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Cardinality Estimators do not Preserve Privacy
Abstract: Cardinality estimators like HyperLogLog are
sketching algorithms that estimate the number of dis-
tinct elements in a large multiset. Their use in privacy-
sensitive contexts raises the question of whether they
leak private information. In particular, can they provide
any privacy guarantees while preserving their strong ag-
gregation properties?
We formulate an abstract notion of cardinality estima-
tors, that captures this aggregation requirement: one
can merge sketches without losing precision. We propose
an attacker model and a corresponding privacy defini-
tion, strictly weaker than differential privacy: we assume
that the attacker has no prior knowledge of the data.
We then show that if a cardinality estimator satisfies
this definition, then it cannot have a reasonable level of
accuracy. We prove similar results for weaker versions
of our definition, and analyze the privacy of existing
algorithms, showing that their average privacy loss is
significant, even for multisets with large cardinalities.
We conclude that strong aggregation requirements are
incompatible with any reasonable definition of privacy,
and that cardinality estimators should be considered as
sensitive as raw data. We also propose risk mitigation
strategies for their real-world applications.
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1 Introduction
Many data analysis applications must count the number
of distinct elements in a large stream with repetitions.
These applications include network monitoring [22], on-
line analytical processing [35, 40], query processing, and
database management [42]. A variety of algorithms,
which we call cardinality estimators, have been devel-
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oped to do this efficiently, with a small memory foot-
print. These algorithms include PCSA [25], LogLog [16],
and HyperLogLog [24]. They can all be parallelized and
implemented using frameworks like MapReduce [13]. In-
deed, their internal memory state, called a sketch, can
be saved, and sketches from different data shards can
be aggregated without information loss.

Using cardinality estimators, data owners can com-
pute and store sketches over fine-grained data ranges,
for example, daily. Data analysts or tools can thenmerge
(or aggregate) existing sketches, which enables the sub-
sequent estimation of the total number of distinct el-
ements over arbitrary time ranges. This can be done
without re-computing the entire sketch, or even access-
ing the original data.

Among cardinality estimators, HyperLogLog [24]
and its variant HyperLogLog++ [29] are widely used in
practical data processing and analysis tasks. Implemen-
tations exist for many widely used frameworks, includ-
ing Apache Spark [1], Google BigQuery [2], Microsoft
SQL Server [3], and PostgreSQL [4]. The data these
programs process is often sensitive. For example, they
might estimate the number of distinct IP addresses that
connect to a server [41], the number of distinct users
that perform a particular action [5], or the number of
distinct devices that appeared in a physical location [34].
To illustrate this point, we present an example of a
location-based service, which we will use throughout the
paper.

Example 1. A location-based service gathers data
about the places visited by the service’s users. For each
place and day, the service stores a sketch counting the
identifiers of the users who visited the place that day.
This allows the service’s owners to compute useful statis-
tics. For example, a data analyst can merge the sketches
corresponding to the restaurants in a neighborhood over
a month, and estimate how many distinct individuals
visited a given restaurant during that month. The cost
of such an analysis is proportional to the number of ag-
gregated sketches. If the queries used raw data instead,
then each query would require a pass over the entire
dataset, which would be much more costly.

Note that the type of analysis to be carried out by
the data analyst may not be known in advance. The
data analysts should be able to aggregate arbitrarily
many sketches, across arbitrary dimensions such as time
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or space. The relative precision of cardinality estimation
should not degrade as sketches are aggregated. �

Fine-grained location data is inherently sensitive: it is
extremely re-identifiable [26], and knowing an individ-
ual’s location can reveal private information. For exam-
ple, it can reveal medical conditions (from visits to spe-
cialized clinics), financial information (from frequent vis-
its to short-term loan shops), relationships (from regular
co-presence), sexual orientation (from visits to LGBT
community spaces), etc. Thus, knowing where a person
has been reveals sensitive information about them.

As the above example suggests, an organization stor-
ing and processing location data should implement risk
mitigation techniques, such as encryption, access con-
trols, and access audits. The question arises: how should
the sketches be protected? Could they be considered suf-
ficiently aggregated to warrant weaker security require-
ments than the raw data?

To answer this question, we model a setting where a
data owner stores sketches for cardinality estimation in
a database. The attacker can access some of the stored
sketches and any user statistics published, but not the
raw data itself. This attacker model captures the insider
risk associated with personal data collections where in-
siders of the service provider could gain direct access to
the sketch database. In this paper, we use this insider
risk scenario as the default attacker model when we re-
fer to the attacker. In the discussion, we also consider
a weaker attacker model, modeling an external attacker
that accesses sketches via an analytics service provided
by the data owner. In both cases, we assume that the
attacker knows the cardinality estimator’s internals.

The attacker’s goal is to infer whether some user is
in the raw data used to compute one of the accessible
sketches. That is, she picks a target user, she chooses a
sketch built from a stream of users, and she must guess
whether her target is in this stream. The attacker has
some prior knowledge of whether her target is in the
stream, and examining the sketch gives her a posterior
knowledge. The increase from prior to posterior knowl-
edge determines her knowledge gain.

Consider Example 1. The attacker could be an em-
ployee trying to determine whether her partner visited
a certain restaurant on a given day, or saw a medical
practitioner. The attacker might initially have some sus-
picion about this (the prior knowledge), and looking
at the sketches might increase this suspicion. A small,
bounded difference of this suspicion might be deemed
to be acceptable, but we do not want the attacker to be
able to increase her knowledge too much.

We show that for all cardinality estimators that sat-
isfy our aggregation requirement, sketches are almost
as sensitive as raw data. Indeed, in this attacker model,
the attacker can gain significant knowledge about the
target by looking at the sketch. Our results are a nat-
ural consequence of the aggregation properties: to ag-
gregate sketches without counting the same user twice,
they must contain information about which users were
previously added. The attacker can use this information,
even if she does not know any other users in the sketch.
Furthermore, adding noise either violates the aggrega-
tion property, or has no influence on the success of the
attack. Thus, it is pointless to try and design privacy-
preserving cardinality estimators: privacy and accurate
aggregation are fundamentally incompatible.

To show the applicability of our analysis to real-
world cardinality estimators, we quantify the privacy of
HyperLogLog, the most widely used cardinality estima-
tor algorithm. We show that for common parameters,
the privacy loss is significant for most users. Consider,
for example, a user A among the 500 users associated
with the largest privacy loss, in a sketch that contains
1000 distinct users. An attacker with an initial suspi-
cion of 1% that A is in the sketch can raise her level of
certainty to over 31% after observing the sketch. If her
initial estimate is 10%, it will end up more than 83%. If
her prior is 50%, then her posterior is as high as 98%.

Our main contributions are:

1. We formally define a class of algorithms, which we
call cardinality estimators, that count the number
of distinct elements in a stream with repetitions,
and can be aggregated arbitrarily many times (Sec-
tion 3).

2. We give a definition of privacy that is well-suited
to how cardinality estimators are used in practice
(Section 4.2).

3. We prove that a cardinality estimator cannot satisfy
this privacy property while maintaining good accu-
racy asymptotically (Section 5). We show similar re-
sults for weaker versions of our initial definition (Sec-
tion 6).

4. We highlight the consequences of our results on
practical applications of cardinality estimators (Sec-
tion 7) and we propose risk mitigation techniques
(Section 8).
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2 Previous work
Prior work on privacy-preserving cardinality estimators
has been primarily focused on distributed user counting,
for example to compute user statistics for anonymity
networks like Tor. Each party is usually assumed to hold
a set Xi of data, or a sketch built from Xi, and the goal
is to compute the cardinality of

⋃
iXi, without allowing

the party i to get too much information on the sets Xj
with j 6= i. The attacker model presumes honest-but-
curious adversaries.

Tschorsch and Scheuermann [41] proposed a noise-
adding mechanism for use in such a distributed context.
In [32], each party encrypts their sketch, and sends it
encrypted to a tally process, which aggregates them us-
ing homomorphic encryption. Ashok et al. [5] propose a
multiparty computation protocol based on Bloom filters
to estimate cardinality without the need for homomor-
phic encryption, while Egert et al. [20] show that Ashok
et al.’s approach is vulnerable to attacks and propose a
more secure variant of the protocol.

Our attacker model, based on insider risk, is funda-
mentally different to previously considered models: the
same party is assumed to have access to a large number
of sketches; they must be able to aggregate them and
get good estimates.

Our privacy definition for cardinality estimators
is inspired from differential privacy, first proposed by
Dwork et al. [18]. Data-generating probability distri-
butions were considered as a source of uncertainty
in [7, 11, 15, 28, 30, 37, 43]; and some deterministic
algorithms, which do not add noise, have been shown to
preserve privacy under this assumption [7, 11, 28]. We
explain in Section 4.2 why we need a custom privacy
definition for our setup and how it relates to differential
privacy [17] and Pufferfish privacy [30].

