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Abstract: Rapid advances in human genomics are enabling
researchers to gain a better understanding of the role of the
genome in our health and well-being, stimulating hope for
more effective and cost efficient healthcare. However, this also
prompts a number of security and privacy concerns stemming
from the distinctive characteristics of genomic data. To address
them, a new research community has emerged and produced
a large number of publications and initiatives. In this paper,
we rely on a structured methodology to contextualize and pro-
vide a critical analysis of the current knowledge on privacy-
enhancing technologies used for testing, storing, and sharing
genomic data, using a representative sample of the work pub-
lished in the past decade. We identify and discuss limitations,
technical challenges, and issues faced by the community, fo-
cusing in particular on those that are inherently tied to the na-
ture of the problem and are harder for the community alone to
address. Finally, we report on the importance and difficulty of
the identified challenges based on an online survey of genome
data privacy experts.
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1 Introduction

Facilitated by rapidly dropping costs, genomics re-
searchers have made tremendous progress over the past few
years toward mapping and studying the human genome. To-
day, the long-anticipated “genomic revolution” [Kei10] is tak-
ing shape in a number of different contexts, ranging from clin-
ical and research settings to public and private initiatives.

At the same time, the very same progress also prompts im-
portant privacy, security, and ethical concerns. Genomic data
is hard to anonymize [GMG+13, SB15] and contains informa-
tion related to a variety of factors, including ethnic heritage,
disease predispositions, and other phenotypic traits [FSC11].

*Corresponding Author: Alexandros Mittos: University College Lon-
don, Email: a.mittos@ucl.ac.uk
Bradley Malin: Vanderbilt University, Email: b.malin@vanderbilt.edu
Emiliano De Cristofaro: University College London, Email:
e.decristofaro@ucl.ac.uk

Moreover, consequences of genomic data disclosure are nei-
ther limited in time nor to a single individual; due to its hered-
itary nature, an adversary obtaining a victim’s genomic data
can also infer a wide range of features that are relevant to her
close relatives as well as her descendants. As an artifact, dis-
closing the genomic data of a single individual will also put
the privacy of others at risk [Rom18].

Motivated by the need to reconcile privacy with progress
in genomics, researchers have initiated investigations into so-
lutions for securely testing and studying the human genome.
Over the past few years, the genome privacy community has
produced a relatively large number of publications on the
topic, with several dedicated events, e.g., international semi-
nars [HHT14, HKMT16], a competition series, and the Geno-
Pri workshop now entering its fifth year.1

At the same time, the community is partially operating
ahead of the curve, proposing the use of privacy-enhancing
technologies (PETs) in envisioned, rather than existing, set-
tings. In fact, as discussed in this paper, genome privacy re-
search also makes assumptions for the future, e.g., that cheap,
error-free whole genome sequencing will soon be available to
private citizens, or that individuals will be sequenced at birth
so that all genetic tests can be easily and cheaply done via
computer algorithms.

Based on these developments, it is time to take stock of the
state of the field. To do so, we conduct a systematic analysis of
genome privacy research, aiming to evaluate not only what it
has achieved so far, but also future directions and the inherent
challenges the field faces. Overall, our work is driven by three
main research objectives:

1. Critically review, evaluate, and contextualize genome pri-
vacy research using a structured methodology that can be
reused in the future to assess progress in the field.

2. Reason about the relevance of the proposed solutions to
current public sequencing initiatives as well as the private
market.

3. Identify limitations, technical challenges, and open prob-
lems faced by the community. In particular, we aim to as-
sess which of these are likely to be addressed via natural
progress and research follow-ups and which are inherently
tied to the very nature of the problem, involving challeng-
ing tradeoffs and roadblocks.

1 See https://idash.ucsd.edu/ and https://genopri.org.
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Roadmap. With these objectives in mind, we set out to criti-
cally evaluate work produced by the genome privacy commu-
nity across several axes, using a set of systematic criteria that
span a broad spectrum of properties. Rather than presenting
an exhaustive review of the very large body of work in this
field, we adopt a methodology to analyze themes of genome
privacy research using a sample of representative papers. We
focus on research relying on PETs in the context of testing,
storing, and sharing genomic data. To do so, we retrieve the list
of publications in the field from a community managed web-
site (GenomePrivacy.org) while intentionally excluding papers
about attacks and risk quantification (Section 3). After identi-
fying relevant sub-areas of genome privacy research, we select
results that provide a meaningful sample of the community’s
work in each area (Section 4).

Next, we present a systematization which we rely upon to
summarize the critical analysis and guide the examination of
10 key aspects of genome privacy (Section 5). Finally, in Sec-
tion 6, aiming to validate and broaden the discussion around
the identified challenges, we report on an online-administered
survey of genome privacy experts, whom we ask to weigh in
on them with respect to their importance and difficulty. Over-
all, our analysis, along with the input from the experts, moti-
vates the need for future work as well as more interdisciplinary
collaborations, while pointing to specific technical challenges
and open problems; moreover, our methodology can be reused
to revisit new results and assess the progress in the field.

Main Findings. Our analysis also helps us draw some impor-
tant conclusions. First, that the effective use of PETs in the
context of genome privacy is often hindered by the obstacles
related to the unique properties of the human genome. For in-
stance, the sensitivity of genomic data does not degrade over
time, thus prompting serious challenges related to the lack
of effective long-term security protection, as available cryp-
tographic tools are not suitable for this goal. Second, we find
that the majority of the proposed solutions, aiming to scale
up to large genomic datasets, need to opt for weaker security
guarantees or weaker models. While it is not unreasonable to
expect progress from the community with respect to underly-
ing primitives, it is inherently hard to address the limitations in
terms of utility and/or flexibility on the actual functionalities.
When combined with assumptions made about the format and
the representation of the data, this poses major hurdles against
real-life adoption.

On the positive side, we highlight how, in its short
lifespan, the genome privacy community has achieved ad-
mirable progress. For instance, several tools can already en-
able genomics-related applications that are hard or impossible
to support because of legal or policy restrictions.

2 Background
Progress in Genomics. In clinical settings, progress in ge-
nomics has allowed researchers to link mutations to predispo-
sition to various forms of diseases, including cancer [DGA10],
as well as to response to certain treatments [ZBG+14]. These
developments provide support for a new precision medicine
era, where diagnosis and treatment can be tailored to indi-
viduals based on their genome, and thus enable more cost
efficient, as well as effective, healthcare [Ash16]. Moreover,
with the costs of whole genome sequencing (i.e., determin-
ing the whole DNA sequence of an individual) now in the or-
der of $1,000 [Nat17], clinicians have a greater opportunity
to diagnose and treat patients affected by rare genetic disor-
ders [BFG+17, GHKT+14].

Sequencing Initiatives. The promise of improved healthcare
has also encouraged ambitious sequencing initiatives, aiming
to build biorepositories for research purposes. In 2015, the US
government announced the Precision Medicine Initiative (now
known as the All Of Us Research Program [NIH17]), aiming
to collect health and genetic data from one million citizens.
Similarly, Genomics England is sequencing the genomes of
one hundred thousand patients, focusing on rare diseases and
cancer [Gen17]. The rise of data-driven genomics research
also prompts the need to facilitate data sharing. In 2013, the
Global Alliance for Genomics and Health (GA4GH) was es-
tablished with an objective to make data sharing between in-
stitutes simple and effective [Glo17]. The GA4GH has devel-
oped various software, such as Beacon2, which permits users
to search if a certain allele exists in a database hosted at a cer-
tain organization, and the Matchmaker Exchange [PAB+15],
which facilitates rare disease discovery.

Private Market. Progress has also encouraged the rise of a
flourishing private sector market. Several companies operate
successfully in the business of sequencing machines (e.g., Illu-
mina), genomic data storage and processing (e.g., Google Ge-
nomics), or AI-powered diagnostics (e.g., Sophia Genetics).
At the same time, others offer genetic testing directly to their
customers, without involving doctors or genetics experts in the
process. There are now hundreds of direct-to-consumer (DTC)
genetic testing companies [ISO17], with prominent examples
including 23andMe and AncestryDNA, which have amassed
several million customers.3

Legal Aspects. The new General Data Protection Regulation
(GDPR) [Eur16] has come into effect in the EU in May 2018.
Its impacts on genetic testing and genomic research are not yet
clear. The data minimization principle suggests that the mini-

2 https://beacon-network.org/
3 See http://ancstry.me/2iD4ITy and https://goo.gl/42Lz9v.

GenomePrivacy.org
https://beacon-network.org/
http://ancstry.me/2iD4ITy
https://goo.gl/42Lz9v


Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective 89

mum required amount of data should be stored to achieve the
intended goal, while the purpose limitation principe dictates
that researchers should predetermine the scope of the study
(Article 5). Under Article 35, genetic data is designated both
as sensitive and personal data. As is the case in general with
GDPR, we do not yet know how it will affect operational as-
pects of systems and products, although genomic privacy re-
search could and should assist this process. In the US, there
is no equivalent of GDPR, however, certain legislation and
policy protects the privacy of study participants using indirect
means. For example, to access sensitive data in NIH databases,
a researcher must first submit a request. Moreover, the Genetic
Information and Nondiscrimination Act of 2008 (GINA) states
that it is illegal for employers or health insurers to request ge-
netic information of individuals or of their family members.
However, this legislation does not cover the cases of life, dis-
ability, and long-term care insurance.

