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PD-DM: An efficient locality-preserving block
device mapper with plausible deniability
Abstract: Encryption protects sensitive data from
unauthorized access, yet is not sufficient when users are
forced to surrender keys under duress. In contrast, plau-
sible deniability enables users to not only encrypt data
but also deny its existence when challenged.
Most existing plausible deniability work (e.g. the suc-
cessful and unfortunately now-defunct TrueCrypt) tack-
les “single snapshot” adversaries, and cannot handle the
more realistic scenario of adversaries gaining access to
a device at multiple time points. Such “multi-snapshot”
adversaries can simply observe modifications between
snapshots and detect the existence of hidden data.
Existing ideas handling “multi-snapshot” scenarios
feature prohibitive overheads when deployed on
practically-sized disks. This is mostly due to a lack
of data locality inherent in certain standard access-
randomization mechanisms, one of the building blocks
used to ensure plausible deniability.
In this work, we show that such randomization is not
necessary for strong plausible deniability. Instead, it can
be replaced by a canonical form that permits most of
writes to be done sequentially. This has two key advan-
tages: 1) it reduces the impact of seek due to random
accesses; 2) it reduces the overall number of physical
blocks that need to be written for each logical write. As
a result, PD-DM increases I/O throughput by orders
of magnitude (10–100× in typical setups) over exist-
ing work while maintaining strong plausible deniability
against multi-snapshot adversaries.
Notably, PD-DM is the first plausible-deniable system
getting within reach of the performance of standard en-
crypted volumes (dm-crypt) for random I/O.
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1 Introduction
Although encryption is widely used to protect sensitive
data, it alone is usually not enough to serve users’ in-
tentions. At the very least, the existence of encryption
can draw the attention of adversaries that may have the
power to coerce users to reveal keys.

Plausible deniability(PD) aims to tackle this prob-
lem. It defines a security property making it possible
to claim that “some information is not in possession [of
the user] or some transactions have not taken place”
[23]. In the context of storage devices, as addressed in
this paper, PD refers to the ability of a user to plausibly
deny the existence of certain stored data even when an
adversary has access to the storage medium.

In practice, PD storage is often essential for sur-
vival and sometimes a matter of life and death. In
a notable example, the human rights group Network
for Human Rights Documentation-Burma (ND-Burma)
carried data proving hundreds of thousands of human
rights violations out of the country on mobile devices,
risking exposure at checkpoints and border crossings
[27]. Videographers brought evidence of human rights
violations out of Syria by hiding a micro-SD card in
body wounds [24], again at high risk of life.

Yet, unfortunately, existing PD storage solutions
are either slow or insecure against “multi-snapshot” ad-
versaries that can gain access to the storage multiple
times over a longer period. For example, steganographic
filesystems [5, 23, 26] (also known as “deniable filesys-
tems”), resist only adversaries who can access storage
mediums once (“single-snapshot” adversaries). And al-
though some attempts [26] have been made to handle
multi-snapshot adversaries, they are insecure. A strong
adversary can straightforwardly infer what data is hid-
den with a relatively high probability, better than ran-
dom guessing. On the other hand, while block-level PD
solutions [6, 8] handling multi-snapshot adversaries ex-
ist, their performance is often simply unacceptable and
many orders of magnitude below the performance of
non-PD storage.

Nevertheless, most realistic PD adversaries are ul-
timately multi-snapshot. Crossing a border twice, or
having an oppressive government collude with a hotel
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maid and subsequently a border guard, provides easy
and cheap multi-snapshot capabilities to any adversary.

It is obvious that the security of a PD system
should not break down completely (under reasonable
user behavior) and should be resilient to such real-
istic externalities (hotel maids, border guards, airline
checked luggage etc). Thus, undeniably, a practical and
sound plausible-deniable storage solution crucially needs
to handle multi-snapshot accesses.

In virtually all PD designs, handling multi-snapshot
adversaries requires hiding the “access patterns” to hid-
den data. Otherwise, adversaries could trivially observe
implausible modifications between snapshots and infer
the existence of hidden data.

Some of the first solutions [8, 31] hide access pat-
terns by rendering them indistinguishable from random.
Unfortunately, existing randomization-based mecha-
nisms completely break data locality and naturally im-
pose large numbers of physical writes that are needed
to successfully complete one logical write. This results
in unacceptable performance, especially for high-latency
storage (e.g., rotational disks). For example, HIVE [8]
performs 3 orders of magnitude slower than a non-PD
disk baseline.

We observe that randomization is not the only way
to hide access patterns. Canonical forms that depend
only on non-hidden public data (e.g., sequential struc-
turing) suffice and can yield dramatic throughput in-
creases. This is mainly due to two reasons. First, it is
well known that sequential structuring can vastly speed
up I/O by reducing the impact of random seeks [14].
This has been previously well explored in log-structured
filesystems [13, 28]. Second, the predictable nature of
such sequential access leads to more efficient searches
for free block locations (to write new data) with lower
numbers of I/O operations, when compared with exist-
ing (mostly randomized access) solutions.

Finally, we note that, by definition, a well-defined
multi-snapshot adversary cannot observe the device (in-
cluding its RAM, etc) between snapshots. This enables
additional optimizations for increased throughput.

The result is PD-DM, a new, efficient block-level
storage solution that is strongly plausibly deniable
against multi-snapshot adversaries, preserves locality
and dramatically increases performance over existing
work. In typical setups PD-DM is orders of magnitude
(10–100×) faster than existing approaches.

2 Storage-centric PD Model
PD can be provided at different layers in a storage sys-
tem. However, properly designing multi-snapshot PD at
the filesystem level is not trivial. As filesystems involve
many different types of data and associated metadata,
resolving all data and metadata modifications and as-
sociated chain reactions in a plausibly deniable manner
requires significant and careful consideration. We are
not aware of any successful, fully secure design. More-
over, data loss (overwriting of data at a high deniability
level by writes to data at a lower deniability level) is
likely an unavoidable drawback of filesystem PD ideas.

Instead, the focus of this work is on storage-centric
PD for block devices – allowing a user to store files of dif-
ferent confidentiality levels to different logical volumes
stored on the same underlying physical device. These
volumes are accessed independently by upper-layer ap-
plications such as filesystems and databases.

It is important to note that no existing PD solu-
tion hides the fact that a PD system is in place. So far
(and in this paper), the role of a sound PD system has
been to hide whether a user stores any hidden files (for
filesystems) or uses any hidden volumes (in block level
schemes). In other words, it is assumed that adversaries
won’t punish users for merely using a PD-enabled sys-
tem, at least as long as the system allows also non-PD
purposes, e.g., storing in a public volume.

2.1 PD Framework at Block Level

A PD system at the block level intermediates between
a raw storage device and upper logical volumes (Figure
1). It structures accesses to the underlying device while
providing upper-level abstractions for multiple indepen-
dent logical volumes. Logical public volumes V ip can be
revealed to adversaries, whereas the existence and us-
age of hidden volumes V jh should be hidden from ad-
versaries. The physical device contains Nd blocks of B
bytes each, while each logical volume has N i

p/N
j
h logi-

cal data blocks, respectively. The volumes are encrypted
with different encryption keys Ki

p and Kj
h (e.g., derived

from passwords P ip and P jh). If coerced, users can pro-
vide the public passwords and deny the existence or use
of hidden volumes even to multi-snapshot adversaries.
Adversary. We consider a strong computationally
bounded “multi-snapshot” adversary able to get com-
plete representations of the device’s static state at mul-
tiple times of her choosing. Importantly, the adversary
cannot see the running state (memory, caches etc) of
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Fig. 1. Overview of a PD system with one public volume and one
hidden volume as an example. PD-DM provides virtual volume
abstractions. The choice of whether the hidden volume is used
will be hidden.

the PD layer occurring before she takes possession of
the device. For example, a border guard in an oppres-
sive government can check a user’s portable hard drives
every time he crosses the border, but the guard cannot
install malwares or otherwise spy on the device.
Access Pattern. An access can be either a
read or write to a logical volume. Pub_read(lip),
Pub_write(lip, dip) denote accesses to public volume V ip ,
while Hid_read(ljh), Hid_write(ljh, d

j
h) denote accesses

to hidden volume V jh . l
i
p and ljh are logical block IDs

while dip and djh are data items. An access pattern O
refers to an ordered sequence of accesses being submit-
ted to logical volumes, e.g., by upper-layer filesystems.
Write Trace. A write trace W(O) refers to a series of
actual modifications to the physical block device result-
ing from a logical access patternO. Let Phy_write(α, d)
denote an atomic physical device block write operation
of data d at location α (physical block ID). Then a write
trace W(O) can be represented as an ordered sequence
of physical block writes Phy_write(α, d).