Our setting has some superficial similarities to the
local differential privacy model, where the data aggre-
gator is assumed to be the attacker. This model is often
used to develop privacy-preserving systems to gather
statistics [8, 9, 21, 23]. However, the setting and con-
straints of our work differ fundamentally from these pro-
tocols. In local differential privacy, each individual sends
data to the server only once, and there is no need for
deduplication or intermediate data storage. In our work,
the need for intermediate sketches and unique counting
leads to the impossibility result.

3 Cardinality estimators
In this section, we formally define cardinality estimators,
and prove some of their basic properties.

Cardinality estimators estimate the number of dis-
tinct elements in a stream. The internal state of a cardi-
nality estimator is called a sketch. Given a sketch, one
can estimate the number of distinct elements that have
been added to it (the cardinality).

Cardinality estimator sketches can also be aggre-
gated: two sketches can be merged to produce another
sketch, from which we can estimate the total number
of distinct elements in the given sketches. This aggrega-
tion property makes sketch computation and aggrega-
tion embarrassingly parallel. The order and the number
of aggregation steps do not change the final result, so
cardinality estimation can be parallelized using frame-
works like MapReduce.

We now formalize the concept of a cardinality es-
timator. The elements of the multiset are assumed to
belong to a large but finite set U (the universe).

Definition 2. A deterministic cardinality estimator is
a tuple 〈M∅, add, estimate〉, where
– M∅ is the empty sketch;
– add (M, e) is the deterministic operation that adds

the element e to the sketch M and returns an up-
dated sketch;

– estimate (M) estimates the number of distinct ele-
ments that have been added to the sketch.

Furthermore, the add operation must satisfy the follow-
ing axioms for all sketches M and elements e, e1, e2 ∈ U :

add(add(M, e), e) = add(M, e) (idempotent)
add(add(M, e1), e2)=add(add(M, e2), e1) (commutative)

These axioms state that add ignores duplicates and that
the order in which elements are added is immaterial.
Ignoring duplicates is a natural requirement for cardi-
nality estimators. Ignoring order is required for this op-
eration to be used in frameworks like MapReduce, or
open-source equivalents like Hadoop or Apache Beam.
Since handling large-scale datasets typically requires us-
ing such frameworks, we consider commutativity to be
a hard requirement for cardinality estimators.

We denote by Me1,...,en the sketch obtained by
adding e1, . . . , en successively to M∅, and we denote
by M the set of all sketches that can be obtained in-
ductively from M∅ by adding elements from any subset
of U in any order. Note that M is finite and of cardi-
nality at most 2|U|. Order and multiplicity do not influ-
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ence sketches: we denote by ME the sketch obtained by
adding all elements of a set E (in any order) to M∅.

Later, in Example 7, we give several examples of
deterministic cardinality estimators, all of which satisfy
Definition 2.

Lemma 3. add (Me1,...,en , ei) = Me1,...,en for all i ≤ n.

Proof. This follows directly from Properties 1 and
2.

In practice, cardinality estimators also have a merge op-
eration. We do not explicitly require the existence of this
operation, since add’s idempotence and commutativity
ensure its existence as follows.

Definition 4. To merge two sketches M and M ′,
choose some E = {e1, . . . , en} ⊆ U such that M ′ = ME .
We define merge(M,M ′) to be the sketch obtained after
adding all elements of E successively to M .

Note that this construction is not computationally
tractable, even though in practical scenarios, the merge
operation must be fast. This efficiency requirement is
not necessary for any of our results, so we do not explic-
itly require it either.

Lemma 5. The merge operation in Definition 4 is well-
defined, i.e., it does not depend on the choice of E. Fur-
thermore, the merge operation is a commutative, idem-
potent monoid on M with M∅ as neutral element.

The proof is given in Appendix A. Note that these prop-
erties of the merge operation are important for cardinal-
ity estimators: when aggregating different sketches, we
must ensure that the result is the same no matter in
which order the sketches are aggregated.

Existing cardinality estimators also satisfy efficiency
requirements: they have a low memory footprint, and
add and merge run in constant time. These additional
properties are not needed for our results, so we omit
them in our definition.

We now define precise cardinality estimators.

Definition 6. Let E be a set of cardinality n taken
uniformly at random in U . The quality of a cardinality
estimation algorithm is given by two metrics:
1. Its bias E [n− estimate (ME)]
2. Its variance

Vn = E
[
(E [estimate (ME)]− estimate (ME))2

]
.

Cardinality estimators used in practice are asymp-
totically unbiased: 1

n · E [n− estimate (ME)] = o (1). In
the rest of this work, we assume that all cardinality es-
timators we consider are perfectly unbiased, so Vn =
E
[
(n− estimate (ME))2

]
. Cardinality estimators are of-

ten compared by their relative standard error (RSE),

which is given by

√
E
[(

n−estimate(ME)
n

)2
]

=
√
Vn

n .

A cardinality estimator is said to be precise if it is
asymptotically unbiased and its relative standard error
is bounded by a constant. In practice, we want the rel-
ative standard error to be less than a reasonably small
constant, for example less than 10%.

Example 7. We give a few examples of cardinality esti-
mators, with their memory usage in bits (m = log2 |M|)
and their relative standard error. As a first step, they
all apply a hash function to the user identifiers. Concep-
tually, this step assigns to all users probabilistically a
random bitstring of length 32 or 64 bits. Since hashing
is deterministic, all occurrences of a user are mapped to
the same bitstring.
– K-Minimum Values [6], with parameter k, maintains

a list of the k smallest hashes that have been added
to the sketch. With 32-bit hashes, it has a memory
usage of m = 32 · k, and its unbiased estimator has
a RSE of approximately 1√

k
' 5.66√

m
[10].

– Probabilistic Counting with Stochastic Averaging
(PCSA, also known as FM-sketches) [25] maintains
a list of k bit arrays. When an element is added to
an FM-sketch, its hash is split into two parts. The
first part determines which bit array is modified. The
second part determines which bit is flipped to 1, de-
pending on the number of consecutive zeroes at the
beginning. With k registers and 32-bit hashes, its
memory usage is m = 32 · k, and its RSE is approxi-
mately 0.78√

k
' 4.41√

m
.

– LogLog [16] maintains a tuple of k registers. Like
PCSA, it uses the first part of the hash to pick which
register to modify. Then, each registers stores the
maximum number of consecutive zeroes observed so
far. Using k ≥ 64 registers and a 32-bit hash, its
memory usage is m = 5 · k bits, and its standard
error is approximately 1.30√

k
' 2.91√

m
.

– HyperLogLog [29] has the same structure and add
operation as LogLog, only its estimate operation is
different. Using k ≥ 16 registers and a 64-bit hash,
it has a memory usage of m = 6 · k bits, and its
standard error is approximately 1.04√

k
' 2.55√

m
.
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– Bloom filters can also be used for cardinality estima-
tion [36]. However, we could not find an expression
of the standard error for a given memory usage in
the literature.
All these cardinality estimators have null or negli-

gible (� 1) bias. Thus, their variance is equal to their
mean squared standard error. So the first four are pre-
cise, whereas we do not know if Bloom filters are. �

All examples above are deterministic cardinality esti-
mators. For them and other deterministic cardinality
estimators, bias and variance only come from the ran-
domness in the algorithm’s inputs. We now define proba-
bilistic cardinality estimators. Intuitively, these are algo-
rithms that retain all the useful properties of determin-
istic cardinality estimators, but may flip coins during
computation. We denote by M the set of distributions
overM.

Definition 8. A probabilistic cardinality estimator is a
tuple 〈M∅, add,merge, estimate〉, where
– M∅ ∈M is the empty sketch;
– add (M, e) :M×U −→M is the probabilitistic oper-

ation that adds the element e to the sketch M and
returns an updated sketch;

– merge (M1 ,M2 ) :M×M−→M is the probabilistic
operation that merges two sketchesM1 andM2; and

– estimate (M) : M −→ N estimates the number of
unique elements that have been added to the sketch.
Both the add and merge operations can be ex-

tended to distributions of sketches. For a distribution
of sketches D and an element e, add (D, e) denotes the
distribution such that:

P [add (D, e) = M0] =
∑
M

P [D=M ]P [add (M, e)=M0] .

For two distributions of sketches D and D′, merge (D,D′)
denotes the distribution such that:

P
[
merge

(
D,D′

)
= M0

]
=
∑
M,M ′

P [D=M ]P
[
D′=M ′

]
P
[
merge

(
M,M ′

)
=M0

]
.

We want probabilistic cardinality estimators to have
the same high-level properties as deterministic cardinal-
ity estimators: idempotence, commutativity, and the ex-
istence of a well-behaved merge operation. In the deter-
ministic case, the idempotence and commutativity of
the add operation was sufficient to show the existence
of a merge operation with the desired properties. In the
probabilistic case, this no longer holds. Instead, we re-
quire the following two properties.

