversary who has a complete access to
the training data as well as the obfuscation mechanism.

Our work is closely related to the recently pro-
posed obfuscation techniques that formulate the ob-
fuscation problem as a minimax optimization [15,
18, 32, 37, 39, 41]. Malekzadeh et al. [32] intro-
duces Guardian-Estimator-Neutralizer (GEN) frame-
work. The Guardian learns to obfuscate the sensor data
and the Estimator guides the Guardian by inferring sen-
sitive and non-sensitive information from the obfuscated
data. Unlike the Attacker module in Olympus, the Es-
timator is pretrained and fixed during the optimization
process. Thus, the learned obfuscation defends against a
specific attacker, namely the pretrained Estimator. On
the other hand, the Attacker in Olympus continuously
evolve with the Obfuscator resulting in an obfuscation
mechanism that defends against a class of attackers.

PPRL-VGAN [15] learns a privacy preserving trans-
formation of faces that hides the identity of a person
while preserving the facial expression. Given a face im-
age of a person it synthesizes an output face with a
randomly chosen identity from a fixed dataset while
preserving the facial expression of the input image.
SGAP [37] uses Siamese networks to identify discrim-
inative features related to identity and perturbs them
using adversarial networks. A similar idea is proposed
in [39] where Siamese networks are used to learn em-
beddings that are non-discriminatory for sensitive in-
formation, making it harder for the adversary to learn

sensitive information from the embeddings. Adversarial
networks are also used to learn an obfuscation mecha-
nism to hide text [18] and QR-code [41] in images.

All of these approaches focus on learning a transfor-
mation that preserves some property of the data without
considering any target apps. On the contrary, Olympus
learns an obfuscation mechanism that seamlessly works
with the existing apps without modifying them. We also
demonstrated the feasibility of Olympus by developing
a prototype implementation that runs on a smartphone,
and evaluated against a real world app.

7 Conclusions
We proposed a privacy framework Olympus to learn a
utility aware obfuscation that protects private user in-
formation in image and motion sensor data. We showed
that such a mechanism can be constructed given the
training data, and the obfuscated data works well with
the target third-party apps without modifying the apps.

We implemented Olympus by instrumenting An-
droid OS and evaluated the obfuscation mechanism on a
handwriting recognition app. We showed that Olympus
successfully protects the identity of users without com-
promising the digit classification accuracy of the app.
We also evaluated Olympus on three image datasets
and two sensor datasets containing readings from var-
ious motion sensors. For each dataset, we showed that
Olympus significantly reduced the risk of disclosing
private user information. At the same time, it preserved
the useful information that enabled the target app to
function smoothly even on the obfuscated data. We ver-
ified the privacy guarantees using a number of ML ad-
versaries that are trained to defeat the obfuscation. We
also compared our approach with existing approaches of
protecting visual secrets and demonstrated that Olym-
pus provides better control over privacy-utility tradeoff.

Acknowledgement
This work was supported by the National Science Foun-
dation under grants 1253327, and by DARPA and
SPAWAR under contract N66001-15-C-4067.



Olympus: Sensor Privacy through Utility Aware Obfuscation 21

References
[1] AT&T Database of Faces. http://www.cl.cam.ac.uk/

research/dtg/attarchive/facedatabase.html.
[2] Deep learning for mobile:dl4mobile. https://play.google.

com/store/apps/details?id=com.nalsil.tensorflowsimapp&
hl=en.

[3] Google Cloud AI. https://cloud.google.com/products/
machine-learning/.

[4] Human activity recognition using cnn. https://github.com/
aqibsaeed/Human-Activity-Recognition-using-CNN.

[5] Speech recognition tensorflow machine learning. https:
//play.google.com/store/apps/details?id=machinelearning.
tensorflow.speech&hl=en.

[6] State Farm Distracted Driver Detection. https://www.
kaggle.com/c/state-farm-distracted-driver-detection/data.

[7] TensorFlow Inference API. https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/contrib/android.

[8] TensorFlow Models. https://github.com/tensorflow/models.
[9] Youtube official blog. Blur moving objects in your video with

the new custom blurring tool on youtube. https://youtube-
creators.googleblog.com/2016/02/blur-moving-objects-in-
your-video-with.html, 2016.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kud-
lur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,
Y. Yu, and X. Zheng. Tensorflow: A system for large-scale
machine learning. OSDI, 2016.