A multi-snapshot adversary may get information
about a write trace by observing differences in the “be-
fore” and “after” device states. A PD system is designed
to prevent the adversary from inferring that the write
trace corresponds to hidden volume accesses.

Not unlike existing work, PD-DM achieves this by
providing plausible explanations for accesses to hidden
volumes using accesses to public volumes. Figure 2 illus-
trates. Consider two access patterns O0 and O1. O1 con-
tains hidden accesses while O0 does not. The two corre-
sponding write traces bring the disk from input state S1
to output state S20 and S21 according to which of O0
and O1 has been executed. The idea then is to empower
a user to plausibly deny the execution of hidden accesses
by arguing that any observed device state changes be-
tween snapshots would have been indistinguishably in-

Fig. 2. Consider two access patterns O0 and O1 that transform
the state of the disk from S1 to S20 and S21 respectively. Ad-
versaries should not be able to distinguish S20 from S21 based
on the snapshots. Effectively the adversary should not be able to
distinguish W(O0) from W(O1)

duced by O1 or O0. Effectively, the corresponding write
traces W(O0) and W(O1) should be indistinguishable.

One key observation is that only write accesses are
of concern here since read accesses can be designed to
have no effect on write traces. This also illustrates why
it is important to guarantee PD at block level – the above
may not necessarily hold for filesystems which may up-
date “last-accessed” and similar fields even on reads.

2.2 Security Game

An intuitive explanation of PD at block level is illus-
trated in Figure 2. Towards more formal insights, we
turn to existing work and observe that security require-
ments are sometimes quite divergent across different
works. For example, Blass et al. [8] introduced a hid-
den volume encryption (HIVE) game. It outlines two
main concerns: frequency of snapshots and “degree of
hiding”. “Restricted”, “opportunistic” and “plausible”
hiding are defined along with three kinds of adversaries,
“arbitrary”, “on-event” and “one-time”. Chakraborti et
al. [6] proposed the PD-CPA game (Appendix A.1) tar-
geting a more powerful “arbitrary” adversary, further
excluding reliance on any specific device property.

We discover that both models feature a shared
structural backbone coupled with certain adversary-
specific features. The games are defined between an ad-
versary A and a challenger C on a device D with a “meta
game” structure.

Before presenting the meta game, we first introduce
IsExecutable(O) – a system-specific predicate that re-
turns True if and only if the access patterns O can be
“fully executed”. It is hard to have a universal definition
of IsExecutable(O) for all the PD solutions. For exam-
ple, in HIVE, IsExecutable(O) models whether there
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exists one corresponding read after each access to a
hidden volume. In PD-CPA, IsExecutable(O) models
whether the ratio between the number of hidden writes
and the number of public writes is upper bounded by a
parameter φ. Then, the meta game is defined as follows:

1. Let np and nh denote the number of public and hidden
volumes respectively.

2. Challenger C chooses encryption keys {Ki
p}i∈[1,np]

and {Kj
h
}j∈[1,nh] using security parameter s.

3. C creates logical volumes {V i
p}i∈[1,np] and

{V j
h
}j∈[1,nh] in D, encrypted with keys Ki

p and
Kj

h
respectively.

4. C selects a random bit b.
5. C returns {Ki

p}i∈[1,np] to A.
6. The adversary A and the challenger C then engage in

a polynomial number of rounds in which:
(a) A selects a set of access patterns {Oi

p}i∈[1,np] and
{Oj

h
}j∈[1,nh] with the following restrictions:

i. Oi
p includes arbitrary writes to V i

p .
ii. Oj

h
includes writes to V j

h
, subject to restric-

tion 6(a)iv below.
iii. O0 includes all the accesses in {Oi

p}i∈[1,np]
iv. There exists O1, a sequence composed (e.g.,

by adversary A) of all accesses in O0 and
{Oj

h
}j∈[1,nh], such that IsExecutable(O1) =

True

(b) C executes Ob on D.
(c) C sends a snapshot of the resulting device to A.

7. A outputs b′ , A’s guess for b.

Definition 1. A storage mechanism is plausibly-
deniable if it ensures A cannot win the security game
with a non-negligible advantage over random guessing.
Or, more formally, there exists a function ε(s), negli-
gible in security parameter s, such that Pr[b′ = b] ≤
1/2 + ε(s).

The restrictions on access pattern choices (in step 6a)
are mandatory in the game to prevent “trivial” impos-
sibility. In the absence of access patterns restrictions, it
may be impossible to find a solution. E.g., an adversary
may choose different public accesses for O0 and O1, so
that she can distinguish access patterns by public ac-
cesses only and trivially win the game. The restrictions
6(a)i - 6(a)ii ensure that the public writes chosen to
cover the hidden writes are not a function of the hidden
writes, lest information about the existence of the hid-
den volume is leaked by the public write choices (which
are unprotected from adversaries).

The IsExecutable(O1) in the restriction 6(a)iv is re-
lated to the systems’ ability to combine public and hid-
den accesses to ensure PD. It prevents adversaries win-

ning the game by trivially choosing access patterns with
hidden accesses that cannot be hidden by a given sys-
tem. In existing work, IsExecutable(O1) depends only
on the ratio of hidden to public operations (either public
read or public write). This yields actual practical solu-
tions, but also limits the solution space to ORAM-based
mechanisms. Yet, this is not necessary if we consider the
fact that adversaries in reality have much less freedom
in choosing access patterns.

Specifically, requiring adversaries to choose no mat-
ter how many public accesses that are needed to cover
those hidden accesses in the access pattern is quite rea-
sonable. The number of public accesses chosen could
be related to not only the number of hidden accesses
but also the current state of hidden data on disk. In
reality, this corresponds to a multi-snapshot adversary
who gains access to storage devices at different points
in time, but does not monitor the system running. As a
result, the adversary has limited knowledge about what
has happened in the meantime in the hidden volumes
(e.g. hard disk snooping [18, 22]).

In this case, IsExecutable() can still be easily full-
filled by access patterns coming from many realistic
upper-layer workloads. For example, if PD-DM runs
underneath log-structure filesystems on both volumes,
IsExecutable() becomes exactly the same as that in PD-
CPA. Further, once the public and hidden volume work-
loads sufficiently correlate, the PD-DM IsExecutable()
is True with high probability (see Section 4.2).
Timing. Although a system log may record the public
writes which cover the hidden accesses in PD-DM, it is
important to note that timing information is assumed
to not provide adversaries any significant advantage.

3 System Design
The key idea in PD-DM is to ensure a canoni-
cal/sequential physical device write trace, notwith-
standing the logical layer workload. All writes to the
physical device are located at sequentially increasing
physical addresses, similar to append operations in log-
structure filesystems.

This canonical nature eliminates the ability of an
adversary to infer logical layer access patterns, and the
possible existence of a hidden volume stored in appar-
ently “free” space – e.g., by noticing that this “free”
space is being written to in between observed snapshots.

More importantly, it brings two significant perfor-
mance benefits. Firstly, it reduces the impact of disk
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seeks. This is very important as the seek time dominates
the disk access time [20]. For example, the average seek
time for modern drives today may range from 8 to 10
ms [21], while the average access time is around 14 ms
[20]. Secondly, as we will see, a block that is chosen to
be written in PD-DM is more likely to contain invalid
data compared to a randomly-selected block. This re-
duces the average number of physical blocks that need
to be accessed to serve one logical write request.
System layout. Figure 3 illustrates the disk layout of
PD-DM and how logical volumes are mapped to the un-
derlying physical device. For simplicity, we consider one
public volume and one hidden volume in PD-DM.1 As
shown later, it is easy to add more volumes. In general,
the disk is divided into two segments: a data segment
and a mapping segment. Both public and hidden data
is mapped to the data segment, more specifically, the
Data area (in Figure 3). Several data structures (PPM,
PBM, HM_ROOT in Figure 3) are stored in the map-
ping segment, to maintain the logical volume to physical
device mapping obliviously and provide physical block
status information. As will be detailed later, the PPM
and PBM are associated with the public volume, and
HM_ROOT with the hidden volume.