– For a set E ⊆ U , let DE denote the sketch distri-
bution obtained when adding elements of E succes-
sively into M∅. The mapping from E to DE must
be well-defined: it must be independent of the or-
der in which we add elements, and possible repeti-
tions. This requirement encompasses both idempo-
tence and commutativity.

– For two subsets E1 and E2 of U , we require that
merge (DE1 ,DE2) = DE1∪E2 .

These requirements encompass the results of Lemma 5.

These properties, like in the deterministic case, are
very strong. They impose that an arbitrary number of
sketches can be aggregated without losing accuracy dur-
ing the aggregation process. This requirement is how-
ever realistic in many practical contexts, where the same
sketches are used for fine-grained analysis and for large-
scale cardinality estimation. If this requirement is re-
laxed, and the cardinality estimator is allowed to return
imprecise results when merging sketches, our negative
results do not hold.

For example, Tschorsch and Scheuermann proposed
a cardinality estimation scheme [41] which adds noise
to sketches to make them satisfy privacy guarantees in
a distributed context. However, their algorithm is not
a probabilistic cardinality estimator according to our
definition: noisy sketches can no longer be aggregated.
Indeed, [41] explains that “combining many perturbed
sketches quickly drives [noise] to exceedingly high val-
ues.” In our setting, aggregation is crucial, so we do not
further consider their algorithm.

4 Modeling privacy
In this section, we describe our system and attacker
model (4.1), and present our privacy definition (4.2).

4.1 System and attacker model

Figure 1 shows our system and attacker model. The ser-
vice provider collects sensitive data from many users
over a long time span. The raw data is stored in a
database. Over shorter time periods (e.g. an hour, a day,
or a week), a cardinality estimator aggregates all data
into a sketch. Sketches of all time periods are stored in
a sketch database. Sketches from different times are ag-
gregated into sketches of longer time spans, which are
also stored in the database. Estimators compute user
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Fig. 1. System and attacker model

statistics from the sketches in the database, which are
published. The service provider may also publish the
sketches via an analytics service for other parties.

The attacker knows all algorithms used (those for
sketching, aggregation, and estimation, including their
configuration parameters such as the hash function and
the number of buckets) and has access to the published
statistics and the analytics service. She controls a small
fraction of the users that produce user data. However,
she can neither observe nor change the data of the other
users. She also does not have access to the database
containing the raw data.

In this work, we mainly consider an internal at-
tacker who has access to the sketch database. For this
internal attacker, the goal is to discover whether her
target belongs to a given sketch. We then discuss how
our results extend to weaker external attackers, which
can only use the analytics service. We will see that for
our main results, the attacker only requires access to
one sketch. The possibility to use multiple sketches will
only come up when discussing mitigations strategies in
Section 8.1.

4.2 Privacy definition

We now present the privacy definition used in our main
result. Given the system and attacker just described, our
definition captures the impossibility for the attacker to
gain significant positive knowledge about a given target.
We explain this notion of knowledge gain, state assump-
tions on the attacker’s prior knowledge, and compare
our privacy notion with other well-known definitions.

We define a very weak privacy requirement: rea-
sonable definitions used for practical algorithms would
likely be stronger. Working with a weak definition
strengthens our negative result: if a cardinality estima-

tor satisfying our weak privacy definition cannot be pre-
cise, then this is also the case for cardinality estimators
satisfying a stronger definition.

In Section 6, we explore even weaker privacy defini-
tions and prove similar negative results (although with
a looser bound). In Section 7, we relax the requirement
that every individual user must be protected accord-
ing to the privacy definition. We show then that our
theorem no longer holds, but that practical uses of car-
dinality estimators still cannot be considered privacy-
preserving.

We model a possible attack as follows. The attacker
has access to the identifier of a user t (her target) and
a sketch M generated from a set of users E (M ←ME)
unknown to her. The attacker wants to know whether
t ∈ E. She initially has a prior knowledge of whether
the target is in the sketch. Like in Bayesian inference,
P[t∈E]
P[t/∈E] represents how much more likely the user is in the
database than is not, according to the attacker. After
looking at the sketch M , this knowledge changes: her
posterior knowledge becomes P[t∈E|ME=M ]

P[t/∈E|ME=M ] .
We define privacy to capture that the attacker’s pos-

terior knowledge should not increase too much. In other
words, the attacker should not gain significant knowl-
edge by seeing the sketch. This must hold for every pos-
sible sketch M and every possible user t. We show in
Lemma 10 that the following definition bounds the pos-
itive knowledge gain of the attacker.

Definition 9. A cardinality estimator satisfies ε-sketch
privacy above cardinality N if for every n ≥ N , t ∈ U ,
and M ∈M, the following inequality holds:

Pn [ME = M | t ∈ E] ≤ eε · Pn [ME = M | t /∈ E] .

Here, the probability Pn is taken over:
– a uniformly chosen set E ∈ Pn (U), where Pn (U) is

the set of all possible subsets E ⊆ U of cardinality n;
and

– the coin flips of the algorithm, for probabilistic car-
dinality estimators.

If a cardinality estimator satisfies this definition, then
for any user t, the probability of observing M if t ∈ E
is not much higher than the probability of observing M
if t /∈ E. To give additional intuition on Definition 9, we
now show that the parameter ε effectively captures the
attacker’s positive knowledge gain.

Lemma 10. A cardinality estimator satisfies ε-sketch
privacy above cardinality N if and only if the following
inequality holds for every n ≥ N , t ∈ U and M ∈ M
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with Pn [ME = M ] > 0:

Pn [t ∈ E |ME = M ]
Pn [t /∈ E |ME = M ] ≤ e

ε · Pn [t ∈ E]
Pn [t /∈ E] .

Proof. Bayes’ law can be used to derive one inequality
from the other. We have

Pn[ME=M | t ∈ E] = Pn[t ∈ E |ME=M ] · Pn[ME=M ]
Pn[t ∈ E]

Pn[ME=M | t /∈ E] = Pn[t /∈ E |ME=M ] · Pn[ME=M ]
Pn[t /∈ E] .

The equivalence between the definitions follows directly.

This definition has three characteristics which make it
unusually weak. They correspond to an under-approxi-
mation of the attacker’s capabilities and goals.

Uniform prior The choice of distribution for Pn im-
plies that the elements of E are uniformly distributed
in U . This corresponds to an attacker who has no prior
knowledge about the data. In the absence of prior infor-
mation about the elements of the set E, the attacker’s
best approximation is the uniform distribution. In prac-
tice, a realistic attacker might have more information
about the data, so a stronger privacy definition would
model this prior knowledge by a larger family of prob-
ability distributions. More precisely, since the elements
of E are uniformly distributed in U , the prior knowledge
from the attacker Pn [t ∈ E] is exactly |E| / |U|. A realis-
tic attacker would likely have a larger prior knowledge
about their target. However, any reasonable definition
of privacy would also include the case where the attacker
does not have more information on their target than on
other users and, as such, would be stronger than ε-sketch
privacy.
Asymmetry We only consider the positive information
gain by the attacker. There is an upper bound on the
probability that t ∈ E given the observation M , but
no lower bound. In other words, the attacker is allowed
to deduce with absolute certainty that t /∈ E. In prac-
tice, both positive and negative information gains may
present a privacy risk. In our running example (see Ex-
ample 1), deducing that a user did not spend the night
at his apartment could be problematic.
Minimum cardinality We only require a bound on
the information gain for cardinalities larger than a pa-
rameter N . In practice, N could represent a threshold
over which it is considered safe to publish sketches or to
relax data protection requirements. Choosing a small N
(like N = 10) strengthens the privacy definition, while

choosing a large N (like N = 500) limits the utility of
the data, as many smaller sketches cannot be published.

We emphasize again that these characteristics,
which result in a very weak definition, make our notion
of privacy well-suited to proving negative results. If sat-
isfying our definition is impossible for an accurate car-
dinality estimator, then a stronger definition would sim-
ilarly be impossible to satisfy. For example, any reason-
able choice of distributions used to represent the prior
knowledge of the attacker would include the uniform
distribution.

We now compare our definition to two other notions:
differential privacy [17] and Pufferfish privacy [30].

4.3 Relation to differential privacy

Recall the definition of differential privacy: A is ε-
differentially private if and only if e−ε ≤ P[A(D1)]

P[A(D2)] ≤ eε

for any databases D1 and D2 that only differ by one
element. In our setup, this could be written as the
two inequalities P [ME | t ∈ E] ≤ eε · P [ME | t /∈ E] and
P [ME | t /∈ E] ≤ eε · P [ME | t ∈ E].