[11] P. Aditya, R. Sen, P. Druschel, S. Joon Oh, R. Benenson,
M. Fritz, B. Schiele, B. Bhattacharjee, and T. T. Wu. I-pic:
A platform for privacy-compliant image capture. MobiSys,
2016.

[12] M. Alzantot, S. Chakraborty, and M. B. Srivastava.
Sensegen: A deep learning architecture for synthetic sensor
data generation. BICA, 2017.

[13] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L Reyes-
Ortiz. A public domain dataset for human activity recogni-
tion using smartphones. ESANN, 2013.

[14] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti,
G. Tröster, J. D. R. Millán, and D. Roggen. The opportunity
challenge: A benchmark database for on-body sensor-based
activity recognition. Pattern Recogn. Lett., 2013.

[15] J. Chen, J. Konrad, and P. Ishwar. Vgan-based image rep-
resentation learning for privacy-preserving facial expression
recognition. CVPR Workshops, 2018.

[16] F. Chollet. keras. https://github.com/fchollet/keras, 2015.
[17] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. CVPR, 2005.
[18] H. Edwards and A. J. Storkey. Censoring representations

with an adversary. ICLR, 2016.
[19] M. Erdogdu, N. Fawaz, and A. Montanari. Privacy-utility

trade-off for time-series with application to smart-meter
data. AAAI Workshops, 2015.

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. NIPS, 2014.

[21] J. Hamm. Minimax filter: Learning to preserve privacy from
inference attacks. JMLR, 2017.

[22] C. Huang, P. Kairouz, X. Chen, L. Sankar, and R. Ra-
jagopal. Context-aware generative adversarial privacy. En-
tropy, 2017.

[23] S. Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits,
H. J. Wang, and E. Ofek. Enabling Fine-Grained Permis-
sions for Augmented Reality Applications With Recognizers.
USENIX Security, 2013.

[24] S. Jana, A. Narayanan, and V. Shmatikov. A Scanner
Darkly: Protecting User Privacy from Perceptual Applica-
tions. S & P, 2013.

[25] J. Jia and N. Z. Gong. Attriguard: A practical defense
against attribute inference attacks via adversarial machine
learning. USENIX Security, 2018.

[26] J. Jung and M. Philipose. Courteous glass. UbiComp ’14
Adjunct, 2014.

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. ICLR, 2015.

[28] M. Korayem, R. Templeman, D. Chen, D. J. Crandall, and
A. Kapadia. Screenavoider: Protecting computer screens
from ubiquitous cameras. CoRR, 2014.

[29] A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. Master’s thesis, 2009.

[30] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 1998.

[31] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face
attributes in the wild. ICCV, 2015.

[32] M. Malekzadeh, R. G. Clegg, A. Cavallaro, and H. Haddadi.
Protecting sensory data against sensitive inferences. EuroSys
Workshop, 2018.

[33] M. Malekzadeh, R. G. Clegg, and H. Haddadi. Replacement
autoencoder: A privacy-preserving algorithm for sensory data
analysis. IoTDI, 2018.

[34] R. McPherson, R. Shokri, and V. Shmatikov. Defeating
image obfuscation with deep learning. CoRR, 2016.

[35] S. J. Oh, R. Benenson, M. Fritz, and B. Schiele. Faceless
person recognition; privacy implications in social media.
ECCV, 2016.

[36] S. J. Oh, M. Fritz, and B. Schiele. Adversarial image per-
turbation for privacy protection - A game theory perspective.
ICCV, 2017.

[37] W. Oleszkiewicz, T. Wlodarczyk, K. J. Piczak, T. Trzcinski,
P. Kairouz, and R. Rajagopal. Siamese generative adversarial
privatizer for biometric data. CVPR Workshops, 2018.

[38] T. Orekondy, M. Fritz, and B. Schiele. Connecting pixels to
privacy and utility: Automatic redaction of private informa-
tion in images. CVPR, 2018.