For better performance, recently used mapping-
related blocks are cached in memory using assigned
memory pools.2

Log-structure. The Data area is written sequentially
as a log and the Phead records its head. An atomic write
to the Data area writes not only public data but also ei-
ther hidden data as well as its related mapping blocks or
some dummy data to several successive blocks pointed
by Phead.3 The pointer Phead indicates the block af-
ter the last written physical block and wraps around to
point again to the first physical block once the last block
of the Data area is written.
Underlying Atomic Operation: PD_write. As
mentioned, PD-DM writes to the Data area sequentially
with an atomic operation. Thus, we define the atomic
operation as PD_write (see Section 3.3 for details). The
content written by a PD_write operation can be ad-
justed by users. We assume that one block of public

1 Vp and Vh are used for the two volumes instead of V i
p and V j

h
,

and the index i or j is also omitted in all the other notations
defined in Section 2 for simplicity.
2 Not to be confused with chip level caches (PLB) used in some
ORAM-based designs [15].
3 This is a key point and reduces the impact of disk seeks by
an order of magnitude.

Fig. 3. PD-DM layout. The left-most dotted rectangle (blue)
highlights the data structures used in mapping logical volume
blocks to physical locations: PPM, PBM and HM_ROOT. The
right-most dotted rectangle (red) highlights the data storage
segment including “Phead” and a set of consecutive blocks on the
disk. This segment stores all data from both public and hidden
volumes, as well as parts of the hidden map.

data and one block of hidden data can be included in
one PD_write operation without loss of generality.

PD-DM receives upper-layer I/O requests and
translates them into physical I/O to underlying devices.
For the sake of simplicity, we first discuss write requests
and later read requests. The remaining part of this sec-
tion is structured as follows: Section 3.1 describes how
public and hidden data is arranged in the Data area
under the assumption that mappings are in memory.
Section 3.2 details disk layout of mapping data and its
associated plausibly deniable management. Finally, Sec-
tion 3.3 outlines the entire end-to-end design of PD-DM.

3.1 Basic Design

In this section, we simplify the discussion by consider-
ing certain part of the system as black boxes. Specifi-
cally, to handle logical write requests (Pub_write(lp, dp)
and Hid_write(lh, dh)), PD-DM needs to arrange the
received data dp/dh on the physical device and record
the corresponding mappings from logical volumes to the
physical device for future reference. For now, we will
consider the maps as black boxes managing the logical-
physical mappings, as well as the status (free, valid, in-
valid, etc.) of each physical block on the device. The
map blackbox internals will be provided in Sections 3.2.
The black boxes support the following operations, where
α is the ID of the physical location storing the logical
block (lp or lh) and S denotes the “status” of a physical
block: free, valid, or invalid:
– α = Get_Pub_map(lp), Set_Pub_map(lp, α)
– α = Get_Hid_map(lh), Set_Hid_map(lh, α)
– S = Get_status(α), Set_status(α, S)
With these auxiliary functions, incoming pairs of
Pub_write(lp, dp) and Hid_write(lh,dh) requests are
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handled straightforwardly as described in Algorithm 1.
As we assumed that one block of public data and one
block of hidden data are written together in this paper,
two blocks in the Data area are written. Specifically,
public data dp and hidden data dh are encrypted with
Kp and Kh, respectively, and written to the two suc-
cessive blocks at physical locations Phead and Phead+1.
Initially, Phead is set to 0 and PD-DM is ready to receive
logical write requests.

In a public-volume-only setting, random data is sub-
stituted for the encrypted hidden data. In Algorithm 1,
dh = Null signifies the lack of hidden write requests
from the upper layers.

Algorithm 1 Pub_write + Hid_write – Simple version

Input: Pub_write(lp, dp), Hid_write(lh, dh), Phead

1: if dh is not Null then
2: Phy_write(Phead, dp)
3: Phy_write(Phead + 1, dh)
4: Set_Pub_map(lp, Phead)
5: Set_Hid_map(lh, Phead + 1)
6: else . a public volume only, no hidden write request
7: Randomize data dummy
8: Phy_write(Phead, dp)
9: Phy_write(Phead + 1, dummy)
10: Set_Pub_map(lp, Phead)
11: end if
12: Phead ← Phead + 2

Wrap around. As described, PD-DM always aims to
write to the “oldest” (least recently written) block in
the Data area. To achieve this, it needs to mitigate the
possibility that, after a wrap-around, valid data is in
fact stored in that location and cannot be overwritten.
For simplicity, consider the size of the Data area being
a multiple of 2 and aligned by public-hidden data pairs.

We denote the existing public-hidden data pair
pointed to by Phead, dexistingp and dexistingh . Their status
can be either valid or invalid. Invalid data may be either
the result of a previous dummy block write or the case
of data being an “old” version of a logical block.

Now, the key to realize here is that preserv-
ing any of the valid existing data can be done by
including it into the current input of the ongoing
round of writing. Table 1 illustrates how function
Get_new_data_pair(dp, dh, Phead) generates the data
pair (dnewp , dnewh ) written in the ongoing round in PD-
DM. The data pair is generated based on the status
of existing data and dh. In brief, the priority for con-
structing the new pair of data is dexistingp /dexistingh >

dp/dh > dummy. Then, logical requests Pub_write and
Hid_write are handled with Algorithm 2.

Note that the while loop in this algorithm may end
without setting dh to Null, i.e., the hidden write request
is not completely satisfied within one public write. In
this case, more public writes are required to complete
the same hidden write. After a sufficient number – a
constant, as will be shown later – of rounds, the hidden
write request can be guaranteed to go through.

Algorithm 2 Pub_write + Hid_write – Considering wrap-
around
Input: Pub_write(lp, dp), Hid_write(lh, dh), Phead

1: while dp is not Null do
// The new pair of data is constructed based on Table 1

2: (dnew
p , dnew

h ) = Get_new_data_pair(dp, dh, Phead)
3: Phy_write(Phead, d

new
p )

4: Phy_write(Phead + 1, dnew
h )

5: if dnew
p == dp then

6: Set_Pub_map(lp, Phead), dp = Null

7: end if
8: if dnew

h == dh then
9: Set_Hid_map(lh, Phead + 1), dh = Null

10: end if
11: Phead ← Phead + 2
12: end while

Buffering and seek-optimized writes. Notwith-
standing the logical data layout, PD-DM always writes
physical data blocks sequentially starting from the cur-
rent value of Phead until enough blocks with invalid data
have been found to store the current payload (Algorithm
2). Depending on the underlying stored data, written
contents are either re-encrypted valid existing data or
newly written payload data (Table 1). For example, con-
sider the following case where the pattern of existing
valid (V) and invalid (I) data is [V IIV V I · · · ]. Instead
of seeking to position 2 to write new data there, PD-
DM writes both position 1 and 2 with re-encrypted/new
data sequentially.

dh d
existing
p d

existing
h dnew

p dnew
h

NULL

invalid invalid dp dummy

invalid valid dp d
existing
h

valid invalid d
existing
p dummy

valid valid d
existing
p d

existing
h

invalid invalid dp dh

not invalid valid dp d
existing
h

NULL valid invalid d
existing
p dh

valid valid d
existing
p d

existing
h

Table 1. PD-DM constructs the data pair (dnew
p , dnew

h ) that can
be written by a PD_write operation according to the status of
existing data (dexisting

p , dexisting
h

) and the availability of hidden
write requests (dh).
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As a result, by construction, all physical data writes
to the underlying device happen sequentially. The pat-
tern is in fact composed of reads and writes to the same
block, followed by the next block, and so on. For rota-
tional media this means two things: (i) disk heads do not
need to switch cylinders to write, which results in sig-
nificantly lower (mostly rotational-only) latencies, and
(ii) any predictive read/write-ahead buffering (at the
various layers within the drive and the OS) can work
extremely well, especially when compared with existing
work that randomizes physical access patterns.
Reduced number of writes. The sequential nature
of the physical write trace results in a smaller average
number of blocks written per logical write compared
to existing work [11]. In a PD solution, a few blocks
will be accessed following certain rules to find a physi-
cal block for the logical data, lest the write trace leaks
the access pattern. It is more likely that the block se-
lected in PD-DM contains no valid data as it is the least
recently written physical block. To set the stage for a
detailed analysis, we first introduce two related compo-
nents: “spare factor” and “traffic model”.