Attacks against Genome Privacy. A few re-identification
attacks have been proposed whereby an adversary recovers
the identity of a target by relying on quasi-identifiers, such
as demographic information (e.g., linking to public records
such as voter registries), data communicated via social media,
and/or search engine records [SAW13]. For instance, Gym-
rek et al. [GMG+13] infer the surnames of individuals from
(public) anonymized genomic datasets by profiling short tan-
dem repeats on the Y chromosome while querying genealogy
databases. Also, in membership inference attacks, an adver-
sary infers whether a targeted individual is part of a study
that is possibly associated with a disease, even from aggre-
gate statistics. Homer et al. [HSR+08] do so by comparing
the target’s profile against the aggregates of a study and those
of a reference population obtained from public sources. Wang
et al. [WLW+09] leverage correlation statistics of a few hun-
dreds SNPs, while Im et al. [IGNC12] use regression coeffi-
cients. Shringarpure and Bustamante [SB15] present inference
attacks against Beacon by repeatedly submitting queries for
variants present in the genome of the target, whereas, Backes
et al. [BBHM16] attacks focused on microRNA expressions.
More generally, Dwork et al. [DSS+15] prove that member-
ship attacks can be successful even if aggregate statistics are
released with significant noise. For a comprehensive review of
the possible/plausible attacks against genome privacy, we refer
the readers to [EN14].

Genomics Primer. To assist the reader, Appendix A provides
a primer on terms and concepts commonly used in genomics.

3 Methodology
In this section, we introduce our systematization method-

ology. We provide intuition into how we select a representative
sample of the community’s work; next, we describe the criteria
used to systematize knowledge.

3.1 Sampling Relevant Work

GenomePrivacy.org. We study research on genome privacy
from the point of view of privacy-enhancing technologies
(PETs) – specifically, we focus on work using PETs in the
context of testing, storing, and/or sharing genomic data. There-
fore, we rely on the website GenomePrivacy.org, which bills it-
self as “the community website for sharing information about
research on the technical protection of genome privacy and se-
curity.” In the summer of 2017, we retrieved the 197 articles
listed on the site, and grouped them into six canonical cate-
gories – Personal Genomic Testing, Genetic Relatedness Test-
ing, Access and Storage Control, Genomic Data Sharing, Out-
sourcing, and Statistical Research – from which we selected a
sample representing the state of the art for each category.

Excluding Attack/Quantification Papers. We excluded work
on attacks (reviewed in Section 2) and privacy quantifications
as our main focus is on the use of PETs. We refer readers
to [Wag15] for a comprehensive evaluation of metrics geared
to quantify genomic privacy, and to [WVX+17] for game-
theoretic approaches to quantify protection in genomic data
sharing. We also did not include recent proposals to address
specific attacks in the context of Beacon [SB15], e.g., the work
by Raisaro et al. [RTJ+17] or Wan et al. [WVKM17], although
we note their importance later in Section 5.4.

Selection. To select the list of papers used to drive our sys-
tematic analysis (Section 5), we followed an iterative process.
First, the team selected 45 articles considered to represent the
state of the art in the six categories, and later added four more
during a revision of the paper in March 2018. Since it would
be impossible to review and systematize all of them in a suc-
cinct and seamless manner, we trimmed down the selection to
25 papers (reviewed in Section 4). When deciding whether to
include one paper over another, the team preferred papers pub-
lished in venues that are more visible to the privacy-enhancing
technologies community or that have been cited significantly
more, as they arguably have a stronger influence on the com-
munity over time.

Ultimately, the selection covers four papers in Personal
Genomic Testing, three in Genetic Relatedness Testing, four
in Access & Storage Control, six in Genomic Data Sharing,
six in Outsourcing, and four in Statistical Research. Note that
two articles appear in both Personal Genomic Testing and

GenomePrivacy.org
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Genetic Relatedness Testing categories. For completeness, in
Section 4, we also add a citation to the papers from the first
list of 49 papers that are not included in the final selection.

Remarks. We stress that we do not aim to analyze all papers
related to genomic privacy in the context of PETs; in fact,
our selection is meant to be representative of the state of the
art for each category, but not of its breadth or depth. Rather,
we systematize knowledge around genomic privacy protection
mechanisms and critically evaluate it. As a consequence, if we
added or replaced one paper with another, the main takeaways
would not be considerably altered.

3.2 Systematization Criteria

We now discuss the main axes along which we sys-
tematize genome privacy work. To do so, we elicit a set of
criteria designed to address the research questions posed in
the introduction. Inspired by similar approaches in SoK pa-
pers [BHOS12, KES+16], we choose criteria aiming to cap-
ture different aspects related to security, efficiency, and sys-
tem/data models while being as comprehensive as possible.
These criteria constitute the columns of Table 1 (see Sec-
tion 5), where each row is one of the papers discussed below.
Specifically, we define the following 9 criteria:

1. Data Type. We capture the type of genomic data used, e.g.,
some protocols perform computation on full genomes, or other
aspects of the genome such as SNPs or haplotypes.

2. Genomic Assumptions. We elicit whether techniques make
any assumptions as to the nature of the data. For instance, the
processing of sequencing data is not perfect and nucleotides
(or even sequences thereof) might be misreported or deleted,
while others might be inserted unexpectedly. In fact, the er-
ror rate percentage across various next-generations sequencers
can be as high as 15% [GMM16]. As such, the output of mod-
ern Illumina sequencing machines (i.e., FASTQ format4) is
made of segments of DNA with probabilities associated with
the confidence that letters were read correctly. This criterion
serves to note which of the proposed methodologies take into
consideration, or are particularly affected by this.

3. Storage Location. We study where genomic data is assumed
to be stored. We identify three options: (i) a personal device,
like a mobile phone or a dedicated piece of hardware which
is operated by the user, (ii) the cloud, from which a user can
directly obtain her data or allow a medical facility to obtain
it, and (iii) institutions (e.g., biobanks and hospitals), which
store and are able to process genomic data at will. We refer
to the latter as Data Controllers, following GDPR’s terminol-
ogy [Eur16].

4 https://help.basespace.illumina.com/articles/descriptive/fastq-files/

4. Use of Third Parties. We determine the presence of third
parties, if any, as well as their nature. For instance, some pro-
tocols may involve key distribution centers and semi-trusted
cloud storage providers.

5. Long-Term Security. Due to its hereditary nature, the sensi-
tivity of genomic data does not degrade quickly over the years:
even access to the genome of a long-deceased individual might
still pose a threat to their descendants. Therefore, we look at
the underlying building blocks and the computational assump-
tions in genome privacy tools and analyze whether or not they
can realistically withstand several decades of computational
advances.

6. Security Assumptions. We study the assumptions made on
entities involved, if any. For instance, we consider if third par-
ties are assumed not to collude with any other entities.

7. Methods. We report on the main security tools and meth-
ods used (e.g., secure multiparty computation, homomorphic
encryption).

8. Privacy Overhead. We broadly quantify the overhead intro-
duced by the privacy defense mechanisms, compared, when-
ever possible, to non privacy-preserving versions of the same
functionality. This is a non-trivial task because each sub-area
of genome privacy has different goals and each piece of work
in that area does not necessarily solve the exact same problem.
Nonetheless, we analyze the complexity of each solution to as-
sess their efficiency in terms of time and storage overhead. We
report on the lower and upper values of complexity to empha-
size how each solution fares against the non-privacy version
of the same functionality. We do so based on the premise that
if the technique imposes orders of magnitude higher overhead
than the non-privacy-preserving version, then the overhead is
considered to be high, and low otherwise.

9. Utility Loss. Finally, we measure the impact of privacy tools
on the utility of the system. Such measurements include the
overall flexibility of the proposed work in comparison with
the intended task. Similar to the privacy overhead criterion, we
compare against non-privacy-preserving versions of the same
functionality, and quantify utility loss as either low or high.

Remarks. We do not necessarily report on the specific metrics
used in the selected papers (e.g., running times) as (i) not all
papers provide metrics, and (ii) similar approaches already ap-
pear in prior work (see Section 7). Rather, the metrics used in
the systematization are designed to support a critical analysis
of the PETs invoked to protect genome privacy.

4 Representative Papers
We now review the papers selected according to the

methodology presented in Section 3. These papers constitute

https://help.basespace.illumina.com/articles/descriptive/fastq-files/
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the rows in Table 1. Citations to them appear in red throughout
the paper.

4.1 Personal Genomic Testing

We begin with papers that define privacy-preserving ver-
sions of personal genomic tests. These have a variety of uses,
including assessments of a person’s predisposition to a dis-
ease, determining the best course of treatment, and optimizing
drug dosage. Typically, they involve an individual and a test-
ing facility, and consist of searching for and weighting either
short patterns or single nucleotide polymorphisms (SNPs). In
this context, there are two main privacy-friendly models: (1)
one assuming that individuals keep a copy of their genomic
data and consent to tests so that only the outcome is disclosed
and (2) another involving a semi-trusted party that stores an
encrypted copy of the patient’s genetic information, and is in-
volved in the interactions.

Baldi et al. [BBD+11] operate in model (1), supporting
privacy-preserving searching of mutations in specific genes.
They use authorized private set intersection (APSI) [DT10],
which guarantees that the test is authorized by a regulator (“au-
thorization authority”) and pushes pre-computation offline so
that the complexity of the online interaction only depends on
the handful of SNPs tested. It also ensures that the variants
which make up the test are kept confidential, as this may per-
tain to a company’s intellectual property.