Asymmetry, and minimum cardinality, are two obvi-
ous differences between our notion of privacy and differ-
ential privacy. But the major difference lies in the source
of uncertainty. In differential privacy, the probabilities
are taken over the coin flips of the algorithm. The at-
tacker is implicitly assumed to know the algorithm’s in-
put except for one user: the uncertainty comes entirely
from the algorithm’s randomness. In our definition, the
attacker has no prior knowledge of the input, so the un-
certainty comes either entirely from the attacker’s lack
of background knowledge (for deterministic cardinality
estimators), or both from the attacker’s lack of back-
ground knowledge and the algorithm’s inherent random-
ness.

The notion of relying on the initial lack of knowledge
of the attacker in a privacy definition is not new: it is
for example made explicit in the definition of Pufferfish
privacy, a generic framework for privacy definitions.

4.4 Relation to Pufferfish privacy

Pufferfish privacy [30] is a customizable framework for
building privacy definitions. A Pufferfish privacy defini-
tion has three components: a set of potential secrets S;
a set of discriminative pairs Spairs ⊆ S× S; and a set of
data evolution scenarios D.
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Spairs represents the facts we want the attacker to
be unable to distinguish. In our case, we want to prevent
the attacker from distinguishing between t ∈ E and t /∈
E: Spairs = {(t ∈ E, t /∈ E) | t ∈ U}. D represents what
the possible distributions of the input data are. In our
case, it is a singleton that only contains the uniform
distribution.

Our definition is almost an instance of Pufferfish pri-
vacy. Like with differential privacy, the main difference
is asymmetry.

The close link to Pufferfish privacy supports our
proof of two fundamental properties of privacy defi-
nitions: transformation invariance and convexity [30].
Transformation invariance states that performing addi-
tional analysis of the output of the algorithm does not
allow an attacker to gain more information, i.e., the pri-
vacy definition is closed under composition with proba-
bilistic algorithms. Convexity states that if a data owner
chooses randomly between two algorithms satisfying a
privacy definition and generates the corresponding out-
put, this procedure itself will satisfy the same privacy
definition. These two properties act as sanity checks for
our privacy definition.

Proposition 11. ε-sketch privacy above cardinality N
satisfies transformation invariance and convexity.

Proof. The proof is similar to the proof of Theorem 5.1
in [30], proved in Appendix B of the same paper.

5 Private cardinality estimators
are imprecise

Let us return to our privacy problem: someone with ac-
cess to a sketch wants to know whether a given individ-
ual belongs to the aggregated individuals in the sketch.
Formally, given a target t and a sketchME , the attacker
must guess whether t ∈ E with high probability. In Sec-
tion 5.1, we explain how the attacker can use a simple
test to gain significant information if the cardinality es-
timator is deterministic. Then, in Section 5.2, we refor-
mulate the main technical lemma in probabilistic terms,
and prove an equivalent theorem for probabilistic cardi-
nality estimators.

5.1 Deterministic case

Given a target t and a sketch ME , the attacker can
perform the following simple attack to guess whether
t ∈ E. She can try to add the target t to the sketch
ME , and observe whether the sketch changes. In other
words, she checks whether add (ME , t) = ME . If the
sketch changes, this means with certainty that t /∈ E.
Thus, Bayes’ law indicates that if add (ME , t) = ME ,
then the probability of t ∈ E cannot decrease.

How large is this increase? Intuitively, it depends
on how likely it is that adding an element to a sketch
does not change it if the element has not previously
been added to the sketch. Formally, it depends on
P [add (ME , t) = ME | t /∈ E].

– If P [add (ME , t) = ME | t /∈ E] is close to 0, for exam-
ple if the sketch is a list of all elements seen so far,
then observing that add (ME , t) = ME will lead the
attacker to believe with high probability that t ∈ E.

– If P [add (ME , t) = ME | t /∈ E] is close to 1, it means
that adding an element to a sketch often does not
change it. The previous attack does not reveal much
information. But then, it also means that many ele-
ments are ignored when they are added to the sketch,
that is, the sketch does not change when adding the
element. Intuitively, the accuracy of an estimator
based solely on a sketch that ignores many elements
cannot be very good.

We formalize this intuition in the following theorem.

Theorem 12. An unbiased deterministic cardinality es-
timator that satisfies ε-sketch privacy above cardinal-
ity N is not precise. Namely, its variance is at least
1−ck

ck (n− k ·N), for any n ≥ N and k ≤ n
N , where

c = 1− e−ε

Note that if we were using differential privacy, this result
would be trivial: no deterministic algorithm can ever be
differentially private. However, this is not so obvious for
our definition of privacy: prior work [7, 11, 28] shows
that when the attacker is assumed to have some uncer-
tainty about the data, even deterministic algorithms can
satisfy the corresponding definition of privacy.

Figure 2 shows plots of the lower bound on the stan-
dard error of a cardinality estimator with ε-sketch pri-
vacy at two cardinalities (100 and 500). It shows that
the standard error increases exponentially with the num-
ber of elements added to the sketch. This demonstrates
that even if we require the privacy property for a large
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Fig. 2. Minimum standard error for a cardinality estimator with ε-sketch privacy above cardinality 100 (left) and 500 (right). The blue
line is the relative standard error of HyperLogLog with standard parameters.

value of N (500) and a large ε (which is generally less
than 1), the standard error of a cardinality estimator
will become unreasonably large after 20,000 elements.

Proof of Theorem 12. The proof is comprised of three
steps, following the intuition previously given.

1. We show that a sketch ME , computed from a ran-
dom set E with an ε-sketch private estimator above
cardinality N , will ignore many elements after N
(Lemma 13).

2. We prove that if a cardinality estimator ignores a cer-
tain ratio of elements after adding n = N elements,
then it will ignore an even larger ratio of elements
as n increases (Lemma 14).

3. We conclude by proving that an unbiased cardinality
estimator that ignores many elements must have a
large variance (Lemma 15).

The theorem follows directly from these lemmas.

Lemma 13. Let t ∈ U . A deterministic cardinality esti-
mator with ε-sketch privacy above cardinality N satisfies
Pn [add (ME , t) = ME | t /∈ E] ≥ e−ε for n ≥ N .

Proof. We first prove that such an estimator satisfies

Pn [add (ME , t) = ME | t ∈ E]
≤ eε · Pn [add (ME , t) = ME | t /∈ E] .

We decompose the left-hand side of the inequality over
all possible values of ME which that add (ME , t) = ME .
If we call this set It = {M | add (M, t) = M}, we have:

Pn [add (ME , t) = ME | t ∈ E]

=
∑

M∈It

Pn [ME = M | t ∈ E]

≤ eε ·
∑

M∈It

Pn [ME = M | t /∈ E]

≤ eε · Pn [add (ME , t) = ME | t /∈ E] ,

where the first inequality is obtained directly from the
definition of ε-sketch privacy.

Now, Lemma 3 gives P [add (ME , t) = ME | t ∈ E] =
1, and finally Pn [add (ME , t) = ME | t /∈ E] ≥ e−ε.

Lemma 14. Let t ∈ U . Suppose a de-
terministic cardinality estimator satisfies
Pn [add (ME , t) = ME | t /∈ E] ≥ p for any n ≥
N . Then for any integer k ≥ 1, it also satisfies
Pn [add (ME , t) = ME | t /∈ E] ≥ 1 − (1− p)k, for
n ≥ k ·N .

Proof. First, note that if F ⊆ E, and add (MF , t) = MF ,
then add (ME , t) = ME . This is a direct consequence of
Lemma 5: ME = merge

(
ME\F ,MF

)
, so:

add (ME , t) = merge
(
ME\F , add (MF , t)

)
= merge

(
ME\F ,MF

)
= ME

We show next that when n ≥ k ·N , generating a set
E ∈ Pn (U) uniformly randomly can be seen as gener-
ating k independent sets in PN (U), then merging them.
Indeed, generating such a set can be done by as follows:

1. For i ∈ {1, . . . , k}, generate a set Ei ⊆ PN (U) uni-
formly randomly. Let E∪ =

⋃
iEi.

2. Count the number of elements appearing in multi-
ple Ei: d = # {x ∈ Ei|∃j < i, x ∈ Ej}. Generate a
set E′ ∈ Pn−d (U\E∪) uniformly randomly.

E is then defined by E = E∪ ∪ E′. Step 1 ensures that
we used k independent sets of cardinality N to generate
E, and step 2 ensures that E has exactly n elements.

Intuitively, each time we generate a set Ei of cardi-
nality N uniformly at random in U , we have one chance
that t will be ignored by Ei (and thus by E). So t can
be ignored by ME with a certain probability because it
was ignored byME1 . Similarly, it can also be ignored be-
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cause of ME2 , etc. Since the choice of Ei is independent
of the choice of elements in

⋃
j 6=iEj , we can rewrite:

Pn [add (ME , t) 6= ME | t /∈ E]

≤
k∏
i=1

Pn
[
add

(
ME0

i
, t
)
6= ME0

i
| t /∈ E

]
≤

k∏
i=1

(
1− Pn

[
add

(
ME0

i
, t
)

= ME0
i
| t /∈ Ei

])
≤ (1− p)k

using the hypothesis of the lemma. Thus:

Pn [add (ME , t) = ME | t /∈ E] ≥ 1− (1− p)k.