“Spare factor” ρ. In order to store all the logical
blocks of each logical volume, the Data area in PD-
DM should contain at least 2N physical blocks (N =
max(Np, Nh). In addition to these blocks, similar to ex-
isting work [11], “spare” space is reserved so that it can
be easy to find available blocks to write. We denote the
ratio of this additional space to the total size of the Data
area as the “spare factor” ρ. Then the size of the Data
area can be represented as 2N

1−ρ . Note that the number
of required blocks will change from 2N to (k+1)N once
we store maps on the disk (detailed in Section 3.2.2);
and the “spare factor” will be (k+1)N

1−ρ then.
Traffic model. We model the logical write traffic

for each volume with Rosenblum’s hot/cold data model
[28]. It captures the spatial locality in real storage work-
loads [12] and can be applied to PD-DM by “separating”
the logical address space of each volume into “hot” and
“cold” groups, respectively. Two parameters r and f are
introduced in the model. Specifically, a fraction f of the
address space is “hot”, and hit by a fraction r of the
overall write requests. The remaining 1 − f fraction is
“cold” and receives a fraction of 1 − r of all write re-
quests. The write traffic inside each group is uniformly
distributed. When r = f = 100%, this becomes a special
case where the entire traffic is uniformly distributed.

The average number of blocks written per logical
write is related to the probability that the selected block
is available for writing. Given a spare factor ρ, this prob-
ability is actually ρ for a randomly selected block. The
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Fig. 4. Average number of physical writes required for one public
write request under different types of logical write workload.

average number of blocks needed to be accessed for each
logical write is then 1

ρ . The sequential write nature in
PD-DM ensures that no less than 2N · ρ

1−ρ logical writes
can be performed during the period when the entire
Data area is written once from beginning to end. This
also implies that average number of blocks needed to be
accessed for each logical write is then at most 1

ρ = O(1).
Moreover, as PD-DM always writes to the “least re-

cently written” physical block, it is more likely to have
been “invalidated” before being overwritten. The prob-
ability that the written block contains invalid data de-
pends on both ρ and the incoming workload/traffic pat-
tern. For example, if the traffic is uniformly distributed,
the probability that the current written block contains
invalid data can be represented as the closed-form Equa-
tion 1 [12]. HereW (x) denote the Lambert’s W function
[10], which is the inverse of xex (i.e. W (y) = x|xex = y).

1 + (1− ρ) ·W ( −1
1− ρ · e

−1
1−ρ ) (1)

In general cases, the probability that the written
block in PD-DM contains invalid data cannot be repre-
sented with a closed-form equation. But it can be cal-
culated numerically [12].

Figure 4 shows how the average number of physi-
cal writes for one logical write changes when the logical
traffic and spare factor ρ vary. The average number of
physical writes decreases as ρ increases. Moreover, the
more focused the write traffic (on a smaller logical ad-
dress space), the smaller the average number of required
physical write operations. To sum up, given a relatively
small spare factor, the average number of physical write
per logical write in PD-DM is much less compared to
other randomization-based solutions.
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3.2 Mapping & Block Occupancy Status

So far we have considered the mapping structures as
black boxes. We now discuss their design, implementa-
tion and associated complexities.

3.2.1 Mapping-related Data Structures

Two different data structures are used to store logical-
physical mappings for the two volumes, respectively:
the public position map (PPM) for the public volume,
and the hidden map B+ tree (HM) with its root node
(HM_ROOT) for the hidden volume.

The PPM maps public logical block IDs to corre-
sponding physical blocks on disk. It’s an array stored
at a fixed location starting at physical block ID αPPM ;
subsequent offset logical block IDs are used as indices
in the array. Its content requires no protection since it
is related only to public data and leaks no information
about the existence of hidden data.

Unlike in the case of the PPM for the public vol-
ume, we cannot store an individual position map for
the hidden volume at a fixed location since accesses to
this map may expose the existence of and access pattern
to hidden data. Instead, we deploy an HM tree which
is stored distributed across the entire disk, leaving only
the root node (denoted by HM_ROOT) in a fixed lo-
cation (physical block ID = αHM_Root) of the mapping
segment. To facilitate easy access and reconstruction of
the HM, each node contains the location of all of its
children nodes.

More specifically, HM indexes physical locations by
logical block IDs. The leaf nodes are similar to the PPM
which contains the mapping entries, and they are or-
dered from left to right (from leaf_1 to leaf_n in Fig-
ure 5). An example of a HM tree of height 3 is shown
in Figure 5. A logical hidden block is mapped to its
corresponding physical block by tracing the tree branch
from the root to the corresponding leaf node contain-
ing the relevant mapping entry. Suppose b is the size of
physical block IDs in bytes, then the height of the HM
tree is O(logbB/bc(Nh)). The last entry of each HM tree
leaf node is used for a special purpose discussed in Sec-
tion 3.2.3. Thus, only bB/bc− 1 mapping entries can be
stored in one leaf node. Further, each internal node can
have bB/bc child nodes. Finally, the HM mapping entry
of the i-th logical block is stored in the ( i

bB/bc−1 )-th leaf
node at offset i%(bB/bc−1). For a block size of 4KB and
block IDs of 32 bits, the height of the map tree remains
k = 3 for any volume size between 4GB and 4TB.

Fig. 5. Hidden logical blocks are mapped to the physical disk
with a B+ tree map (e.g., of height 3 in this figure). A data
block and the related HM blocks construct a “hidden tuple”,
denoted as T (dh). The HM blocks are the tree nodes in the path
from the root to the relevant leaf containing the corresponding
mapping entry for the data block. In this figure, a “hidden tuple”
and the corresponding path of HM tree are colored gray.

The HM_ROOT block is encrypted with the hid-
den key Kh. Adversaries cannot read the map in the
absence of Kh. Additionally, the HM_ROOT block will
be accessed following a specific rule independent of the
existence of a hidden volume. This ensures that accesses
to HM_ROOT do not leak hidden information. More
details in Section 3.3.

3.2.2 Get/Set_map

Managing the PPM is relatively simple. Logical block
ID lp is used to retrieve the physical block where the
corresponding PPM entry resides (Algorithms 6 and 7
in Appendix A.2).

Managing the HM tree, however, requires much
more care (Algorithms 8 and 9 in Appendix A.2). The
access pattern to the HM tree should not be accessi-
ble to a curious multi-snapshot adversary. Fortunately,
as the map entries are stored in the leaf nodes, access-
ing one map entry always requires traversing one of the
tree paths from the root node to the corresponding leaf.
Thus, each path (from the root to a leaf) is linked with
and embedded within a given corresponding data block
as a “hidden tuple” in PD-DM. And a “hidden tuple”
is written to successive blocks in the Data area.

Figure 5 illustrates the “hidden tuple” concept for
an example HM tree of height 3. The hidden tuples
here consist of the data block itself and the nodes in
the path from the root of HM to the relevant leaf node
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containing the mapping entry for the data block.4 Let
hmi denote the HM tree node at level i in the path
from the root to the leaf. Then the hidden tuple corre-
sponding to hidden data dh is denoted as T (dh) =<
hm1, hm2, · · · , hmk−1, dh > where k is the height of
the HM tree. In order to accomplish a write request
Hid_write(lh, dh), we need to not only write the data
dh but also update the HM entry to reflect the correct
new mapping. This is achieved by also writing a hidden
tuple and updating HM_ROOT.

Note that accessing one HM entry does not affect
any other branches of the tree unrelated to it. Thus,
importantly, no cascading effects ensue. To understand
this better, consider that as leaves are ordered on logical
addresses, changing the mapping entry in one leaf node
only requires updating the corresponding index in its
ancestor nodes which indicate the physical location of its
corresponding child in the path. Other indexes remain
the same and the rest of the tree is unchanged.

3.2.3 Get/Set_Status

PD-DM requires one more key structure providing the
occupancy status of individual blocks. So far this was
assumed to be a black box (Section 3.1) . We now detail.

Keeping track of the status of individual blocks is
done using a public bit map (PBM). It contains one bit
and one IV for each physical block in the Data area. A
bit is set once public data is being written to the cor-
responding physical block. The bitmap ensures that we
are able to check the state of a physical block before
writing to it to avoid public data loss e.g., by overwrit-
ing. The PBM is public and not of concern with respect
to adversaries. It is worth noting that the blocks occu-
pied by hidden data are shown as unused in the PBM.

To protect the hidden data from overwriting, we
deploy a number of additional mechanisms. We cannot
use a public bitmap since it would simply leak with-
out additional precautions, which necessarily introduce
inefficiencies. Examples of such inefficient bitmaps in-
clude the in-memory bitmap used by Peters [27] and
the fuzzy bitmap used by Pang [26] which introduced
“dummy blocks” to explain blocks which were marked
as in-use but unreadable by the filesystem.

4 The root node is not included in the hidden tuple since it is
always stored as HM_ROOT as explained before. Updating the
root node can be done in memory only so that the sequential
disk write behavior is not affected.