Ayday et al. [ARHR13] introduce model (2), letting a
Medical Center (MC) perform private disease susceptibil-
ity tests on patients’ SNPs, by computing a weighted aver-
age of risk factors and SNP expressions. In this model pa-
tients have their genome sequenced once, through a Certi-
fied Institution (CI) that encrypts the SNPs and their posi-
tions, and uploads them to a semi-trusted Storage and Process-
ing Unit (SPU). The MC computes the disease susceptibility
using cryptographic tools, such as homomorphic encryption
and proxy re-encryption. Also in model (2) is the work by
Naveed et al. [NAP+14], whereby the CI encrypts genomes
using controlled-functional encryption (C-FE), under a public
key issued by a central authority, and publishes the ciphertexts.
MCs can then run tests using a one-time function key, obtained
by the authority, which corresponds to one specific test and can
only be used for that test.

Djatmiko et al. [DFB+14] operate in both models (i.e.,
patients control their data by storing it on a personal device
or in the cloud) to support personalized drug dosing (which in
this case happens to be Warfarin, a blood thinner). The test-
ing facility retrieves data to be evaluated (using private infor-
mation retrieval [CGKS95]) and processes it while encrypted.
The patient then securely computes the linear combination of

test weights (using additively homomorphic encryption), and
shows the results to the physician.

Personal Genomic Testing – Selected Papers

1. Baldi et al., CCS’11 [BBD+11]
2. Ayday et al., WPES’13 [ARHR13]
3. Naveed et al., CCS’14 [NAP+14]
4. Djatmiko et al., WPES’14 [DFB+14]

Additional Papers

See [TPKC07], [BA10], [DFT13], [SNR16], [MRA+16]

4.2 Genetic Relatedness

We next look at genetic relatedness, i.e., testing to ascer-
tain genealogy or ancestry of individuals. Genealogy tests de-
termine whether two individuals are related (e.g., father and
child) or to what degree (e.g., they are nth cousins), while, an-
cestry tests estimate an individual’s genetic “pool” (i.e., where
their ancestors come from). These tests are often referred to
as part of “recreational genomics”, and are one of the drivers
of the DTC market (with 23andMe and AncestryDNA offer-
ing them at under $100). However, due to the hereditary na-
ture of the human genome, they also raise several privacy con-
cerns [Nat18]. Privacy research in this area aims to support
privacy-respective versions of such tests.

Baldi et al. [BBD+11] allow two users, each holding a
copy of their genome, to simulate in vitro paternity tests based
on Restriction Fragment Length Polymorphisms (RFLPs),
without disclosing their genomes to each other or third-parties,
through the use of private set intersection protocols [DGT12].
He et al. [HFH+14] let individuals privately discover their ge-
netic relatives by comparing their genomes to others stored,
encrypted, in the same biorepository, using fuzzy encryp-
tion [DRS04] and a novel secure genome sketch primitive,
which is used to encrypt genomes using a key derived from the
genome itself. Finally, Naveed et al. [NAP+14] rely on C-FE
to enable a client to learn certain functions, including paternity
and kinship, over encrypted data, using keys obtained from a
trusted authority.

The tools above differ in a few aspects. First, [BBD+11]
assumes individuals obtain and store a copy of their sequenced
genome, whereas [HFH+14] and [NAP+14] operate under the
assumption that users will rely on cloud providers. Second,
[BBD+11] operates on full genomes, while [NAP+14] sup-
ports SNP profiles obtained from DTC genomics companies,
with [HFH+14] requiring individuals’ haplotypes.

Genetic Relatdness – Selected Papers

1. Baldi et al., CCS’11 [BBD+11]
2. He et al., Genome Research’14 [HFH+14]
3. Naveed et al., CCS’14 [NAP+14]
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Additional Papers

[HJW+14], [DCLZ16], [MRA+16]

4.3 Access and Storage Control

Next, we discuss results aiming to guarantee secure access
to, and storage of, genomic data. Karvelas et al. [KPK+14] use
a special randomized data structure based on Oblivious RAM
(ORAM) [GO96] to store data while concealing access pat-
terns, using two servers to cooperatively operate the ORAM.
Clients can then query data using a third entity who retrieves
encrypted data from the ORAM and instructs the servers to
jointly compute functions using secure two-party computa-
tion [Yao86]. Ayday et al. [ARH+14] present a framework for
privately storing, retrieving, and processing SAM files where
a CI sequences and encrypts patients’ genomes, and also cre-
ates the SAM files, storing them encrypted in biorepositories.
Then, MCs using order-preserving encryption [AKSX04] can
retrieve data and conduct genetic tests.

Beyond SAM files, genomic data is also stored in BAM
(a binary version of SAM) or CRAM files, which allows a
lossless compression. Huang et al. [HAL+16] introduce a
Secure CRAM (SECRAM) format, supporting compression,
encryption, and selective data retrieval. SECRAM requires
less storage space than BAM, and maintains CRAM’s effi-
cient compression and downstream data processing. Finally,
Huang et al. [HAF+15] focus on long-term security, introduc-
ing GenoGuard, a system aiming to protect encrypted genomic
data against an adversary who tries to brute-force the decryp-
tion key (likely to succeed in 30 years). They rely on Honey
Encryption (HE) [JR14] so that, for any decryption attempt us-
ing an incorrect key, a random yet plausible genome sequence
is produced. Overall, we find that security issues in this context
are not explored in as much depth as other areas.

Access and Storage Control – Selected Papers

1. Karvelas et al., WPES’14 [KPK+14]
2. Ayday et al., DPM’14 [ARH+14]
3. Huang et al., IEEE S&P’15 [HAF+15]
4. Huang et al., Genome Research’16 [HAL+16]

Additional Papers

[TPKC07], [KJLM08], [BA10], [CKM12]

4.4 Genomic Data Sharing

We now discuss results in the context of genomic data
sharing, which is an important aspect of hypothesis-driven re-
search. Consider, for instance, genome wide association stud-
ies (GWAS): to elicit robust conclusions on the association

between genomic features and diseases and traits, researchers
may need millions of samples [BHF+08]. Even if sequencing
costs continue to rapidly drop, it is unrealistic to assume that
research teams can easily gain access to such a large number of
records. Yet, though there is an interest in data sharing, these
sharing initiatives face several obstacles, as (1) researchers in
isolation may be prevented from (or are hesitant to) releasing
data, and (2) might only have patients’ consent for specific
studies at specific institutions. Therefore, privacy-enhancing
methods have been proposed to address these issues.

Kamm et al. [KBLV13] present a data collection system
where genomic data is distributed among several entities using
secret sharing. Secure multiparty computation (MPC) is then
used to conduct computations on data, privately, supporting
secure GWAS across multiple entities, such as hospitals and
biobanks. Xie et al. [XKB+14] introduce SecureMA, which
allows secure meta-analysis for GWAS. (Meta-analysis is a
statistical technique to synthesize information from multiple
independent studies [EI13].) Their framework generates and
distributes encryption/decryption keys to participating entities,
encrypts association statistics of each study locally, and se-
curely computes the meta-analysis results over encrypted data.
Humbert et al. [HAHT14] consider the case of individuals
willing to donate their genomes to research. They quantify the
privacy risk for an individual using a global privacy weight of
their SNPs and use an obfuscation mechanism that functions
by hiding SNPs.

Wang et al. [WHZ+15] enable clinicians to privately find
similar patients in biorepositories. This could be applied, for
instance, to find out how these patients respond to certain
therapies. In their paper, similarity is defined as the edit dis-
tance [Nav01], i.e., the minimum number of edits needed to
change one string into another. Using optimized garbled cir-
cuits, they build a genome-wide, privacy-preserving similar
patient query system. This requires participating parties (e.g.,
medical centers) to agree on a public reference genome and
independently compress their local genomes using a reference
genome, creating a Variation Call Format (VCF) file. The edit
distance of two genomes can then be calculated by securely
comparing the two VCF files. Jagadeesh et al. [JWB+17] en-
able the identification of causal variants and the discovery of
previously unrecognized disease genes while keeping 99.7%
of the participants’ sensitive information private using MPC.

Finally, Chen et al. [CWJ+17] introduce a framework
for computing association studies for rare diseases (e.g., the
Kawasaki Disease [KDB+11]) over encrypted genomic data
of different jurisdictions. They rely on Intel’s Software Guard
Extensions (SGX), which isolates sensitive data in a protected
enclave and allows the secure computation of the results.
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In summary, work in this category focuses on a wide range
of problems, from GWAS and meta-analysis to edit distance
computation. Also, tools primarily build on cryptographic pro-
tocols, except for [CWJ+17], which relies on SGX.

Genomic Data Sharing – Selected Papers

1. Kamm et al., Bioinformatics’13 [KBLV13]
2. Xie et al., Bioinformatics’14 [XKB+14]
3. Humbert et al., WPES’14 [HAHT14]
4. Wang et al., CCS’15 [WHZ+15]
5. Jagadeesh et al., Science’17 [JWB+17]
6. Chen et al., Bioinformatics’17 [CWJ+17]

Additional Papers

[SST+14], [ZBA15], [AMH+16], [WZD+16], [WVX+17]

4.5 Outsourcing

At times, research and medical institutions might lack the
computational resources required to store or process large ge-
nomic datasets locally. As such, there is increasing interest in
outsourcing data computation to the cloud, e.g., using dedi-
cated services like Google Genomics or Microsoft Genomics.
However, this requires users to trust cloud providers, which
raises security and privacy concerns with respect to data of re-
search volunteers and/or patients. To address these concerns,
several solutions have been proposed. Note that this category
relates to the processing of genomic data in a public cloud en-
vironment, whereas, the previously discussed Access & Stor-
age Control category relates to where and how data is stored,
regardless of the location.