Lemma 15. Suppose a deterministic cardinality esti-
mator satisfies Pn [add (ME , t) = ME | t /∈ E] ≥ 1−p for
any n ≥ N and all t. Then its variance for n ≥ N is at
least 1−p

p (n−N).

Proof. The proof’s intuition is as follows. The hypothe-
sis of the lemma requires that the cardinality estimator,
on average, ignores a proportion 1− p of new elements
added to a sketch (once N elements have been added):
the sketch is not changed when a new element is added.
The best thing that the cardinality estimator can do,
then, is to store all elements that it does not ignore,
count the number of unique elements among these, and
multiply this number by 1/p to correct for the elements
ignored. It is well-known that estimating the size k of a
set based on the size of a uniform sample of sampling
ratio p has a variance of 1−p

p k. Hence, our cardinality
estimator has a variance of at least 1−p

p (n−N).
Formalizing this idea requires some additional tech-

nical steps. The full proof is given in Appendix B.

All existing cardinality estimators satisfy our axioms
and their standard error remains low even for large val-
ues of n. Theorem 12 shows, for all of them, that there
are some users whose privacy loss is significant. In Sec-
tion 7.2, we quantify this precisely for HyperLogLog.

5.2 Probabilistic case

Algorithms that add noise to their output, or more gen-
erally, are allowed to use a source of randomness, are
often used in privacy contexts. As such, even though
all cardinality estimators used in practical applications

are deterministic, it is reasonable to hope that a proba-
bilistic cardinality estimator could satisfy our very weak
privacy definition. Unfortunately, this is not the case.

In the deterministic case, we showed that for any el-
ement t, the probability that t has an influence on a ran-
dom sketch M decreases exponentially with the sketch
size. Or, equivalently, the distribution of sketches of size
kn that do not contain t is “almost the same” (up to a
density of probability

(
1− e−ε

)k) as the distribution of
sketches of the same size, but containing t.

The following lemma establishes the same result in
the probabilistic setting. Instead of reasoning about the
probability that an element t is “ignored” by a sketchM ,
we reason about the probability that t has a meaningful
influence on this sketch. We show that this probabil-
ity decreases exponentially, even if P [M 6= add (M, t)] is
very high.

First, we prove a technical lemma on the structure
that the merge operation imposes on the space of sketch
distributions. Then, we find an upper bound on the
“meaningful influence” of an element t, when added to a
random sketch of cardinality n. We then use this upper
bound, characterized using the statistical distance, to
show that the estimator variance is as imprecise as for
the deterministic case.

Definition 16. Let D be the real vector space spanned
by the family {DE |E ⊆ U} (seen as vectors of RM). For
any probability distributionsA,B ∈ D, we denote A·B =
merge (A,B). We show in Lemma 17 that this notation
makes sense: on D, we can do computations as if merge
was a multiplicative operation.

Lemma 17. The merge operation defines a commuta-
tive and associative algebra on D.

Proof. By the properties required from probabilistic
cardinality estimators in Definition 8, the merge op-
eration is commutative and associative on the family
{DE |E ⊆ U}. By linearity of the merge operation, these
properties are preserved for any linear combination of
vectors DE .

Lemma 18. Suppose a cardinality estimator satisfies
ε-sketch privacy above cardinality N , and let t ∈ U . Let
Dout,n be the distribution of sketches obtained by adding
n uniformly random elements of U\ {t} into M∅ (or,
equivalently, Dout,n (M) = Pn [ME = M |t /∈ E]). Then:

υ
(
Dout,kn, add

(
Dout,kn, t

))
≤
(
1− e−ε

)k
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where υ is the statistical distance between probability dis-
tributions.

Proof. Let Din,n be the distribution of sketches ob-
tained by adding t, then n − 1 uniformly random el-
ements of U into M (or, equivalently, Din,n (M) =
Pn [ME = M |t ∈ E]). Then the definition of ε-sketch
privacy gives that for every sketch M , Dout,n (M) ≥
e−εDin,n (M). So we can express Dout,n as the sum of
two distributions:

Dout,n = e−εDin,n +
(
1− e−ε

)
R

for a certain distribution R.
First, we show that Dout,kn = (Dout,n)k · C for a

certain distribution C. Indeed, to generate a sketch of
cardinality kn that does not contain t uniformly ran-
domly, one can use the following process.

1. Generate k random sketches of cardinality n which
do not contain t, and merge them.

2. For all E ⊆ U , denote by pE the probability that the
k sketches were generated with the elements in E.
There might be “collisions” between the k sketches:
if several sketches were generated using the same
element, |E| < kn. When this happens, we need
to “correct” the distribution, and add additional
elements. Enumerating all the options, we denote
C =

∑
pEDc

E,nk, where Dc
E,nk is obtained by adding

nk− |E| uniformly random elements in U\E toM∅.
Thus, Dout,kn = (Dout,n)k · C.

All these distributions are in D: Dout,n =
avgE∈Pn(U),t/∈EDE , Din,n = avgE∈Pn(U),t∈EDE , R =(
1− e−ε

)−1 (Dout,n − e−εDin,n
)
, etc. Thus:

Dout,kn = (Dout,n)k · C

=
(
e−εDin,n +

(
1− e−ε

)
R
)k · C

=
k∑
i=0

(
k

i

)
e−i·ε

(
1− e−ε

)k−iDiin,n · Rk−i · C.
Denoting A =

∑k
i=1
(
k
i

)
e−i·ε

(
1− e−ε

)k−iDi−1
in,n ·Rk−i · C

and B = Rk · C, this gives us:

Dout,kn = A · Din,n +
(
1− e−ε

)kB.
Finally, we can compute add

(
Dout,kn, t

)
:

add
(
Dout,kn, t

)
= A · Din,n · D{t} +

(
1− e−ε

)kB · D{t}
= A · Din,n +

(
1− e−ε

)kB · D{t}

Note that since Din,n = avgE∈Pn(U),t∈EDE , we have
Din,n · D{t} = Din,n by idempotence, and:

υ
(
Dout,kn, add

(
Dout,kn, t

))
= 1

2
∥∥Dout,kn − add

(
Dout,kn, t

)∥∥
1

= 1
2

∥∥∥(1− e−ε)kB − (1− e−ε)kB · D{t}∥∥∥
1

≤
(
1− e−ε

)k
2

(
‖B‖1 +

∥∥B · D{t}∥∥1

)
≤
(
1− e−ε

)k
.

Lemma 18 is the probabilistic equivalent of Lemmas 13
and 14. Now, we state the equivalent of Lemma 15, and
explain why its intuition still holds in the probabilistic
case.

Lemma 19. Suppose that a cardinality estimator satis-
fies for any n ≥ N and all t, υ (Dout,n, add (Dout,n, t)) ≤
p. Then its variance for n ≥ N is at least 1−p

p (n−N).

Proof. The condition “υ (Dout,n, add (Dout,n, t)) ≤ p” is
equivalent to the condition of Lemma 15: with proba-
bility (1− p), the cardinality estimator “ignores” when
a new element t is added to a sketch. Just like in
Lemma 15’s proof, we can convert this constraint into
estimating the size of a set based on a sampling set. The
best known estimator for this problem is deterministic,
so allowing the cardinality estimator to be probabilistic
does not help improving the optimal variance.

The same result than in Lemma 15 follows.

Lemmas 18 and 19 together immediately lead to the
equivalent of Theorem 12 in the probabilistic case.

Theorem 20. An unbiased probabilistic cardinality es-
timator that satisfies ε-sketch privacy above cardinal-
ity N is not precise. Namely, its variance is at least
1−ck

ck (n− k ·N), for any n ≥ N and k ≤ n
N , where

c = 1− e−ε

Somewhat surprisingly, allowing the algorithm to add
noise to the data seems to be pointless from a privacy
perspective. Indeed, given the same privacy guarantee,
the lower bound on accuracy is the same for determinis-
tic and probabilistic cardinality estimators. This sug-
gests that the constraints of these algorithms (idem-
potence and commutativity) require them to somehow
keep a trace of who was added to the sketch (at least for
some users), which is fundamentally incompatible with
even weak notions of privacy.
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6 Weakening the privacy
definition

Our main result is negative: no cardinality estimator
satisfying our privacy definition can maintain a good
accuracy. Thus, it is natural to wonder whether our pri-
vacy definition is too strict, and if the result still holds
for weaker variants.

In this section, we consider two weaker variants of
our privacy definition: one allows a small probability of
privacy loss, while the other averages the privacy loss
across all possible outputs. We show that these natural
relaxations do not help as close variants of our negative
result still hold.