Instead, PD-DM deploys a “reverse map” mecha-
nism (similar to HIVE [8]) to map physical to logical
blocks. The corresponding logical ID of each block con-
taining hidden data is stored directly in the correspond-
ing hidden tuple, or more specifically, in the last entry
of the leaf node in the hidden tuple (see Figure 5).

This makes it easy to identify whether a hidden tu-
ple (and its associated block) is still valid, i.e., by check-
ing whether the logical block is still mapped to where
the hidden tuple currently resides. For example, suppose
the hidden tuple is stored in the physical blocks β + 1
to β+ k, then the hidden data is in block β+ k and the
logical ID of this hidden tuple is in block β + 1. Thus,
the state of the hidden tuple will be obtained by first
reading block β+1 for the logical ID l and then reading
the current map entry for index l from the HM tree. If
HM [l] = β+k is true, then the hidden data there is still
up to date. Otherwise, the hidden tuple is invalid (and
can be overwritten).

As an optimization, in this process, one doesn’t al-
ways need to read all k nodes in the path of the HM
tree for the map entry. Any node read indicating that
a node on the path is located between β + 1 to β + k

establishes HM [l] = β + k as true.
Importantly, the above mechanisms do not leak any-

thing to multi-snapshot adversaries since all enabling in-
formation is encrypted (e.g., the logical ID is part of the
hidden tuple) and no data expansion occurs (would have
complicated block mapping significantly). Status man-
agement (Set_status(α, S) and Get_status(α)) can be
done through reading/writing the hidden tuples. Thus,
no additional Phy_write operations are needed.

Algorithm 3 Set_Hid_map_full(lh, α) – update a hidden
map entry or fake map accesses
Input: lh, α, αHM_Root, k
1: if l_h = 0 then . Randomized data dummy is written
2: mapblock := Phy_read(αHM_Root)
3: Phy_write(αHM_Root,mapblock)
4: for i ∈ {2, . . . , k} do
5: Fake map block mapdummy

6: Phy_write(α− k + i− 1,mapdummy)
7: end for
8: else . real hidden data is written
9: Set_Hid_map(lh, α)
10: end if

3.3 Full PD-DM With Maps On Disk

Once all mapping structures are on disk – in addition
to replacing the Get/Set_map black boxes with Algo-
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rithms 6 – 9, a few more things need to be taken care
of to ensure end-to-end PD.

Most importantly, accesses to the maps should not
expose the existence of hidden data and behave iden-
tically regardless of whether users store data in hid-
den volumes or not. It is easy to see that no Set_map
functions are called whenever the written data is either
“existing” or “dummy” in Algorithm 2, which skews
the access distribution and may arouse suspicion. To
tackle this, additional fake accesses to the mapping-
related data structures are performed as necessary. The
Set_Hid_map_full function either sets a real hidden
map entry or fakes those accesses (Algorithm 3), where
lh = 0 means faking accesses to related data structures.

As a result, the same number of physical write
operations are performed regardless of whether the
pair of public-hidden data written contains new data,
existing data or dummy data in Algorithm 2. An
atomic operation PD_write can be defined as Al-
gorithm 4 to describe all those physical writes.
PD_write(Phead, lp, dp, lh, dh) arranges a public-hidden
data pair (dp, dh) together in the Data area and up-
date HM (real or fake) using a number of sequential
Phy_write operations.

Then the resulting complete set of steps for handling
a logical write request can be illustrated with Algorithm
5. The lnewh is set to be 0 when dh is randomized data
dummy, and lnewp is 0 when dnewp is existing public data.
Logical read requests are straightforwardly handled by
accessing the data and existing mapping structures as
illustrated in Algorithms 10 and 11 (Appendix A.2).

Algorithm 4 PD_write(Phead, lp, dp, lh, dh)

Input: Phead, lp, dp, lh, dh

1: Phy_write(Phead, dp) . Write the public data
2: Set_Hid_map_full(lh, Phead + k) . Write the hidden

map
3: Phy_write(Phead + k, dh) . Write the hidden data

Algorithm 5 Public write + Hidden write – Full PD-DM
with maps on the disk
Input: Pub_write(lp, dp), Hid_write(lh, dh), Phead

1: while dp is not Null do
2: (dnew

p , dnew
h ) = Get_new_data_pair(dp, dh, Phead)

3: PD_write(Phead, l
new
p , dnew

p , lnew
h , dnew

h )
4: if dnew

p == dp then
5: Set_Pub_map(lp, Phead), dp = Null

6: end if
7: if dnew

h == dh then
8: dh = Null

9: end if
10: Phead ← Phead + (k + 1)
11: end while

With maps on disk, PD_write operations writes
more than just data blocks to the physical device. But
those physical writes still happen sequentially. However,
accessing the map-related data structures (PPM, PBM,
...) will bring in a few seeks. In-memory caches are
maintained in PD-DM for those data structures, which
can significantly reduce the number of seeks. Consider
caching PPM blocks as an example: as bB/bc mapping
entries are stored in one mapping block, caching it al-
lows the reading of map entries for bB/bc logical ad-
dresses (in a sequential access) without seeking. Thus,
comparing with the previous works which seeks before
writing every randomly chosen block , PD-DM has lower
seek-related expense.

Finally, it is easy to generalize PD-DM to have mul-
tiple volumes. A PD_write operation can write hidden
data from any hidden volume.

3.4 Encryption

All blocks in the Data area are encrypted using AES-
CTR with one-time-use, random per-block IVs. Those
IVs are stored as part of the PBM. In fact, other similar
schemes of equivalent security level can be envisioned
and the deployed cipher mode can be any acceptable
mode providing IND-CPA security.

4 Analysis
4.1 Security

We now prove that adversaries cannot distinguish the
two write traces W(O0) and W(O1) and thus can win
the game of Definition 1 with at most negligible advan-
tage.

Theorem 1. PD-DM is plausibly deniable.

Proof (sketch): Each access pattern results in a write
trace transcript available to the adversary through dif-
ferent device snapshots. The transcript contains these
exact entries:
– Write k+ 1 blocks to the Data area and update the

HM_ROOT with PD_write operations.
– Update the PPM accordingly.
– Update the PBM accordingly.
– Update the Phead.
In this transcript, Lemmas 4, 5, 6 and 7 (in Appendix
A.3) show that the locations of all writes depend only on
public information (public writes). Further, the contents
of every write is either fully randomized or depends on
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public data only (public writes). This holds also for the
write traces of O0 and O1 in Definition 1. As a result,
adversaries cannot win the game of Definition 1 better
than random guessing.

4.2 I/O Complexity

As discussed above, to hide the existence of the hid-
den data, more work is being done in addition to just
reading and writing the data itself. Here we discuss the
associated I/O complexities and constants.
Public Read. A Pub_read request requires reading
a PPM block for the map entry plus reading the corre-
sponding data block. Thus, compared with the raw disk,
Pub_read roughly reads twice as often and halves the
throughput. It may be reduced using a smart memory
caching strategy for the PPM blocks since consecutive
PPM entries are stored in one PPM block.
Hidden Read. Hid_read, on the other hand, requires
reading one HM tree path for the map entry first. Thus,
k + 1 blocks (k HM tree path blocks + data block) are
read in total, which results in B · (k + 1) = O(logN)
complexity, where k = logN is the height of the HM
tree.
Underlying Atomic Write Operation. PD_write
checks if the next k+ 1 blocks are free, fills those blocks
with the newly formed pair of public data and hidden
tuple, and updates the HM_ROOT block. Checking the
state of the k+ 1 candidate blocks requires reading one
PBM block and at most k HM tree nodes (Section 3.2.3).
This first step gives B · (k + 2), and results in O(logN)
since k = logN . Further, the step of writing the k + 1
blocks in order gives B · (k+ 1) resulting in O(logN) as
well. Thus, the I/O complexity of the overall PD_write
operation is O(logN).
Public/Hidden Write. As described in Algorithm
5, only a few additional I/Os (constant number) are
needed besides a PD_write for each iteration of the
loop. As the I/O complexity of the PD_write opera-
tion is O(logN), the complexity of each iteration is also
O(logN). The analysis in Section 3.1 shows that either
a Pub_write or a Hid_write can be completed within
O(1) iterations (O(1) PD_writes). Thus, the overall
I/O complexity is O(logN) for public/hidden write.
Throughput. Another fact worth noting is that, after
an initial period in which sufficient writes have been seen
for each volume, the device usually ends up with N valid
blocks for each volume, regardless of the workload. At
that point, throughput stabilizes and is not a function
of uptime anymore.