Chen et al. [CPWT12] propose the use of Hybrid
Clouds [Fur10], a method that involves both public and pri-
vate clouds, to enable privacy-preserving read mapping. Read
mapping is the process of interpreting randomly sampled se-
quence reads of the human genome. Their solution involves
two stages: a seeding stage where the public cloud performs
exact matching on a large amount of ciphertexts, and an exten-
sion stage where the private cloud computes a small amount of
computations (such as, edit distance) at the genetic locations
found by the seeding stage. Yasuda et al. [YSK+13] present a
somewhat homomorphic encryption scheme (SWHE) for se-
cure pattern matching using Hamming distance. More specif-
ically, in this setting physicians supply patients with homo-
morphic encryption keys who then encrypt their genomic data
and upload them to the cloud. When the physician needs to
test whether a certain DNA sequence pattern appears in the
patient’s genome, the cloud computes the Hamming distance
over encrypted DNA sequences and the desired pattern, and
sends the (encrypted) result back to the physician.

Cheon et al. [CKL15] also use SWHE to calculate the
edit distance of two encrypted DNA sequences, allowing data

controllers (e.g., patients) to encrypt their genomic data and
upload them to the cloud, which can calculate the edit dis-
tance to the reference genome or other encrypted sequences.
Lauter et al. [LLAN14] introduce a leveled homomorphic en-
cryption scheme (LHE) to securely process genomic data in
the cloud for various genomic algorithms used in GWAS, such
as Pearson and χ2 Goodness-of-Fit statistical tests.5 Usually,
computation of these statistics require frequencies or counts
but, since their scheme cannot perform homomorphic divi-
sions, [LLAN14] have to modify some of these computations
to work with counts only.

Kim and Lauter [KL15] also use SWHE to securely com-
pute minor allele frequencies and χ2-statistics for GWAS-like
applications, over encrypted data, as well as the edit/Hamming
distance over encrypted genomic data. Finally, Sousa et
al. [SLH+17] rely on SWHE and private information retrieval
to let researchers search variants of interest in VCF files stored
in a public cloud. Their solution represents an improvement
upon the state of the art in terms of efficiency, however, it suf-
fers from high error rates and poor scalability.

Outsourcing – Selected Papers

1. Chen et al., NDSS’12 [CPWT12]
2. Yasuda et al., CCSW’13 [YSK+13]
3. Lauter et al., LatinCrypt’14 [LLAN14]
4. Cheon et al., FC’15 [CKL15]
5. Kim and Lauter, BMC’15 [KL15]
6. Sousa et al., BMC’17 [SLH+17]

Additional Papers

[BLN14], [XKW+14], [ZDJ+15], [GAM+16]

4.6 Statistical Research

The last category focuses on attempts to address unin-
tended leakage threats from the disclosure of genomic data
statistics, e.g., membership inference attacks discussed in Sec-
tion 2.

A possible defense is through statistical disclosure con-
trol, of which differential privacy (DP) is one related approach.
DP enables the definition of private functions that are free
from inferences, providing as accurate query results as possi-
ble, while minimizing the chances for an adversary to identify
the contents of a statistical database [DMNS06].

Johnson and Shmatikov [JS13] point out that it is inher-
ently challenging to use DP techniques for GWAS, since these
methods output correlations between SNPs while the number
of outputs is far greater than that of the inputs (i.e., the number
of participants). In theory, it is possible to limit the number
of available outputs and provide results with adequate accu-

5 LHE is a fully homomorphic encryption scheme variant that does not
require bootstrapping but can evaluate circuits with a bounded depth.
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racy [BLST10, FSU11]. In practice, however, this requires re-
searchers to know beforehand what to ask (e.g., the top-k most
significant SNPs), which is usually infeasible because finding
all statistically significant SNPs is often the goal of the study.
To address this issue, [JS13] define a function based on the
exponential mechanism, which adds noise and works for arbi-
trary outputs. Their mechanism allows researchers to perform
exploratory analysis, including computing in a differentially
private way: i) the number and location of the most significant
SNPs to a disease, ii) the p-values of a statistical test between
a SNP and a disease, iii) any correlation between two SNPs,
and iv) the block structure of correlated SNPs.

Uhlerop et al. [USF13] aim to address Homer’s at-
tack [HSR+08] using a differentially private release of aggre-
gate GWAS data, supporting a computation of differentially
private χ2-statistics and p-values, and provide a DP algorithm
for releasing these statistics for the most relevant SNPs. They
also support the release of averaged minor allele frequencies
(MAFs) for the cases and for the controls in GWAS. Tramèr
et al. [THHA15] build on the notion of Positive Member-
ship Privacy [LQS+13] and introduce a weaker adversarial
model, also known as Relaxed DP, in order to achieve better
utility by identifying the most appropriate adversarial setting
and bounding the adversary’s knowledge. Finally, Backes et
al. [BBH+16] study privacy risks in epigenetics, specifically,
showing that blood-based microRNA expression profiles can
be used to identify individuals in a study, and propose a DP
mechanism to enable privacy-preserving data sharing.

Statistical Research – Selected Papers

1. Johnson and Shmatikov, KDD’13 [JS13]
2. Uhlerop et al., JPC’13 [USF13]
3. Tramèr et al., CCS’15 [THHA15]
4. Backes et al., USENIX”16 [BBH+16]

Papers on statistical methods are not reported in Table 1 because the
systematization criteria do not apply, but, for context, they are dis-
cussed in Section 5.3.

Additional Papersk

[YFSU14], [ZWJ+14], [JZW+14], [WZD+16], [SB16].

5 Systematic Analysis
This section reports on the systematic analysis of privacy-

enhancing technologies in the genomics context, as they stand
today, building on the methodology and the research results
discussed in Section 3 and 4, respectively. We drive our discus-
sion from Table 1, which, in addition to providing an overview
of the community’s work, concisely summarizes the results of
the analysis. It further enables a discussion on insights, re-
search gaps, as well as challenges to certain assumptions. In
the process, we highlight a list of ten technical challenges.

5.1 The Issue of Long-Term Security

The longevity of security and privacy threats stemming
from the disclosure of genomic data is substantial for several
notable reasons. First, access to an individual’s genome allows
an adversary to deduce a range of genomic features that may
also be relevant for her descendants, possibly several gener-
ations down the line. Thus, the sensitivity of the data does
not necessarily degrade quickly, even after its owner has de-
ceased. Moreover, the full extent of the inferences one can
make from genomic data is still not clear, as researchers are
still studying and discovering the relationship between genetic
mutations and various phenomena.

These issues also imply that the threat model under which
a volunteer decides to donate their genome to science, or have
it tested by a DTC company, is likely to change in the fu-
ture. As a consequence, the need or desire to conceal one’s
genetic data might evolve. For instance, a family member
may decide to enter politics, or a country’s political landscape
shifts toward supporting racist ideologies aimed to discrimi-
nate against members of a certain ancestral heritage.

Inadequacy of Standard Cryptographic Tools. We find that
the vast majority of genome privacy solutions rely on cryp-
tographic tools, yet, they are not fit for purpose if long-term
security is to be protected. Modern cryptosystems assume that
the adversary is computationally bounded, vis-à-vis a “secu-
rity parameter.” Suggestions for appropriate choices of the
value for this parameter, and resulting key sizes, are regularly
updated by the cryptography community, however, assuming
at most the need for security for thirty to fifty years [SRG+14].
While this timeframe is more than adequate in most cases (e.g.,
classified documents get regularly de-classified and financial
transactions/records become irrelevant), it may not be in the
case of genomic data.

In theory, one could increase key lengths indefinitely, but,
in practice, this is not possible for all cryptosystems, e.g., the
block and stream ciphers available today are only designed to
work with keys up to a certain length, and libraries implement-
ing public-key cryptography also impose a limit on key sizes.
Furthermore, flaws in cryptosystems considered secure today
may be discovered (as happened, recently, with RC4 or SHA-
1), and quantum computing might eventually become a real-
ity [ZDN18].

Implications. Naturally, the issue of long-term security af-
fects different genome privacy solutions in different ways. For
instance, if genomic information is stored in an encrypted
form and processed by a specialized third entity, such as
the SPU in [ARHR13], then a malicious or compromised
entity likely has multiple chances over time to siphon en-
crypted data off and succeed in decrypting it in the future.
This is also the case in settings where biobanks store pa-
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Data Type

Genomic Assu
mptions

Storage Location

Long-Term
Secu

rity

Third
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s

Secu
rity
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mptions

Meth
ods

Priv
acy

Overh
ead

Utili
ty Loss

Personal Genomic Testing

[BBD+11] FSG Yes User No AA SH, NC A-PSI HSO, LTO Low
[ARHR13] SNP No Cloud No SPU SH, NC Paillier, Proxy HSO, LTO Low
[DFB+14] SNP No User/Cloud No N/CS SH Paillier, PIR LSO, LTO high
[NAP+14] SNP No Cloud No CA, CS SH, NC C-FE LSO, LTO Low

Genetic Relatedness Testing

[BBD+11] FSG Yes User No No SH PSI-CA LSO, LTO High
[HFH+14] SNP No Cloud No CS SH Fuzzy LSO, LTO High
[NAP+14] SNP No Cloud No CA, CS SH, NC C-FE LSO, LTO Low