6.1 Allowing a small probability of privacy
loss

As Lemma 10 shows, ε-sketch differential privacy pro-
vides a bound on how much information the attacker
can gain in the worst case. A natural relaxation is to ac-
cept a small probability of failure: requiring a bound on
the information gain in most cases, and accept a poten-
tially unbounded information gain with low probability.

We introduce a new parameter, called δ, similar to
the use of δ in the definition of (ε, δ)-differential privacy:
A is (ε, δ)-differentially private if and only if for any
databases D1 and D2 that only differ by one element
and any set S of possible outputs, P [A (D1) ∈ S] ≤ eε ·
P [A (D2) ∈ S] + δ.

Definition 21. A cardinality estimator satisfies (ε, δ)-
sketch privacy above cardinality N if for every S ⊆M,
n ≥ N , and t ∈ U ,

Pn [ME ∈ S | t ∈ E] ≤ eε · Pn [ME ∈ S | t /∈ E] + δ.

Unfortunately, our negative result still holds for this
variant of the definition. Indeed, we show that a close
variant of Lemma 13 holds, and the rest follows directly.

Lemma 22. Let t ∈ U . A cardinality estimator that sat-
isfies (ε, δ)-probabilistic sketch privacy above cardinality
N satisfies Pn [add (ME , t) = ME | t /∈ E] ≥

( 1
2 − δ

)
·e−ε

for n ≥ N .

The proof of Lemma 22 is given in Appendix C. We can
then deduce a theorem similar to our negative result for
our weaker privacy definition.

Theorem 23. An unbiased cardinality estimator that
satisfies (ε, δ)-sketch privacy above cardinality N has a
variance at least 1−ck

ck (n− k ·N) for any n ≤ N and
k ≤ n

N , where c = 1 −
( 1

2 − δ
)
· e−ε. It is therefore not

precise if δ < 1
2 .

Proof. This follows from Lemmas 22, 14 and 15.

6.2 Averaging the privacy loss

Instead of requiring that the attacker’s information gain
is bounded by ε for every possible output, we could
bound the average information gain. This is equivalent
to accepting a larger privacy loss in some cases, as long
as other cases have a lower privacy loss.

This intuition is captured by the use of Kullback-
Leiber divergence, which is often used in similar con-
texts [14, 19, 38, 39]. In our case, we adapt it to main-
tain the asymmetry of our original privacy definition.
First, we give a formal definition the privacy loss of a
user t given output M .

Definition 24. Given a cardinality estimator, the pos-
itive privacy loss of t given output M at cardinality n is
defined as

εn,t,M = max
(

log
(
Pn [ME = M | t ∈ E]
Pn [ME = M | t /∈ E]

)
, 0
)
.

This privacy loss is never negative: this is equivalent to
discarding the case where the attacker gains negative in-
formation. Now, we bound this average over all possible
values of ME , given t ∈ E.

Definition 25. A cardinality estimator satisfies ε-
sketch average privacy above cardinality N if for every
n ≥ N and t ∈ U , we have∑

M

Pn [ME = M | t ∈ E] · εn,t,M ≤ ε.

It is easy to check that ε-sketch average privacy above
cardinality N is strictly weaker than ε-sketch privacy
above cardinality N . Unfortunately, this definition is
also stronger than (εδ, δ)-sketch privacy above cardi-
nality N for certain values of ε and δ, and as such,
Lemma 22 also applies. We prove this in the following
lemma.

Lemma 26. If a cardinality estimator satisfies ε-sketch
average privacy above cardinality N , then it also satisfies(
ε
δ , δ
)
-sketch privacy above cardinality N for any δ > 0.
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The proof is given in Appendix D. This lemma leads to
a similar version of the negative result.

Theorem 27. An unbiased cardinality estimator that
satisfies ε-sketch average privacy above cardinality N

has a variance at least 1−ck

ck (n− k ·N) for any n ≤ N

and k ≤ n
N , where c = 1− e−4ε

4 . It is thus not precise.

Proof. This follows directly from Lemma 26 with δ = 1
4 ,

and Theorem 23.

Recall that all existing cardinality estimators satisfy our
axioms and have a bounded accuracy. Thus, an immedi-
ate corollary is that for all cardinality estimators used
in practice, there are some users for which the average
privacy loss is very large.

Remark 28. This idea of averaging ε is similar to the
idea behind Rényi differential privacy [33]. The param-
eter α of Rényi differential privacy determines the aver-
aging method used (geometric mean, arithmetic mean,
quadratic mean, etc.). Using KL-divergence corresponds
to α = 1, while α = 2 averages all possible values of
eε. Increasing α strengthens the privacy definition [33,
Prop. 9], so our negative result still holds.

7 Privacy loss of individual users
So far, we only considered definitions of privacy that
give the same guarantees for all users. What if we allow
certain users to have less privacy than others, or if we
were to average the privacy loss across users instead of
averaging over all possible outcomes for each user?

Such definitions would generally not be sufficiently
convincing to be used in practice: one typically wants
to protect all users, not just a majority of them. In this
section, we show that even if we relax this requirement,
cardinality estimators would in practice leak a signifi-
cant amount of information.

7.1 Allowing unbounded privacy loss for
some users

What happens if we allow some users to have unbounded
privacy loss? We could achieve this by requiring the ex-
istence of a subset of users T ⊆ U of density 1− δ, such
that every user in T is protected by ε-sketch privacy
above cardinality N . In this case, a ratio δ of possible
targets are not protected.

This approach only makes sense if the attacker can-
not choose the target t. For our attacker model, this
might be realistic: suppose that the attacker wants to
target just one particular person. Since all user identi-
fiers are hashed before being passed to the cardinality
estimator, this person will be associated to a hash value
that the attacker can neither predict nor influence. Thus,
although the attacker picks t, the true target of the at-
tack is h(t), which the attacker cannot choose.

Unfortunately, this drastic increase in privacy risk
for some users does not lead to a large increase in ac-
curacy. Indeed, the best possible use of this ratio δ of
users from an accuracy perspective would simply be to
count exactly the users in a sample of sampling ratio δ.

Estimating the total cardinality based on this sam-
ple, similarly to the optimal estimator in the proof of
Lemma 15, leads to a variance of 1−δ

δ · (n−N). If δ is
very small (say, δ ' 10−4), this variance is too large for
counting small values of n (say, n ' 1000 and N ' 100).
This is not surprising: if 99.99% of the values are ig-
nored by the cardinality estimator, we cannot expect
it to count values of n on the order of thousands. But
even this value of δ is larger than what is often used with
(ε, δ)-differential privacy, where typically, δ = o(1/n).

But in our running example, sketches must yield a
reasonable accuracy both at small and large cardinal-
ities, if many sketches are aggregated. This implicitly
assumes that the service operates at a large scale, say
with at least 107 users. With δ = 10−4, this means that
thousands of users are not covered by the privacy prop-
erty. This is unacceptable for most applications.

7.2 Averaging the privacy loss across users

Instead of requiring the same ε for every user, we could
require that the average information gain by the at-
tacker is bounded by ε. In this section, we take the ex-
ample of HyperLogLog to show that accuracy is not in-
compatible with this notion of average privacy, but that
cardinality estimators used in practice do not preserve
privacy even if we average across all users.

First, we define this notion of average information
gain across users.

Definition 29. Recall the definition of the positive pri-
vacy loss εn,t,M of t given output M at cardinality n

from Definition 24: The maximum privacy loss of t at
cardinalty n is defined as εn,t = maxM (εn,t,M ). A car-
dinality estimator satisfies ε-sketch privacy on average
if we have, for all n, 1

|U|
∑
t∈U εn,t ≤ ε.
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Fig. 3. εn as a function of n, for HyperLogLog cardinality estima-
tors of different p parameters. The blue line is 2, corresponding
to the commonly recommended value of ε = ln (2) in differential
privacy.

In this definition, we accept that some users might have
less privacy as long as the average user satisfies our ini-
tial privacy definition. Remark 28 is still relevant: we
chose to average over all values of ε, but other aver-
aging functions are possible and would lead to strictly
stronger definitions.

We show that HyperLogLog satisfies this definition
and we consider the value of ε for various parameters
and their significance. Intuitively, a HyperLogLog cardi-
nality estimator puts every element in a random bucket,
and each bucket counts the maximum number of leading
zeroes of elements added in this bucket. More details are
given in Appendix E.

HyperLogLog cardinality estimators have a param-
eter p that determines its memory consumption, its ac-
curacy, and, as we will see, its level of average privacy.

Theorem 30. Assuming a sufficiently large |U|, a Hy-
perLogLog cardinality estimator of parameter p satisfies
εn-sketch privacy above cardinality N on average where
for N ≥ n,

εn ' −
∑
k≥1

2−k log
(

1−
(
1− 2−p−k

)n)
.

The assumption that the set of possible elements is very
large and its consequences are explained in more detail
in the proof of this theorem, given in Appendix E.

How does this positive result fit practical use cases?
Figure 3 plots εn for three different HyperLogLog cardi-
nality estimators. It shows two important results.