4.3 Throughput Comparison

PD-DM accesses at most O(logN) blocks for each log-
ical access with relatively small constants (e.g., 2-3 for
judiciously chosen spare factors). Moreover, physical ac-
cesses are mostly sequential, thus reducing latency com-
ponents and improving performance.

By comparison, existing work such as HIVE fea-
tures an I/O complexity of O(log2N) [8] with constants
of either 64 (without a stash) or 3 (with a stash). Fur-
thermore, access patterns are random, making seeks im-
pactful and caching/buffering difficult. As a result, on
rotational media, PD-DM outperforms existing work by
up to two orders of magnitude.

5 Evaluation
PD-DM is implemented as a Linux block device map-
per. Encryption uses AES-CTR with 256 bit keys and
random IVs. Blocks are 4KB each. Two virtual logical
devices (one public and one hidden) are created on one
physical disk partition.

Experiments were run on a machine with dual-core
i5-3210M CPUs, 2GB DRAM, and Linux kernel 3.13.6.
The underlying block devices were a WD10SPCX-
00KHST0 5400 rpm HDD and a Samsung-850 EVO
SSD. The average seek time of the HDD is 8.9ms [4].

Two volumes of 40GB each were created on a 180GB
disk partition (ρ ≈ 0.1). Ext4 FSes were installed on
each volume in ordered mode. Additionally, an ext4 FS
mounted on top of a dm-crypt (encryption only) vol-
ume was benchmarked on the same disk. HIVE [2] was
compiled and run on the same platform.

5.1 HDD Benchmarks

Two benchmarks (Bonnie++[1], IoZone[25]) were used
to evaluate performance under sequential and random

Operation dm-crypt PD-DM HIVE [8]
Public Read 97.3 17.452 ± 0.367 0.095
Public Write 88.0 1.347 ± 0.093 0.013
Hidden Read n/a 12.030 ± 0.088 0.113
Hidden Write n/a 1.456 ± 0.086 0.016

Table 2. Sequential workload throughput (MB/s) comparison
with the Bonnie++ benchmark. PD-DM is 100-150 times faster
than HIVE for sequential read and write. The PD-DM through-
puts reported here are the average value over 40 runs with the
standard error.
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Fig. 6. PD-DM hidden I/O throughput results of multiple runs.

workloads, respectively. Results are in Tables 2 and
3. To further evaluate the impact of caching parts of
mapping-related data structures, the IoZone experiment
was run multiple times for different cache sizes. Results
are illustrated in Figure 8.

5.1.1 Throughput

Sequential I/O. For consistency in comparing with
HIVE, Bonnie++ was first used to benchmark the
throughput of sequential read and write for both vol-
umes. The mapping-related structures cache was lim-
ited to 1MB. Results averaged over 40 runs are shown
in Table 2. Overall, PD-DM performs about two orders
of magnitude faster for both public and hidden volumes.
For example, the basic Bonnie++ benchmark required
about one full week to complete on existing work [8]
in the same setup. The same benchmark completed in
under 4 hours on PD-DM

Figure 6 shows the result of every run as a sam-
ple point as well as the mean value for the hidden vol-
ume I/O throughput. Although the throughput varies
around the mean value for both read and write, it does
not decrease as more runs are completed. Note that
Bonnie++ writes more than 8GB of data to the disk
in each run – as a result the disk has been written over
and over during the test. Moreover, write throughput
nears the mean with increasing run number, i.e., the
disk is converging to a stable state. The results for the
public volume are similar and not presented here.

As expected, PD-DM and all existing PD systems
are slower when compared to simple encryption (dm-
crypt) without PD. However, notably, PD-DM is the
first PD system protecting against a multi-snapshot ad-
versary with performance in the MB/s range on hard
disks, and 15MB/s+ for public reads.
Random I/O. IoZone was run to evaluate system be-
havior under random I/O workloads. IoZone reads files
of different sizes using random intra-file accesses. Direct

I/O is set for all file operations so that I/O caching by
the OS is bypassed. Further, the RAM allocated for PD-
DM mapping-related data structures (PPM, PBM, etc)
is limited to 1MB. Results of random I/O throughputs
for file sizes of 1GB are shown in Table 3.

It can be seen that the PD-DM sequential write
mechanism really makes an impact and performs 3–30×
faster than HIVE. Notably, even standard dm-crypt is
only 2–3× faster.

Overall, PD-DM performs orders of magnitude
faster than existing solutions for both sequential and
random workloads. Moreover, a great potential advan-
tage of PD-DM for random workloads can be seen by
analyzing the results in Figure 7, depicting the perfor-
mance for sequential and random I/O of the dm-crypt
and the two volumes in PD-DM respectively.

Note that both read and write throughputs drop
significantly faster for dm-crypt when the I/O pat-
tern changes from sequential to random. In contrast,
throughputs of the two PD-DM volumes are signifi-
cantly less affected, especially for writes. This is because
the underlying write pattern is always sequential in PD-
DM, regardless of logical I/O request locality.

It is important to note however that accessing map-
ping structures may disturb the sequentiality of result-
ing write patterns. Fortunately, the design allows for
even a small amount of cache to have a great impact.

5.1.2 Cache Size

To evaluate the influence of cache sizes on performance
under sequential or random access with files of different
sizes, IoZone is run for different cache sizes. Results are
in Figure 8.
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Fig. 8. IoZone throughput comparison for different workloads, cache sizes, and file sizes between PD-DM and dm-crypt. Figure 8(a)
shows how PD-DM random-write throughput is affected by cache size. Write throughput exceeds that of dm-crypt as the cache size
increases, since caching the mapping data structures reduces extraneous seeks and increases locality/sequentiality in the underlying
writes. Similarly, for random read (Figure 8(b) and 8(c)), increased caching improves performance for both public and hidden volumes,
especially when the file size is relatively large. But the throughput cannot be better than dm-crypt. Cache size determines the turn-
ing point. Sequential I/O is illustrated in Figures 8(d)–8(h). Throughputs of dm-crypt are shown in Figures 8(e) and 8(h). PD-DM
write throughput (Figure 8(d)) varies in a small range except from one special case (cache size=4KB), since one hidden map entry
is related to 2 map blocks (8KB). Read throughput (Figures 8(f) and 8(d)) is also less affected by caching as long as the number of
cache blocks is larger than the number of mapping blocks read for one mapping entry (4KB for public volume and 8KB for hidden vol-
ume). Contrastingly, the sequential-write throughput of dm-crypt increases with the increasing file size at first, then remains in a stable
range.

Operation dm-crypt PD-DM HIVE [8]
Public Read 0.526 0.309 ± 0.005 0.012
Public Write 1.094 0.276 ± 0.017 0.010
Hidden Read n/a 0.309 ± 0.011 0.097
Hidden Write n/a 0.282 ± 0.024 0.014
Seeks Per Second 1227 336/89 10.3/5.7

Table 3. Performance comparison for random workloads. The
PD-DM throughputs reported here are the average value over 40
runs with the standard error. The first four rows show throughput
(MB/s) of random read and write for different volumes respec-
tively as measured by IoZone. The last row represents the number
of seeks per second (the number for public and hidden volume are
separated by a slash) reported by Bonnie++.

Write throughput. Figure 8(a) illustrates random-
write throughput of the hidden volume with different
cache sizes. Random-write throughput for dm-crypt de-
creases gradually (from 3MB/s to 1MB/s) with increas-
ing file sizes, mainly because of higher number of seeks
for larger files. However, PD-DM random-write through-
put behaves differently. For caches above 400KB, it re-
mains stable for relatively small files, and then drops

for file sizes beyond a threshold. As expected, larger
caches result in larger thresholds. For caches over 4MB,
write throughput stabilizes for files smaller than 1GB.
This means that map blocks are mostly read from/write
to the caches without disk seeks. As a result, PD-DM
random-write throughput exceeds that of dm-crypt.

It is worth noting that the same cache mechanism
does not work for dm-crypt as its logical-to-physical
block mapping is fixed and the larger number of seeks
derives from the logical-layer access randomness. In con-
trast, in PD-DM, additional seeks occur only when ac-
cessing mapping blocks where multiple entries are stored
together. This effectively maximizes the overall cache-
hit rate for the mapping data structures.