Access & Storage Control

[KPK+14] FSG No Cloud No CS SH, NC ElGamal, ORAM HSO, HTO Low
[ARH+14] FSG No Cloud No CS, MK SH, NC OPE HSO, LTO Low
[HAF+15] FSG Yes Cloud Yes CS SH HoneyEncr LSO, HTO High
[HAL+16] FSG No User/Cloud No No SH OPE LSO, LTO Low

Genomic Data Sharing

[KBLV13] SNP No Cloud Yes CS SH, NC SecretSharing LSO, HTO High
[XKB+14] SNP No DataController No KDC SH, NC Paillier, MPC LSO, LTO High
[HAHT14] SNP No Cloud No No SH DataSuppr —, LTO Low
[WHZ+15] VCF No DataController No No SH MPC LSO, LTO High
[CWJ+17] SNP No DataController No No SGX SGX LSO, LTO High
[JWB+17] FSG No User No No SH MPC Varies∗ Low

Outsourcing

[CPWT12] FSG No Cloud No CS SH Hash HSO, HTO Low
[YSK+13] FSG No Cloud No CS SH SWHE LSO, LTO High
[LLAN14] SNP No Cloud No CS SH LHE LSO, LTO High
[CKL15] FSG No Cloud No CS SH SWHE LSO, HTO High
[KL15] FSG No Cloud No CS SH SWHE LSO, HTO Low
[SLH+17] VCF No Cloud No CS SH SWHE, PIR —, LTO High

Third Parties: CS: Cloud Storage, SPU: Storage & Processing Unit, AA: Authorization Authority, CA: Central Authority, KDC: Key Distribution
Center, MK: Masking & Key Manager, No: No Third Party
Data: FSG: Fully Sequenced Genome, SNP: SNPs, Hap: Haplotypes, VCF: Variation Call Format
Methods: SWHE: Somewhat Homomorphic Encryption, LHE: Leveled Homomorphic Encryption, Fuzzy: Fuzzy Encryption, PSI-CA: Private Set
Intersection Cardinality, A-PSI: Authorized Private Set Intersection, C-FE: Controlled Functional Encryption, HoneyEncr: Honey Encryption, OPE:
Order-Preserving Encryption, MPC: Secure Multiparty Computation, PIR: Private Information Retrieval, SGX: Software Guard Extensions
Security Assumptions: NC: No Collusions, SGX: Software Guard Extensions
Privacy Overhead: LSO: Low Storage Overhead, HSO: High Storage Overhead, LTO: Low Time Overhead, HTO: High Time Overhead
∗Varies: Depends on the Input Size

Table 1. A systematic comparison of the representative genomic privacy methodologies. The rows represent each work and the columns
represent the list of criteria we apply for assessment purposes.

tients’ encrypted SAM files [ARH+14] or in the context of
secure outsourcing solutions, where genomic information is
offloaded and encrypted, to a cloud provider. On the other
hand, if encrypted data is only exchanged when running cryp-
tographic protocols, but not stored long-term elsewhere (as
in [BBD+11, DFB+14, XKB+14]), then the adversary has a
more difficult task. Nonetheless, long-term security compro-
mise is still possible, even by an eavesdropping adversary and
even if the protocol run is super-encrypted using TLS. In fact,

documents leaked by Edward Snowden revealed that the NSA
has tapped submarine Internet cables and kept copies of en-
crypted traffic [Mar13, Bra14].

Possible Countermeasures. Ultimately, genome privacy lit-
erature has not sufficiently dealt with long term security. In
fact, only the work by Huang et al. [HAF+15] attempts to
do so, relying on Honey Encryption to encrypt and store ge-
nomic data. Though a step in the right direction, this tech-
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nique only serves as a storage mechanism and does not sup-
port selective retrieval of genomic information, testing over
encrypted data, and data sharing. Moreover, it suffers from
several security limitations. Specifically, while their solution
provides information-theoretic guarantees (and long-term se-
curity), their threat model needs to account for possible side-
channel attacks. This is because, if the adversary knows some
of the target’s physical traits (e.g., hair color or gender), then it
can easily infer that the decryption key she is using is not the
correct one. The authors attempt to address this issue by mak-
ing their protocol phenotype-compatible for the cases of gen-
der and ancestry, but there are many other traits in the human
genome that possess probabilistic genotype-phenotype associ-
ations [LSM+17] thus making it very hard to fully address.

Cryptosystems providing information theoretic security
could help, as they are secure even when the adversary has
unlimited computing power. Unfortunately, they require very
large keys and do not support the homomorphic properties
needed to perform typical requirements for genomic data
(e.g., testing or sharing). Work relying on secret sharing (e.g.,
[KBLV13]) is somewhat an exception, in that it can provide
information-theoretic guarantees. However, for secret sharing
to work, one needs non-colluding entities, which is a require-
ment that is not always easy to attain (see Section 5.2).

P1. Long-Term Security

An individual’s genomic sequence does not change much
over time, thus, the sensitivity of the information it conveys
may not diminish. However, cryptographic schemes used by
PETs in genomics guarantee security only for 20-30 years.

5.2 Security Limitations
Next, we focus on a number of security assumptions made

by some genome privacy protocols.

Semi-honest Adversaries. All papers listed in Table 1, as well
as the vast majority of genome privacy solutions, consider only
semi-honest security. Rare exceptions are represented by pos-
sible extensions to [BER+15, BBD+11]. This is because so-
lutions in this model are significantly easier to instantiate and
yield computation and communication complexities that are
orders of magnitude lower than in the malicious model.

However, security in the semi-honest model assumes that
the parties do not deviate from the protocol and fails to guaran-
tee correctness (i.e., a corrupted party cannot cause the output
to be incorrectly distributed) or input independence (i.e., an
adversary cannot make its input depend on the other party’s
input) [HL10]. Moreover, in the semi-honest model, parties
are assumed to not alter their input. In practice, these require-
ments impose important limitations on the real-world security
offered by genome privacy solutions. Specifically, it might not
suffice to ensure that protocols only disclose the outcome of

a test to a testing facility or provide hospitals with only infor-
mation about common/similar patients. Indeed, this makes no
guarantees as to whether the contents of the test or the patient
information has not been maliciously altered or inflated. Addi-
tionally, the privacy layer makes it more difficult and, at times,
impossible, to verify the veracity of the inputs.

P2. Malicious Security

Most genome privacy solutions are designed for settings
where the adversaries are considered to be honest-but-
curious as opposed to malicious, which may impose limi-
tations on real-world security.

Non-Collusion. We also observe that a number of solutions
that involve third parties (e.g., for storage and processing en-
crypted genomic data [ARHR13], issuing keys [NAP+14],
and authorizing tests [BBD+11, NAP+14]) assume that these
parties do not collude with other entities. Such an assumption
has implications of various degrees in different contexts. For
instance, [NAP+14] assumes that a central authority (CA) is
trusted to issue policies (i.e., generating one-time decryption
keys, allowing researchers to access a specific genome for a
specific case). The CA is expected to be operated by some es-
tablished entity such as the FDA, so that one can likely assume
it has no incentive to misbehave (unless compromised). Sim-
ilarly, protocols supporting large-cohort research, like the one
in [XKB+14], involve medical centers with little or no eco-
nomic incentive to collude, and violate patients’ privacy.

On the other hand, in some cases, non-collusion might be
harder to enforce, while the consequences of collusion might
be serious. For instance, the framework in [ARHR13] supports
private disease susceptibility tests, and involves three entities:
(i) the Patient, (ii) the MC, which administers the tests, and
(iii) the SPU, which stores patients’ encrypted SNPs. Data
stored at the SPU is anonymized. However, if the SPU and MC
collude, then the SPU can re-identify patients. Moreover, the
MC’s test specifics must be considered sensitive (e.g., a phar-
maceutical company’s intellectual property), otherwise there
would be no point in performing private testing. This is be-
cause one could simply tell the patient/SPU which SNPs to an-
alyze and run the test locally. However, patient and SPU collu-
sion implies that confidentiality of the MC’s test would be lost.
Also, solutions that assume third-party cloud storage providers
do not collude with testing facilities, such as [KPK+14], are
limited to settings where one can truly exclude financial or law
enforcement disincentives to collusion.

P3. Non-Collusion Assumption

Some genome privacy solutions involve a collection of en-
tities. These solutions further assume that the entities do not
collude with each other, which may be difficult to enforce
or verify.
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Trusted Hardware. Other assumptions relate to secure hard-
ware, like SGX, which isolates sensitive data into a protected
enclave, thus supporting secure computation of the results,
even if the machine is compromised. For instance, [CWJ+17]
relies on secure hardware to enable institutions to securely
conduct computations over encrypted genomic data. However,
side-channel attacks have been recently demonstrated to be
possible [BMD+17, HCP17] and the full extent of SGX se-
curity has yet to be explored.

P4. Trusted Hardware
Some genome privacy solutions rely on trusted hardware,
such as SGX. However, the security of such hardware is not
yet fully understood and side-channel attacks may limit the
security of these solutions.

5.3 The Cost of Protecting Privacy

Genome privacy research mostly focuses on providing
privacy-preserving versions of genomics-related functionali-
ties (e.g., testing, data processing, and statistical research).
While some of these functionalities are already in use (e.g.,
personal genomic tests offered by DTC companies, data shar-
ing initiatives), others do not yet exist, at least in the way the
genome privacy community has envisioned them. For instance,
some investigations assume that individuals will soon be able
to obtain a copy of their fully sequenced genome [BBD+11]
or that we will be able to create an infrastructure and a mar-
ket with dedicated providers to store and process genomic data
for third-party applications [ARHR13, KPK+14]. Table 1 at-
tempts to evaluate the overhead incurred by privacy protection
on efficiency and scalability, by comparing to that of support-
ing its functionality in a non privacy-preserving way. Simi-
larly, we measure the loss in utility and flexibility.