First, cardinality estimators used in practice do not
preserve privacy. For example, the default parameter
used for production pipelines at Google and on the Big-
Query service [2] is p = 15. For this value of p, an at-
tacker can determine with significant accuracy whether
a target was added to a sketch; not only in the worst

case, but for the average user too. The average risk only
becomes reasonable for n ≥ 10, 000, a threshold too large
for most data analysis tasks.

Second, by sacrificing some accuracy, it is possible
to obtain a reasonable average privacy. For example,
a HyperLogLog sketch for which p = 9 has a relative
standard error of about 5%, and an εn of about 1 for
n = 1000. Unfortunately, even when the average risk is
acceptable, some users will still be at a higher risk: users
e with a large number of leading zeroes are much more
identifiable than the average. For example, if n = 1000,
there is a 98% chance that at least one user has ρ(e) ≥ 8.
For this user, εn,t ' 5, a very high value.

Our calculations yield only an approximation of
εn that is an upper bound on the actual privacy
loss in HyperLogLog sketches. However, these alarm-
ing results can be confirmed experimentally. We sim-
ulated Pn [add (ME , t) = ME | t /∈ E], for uniformly ran-
dom values of t, using HyperLogLog sketches with the
parameter p = 15, the default used for production
pipelines at Google and on the BigQuery service [2].
For each cardinality n, we generated 10,000 different
random target values, and added each one to 1,000 Hy-
perLogLog sketches of cardinality n (generated from ran-
dom values). For each target, we counted the number of
sketches that ignored it.

Figure 4 plots some percentile values. For example,
the all-targets curve (100th percentile) has a value of
33% at cardinality n = 10,000. This means that each
of the 10,000 random targets was ignored by at most
33% of the 1,000 random sketches of this cardinality, i.e.,
Pn [add (ME , t) = ME | t /∈ E] ≤ 33% for all t. In other
words, an attacker observes with at least 67% proba-
bility a change when adding a random target to a ran-
dom sketch that did not contain it. Similarly, the 10th-
percentile at n = 10,000 has a value of 3.8%. So 10% of
the targets were ignored by at most 3.8% of the sketches,
i.e., Pn [add (ME , t) = ME | t /∈ E] ≤ 3.8% for 10% of all
users t. That is, for the average user t, there is a 10%
chance that a sketch with 10,000 elements changes with
likelihood at least 96.2% when t is first added.

For small cardinalities (n < 1, 000), adding an el-
ement that has not yet been added to the sketch will
almost certainly modify the sketch: an attacker observ-
ing that a sketch does not change after adding t can
deduce with near-certainty that t was added previously.

Even for larger cardinalities, there is always a con-
stant number of people with high privacy loss. For n
= 1,000, no target was ignored by more than 5.5% of
the sketches. For n = 10,000, 10% of the users were ig-
nored by at most 3.8% of the sketches. Similarly, the 1st
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Fig. 4. Simulation of Pn [add (ME , t) = ME | t /∈ E], for uni-
formly chosen values of t, using HyperLogLog sketches with
parameter p = 15.

percentile at n = 100,000 and the 1st permille at n =
1,000,000 are 4.6% and 4.5%, respectively. In summary,
across all cardinalities n, at least 1,000 users t have
Pn [add (ME , t) = ME | t /∈ E] ≤ 0.05. For these users,
the corresponding privacy loss is eε = 1

0.055 ' 18. Con-
cretely, if the attacker initially believes that Pn [t ∈ E]
is 1%, this number grows to 15% after observing that
add (ME , t) = ME . If it is initially 10%, it grows to 66%.
And if it is initially 25%, it grows to 86%.

8 Mitigation strategies
A corollary of Theorem 12 and of our analysis of Sec-
tion 7.2 is that the cardinality estimators used in prac-
tice do not preserve privacy. How can we best protect
cardinality estimator sketches against insider threats,in
realistic settings? Of course, classical data protection
techniques are relevant: encryption, access controls, au-
diting of manual accesses, etc. But in addition to these
best practices, cardinality estimators like HyperLogLog
allow for specific risk mitigation techniques, which re-
strict the attacker’s capabilities.

8.1 Salting the hash function with a secret

As explained in Section 3, most cardinality estimators
use a hash function h as the first step of the add op-
eration: add (M, t) only depends on M and the hash
value h(t). This hash can be salted with a secret value.
This salt can be made inaccessible to humans, with ac-
cess controls restricting access to production binaries
compiled from trusted code. Thus, an adversary can-
not learn all the relevant parameters of the cardinality

estimator and can no longer add users to sketches. Of
course, to avoid a salt reconstruction attack, a crypto-
graphic hash function must be used.

The use of a salt does not hinder the usefulness
of sketches: they can still be merged (for all cardinal-
ity estimators given as examples in Section 3) and the
cardinality can still be estimated without accuracy loss.
However, if an attacker gains direct access to a sketchM
with the aim of targeting a user t and does not know the
secret salt, then she cannot compute h (t) and therefore
cannot compute add (M, t). This prevents the previous
obvious attack of adding t to M and observing whether
the result is different.

However, this solution has two issues.

Secret salt rotation The secret salt must be the same
for all sketches as otherwise sketches cannot be merged.
Indeed, if a hash function h1 is used to create a sketch
M1 and h2 is used to createM2, then if h1 (t) 6= h2 (t) for
some t that is added to both M1 and M2, t will be seen
as a different user inM1 andM2: the cardinality estima-
tor no longer ignores duplicates. Good key management
practices also recommend regularly rotating secret keys.
In this context, changing the key requires recomputing
all previously computed sketches. This requires keeping
the original raw data, makes pipelines more complex,
and can be computationally costly.
Sketch intersection For most cardinality estimators
given as examples in Section 3, it is possible for an at-
tacker to guess h (t) from a family of sketches (M1, . . . ,
Mk) for which the attacker knows that t ∈ M1. For ex-
ample, intersecting the lists stored in K-Minimum Val-
ues sketches can provide information on which hashes
come from users that have been in all sketches. For
HyperLogLog, one can use the leading zeroes in non-
empty buckets to get partial information on the hash
value of users who are in all sketches. Moreover, Hyper-
LogLog++ [29] has a sparse mode that stores full hashes
when the sketch contains a small number of values; this
makes intersection attacks even easier.
Intersection attacks are realistic, although they are
significantly more complex than simply checking if
add (M, t) = M . In our running example, sketches come
from counting users across locations and time periods. If
an internal attacker wants to target someone she knows,
she can gather information about where they went us-
ing side channels like social media posts. This gives her
a series of sketches M1, . . . ,Mk that she knows her tar-
get belongs to, and from these, she can get information
on h(t) and use it to perform an attack equivalent to
checking whether add (M, t) = M .
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Another possible risk mitigation technique is homo-
morphic encryption. Each sketch could be encrypted in
a way that allows sketches to be merged, and new ele-
ments to be added; while ensuring that an attacker can-
not do any operation without some secret key. Homo-
morphic encryption typically has significant overhead,
so it is likely to be too costly for most use cases. Our im-
possibility results assume a computationally unbounded
attacker; however, it is possible that an accurate sketch-
ing mechanism using homomorphic encryption could
provide privacy against polynomial-time attackers. We
leave this area of research for future work.

8.2 Using a restricted API

Using cardinality estimator sketches to perform data
analysis tasks only requires access to two operations:
merge and estimate. So a simple option is to process
the sketches over an API that only allows this type of
operation. One option is to provide a SQL engine on
a database, and only allow SQL functions that corre-
spond to merge and estimate over the column contain-
ing sketches. In the BigQuery SQL engine, this corre-
sponds to allowing HLL_COUNT.MERGE and HLL_-
COUNT.EXTRACT functions, but not other functions
over the column containing sketches [2]. Thus, the at-
tacker cannot access the raw sketches.

Under this technique, an attacker who only has
access to the API can no longer directly check whether
add (M, t) = M . Since she does not have access to the
sketch internals, she cannot perform the intersection at-
tack described previously either. To perform the check,
her easiest option is to impersonate her target within
the service, interact with the service so that a sketch
M{t} containing only her target is created in the sketch
database, and compare the estimates obtained from M

and merge
(
M,M{t}

)
. Following the intuition given in

Section 5.1, if these estimates are the same, then the
target is more likely to be in the dataset. How much
information the attacker gets this way depends on
P [estimate (add (ME , t)) = estimate (ME) | t /∈ E]. We
can increase this quantity by rounding the result of the
estimate operation, thus limiting the accuracy of the ex-
ternal attacker. This would make the attack described
in this work slightly more difficult to execute, and less
efficient. However, it is likely that the attack could be
adapted, for example by repeating it multiple times
with additional fake elements.

This risk mitigation technique can be combined
with the previous one. The restricted API protects the

sketches during normal use by data analysts, i.e., against
external attackers. The hash salting mitigates the risk of
manual access to the sketches, e.g., by internal attackers.
This type of direct access is not needed for most data
analysis tasks, so it can be monitored via other means.