[39] S. A. Ossia, A. S. Shamsabadi, A. Taheri, H. R. Rabiee,
N. D. Lane, and H. Haddadi. A hybrid deep learning ar-
chitecture for privacy-preserving mobile analytics. CoRR,
2017.

[40] K. Plarre, A. Raij, S. M. Hossain, A. A. Ali, M. Nakajima,
M. Al’absi, E. Ertin, T. Kamarck, S. Kumar, M. Scott,
D. Siewiorek, A. Smailagic, and L. E. Wittmers. Continuous
inference of psychological stress from sensory measurements
collected in the natural environment. IPSN, 2011.

[41] N. Raval, A. Machanavajjhala, and L. P. Cox. Protecting
visual secrets using adversarial nets. CVPR Workshops,
2017.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://play.google.com/store/apps/details?id=com.nalsil.tensorflowsimapp&hl=en
https://play.google.com/store/apps/details?id=com.nalsil.tensorflowsimapp&hl=en
https://play.google.com/store/apps/details?id=com.nalsil.tensorflowsimapp&hl=en
https://cloud.google.com/products/machine-learning/
https://cloud.google.com/products/machine-learning/
https://github.com/aqibsaeed/Human-Activity-Recognition-using-CNN
https://github.com/aqibsaeed/Human-Activity-Recognition-using-CNN
https://play.google.com/store/apps/details?id=machinelearning.tensorflow.speech&hl=en
https://play.google.com/store/apps/details?id=machinelearning.tensorflow.speech&hl=en
https://play.google.com/store/apps/details?id=machinelearning.tensorflow.speech&hl=en
https://www.kaggle.com/c/state-farm-distracted-driver-detection/data
https://www.kaggle.com/c/state-farm-distracted-driver-detection/data
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/android
https://github.com/tensorflow/models
https://youtube-creators.googleblog.com/2016/02/blur-moving-objects-in-your-video-with.html
https://youtube-creators.googleblog.com/2016/02/blur-moving-objects-in-your-video-with.html
https://youtube-creators.googleblog.com/2016/02/blur-moving-objects-in-your-video-with.html
https://github.com/fchollet/keras


Olympus: Sensor Privacy through Utility Aware Obfuscation 22

[42] N. Raval, A. Srivastava, A. Razeen, K. Lebeck,
A. Machanavajjhala, and L. P. Cox. What you mark is what
apps see. MobiSys, 2016.

[43] rovo89. Xposed framework. https://forum.xda-developers.
com/showthread.php?t=3034811.

[44] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: A local svm approach. ICPR, 2004.

[45] R. Shokri. Privacy Games: Optimal User-Centric Data Ob-
fuscation. PETS, 2015.

[46] S. Sonoda and N. Murata. Neural network with unbounded
activations is universal approximator. ACHA, 2017.

[47] R. Templeman, M. Korayem, D. Crandall, and A. Kapadia.
PlaceAvoider: Steering first-person cameras away from sensi-
tive spaces. NDSS, 2014.

[48] A. Varshney and S. Puri. A survey on human personality
identification on the basis of handwriting using ann. ICISC,
2017.

[49] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.
Extracting and composing robust features with denoising
autoencoders. ICML, 2008.

[50] C.-W. You, N. D. Lane, F. Chen, R. Wang, Z. Chen, T. J.
Bao, M. Montes-de Oca, Y. Cheng, M. Lin, L. Torresani,
and A. T. Campbell. Carsafe app: Alerting drowsy and
distracted drivers using dual cameras on smartphones. Mo-
biSys, 2013.

[51] A. Zhan, M. Chang, Y. Chen, and A. Terzis. Accurate
caloric expenditure of bicyclists using cellphones. SenSys,
2012.

[52] X. Y. Zhang, G. S. Xie, C. L. Liu, and Y. Bengio. End-to-
end online writer identification with recurrent neural net-
work. THMS, 2017.

A Datasets
Below, we describe the datasets we used to evaluate
Olympus.

KTH: KTH [44] is a video database for action
recognition. It contains six different actions performed
by 25 subjects under four different scenarios. The
actions are walking, jogging, running, boxing, hand-
waving and hand-clapping. Our goal is to protect the
identity of the subjects performing the actions while al-
lowing the target app to recognize the actions correctly.
The videos were recorded at 25fps with 160x120 resolu-
tion. We uniformly sampled 50 frames from each video
of six randomly selected subjects for the evaluation. As
a preprocessing step, we scaled all the extracted frames
to 80x60 and converted them to grayscale.