Privacy Overhead. We observe that high privacy overhead
is linked to the use of expensive cryptographic tools, (e.g.,
ORAM, Paillier, and SWHE). On the one hand, we can assume
that some might become increasingly efficient in the future,
thanks to breakthroughs in circuit optimization [SHS+15].
Moreover, the efficiency of fully homomorphic encryption has
improved several orders of magnitude over the last couple of
years [Tho16].

On the other hand, the characteristics of the privacy
properties under consideration intrinsically make the prob-
lem harder. As a result, it is less likely that efficiency will
eventually improve in the foreseeable future. For instance,
in personal genomic testing, a basic privacy property is con-
cealing which parts of the genome are being tested. This
implies that every single part needs to be touched, even if
the test only needs to examine a few positions. Some solu-

tions [ARHR13, BBD+11] partially address this issue through
means of pre-computation. This is accomplished by encrypt-
ing genomic data so that it can be privately searched. However,
the ciphertext still needs to be transferred in its entirety. An-
other example is in the context of genealogy testing, where the
goal is to find relatives and distant cousins [HFH+14]. Accom-
plishing this in the encrypted domain requires the presence of
a central, non-colluding authority, which, as discussed above,
is not always feasible. A similar situation arises in the con-
text of data sharing: while secure two-party computation can
efficiently support pairwise privacy-friendly information shar-
ing, these do not scale well to a large number of participating
entities.

P5. Privacy Overhead

Some technical genome privacy solutions rely on crypto-
graphic tools (e.g., homomorphic encryption, garbled cir-
cuits, or ORAM). These often come with non-negligible
computation and communication overheads.

Data Representation. In Table 1, we capture the type of data
each solution works with. For instance, some protocols oper-
ate on SNPs (e.g., [ARHR13, NAP+14]), others support FSGs
(e.g., [BBD+11, KPK+14]). On the one hand, working with
FSGs means that researchers and clinicians can consider the
genome as a whole, supporting various services, such as re-
search and testing relevant to rare genetic disorders. On the
other hand, this might be challenging, especially in the cipher-
text domain. For instance, genome sequencing is still not an
error-free process: nucleotides are often misread by the se-
quencing machines, especially when operating at lower costs.
Additionally, deletions/insertions of nucleotides are not un-
common and the exact length of the human genome may vary
among individuals. Handling with such issues is easier in-the-
clear than in the ciphertext domain.

In some cases, solutions like [BBD+11] assume simpli-
fied formats where the genome is stored and processed as
a long vector of nucleotides along with their exact position.
Yet, when errors, deletions, or insertions are not identified be-
fore encryption, the accuracy of testing will dramatically re-
duce (testing in [BBD+11] requires access to specific posi-
tions of a vector containing all nucleotides in the genome,
thus, if an unidentified insertion or a deletion occurs, the posi-
tion would shift and the test would not work). Also, important
metadata contained in standard formats (such as, SAM, BAM,
and FASTQ) is lost in such a custom representation. (Note that
all of the selected papers use only the data type reported in Ta-
ble 1 as an input; however, if a tool works with fully sequenced
genomes (FSG), it can also support other formats (e.g., one can
extract SNPs from an FSG). Finally, a non-negligible portion
of genome privacy investigations requires systems to change
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the way they store and process genomic data, which can create
challenging hurdles to adoption.

P6. Data Representation

Some genome privacy solutions make data representation
assumptions, e.g., introducing a custom or simplified data
format, not taking into account sequencing errors, removing
potentially useful metadata.

Utility Loss. Finally, Table 1 suggests that, in many instances,
the loss in utility, when compared to the corresponding func-
tionality in a non-privacy-preserving setting, is high overall.
For instance, this may arise due to data representation assump-
tions discussed above, or because the functionality needs to
be adapted for privacy-enhancing tools to work. Consider that
the edit distance algorithm in [CKL15] can only support small
parameters (thus, short sequences), while in [LLAN14] algo-
rithms like Estimation Maximization need to be modified.

Overall, privacy protection inevitably yields a potential
loss in utility, as the exact amount of information that should
be disclosed needs to be determined ahead of time and rigor-
ously enforced. As such, a clinician performing a test on the
patient’s genome loses the freedom to look at whichever data
she might deem useful for diagnostic purposes. Similarly, a
researcher looking for relevant data in large-cohorts might be
limited as to what can be searched. A related consideration can
be made with respect to data portability across different insti-
tutions. For instance, if a patient’s genomic information is en-
crypted and stored in a hospital’s specialized unit [ARHR13],
and the patient is traveling or visits another medical facility, it
may be significantly harder to access and use her data.

P7. Utility Loss (Functionality)

Some genome privacy solutions may result in a loss of
utility in terms of the functionality for clinicians and re-
searchers. For instance, privacy tools might limit flexibility,
portability, and/or access to data.

The Challenges of Statistical Research. In Section 4, we
reviewed certain efforts [JS13, USF13, THHA15, BBH+16]
to achieve genome privacy using differentially private mech-
anisms. The use of DP in the context of statistical research is
limited by the inherent trade-off between privacy and utility.
DP mechanisms aim to support the release of aggregate statis-
tics while minimizing the risks of re-identification attacks. In
this context, every single query yields some information leak-
age regarding the dataset, and, as the number of queries in-
creases, so does the overall leakage. Therefore, to maintain
the desired level of privacy, one has to add more noise with
each query, which can degrade the utility of the mechanism.
The privacy-vs-utility trade-off is a common theme in DP, al-
though in many settings genomic data can present unique char-

acteristics with respect to its owner, thus further compounding
the problem. This challenge is exemplified in a case study by
Fredrikson et al. [FLJ+14], which focused on a DP release of
models for personalized Warfarin dosage. In this setting, DP
is invoked to guarantee that the model does not leak which pa-
tients’ genetic markers were relied upon to build the model.
They show that, to effectively preserve privacy, the resulting
utility of the model would be so low that patients would be at
risk of strokes, bleeding events, and even death.

However, in some settings, privacy and utility require-
ments might not be fundamentally at odds, and could
be balanced with an appropriate privacy budget. For in-
stance, [USF13] show that adding noise directly to the χ2-
statistics, rather than on the raw values, yields better accu-
racy, while [JS13] demonstrate that the accuracy of the private
statistics increases with the number of patients in the study.
Also, Tramèr et al.’s techniques [THHA15] can achieve higher
utility than [USF13, JS13] by bounding the adversary’s back-
ground knowledge. Moreover, it has also shown to be chal-
lenging to convince biomedical researchers, who are striving
to get the best possible results, to accept a non-negligible toll
on utility [MRA+16].

P8. Utility Loss (Statistical Research)

Some genome privacy solutions rely on differential privacy,
i.e., introducing noise to the data which yields a potential
non-negligible loss in utility.

5.4 Real-Life Deployment

Relevance to Current Genomics Initiatives. An important
aspect of the genome privacy work to date is its relevance to
current genomics initiatives and whether solutions introduced
can be used in practice, to enhance the privacy of their partic-
ipants. At the moment, these initiatives deal with privacy by
relying on access control mechanisms and informed consent,
but ultimately require participants to voluntarily agree to make
their genomic information available to any researchers who
wish to study it. Surprisingly, we only came across one solu-
tion that could be leveraged for this purpose, although it would
require infrastructure changes. Specifically, the controlled-
functional encryption (C-FE) protocol presented in [NAP+14]
would allow participants’ data to be encrypted under a public
key issued by a central authority. This would allow researchers
to run tests using a one-time function key, obtained by the au-
thority, which corresponds to a specific test and can only be
used for that purpose. This means that the authority would
need to issue a different key for each individual, for every re-
quest, and for every function. Unfortunately, this is not practi-
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cal in the context of large-scale research involving millions of
participants and hundreds (if not thousands) of researchers.

However, there actually is work aiming to address some
attacks against data sharing initiatives, e.g., membership in-
ference against the Beacon network [SB15] (see Section 7). To
address this attack, Raisaro et al. [RTJ+17] propose that a Bea-
con should answer positively only if the individuals containing
the queried mutation are more than one. They also propose
hiding a portion of unique alleles using a binomial distribution
and providing false answers to queries targeting them, or im-
posing a query budget. Wan et al. [WVKM17] measure the dis-
criminative power of each single nucleotide variant (SNV) in
identifying a target in a Beacon, and flip the top SNVs accord-
ing to this power, measuring the effects on privacy and utility.
However, both solutions make important trade-offs with re-
spect to utility. More specifically, [RTJ+17] alters or limits the
responses of the network, while [WVKM17], acknowledging
that utility loss is unavoidable, provides ways to calculate (but
not solve) this trade-off.

P9. Relevance to Genomics Initiatives
Current genomics initiatives – e.g., All of Us or Genomics
England – primarily address privacy by relying on access
control mechanisms and informed consent. In the mean-
time, we lack technical genome privacy solutions that can
be applied to such initiatives.

Relevance to Private Market. We also reason about the ap-
plicability of PETs to the genomics private market. As a case
study, we consider DTC products for health reports and ge-
netic relatedness testing, where the potential drawbacks men-
tioned earlier (e.g., in terms of utility loss or computational
overhead) might be less relevant than in clinical settings.