Sequential-write throughput for the hidden volume
(Figure 8(d)) is compared with the dm-crypt curve (Fig-
ure 8(e)). As seen, the cache size has a decreasing effect
above caches larger than 4KB (1 block). Moreover, the
throughput is not greatly affected by file size (unlike in
the case of dm-crypt), although a larger file still results
into a lower throughput.
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Write throughput for the public volume is similar
to the hidden volume mostly because hidden writes are
executed together with public writes.
Read throughput. Random-read throughput for
both volumes (Figures 8(b) and 8(c)) follow a similar
trend as the random-write throughput (Figure 8(a)) –
throughput decreases significantly for file sizes beyond a
certain threshold. Further, larger caches result in larger
thresholds. Finally, the threshold for both volumes is
the same for the same cache size.

Sequential-read throughputs for both volumes are
less affected by either file or cache sizes (Figures 8(f)–
8(h)). A special interesting case occurs for caches of
only 4KB (1 block). In that case, the sequential-read
throughput of the hidden volume drops by half (Fig-
ures 8(f)), similar to what happens in Figures 8(d). The
reason for this is that reading a hidden mapping entry
requires reading more than one block when the height
of the hidden map tree is larger than 2. This results
in continuous cache misses. The same situation doesn’t
happen for the public volume, mainly because a sin-
gle physical block can contain multiple adjacent public
mapping entries, thus even a one-block cache can make
an impact.

The variation in sequential-read throughput is
mildly affected by the existing layout of file blocks on
disk. After all, a continuous file may be fragmented by
existing data on disk.

5.2 SSD Benchmarks

PD-DM is obviously expected to perform most of its
magic on HDDs where reduced numbers of disk seeks
can result in significant performance benefits. Fortu-
nately however, PD-DM performs also significantly bet-
ter than existing work when run on SSDs.

A throughput comparison including PD-DM, HIVE
and dm-crypt is shown in Table 4. Only a minimal 40KB
cache is being used – since seeks are cheap in the case
of SSDs, we expected (and found) that cache size has
little effect on performance.

Overall, although the performance advantage of re-
ducing the number of seeks decreases for SSDs, PD-
DM still outperforms existing work due to two impor-
tant facts: (i) reads are unlinked with writes, and (ii)
PD-DM write complexity is only O(logN), compared to
O(log2N) in HIVE.

Operation dm-crypt PD-DM HIVE [8]
Public Read 225.56 99.866 ± 0.015 0.771
Public Write 210.10 2.705 ± 0.023 0.546
Hidden Read n/a 97.373 ± 0.009 4.534
Hidden Write n/a 3.176 ± 0.017 0.609

Table 4. Throughput (MB/s) comparison on SSD for a sequen-
tial workload using the Bonnie++. PD-DM is 30-180x faster than
HIVE for sequential read, and 5x faster for sequential write.

6 Discussion
Advantages. PD-DM has a number of other advan-
tages over existing schemes aside from the performance.
First, PD-DM does not require secure stash queues as
long as there are enough public writes ongoing. Notwith-
standing, it is worth noting that caches and filesystem
related buffers should be protected from adversaries
since they contain information about hidden volumes.
Second, PD-DM preserves data locality from logical ac-
cesses. The logical data written together will be arrange
together on the device with high probability. Third, PD-
DM breaks the bond between reads and writes and en-
sures security. Adversaries may have a prior knowledge
of the relationship between physical reads and writes
since reads and writes are usually generated together
by a filesystem. HIVE masks hidden writes using pub-
lic reads, which may break this FS-implied relationship
and arouse suspicions. For example, a hidden write mas-
queraded as a read to a public file data block may raise
suspicion if usually real public reads are coupled with
writing metadata or journaling, writes which may be
absent in this case.
Physical Space Utilization. Considering only the
data ORAM in HIVE with two logical volumes, HIVE
can use at most 50% of the disk for both public data
and hidden data since half the disk is required to be
free. Thus, assuming that the two logical volumes are of
the same size, each would be of 25% of the total device.

In PD-DM, ρ and k decide volume sizes. Both the
public and the hidden volume is a fraction of (1−ρ)· 1

k+1
of the entire device (considering only the Data area).
Assuming that k = 3 (works for volume size from 4GB
to 4TB), an empirically chosen sweet spot balancing
space and performance can be found at ρ = 20% which
results in an overall volume size of around 20% of the
device.
Optimization Knobs. Performance is impacted by a
number of tuning knobs that we discuss here.
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Increasing ρ results in increased throughput at the
cost of decreased space utilization. The intuition here
is that the probability that the k + 1 target blocks
for PD_writes contain overwritable (invalid) data in-
creases with increasing ρ. ρ enables fine-tuning of the
trade-off between throughput and space utilization.

Further, changing the ratio between the number
of public data blocks and that of hidden data blocks
written together can help balancing the public write
throughput and the waiting time of hidden writes. In
this paper, we assume that one public data block is al-
ways written together with one hidden data block. For
workloads where the user accesses public data more of-
ten than hidden data, we can actually change the ratio
so that more than one public data blocks are written
with one hidden data block (e.g., 2 public data paired
with 1 hidden data). This results in a higher throughput
for public writes at the cost of delayed writes for hidden
data and a requirement for more memory to queue up
outstanding hidden data writes.

The physical space utilization will also be affected
when the above ratio changes. The size of public volume
increases while the size of hidden volume decreases. For
example, if 2 public data are paired with 1 hidden data,
then k + 2 instead of k + 1 blocks will be written in
the Data area for that. For an unchanged ρ, the size of
public volume becomes (1− ρ) · 1

k/2+1 > (1− ρ) · 1
k+1 of

the size of the Data area while the size of hidden volume
becomes (1− ρ) · 1

2(k/2+1) = (1− ρ) · 1
k+2 < (1− ρ) · 1

k+1
of the size of the Data area.

7 Related Work
Plausibly-deniable encryption (PDE) is related to
PD and was first introduced by Canetti et al. [9]. PDE
allows a given ciphertext to be decrypted to multiple
plaintexts, by using different keys. The user reveals the
decoy key to the adversary when coerced and plausibly
hides the actual content of the message. Some examples
of PDE enabled systems are [7, 19]. Unfortunately, most
PDE schemes only work for very short messages and are
not suitable for larger data storage devices.
Steganographic Filesystems. Anderson et al. [5] ex-
plored “steganographic filesystems” and proposed two
ideas for hiding data. A first idea is to use a set of cover
files and their linear combinations to reconstruct hidden
files. This solution is not practical since the associated
performance penalties are significant. A second idea is
to store files at locations determined by a crypto hash

of the filename. This solution required storing multi-
ple copies of the same file at different locations to pre-
vent data loss. McDonald and Kahn [23] implemented a
steganographic filesystem for Linux on the basis of this
idea. Pang et al. [26] improved on the previous construc-
tions by avoiding hash collisions and providing more ef-
ficient storage.

These steganographic filesystem ideas defend
only against a single-snapshot adversary. Han et
al. [17] designed a “Dummy-Relocatable Stegano-
graphic” (DRSteg) filesystem that allows multiple users
to share the same hidden file. The idea is to runtime-
relocate data to confuse a multi-snapshot adversary and
provide a degree a deniability. However, such ideas do
not scale well to practical scenarios as they require as-
sumptions of multiple users with joint-ownership and
plausible activities on the same devices. Gasti et al. [16]
proposed PD solution (DenFS) specifically for cloud
storage. Its security depends on processing data tem-
porarily on a client machine, and it is not straightfor-
ward to deploy DenFS for local storage.

DEFY [27] is a plausibly-deniable file system for
flash devices targeting on multi-snapshot adversaries. It
is based on WhisperYAFFS [30], a log structured filesys-
tem which provides full disk encryption for flash devices.
It is important to note that, due to its inherent log-
structure nature derived from WhisperYAFFS, similar
to PD-DM, DEFY also writes data sequentially under-
neath on flash devices with the intention of maintaining
a reasonable flash wear-leveling behavior and thus not
significantly reduce device lifespan.

However, unlike PD-DM, PD in DEFY is unrelated
to the sequential access pattern and instead is achieved
through encryption-based secure deletion. Additionally,
DEFY takes certain performance-enhancing shortcuts
which immediately weaken PD assurances and associ-
ated security properties as follows.

Firstly, DEFY doesn’t guarantee that a block
DEFY writes is independent from the existence of hid-
den levels. Specifically, all writes in DEFY will bypass
the blocks occupied by hidden data unless the filesystem
is always mounted at the public level. This is a signif-
icant potential vulnerability that undermines PD and
requires careful analysis.

Secondly, DEFY writes checkpoint blocks for hid-
den levels after all data has been written to the device.
Thus, these checkpoint blocks cannot be explained as
deleted public data any more, which leaks the existence
of hidden levels.