StateFarm: StateFarm [6] is an image dataset
used in a Kaggle competition for detecting distracted
drivers. It has images of drivers performing various ac-
tivities in the car. In total, there are 10 different ac-
tivities performed by the driver – safe driving, texting

(right), texting (left), talking on phone (right), talking
on phone (left), operating radio, drinking, reaching be-
hind, hair/makeup and talking to passenger. Motivated
by our driver safety example, our goal is to protect the
identity of drivers while allowing the target app to infer
driver activities. For our experiments, we use images of
10 randomly selected drivers. Each image was of size 224
x 224 which was scaled down to 56x56 and converted to
grayscale as a preprocessing step.

CIFAR10: CIFAR10 [29] is a popular object de-
tection dataset. It consists of 32× 32 color images from
10 categories, each having 6000 images. For the private
attribute, we added faces from the ATT face dataset [1].
A random face from the ATT face dataset was added
to about half of the randomly selected images from the
dataset. Each face is added at a random location in the
image such that the entire face is visible. The original
face images were of size 92x112 pixels which we scaled
down to 10x10 before adding. Our goal is to obfuscate
the image such that the target app can classify obfus-
cated images into one of the 10 object categories cor-
rectly, while the adversary cannot infer whether there
exist a face in the image. We preprocess all the images
by converting them to grayscale.

HAR: HAR [13] is a human activity recognition
dataset containing readings from the accelerometer and
gyroscope embedded in a smartphone. The readings
involved 30 users performing six activities – walking,
walking-upstairs, walking-downstairs, sitting, standing
and lying. A 561 dimensional feature vector with time
and frequency domain variables is computed using a
sliding window method. Each feature vector has an as-
sociated subject id and the activity label performed by
the subject at that time. Our goal is to obfuscate the
feature vector to protect the identity of the subject while
allowing the target app to infer activities.

OPPORTUNITY: OPPORTUNITY [14] is also
a human activity recognition dataset. It contains 242
attributes from wearable, object, and ambient sensors.
The sensor readings were recorded using four subjects
performing various activities. In our experiments, we
use data pertaining to following locomotion activities
– stand, walk, sit, lie, and null, where null represents
a transition between activities or other activities. The
dataset contains six independent runs of daily activities
per user. We ran our experiment on randomly sampled
two runs across all users. As in the case of HAR, our goal
is to protect the identity of individuals, while allowing
the target app to infer the locomotion activities from
the obfuscated sensor data.

https://forum.xda-developers.com/showthread.php?t=3034811
https://forum.xda-developers.com/showthread.php?t=3034811


Olympus: Sensor Privacy through Utility Aware Obfuscation 23

Fig. 8. Olympus gracefully handles correlation among sensitive
and useful properties.

B Effect of Correlation
Handling correlation between private and app-essential
(utility) information is a major challenge in designing
any obfuscation mechanism. To understand the effect
of such correlation, we evaluate Olympus on a synthet-
ically generated data where we carefully control the cor-
relation between private and utility attributes.

B.1 Synthetic Data Generation

We generate a two dimensional synthetic dataset sam-
pled from a normal distribution with a specific mean
and a covariance matrix. We fix the mean to (0,0) and
vary the covariance matrix to control the degree of cor-
relation among two dimensions. One can think of these
two dimensions as features fs and fu representing pri-
vate and utility attributes, respectively. Both these at-
tributes are binary (positive and negative) and their val-
ues with respect to a data point is computed based on
the values of their respective features as follows. For
each data point, we say it belongs to the positive pri-
vacy (utility) class, if the value of fs (fu) is positive,
and belongs to the negative class otherwise. We vary
the value of the correlation factor among two features
from 0 (no correlation) to 1 (highest correlation). For
each correlation factor, we generate 10000 samples with
their privacy and utility labels to evaluate Olympus.