Today, companies like AncestryDNA and 23andMe pro-
vide cheap and seamless services, while investing substantial
resources on improving user experience. Moreover, as their
customer base grows, they can discover and match a greater
number of relatives, as well as increase the accuracy of their
models using metadata provided by the users. In return, these
companies can profit from monetizing customers’ data, e.g.,
by helping researchers recruit participants for research stud-
ies or providing pharmaceutical companies with access to data
at a certain price [Pal15]. However, without access to data,
their business model is not viable. This is because deploying
privacy-preserving testing would require the presence of enti-
ties that are willing to operate these services with minimal data
monetization prospects. Notably, this is not a new issue in pri-
vacy, and similar considerations can be raised about research
on privacy-preserving social networking or cloud computing,
which has also struggled with adoption.

P10. Relevance to Private Market
Direct-to-consumer genetic testing companies monetize
customers’ data, and/or use it for research studies. As such,
genome privacy solutions for personal genome tests may
lack a viable business model.

6 Experts’ Opinions
The systematic analysis of research using PETs to protect

genome privacy led to the identification of a list of ten techni-
cal challenges. Aiming to validate and broaden the discussion
around them, we sought the viewpoints of experts in the field
with respect to their importance and difficulty.

Questionnaire. We designed a short questionnaire, presenting
participants with each of the ten challenges (P1–P10 in Sec-
tion 5) and asking four questions for each:

Q1. How important is it to solve this problem?
Q2. How difficult is it to solve this problem?
Q3. What can be done to address this problem?
Q4. How knowledgeable are you in this area?

For Q1-Q2, we used a ten-point Likert scale, with 1 corre-
sponding to “not at all important/difficult” and 10 to “ex-
tremely important/difficult.” Q3 was a non-mandatory open-
ended question, while Q4 provided three options: unfamiliar,
knowledgeable, or expert. The questionnaire took 10-15 min-
utes to complete.6

Participants. To compile a list of genome privacy experts, we
again used GenomePrivacy.org, exporting all the authors of the
papers listed on the site (262 as of March 2018). We manually
inspected each and removed those that appeared to have pri-
marily biomedical or legal backgrounds, or only authored one
paper, thus shortening the list to 92 names. Then, we retrieved
the email addresses of the authors from their websites and, in
April 2018, we sent an email with a request to fill out the ques-
tionnaire. After 30 days, we received answers from 21 experts.

The survey was designed to be anonymous, i.e., partici-
pants were provided with a link to a Google Form and were
not asked to provide any personal information or identifiers.

Analysis. Figures 1(a) and and 1(b) present boxplots of the an-
swers to Q1 (importance) and Q2 (difficulty). For most ques-
tions, participants considered themselves experts or knowl-
edgeable; only three identified as unfamiliar for P4: Trusted
hardware and P10: (Relevance to) Private Market, two for
P8: Utility Loss (Statistical) and P9: (Relevance to) Genomics
Initiatives, and one for P3: Non-Collusion, P5: Privacy Over-
head, and P6: Data Representation.

6 A copy of the questionnaire is available from http://mittos.me/wp-
content/uploads/2018/08/questionnaire.pdf.

GenomePrivacy.org
http://mittos.me/wp-content/uploads/2018/08/questionnaire.pdf
http://mittos.me/wp-content/uploads/2018/08/questionnaire.pdf
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Fig. 1. Boxplots of answers to Q1 and Q2 of the online survey.

Even though the questionnaire was administered with ex-
perts in the field, its limited sample and scope does not allow
us to perform a quantitative analysis in terms of statistical hy-
pothesis testing with respect to each problem. However, the
responses obtained for importance, along with the open-ended
questions, do offer some interesting observations.7 In fact, we
found that participants seemed to consider most of the prob-
lems to be quite important overall. Looking at the median (M ),
we find that M≥7 for eight out of ten problems, and M=6 for
the other two: P2: Malicious Security and P10: Private Market.

Most Important Problems. Three problems stood out as the
most important, with M=9. In particular, P1: Long-term Se-
curity received an average score of µ=8.23±2.02, with 6 out
of the 7 self-reported ‘experts’ in this area giving it a 10.
High scores were also obtained by P7: Utility Loss (Func-
tionality), with µ=8.85±1.16, and P9: Genomics Initiatives
(µ=9.09±0.97, the highest). The importance of these prob-
lems was confirmed when normalizing scores by the average
response of each participant, which let us reason about the
“relative” importance; again, P1 and P7 stood out.

When asked about how to solve the problem of long-
term security, the experts provided a wide range of ideas,
thus confirming the need for future work that takes differ-
ent approaches than the current ones. For instance, some ex-
perts raised the availability of honey encryption [HAF+15],
which, however, is limited in scope and security (see Sec-
tion 5.1). Others proposed the use of gene manipulation tech-
niques like CRISPR [Led15], blockchain-based solutions, and
post-quantum cryptography. Specifically, one participant said:
“use post-quantum or information-theoretic solutions. In the-
ory, we know how to do this (just exchange primitives with
PQ-secure ones), but one needs to check security and perfor-
mance issues”. Others focused on transparency of data access

7 Numeric scores for difficulty are leveled around a median of 7, thus we
do not discuss them due to space limitations.

and management rather than confidentiality, stating, e.g., that
“maybe cryptography is not the answer. Perhaps setting up an
environment with different ways of controlling how the data
is managed in order to provide more transparency.” An expert
proposed re-encrypting the data, while another suggested the
use of large parameters: “One option is to use particularly large
parameters, but this will degrade performance. Of course we
can’t know what improved attacks are coming up.” Finally, a
participant responded that this issue is not critical at the mo-
ment although it may be in the future, stating that “despite of
the issues of impact to future generations, I do not consider
this a critical factor in todays operations,” while another sim-
ply responded that there is not much the community can do to
address this issue.

Whereas, when asked about utility loss with respect to
functionality, there was some agreement that the community
should start to carefully design specific solutions, rather than
generic ones, and validate them with clinicians and researchers
before developing them. For example, one participant men-
tioned: “we can develop fundamental and flexible evaluations
primitives for various applications. Some solution seems to be
the best for one case but there may be a better solution to other
applications”, while another suggested to “work on practical
use cases by collaborating with, e.g., medical researchers.”
Further, an expert suggested to work on hybrid solutions: “The
solution might have to be multi-layered with crypto, access
control policy, etc. components”, while another focused on the
users, suggesting to “educate humans to change their ways.”

Disagreements. We also found that two problems, P8: Util-
ity (Statistical) and P10: Private Market attracted very diverse
scores, yielding a variance of, resp., 5.85 and 6.80. This was
confirmed by the participants’ open-ended answers: four par-
ticipants (self-identified as knowledgeable) rejected the use
of differentially private mechanisms in clinical settings, while
also providing low importance scores. When asked how the
community can address this challenge, some explained that,
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in certain cases, the utility loss can be manageable (e.g., “A
comprehensive, experiment-driven analysis for feasible ep-
silon and delta values can pave the way towards more formally
founded utility results for DP”), while another suggested that
the utility loss is usually high because the proposed solutions
are generic instead of specialized for a specific task. A cou-
ple of participants did not recognize the issue of relevance to
the private market as particularly important since they found
privacy in this context to be fundamentally at odds with the
DTC market, while others gave high scores for the very same
reason.

Other Problems. Among other observations, we found
that P6: Data Representation, although considered important
(M=9), was also considered the easiest to address. Specifi-
cally, it was suggested that solutions should be designed to bet-
ter handle real data, and that the community should focus on
harmonizing existing schemes and improve interoperability.
Although this might be feasible, it once again highlights the
need for truly interdisciplinary work. By contrast, regarding
the scarcity of solutions protecting against malicious adver-
saries (P2) or not relying on non-collusion assumptions (P3),
we found that these were less important to the participants,
both due to their confidence in advances in cryptography re-
search but also because they felt these might be reasonable
assumptions in the medical setting.

Take-Aways. In summary, the 21 genome privacy experts who
responded to our survey evaluated the ten challenges identi-
fied through our systematization, helping us put them in con-
text and providing feedback on possible avenues to mitigate
them. On the one hand, some of the issues are likely to be
eventually mitigated via natural research progress (e.g., cryp-
tographic tools geared to provide malicious security might
become more efficient), optimization techniques (e.g., sup-
porting specific functionalities in standardized settings), ad-
vances in new technologies (e.g., trusted hardware might re-
duce computation overheads), and/or inter-disciplinary col-
laboration (e.g., by improving interoperability). On the other
hand, however, we do not have a clear grasp as to how to tackle
some of the other challenges that are inherently tied to the
very nature of genome privacy. For instance, the issue of long-
term security cannot be effectively addressed using standard
approaches; similarly, the utility loss stemming from hiding
data might be hard to overcome with existing cryptographic
and/or differential privacy techniques.

7 Related Work

This section reviews prior work analyzing security and
privacy challenges in the context of genomic data.

Erlich and Narayanan [EN14] analyze the different routes
that can be used to breach and defend genome privacy. They
group plausible and possible attacks into three categories:
completion, identity tracing, and attribute disclosure attacks,
and discuss the extent to which mitigation techniques (i.e., ac-
cess control, anonymization, and cryptography) can address
them. Ayday et al. [ADHT15] summarize the importance of
progress in genomics along with the need for preserving the
privacy of the users when dealing with their genomic data.

Shi et al. [SW17] review genomic data sharing, the po-
tential privacy risks, as well as regulatory and ethical chal-
lenges. They also categorize tools for protecting privacy into
controlled access, data perturbation (specifically in the context
of differential privacy), and cryptographic solutions, providing
an overview for each category. Also, Wang et al. [WJS+17]
study the clinical, technical, and ethical sides of genome pri-
vacy in the United States, describing available solutions for the
disclosure of results from genomic studies along record link-
age, and the ethical and legal implications of genome privacy
in conjunction to informed consent.