Thirdly, DEFY requires all filesystem-related meta-
data to be stored in memory. This does not scale for
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memory constrained systems with large external stor-
age. The use of an in-memory free-page bitmap aggra-
vates this problem. In contrast, PD-DM stores mapping-
related data structures securely on disk and allows the
option of caching portions thereof.
Block Devices. At block device level, disk encryption
tools such as Truecrypt [3] and Rubberhose [19] pro-
vide PD against single-snapshot adversaries. Mobiflage
[29] provides PD for mobile devices but cannot protect
against multi-snapshot adversaries as well.

Blass et al. [8] (HIVE) are the first to deal with PD
against a multi-snapshot adversary at device level. They
use a write-only ORAM for mapping data from logical
volumes to an underlying storage device and hiding ac-
cess patterns for hidden data within reads to non-hidden
(public) data. Chakraborti et al. [6] use writes to public
data to hide accesses to hidden data based on another
write-only ORAM that does not need recursive maps.

8 Conclusion
PD-DM is a new efficient block device with plausible de-
niability, resistant against multi-snapshot adversaries.
Its sequential physical write trace design reduces im-
portant seek components of random access latencies on
rotational media. Moreover, it also reduces the number
of physical accesses required to serve a logical write.

Overall, this results in orders of magnitude (10–
100×) speedup over existing work. Notably, PD-DM is
the first plausible-deniable system with a throughput
finally getting within reach of the performance of stan-
dard encrypted volumes (dm-crypt) for random I/O.
Further, under identical, fine-tuned caching, PD-DM
outperforms dm-crypt for random I/O.
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A Appendix

A.1 PD-CPA Game

1. Adversary A provides a storage device D (the adver-
sary can decide its state fully) to challenger C.

2. C chooses two encryption keys Kpub and Khid using
security parameter λ and creates two logical volumes,
Vpub and Vhid, both stored in D. Writes to Vpub and
Vhid are encrypted with keys Kpub and Khid respec-
tively. C also fairly selects a random bit b.

3. C returns Kp to A.
4. The adversary A and the challenger C then engage in

a polynomial number of rounds in which:
(a) A selects access patterns O0 and O1 with the fol-

lowing restriction:
i. O1 and O0 include the same writes to Vpub.
ii. Both O1 and O0 may include writes to Vhid

iii. O0 and O1 should not include more writes to
Vhid than φ times the number of operations
to Vpub in that sequence.

(b) C executes Ob on D and sends a snapshot of the
device to A.

(c) A outputs b′ .
(d) A is said to have “won” the round iff. b′ = b.

A.2 Algorithms

Algorithm 6 Set_Pub_map(lp, α)

Input: lp, α, αP P M

// Find the physical block containing the map entry
1: αM := αP P M + blp/ bB/bcc
2: mapblock := Phy_read(αM )
// Set the map entry and write back

3: mapblock[lpmod bB/bc]← α

4: Phy_write(αM ,mapblock)

Algorithm 7 α = Get_Pub_map(lp)

Input: lp, αP P M . αP P M is the starting block ID of PPM in
the physical device

Ouput: α
// Find the physical block containing the map entry

1: αM := αP P M + blp/ bB/bcc
2: mapblock := Phy_read(αM )
// Get the map entry

3: α := mapblock[lpmod bB/bc]

Algorithm 6 to 9 define how the logical to physical
maps for public and hidden volumes are maintained in
PD-DM.

Algorithm 8 Set_Hid_map(lh, α)
Input: lh, α, αHM_Root, k

// Update the HM_ROOT
1: αM ← αHM_Root, X ← (bB/bc − 1) · bB/bck−2

2: mapblock := Phy_read(αM )
3: αM := mapblock[lh/X]
4: mapblock[lh/X] := α− k + 1
5: Phy_write(αHM_Root,mapblock)
6: lh ← lhmodX

7: for i ∈ {2, . . . , k} do
// Update each layer of the HM tree by writing sequentially

8: X ← (bB/bc − 1) · bB/bck−i−1

9: mapblock := Phy_read(αM )
10: αM := mapblock[lh/X]
11: mapblock[lh/X] := α− k + i

12: Phy_write(α− k + i− 1,mapblock)
13: lh ← lhmodX

14: end for

Algorithm 9 α = Get_Hid_map(lh)
Input: lh, αHM_Root, k . αHM_Root is the block ID

of HM_ROOT in the physical device, k is the height of the
HM tree

Ouput: α
1: αM ← αHM_Root

2: for i ∈ {1, . . . , k − 1} do
// Traverse one path in the HM tree from root to corre-
sponding leaf node

3: X ← (bB/bc − 1) · bB/bck−i−1

4: mapblock := Phy_read(αM )
5: αM := mapblock[lh/X]
6: lh ← lhmodX

7: end for
8: mapblock := Phy_read(αM )
// Get the map entry

9: α := mapblock[lh]

Algorithm 10 and 11 illustrate how logical read re-
quests are performed in PD-DM for public and hidden
volume respectively.

A.3 Security Proofs

Lemma 1. Write traces of a PD_write without a hid-
den write are indistinguishable from write traces of a
PD_write with a hidden write request.
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Algorithm 10 dp = Pub_read(lp)

Input: lp
Ouput: dp

1: α := Get_Pub_map(lp)
2: dp := Phy_read(α)

Algorithm 11 dh = Hid_read(lh)
Input: lh
Ouput: dh

1: α := Get_Hid_map(lh)
2: dh := Phy_read(α)

Proof (sketch): As shown in Algorithm 4, any
PD_write writes a pair of public data dp and hidden
tuple T (dh) or T (dummy) to the next k + 1 blocks of
the Data area and updates the HM_ROOT – notwith-
standing of whether hidden write requests exist or not.
Further, the written public data block and hidden tuple
are encrypted with a semantically secure cipher which
prevents adversaries from distinguishing between tu-
ples with new hidden data, existing hidden data or just
dummy data. Overall, both the location and the content
of write traces are independent, fixed and unrelated to
whether or not a Hid_write(lh, dh) request was associ-
ated with this underlying PD_write.

Lemma 2. The number of PD_write operations exe-
cuted for a Pub_write request is not related to whether
Hid_write requests are performed together with it.

Proof (sketch): As illustrated in Algorithm 2, the while
loop will not stop until the public data dp is written by
one PD_write and then set as Null. This will happen
only when the obtained public status sp is invalid, which
only relates to the state of the public data on the disk
– and is thus independent on whether any Hid_writes
are performed.

Lemma 3. The number of underlying PD_write oper-
ations triggered by any access pattern is not related to
whether it contains any hidden writes.

Proof (sketch): This follows straightforwardly now since
PD_write operations can only be triggered by pub-
lic write requests. Note that hidden writes can cer-
tainly be completed with those PD_writes under the
restrain 6(a)iv. Accordingly (Lemma 2), the number of
PD_write operations needed to execute any access pat-
tern depends on the public writes and has nothing to do
with the hidden writes.

Lemma 4. Write traces to the Data area are indistin-
guishable for any access pattern that contains the same
public writes, notwithstanding their contained hidden
writes.

Proof (sketch): For access patterns that contain the
same public writes, Lemma 1 and Lemma 3 ensure that
the corresponding number of PD_write operations are
the same and their actual write traces are indistinguish-
able. As PD-DM always write to the Data area with
PD_write operations, the write traces to the Data area
are indistinguishable .

Lemma 5. Write traces to the PPM are identical for
any access pattern that contains the same public writes,
notwithstanding their contained hidden writes.

Proof (sketch): PPM is written to only in the case of a
Pub_write. For access patterns that contain the same
Pub_write operations, the corresponding PPM write
traces are the same.

Lemma 6. Write traces to the PBM are indistinguish-
able for any access pattern that contains the same public
writes, notwithstanding their contained hidden writes.

Proof (sketch): Each Pub_write(lp, dp) marks the cor-
responding bits in the PBM bitmap for the written
physical blocks as well as the “recycled” physical block
where the “old” version of lp resided (Section 3.2). Since
no other operations modify the bitmap, any modifica-
tions thereto relate only to Pub_write operations in an
access pattern.

Lemma 7. Write trace to the Phead is indistinguish-
able for any access pattern that contains the same public
writes, notwithstanding their contained hidden writes.

Proof (sketch): Phead is incremented by k + 1 for each
PD_write. As a result, the associated write trace is
only related to the number of PD_write operations –
this number is decided by the public writes in an access
pattern only (Lemma 3). Thus, the resulting write trace
is indistinguishable for any access pattern that contains
the same public writes.
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