B.2 Network Architecture

Both the App and the Attacker networks comprise of
a fully connected (FC) layer with 64 nodes followed
by another FC layer with 32 nodes. The Obfuscator

network consists of three FC layers with 64, 32 and
64 nodes, respectively. We use ReLU activation and
dropout (p=0.25) at each layer in all the networks.

B.3 Results

We split the data into train, validation and test set
based on 80%, 10% and 10% splits, respectively. We
train Olympus using the Adam optimizer with the
learning rate of 0.0001 using 100 epochs and report the
results averaged over 10 runs. The privacy-utility trade-
off achieved by Olympus with different degree of corre-
lation is given in Figure 8. We can see that when there
is little or no correlation among private and utility at-
tributes, Olympus achieves high privacy and high util-
ity. As the correlation increases, Olympus degrades one
at the expense of the other depending on the specified
tradeoff parameter λ. In summary, the results show that
Olympus gracefully handles correlation among private
and app-essential information in the data, and allows
users to control the privacy-utility tradeoff.

C Neural Network Architectures
In this section, we provide details of the underlying net-
works of Olympus.

C.1 Olympus for Images

For the image datasets, we use CNN as shown in Fig-
ure 2. As a preprocessing step, we normalize images to
[0,1] which is a standard practice in computer vision. Be-
low, we provide complete specification of the networks
used in evaluating Olympus on the image datasets.

C.1.1 KTH

App Net

1. Input: 60 x 80 x 1 obfuscated image
2. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
3. MaxPool (size=(2,2))
4. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
5. MaxPool (size=(2,2))
6. Dense (n=32,activation=ReLU)
7. Dense (n=6,activation=softmax)



Olympus: Sensor Privacy through Utility Aware Obfuscation 24

Attacker Net

1. Input: 60 x 80 x 1 obfuscated image
2. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
3. MaxPool (size=(2,2))
4. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
5. MaxPool (size=(2,2))
6. Dense (n=32,activation=ReLU)
7. Dense (n=6,activation=softmax)

Obfuscator Net

1. Input: 60 x 80 x 1 unperturbed image
2. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
3. MaxPool (size=(2,2))
4. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
5. MaxPool (size=(2,2))
6. Dense (n=8,activation=ReLU)
7. Dense (n=300,activation=ReLU)
8. Reshape (size=(15,20))
9. Deconv2D (filters=64,size=(3,3),stride=1,activation=ReLU)

10. UpSample2D (size=(2,2))
11. Deconv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
12. UpSample2D (size=(2,2))
13. Deconv2D (filters=1,size=(3,3),stride=1,activation=sigmoid)

C.1.2 StateFarm

App Net

1. Input: 56 x 56 x 1 obfuscated image
2. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
3. MaxPool (size=(2,2))
4. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
5. MaxPool (size=(2,2))
6. Dense (n=32,activation=ReLU)
7. Dense (n=10,activation=softmax)

Attacker Net

1. Input: 56 x 56 x 1 obfuscated image
2. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
3. MaxPool (size=(2,2))
4. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
5. MaxPool (size=(2,2))
6. Dense (n=32,activation=ReLU)
7. Dense (n=10,activation=softmax)

Obfuscator Net

1. Input: 56 x 56 x 1 unperturbed image
2. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)

3. MaxPool (size=(2,2))
4. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
5. MaxPool (size=(2,2))
6. Dense (n=8,activation=ReLU)
7. Dense (n=196,activation=ReLU)
8. Reshape (size=(14,14))
9. Deconv2D (filters=64,size=(3,3),stride=1,activation=ReLU)

10. UpSample2D (size=(2,2))
11. Deconv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
12. UpSample2D (size=(2,2))
13. Deconv2D (filters=1,size=(3,3),stride=1,activation=sigmoid)

C.1.3 CIFAR10

App Net

1. Input: 32 x 32 x 1 obfuscated image
2. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
3. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
4. MaxPool (size=(2,2))
5. Dropout (p=0.25)
6. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
7. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
8. MaxPool (size=(2,2))
9. Dropout (p=0.25)

10. Dense (n=512,activation=ReLU)
11. Dropout (p=0.5)
12. Dense (n=10,activation=softmax)

Attacker Net

1. Input: 32 x 32 x 1 obfuscated image
2. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
3. MaxPool (size=(2,2))
4. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
5. MaxPool (size=(2,2))
6. Dense (n=32,activation=ReLU)
7. Dense (n=2,activation=softmax)