Naveed et al. [NAC+15] present an overview of genome
privacy work from a computer science perspective, review-
ing known privacy threats and available solutions, and discuss
some of the known challenges in this area—e.g., that genomic
databases are often not under the control of the health system,
or that privacy protection might affect utility. They also inter-
view 61 experts in the biomedical field, finding that the ma-
jority of them acknowledge the importance of genome privacy
research and risks from privacy intrusions.

Aziz et al. [ASA+17] categorize genome privacy research
in three groups: privacy-preserving data sharing, secure com-
putation and data storage, as well as query or output privacy;
they discuss solutions and open problems in those fields, aim-
ing to help practitioners better understand use cases and lim-
itations of available crypto primitives. and compare their per-
formance and security. Finally, Akgün et al. [ABOS15] focus
on bioinformatics research where private information disclo-
sure is possible. For instance, they consider scenarios about
querying genomic data and sequence alignment, while survey-
ing available solutions for each.

Our SoK vs Prior Work. Overall, the current collection of
surveys review and summarize available solutions. In combi-
nation, they complement our work and are useful in providing
an overview of the state of the art, as well as the different av-
enues for privacy protection. Some also highlight challenges
from non-technical perspectives, including ethics, law, and
regulation. However, they are mostly limited to reviews of al-
ready completed work by grouping and assessing available so-
lutions without a structured methodology, and therefore, their
analysis is usually restricted to the papers they survey and do
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not apply to the community in general. Whereas, we define
systematic criteria and sample relevant papers that are rep-
resentative of a line of work; this helps us provide a critical
analysis of challenges and outlooks. Specifically, we discuss
several challenges which have not been identified in the past
by previous surveys, including: the lack of long-term confiden-
tiality protection, the over-reliance on non-collusion assump-
tions, the challenges presented by making strong data repre-
sentations assumptions, as well as the lack of solutions appli-
cable to current genomics initiatives. Overall, our methodol-
ogy can be reused in a straightforward manner in the future,
e.g., to assess progress in the field, while, today, our analysis
can be used by the community as a guideline for future work.

8 Conclusion

We introduced and applied a structured methodology to
systematize knowledge around genome privacy, focusing on
defensive mechanisms offered by privacy-enhancing technolo-
gies (PETs). We selected a representative sample of the com-
munity’s work and defined systematic criteria for evaluation.
We compiled a comparison table which guided a critical anal-
ysis of the body of work and helped us identify ten technical
challenges/open problems. We also asked genome privacy ex-
perts to weigh in on how important and difficult they are to
address and to provide ideas as to how to mitigate them. Over-
all, our analysis serves as a guideline for future work, while
our methodology can be reused by other researchers to revisit
new results and assess the progress in the field.

In short, we found that using PETs to protect genome pri-
vacy may be hindered by the obstacles related to the unique
properties of the human genome. For example, the sensitiv-
ity of genome data does not degrade over time; as a conse-
quence, one serious challenge stems from lack of long-term
security protection, which is hard to address as available cryp-
tographic tools are not suitable for this goal. We also observed
that the overwhelming majority of proposed techniques, aim-
ing to scale up to large genomic datasets, need to opt for
weaker security guarantees or weaker models. While it is not
unreasonable to expect progress from the community with re-
spect to underlying primitives, it is inherently hard to address
the limitations in terms of utility and/or flexibility on the actual
functionalities. When combined with assumptions made about
the format and the representation of the data under analysis,
this might pose major hurdles against real-life adoption.

These hurdles are further compounded by the interdepen-
dencies between some of the criteria and the categories dis-
cussed. For instance, the use of cloud storage for genomic data
implies the existence of a third party, and as such, the improve-
ment in usability may be overshadowed by security limitations

(Section 5.2). Furthermore, the solutions proposed in the Ac-
cess & Storage Control category may have a direct effect on
every category as functionalities like secure storage and se-
lective retrieval are crucial parts of any complete framework,
further highlighting the importance of interoperability.

Nevertheless, in its short lifespan, the genome privacy
community has achieved admirable progress. Indeed, a sig-
nificant portion of research can already be used to enable
genomics-related applications that are hard or impossible to
support because of legal or policy restrictions. For instance,
genetic and health data cannot easily cross borders, which
makes international collaborations very challenging. In this
context, mechanisms provably guaranteeing privacy-friendly
processing of genomic data may alleviate these restrictions
and enable important research progress, and we hope to see
more pilot studies along these lines in the near future. In
fact, some initiatives have started to provide encouraging re-
sults, e.g., a trial conducted at the CHUV hospital in Lausanne
(Switzerland) to encrypt genetic markers of HIV-positive pa-
tients and let doctors perform tests in a privacy-preserving
way [MRA+16].

Furthermore, essential to the progress of the field are alter-
native and/or creative solutions to known problems. One such
example is the work by Wan et al. [WVX+17], who address
the privacy-utility tradeoff in emerging genomic data sharing
initiatives. To do so, they rely on a game-theoretic approach
which accounts for the capabilities and the behavior of the ad-
versary, so that the defender can choose the best strategy sat-
isfying their privacy requirements without crippling utility.

Beyond the work in this paper, we believe it is im-
portant to assess the actual feasibility of realizing certain
functionalities in privacy-enhancing settings. We also call
for studying new genome manipulation techniques, such as
CRISPR [Led15], and their potential impact on both secu-
rity (e.g., causing harm) and privacy (e.g., editing genomes
to recover from data exposure or to hinder re-identification).
Finally, we plan to extend our analysis to privacy in broader
biomedical contexts, such as considering users’ health-related
as well as genomic data.
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Whole Genome Sequencing. Whole Genome Sequencing
(WGS) is the process of determining the complete DNA se-
quence of an organism. In other words, it is used to digitize
the genome of an individual into a series of letters correspond-
ing to the various nucleotides (A, C, G, T). WGS costs are now
on the order of $1,000 [Nat17].

Whole Exome Sequencing. Whole Exome Sequencing is the
process of sequencing parts of DNA which are responsible for
providing the instructions for making proteins.

Genotyping. Sequencing is not the only way to analyze the
genome; in fact, in-vitro techniques such as genotyping are
routinely used to look for known genetic differences using
biomarkers.

SNPs, CNVs, STRs, RFLPs, Haplotypes, and SNVs. All
members of the human population share around 99.5% of
the genome, with the remaining 0.5% differing due to ge-
netic variations. However, this 0.5% variation does not always
manifest in the same regions of the genome. As an artifact,
storing how much or where differences occur could lead to
uniqueness and identifiability concerns. A Single Nucleotide
Polymorphism (SNP) is a variation at a single position, oc-
curring in 1% or more of a population. SNPs constitute the
most commonly studied genetic feature today, as researchers
use them to identify clinical conditions, predict the individu-
als’ response to certain drugs, and their susceptibility to vari-
ous diseases [WMM+13]. However, Copy Number Variations
(CNVs) [SFD+07] and Short Tandem Repeats (STRs) [But07]
are also becoming increasingly more used. Restriction Frag-
ment Length Polymorphisms (RFLPs) refer to the difference
between samples of homologous DNA molecules from differ-
ing locations of restriction enzyme sites, and are used to sepa-
rate DNA into pieces and obtain information about the length
of the subsequences. A haplotype refers to a group of genes
of an individual that was inherited from a single parent. Fi-
nally, while a SNP refers to variation which is present to at
least 1% of a population, a Single Nuncleotide Variant (SNV),
is a variation occurring in an individual, without limitations on
frequency.

GWAS. Genome Wide Association Study is the process which
compares the DNA of study participants to discover SNPs that
occur more frequently in people carrying a particular disease.

SAM, BAM, FASTQ, and VCF. Fully Sequenced Genomes
(FGSs) are typically stored in either SAM, BAM, or FASTQ
formats. SAM (Sequence Alignment Map) is a text-based for-
mat, which may include additional information such as the
reference sequence of the alignment or the mapping qual-
ity, BAM is a binary format (in practice, the compressed and

lossless version of SAM), while FASTQ is a text-based for-
mat which stores nucleotide sequences along with their corre-
sponding quality scores. VCF (Variant Call Format) is another
text file format broadly used in bioinformatics for storing gene
sequence variations.

Genome Operations. A variety of operations can be per-
formed on genomes. For the purpose of this paper, we describe
three of the most common:

1. SNP weighted average. There are several methods to com-
pute the disease susceptibility of an individual, or other
genetic testing related analysis that involve SNPs. A com-
mon method is based on weighted averaging, where cer-
tain weights are applied on SNPs to calculate the result of
a test.

2. Edit distance. An edit distance algorithm measures the
dissimilarity of two strings. Specifically, the edit distance
between two strings corresponds to the minimum num-
ber of edit operations (i.e., insertion, deletion, substitu-
tion) needed to transform one string into the other. In the
context of genomics, usually researchers measure the edit
distance between a patient and a reference genome.

3. χ2 test. A χ2 test is a statistical method to test hypothe-
ses. Specifically, a χ2 test is used to determine whether
there is a significant difference between the observed fre-
quencies in a sample against the expected ones if the null
hypothesis is true. In the context of genomics, a χ2 test
helps researchers determine whether certain hypotheses
are true, e.g., determine whether two or more alleles are
associated (linkage disequilibrium).
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