Obfuscator Net

1. Input: 32 x 32 x 1 unperturbed image
2. Conv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
3. MaxPool (size=(2,2))
4. Conv2D (filters=64,size=(3,3),stride=1,activation=ReLU)
5. MaxPool (size=(2,2))
6. Dense (n=8,activation=ReLU)
7. Dense (n=64,activation=ReLU)
8. Reshape (size=(8,8))
9. Deconv2D (filters=64,size=(3,3),stride=1,activation=ReLU)

10. UpSample2D (size=(2,2))
11. Deconv2D (filters=32,size=(3,3),stride=1,activation=ReLU)
12. UpSample2D (size=(2,2))
13. Deconv2D (filters=1,size=(3,3),stride=1,activation=sigmoid)



Olympus: Sensor Privacy through Utility Aware Obfuscation 25

C.2 Olympus for Motion Sensors

For the motion sensor data, we use DNN with fully con-
nected layers as shown in Figure 3. We normalize the
sensor data to [-1,1] as a preprocessing step. Below, we
provide complete specification of the networks used in
evaluating Olympus on the motion sensor datasets.

C.2.1 HAR

App Net

1. Input: 561 x 1 obfuscated feature vector
2. Dense (n=128,activation=ReLU)
3. Dense (n=6,activation=softmax)

Attacker Net

1. Input: 561 x 1 obfuscated feature vector
2. Dense (n=128,activation=ReLU)
3. Dense (n=30,activation=softmax)

Obfuscator Net

1. Input: 561 x 1 unperturbed feature vector
2. Dense (n=64,activation=ReLU)
3. Dense (n=8,activation=ReLU)
4. Dense (n=64,activation=ReLU)
5. Dense (n=561,activation=tanh)

C.2.2 OPPORTUNITY

App Net

1. Input: 242 x 1 obfuscated feature vector
2. Dense (n=128,activation=ReLU)
3. Dense (n=5,activation=softmax)

Attacker Net

1. Input: 242 x 1 obfuscated feature vector
2. Dense (n=128,activation=ReLU)
3. Dense (n=4,activation=softmax)

Obfuscator Net

1. Input: 242 x 1 unperturbed feature vector
2. Dense (n=64,activation=ReLU)

3. Dense (n=8,activation=ReLU)
4. Dense (n=64,activation=ReLU)
5. Dense (n=242,activation=tanh)


	Olympus: Sensor Privacy through Utility Aware Obfuscation
	1 Introduction
	2 Olympus Overview
	2.1 Problem Setting
	2.2 Design Principles
	2.2.1 Compatible with Existing Apps
	2.2.2 Privacy-Utility Tradeoff
	2.2.3 Holistic Obfuscation
	2.2.4 Data Agnostic Framework

	2.3 Privacy Framework
	2.3.1 Modules
	2.3.2 Offline Phase
	2.3.3 Online Phase


	3 Utility Aware Obfuscation
	3.1 Problem Formulation
	3.2 Learning to Obfuscate

	4 Implementation
	4.1 Constructing Olympus
	4.2 Training Olympus
	4.3 Deploying Olympus

	5 Experiments
	5.1 Experimental Setup
	5.1.1 Privacy
	5.1.2 Utility
	5.1.3 Overhead

	5.2 Evaluation on Android App
	5.3 Evaluation on Benchmark Datasets
	5.4 Utility Evaluation
	5.5 Privacy Evaluation
	5.6 Privacy-Utility Tradeoff
	5.7 Obfuscation Time
	5.8 Scaling to Multiple Applications
	5.9 App Classifiers

	6 Related Work
	7 Conclusions
	A Datasets
	B Effect of Correlation
	B.1 Synthetic Data Generation
	B.2 Network Architecture
	B.3 Results

	C Neural Network Architectures
	C.1 Olympus for Images
	C.1.1 KTH
	C.1.2 StateFarm
	C.1.3 CIFAR10

	C.2 Olympus for Motion Sensors
	C.2.1 HAR
	C.2.2 OPPORTUNITY