9 Conclusion
We formally defined a class of cardinality estimator al-
gorithms with an associated system and attacker model
that captures the risks associated with processing per-
sonal data in cardinality estimator sketches. Based on
this model, we proposed a privacy definition that ex-
presses that the attacker cannot gain significant knowl-
edge about a given target.

We showed that our privacy definition, which is
strictly weaker than any reasonable definition used in
practice, is incompatible with the accuracy and aggre-
gation properties required for practical uses of cardinal-
ity estimators. We proved similar results for even weaker
definitions, and we measured the privacy loss associated
with the HyperLogLog cardinality estimator, commonly
used in data analysis tasks.

Our results show that designing accurate privacy-
preserving cardinality estimator algorithms is impossi-
ble, and that the cardinality estimator sketches used in
practice should be considered as sensitive as raw data.
These negative results are a consequence of the structure
imposed on cardinality estimators: idempotence, com-
mutativity, and existence of a well-behaved merge oper-
ation. This result shows a fundamental incompatibility
between accurate aggregation and privacy. A natural
question is ask whether other sketching algorithms have
similar incompatibilities, and what are minimal axiom-
atizations that lead to similar impossibility results.
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A Proof of Lemma 5
Let M and M ′ be two sketches. If E = {e1, . . . , ek},
we denote by add (M,E) the result of adding el-
ements of E successively to M : add (M,E) =
add (. . . add (add (M, e1) , e2) . . . , ek).

Let E1 and E2 be two sets such that ME1 =
ME2 = M ′, and let E be a set such as ME = M .
Then add (M,E1) = add (add (M∅, E) , E1). Using the
two properties of the add function, we get add (M,E1) =
add (add (M∅, E1) , E) = add (M ′, E). The same reason-
ing leads to add (M,E2) = add (M,E1): the merge func-
tion does not depend on the choice of E.

In addition, note that merge (M,M ′) =
add (M∅, E ∪ E1). Thus, commutativity, associativity,
idempotence, and neutrality follow directly from the
same properties of set union.

B Full proof of Lemma 15
The proof is decomposed into three steps. In Step 1, we
fix the first N elements added to the sketch, and we
bound the variance of the estimator that has these ele-
ments as initial input. In Step 2, we explicitly compute
the probability for an element t to be ignored by ME ,
first when t is fixed, then when E is fixed. We then use
these results in Step 3 to average the bound over all
possible choices for the N elements in E, which gives us
an overall bound.

Step 1: Bound the estimator variance.
Let E ∈ PN (U). Let SE = {t ∈ U | add (ME , t) 6=

ME} be the set of elements that are not ignored
by ME . Let pE = |SE |

|U| , or equivalently, let pE =
Pt [add (ME , t) 6= ME | t /∈ E], where Pt is the distribu-
tion that picks t uniformly randomly in U .

SE can be seen as the sampling set of the estimator
with E as initial input, while pE can be seen as its sam-
pling fraction: all other elements are discarded, so the
estimator only has access to elements in E and SE to
compute its estimate.

The optimal estimator to minimize variance in this
context simply counts the exact number of distinct el-
ements in the sample (remembering each one), and di-
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vides this number by pE to estimate the total number
of distinct elements.1

What is the variance Vn|E of this optimal estimator?
Suppose we added n − N elements after reaching the
sampling part. The number of elements in the sample
is a random variable with variance pE (1− pE) (n−N).
Dividing this random variable by pE gives a variance of
1−pE

pE
· (n−N). Thus

Vn|E ≥
1− pE
pE

· (n−N) .

Since the first N elements are chosen uniformly at
random, the variance of the overall estimator is bounded
by their average. If we denote by PN (U) the set of all
possible subsets E ⊆ U of cardinality N , we have:

Vn ≥ avgE∈PN (U)
1− pE
pE

(n−N) (1)

(where avg stands for the average).

Step 2: Intermediary results.
Fix E ∈ PN (U). Denoting by 1X the function whose

value is 1 if X is satisfied and 0 otherwise,

Pt [add (ME , t) 6= ME | t /∈ E]

= Pt [add (ME , t) 6= ME ∧ t /∈ E]
Pt [t /∈ E]

= |U|
|U| −N

· avgt∈U
(
1add(ME ,t) 6=ME

)
. (2)

Indeed, Pt [t /∈ E] = |U|−N
|U| is straightforward, and

since t ∈ E implies add (ME , t) = ME , the condi-
tion add (ME , t) 6= ME ∧ t /∈ E can be simplified to
add (ME , t) 6= ME .

Now, fix t ∈ U . Then

PN [add (ME , t) 6= ME | t /∈ E]

= PN [add (ME , t) 6= ME ∧ t /∈ E]
PN [t /∈ E]

= |U|
|U| −N

· avgE∈PN (E)
(
1add(ME ,t) 6=ME

)
. (3)

Indeed, we have

PN [t /∈ E] =
(
|U| − 1
N

)
·
(
|U|
N

)−1

= (|U| − 1)!
(|U| − 1−N)!N ! ·

(|U| −N)!N !
|U|! = |U| −N

|U|

Step 3: Conclude using convexity.

1 The optimality of an estimator under these constraints is
proven e.g. in [12].

We now prove that avgE∈PN (U) (pE) ≤
p. Our initial hypothesis states that p ≥
PN [add (ME , t) 6= ME | t /∈ E] for all t. We can aver-
age this for every t and use (3) and (2):

p ≥ avgt∈U (PN [add (ME , t) 6= ME | t /∈ E])
(3)= avgt∈U

(
|U|

|U| −N
· avgE∈PN (E)

(
1add(ME ,t) 6=ME

))
= avgE∈PN (U)

(
|U|

|U| −N
· avgt∈U

(
1add(ME ,t) 6=ME

))
(2)= avgE∈PN (U) (Pt [add (ME , t) 6= ME | t /∈ E])
≥ avgE∈PN (U) (pE) (4)

Now, using (1) and (4) along with the fact that the
function x −→ 1−x

x · (n−N) is convex and decreasing
on (0, 1), we can conclude by Jensen’s inequality that

Vn ≥
1− p
p

(n−N) .

C Proof of Lemma 22
First, we show that if a cardinality estimator verifies
(ε, δ)-sketch privacy at a given cardinality, then for each
target t, we can find an explicit decomposition of the
possible outputs: the bound on information gain is sat-
isfied for each possible output, except on a density δ.
This is similar to the definition of probabilistic differen-
tial privacy in [31] and [27], except the decomposition
depends on the choice of t. We then use this decompo-
sition to prove a variant of our negative result.

Lemma 31. If a cardinality estimator satisfies (ε, δ)-
sketch privacy above cardinality N , then for every
n ≥ N and t ∈ U , we can decompose the space
of possible sketches M = M1 ] M2 such that
Pn [ME ∈M2 | t ∈ E] ≤ 2δ, and for all M ∈M1:

Pn [ME = M | t ∈ E] ≤ 2eε · Pn [ME = M | t /∈ E] .

Proof. Suppose the cardinality estimator satisfies (ε, δ)-
sketch privacy at cardinalityN , and fix n ≥ N and t ∈ U .
Let ε′ = ε+ ln (2).

LetM1 be the set of outputs for which the privacy
loss is higher than ε′. Formally,M1 is the set of sketches
M that satisfy

Pn [ME = M | t ∈ E] > eε
′
· Pn [ME = M | t /∈ E] .

We show thatM1 has a density bounded by 2δ.
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Suppose for the sake of contradiction that this set
has density at least 2δ given that t ∈ E:

Pn [M ∈M1 | t ∈ E] ≥ 2δ.

We can sum the inequalities inM1 to obtain

Pn [ME ∈M1 | t ∈ E] > eε
′
· Pn [ME ∈M1 | t /∈ E] .

Averaging both inequalities, we get

Pn [ME ∈M1 | t ∈ E] > eε · Pn [ME ∈M1 | t /∈ E] + δ

since eε′ = eε+ln(2) = 2 ·eε. This contradicts the hypoth-
esis that the cardinality estimator satisfied (ε, δ)-sketch
privacy at cardinality N .

Thus, Pn [M ∈M1 | t ∈ E] < 2δ and by the defini-
tion ofM1, every output M ∈M2 =M\M1 verifies:

Pn [ME = M | t ∈ E] ≤ eε
′
· Pn [ME = M | t /∈ E] .

We can then use this decomposition to prove Lemma 22.
Lemma 31 allows us to get two sets M1 and M2 such
that:

– Pn [ME ∈M2 | t ∈ E] ≤ 2δ; and
– for all M ∈M1:

Pn [ME = M | t ∈ E] ≤ 2eε · Pn [ME = M | t /∈ E] .

We decompose Pn [add (ME , t) = ME | t ∈ E] into

Pn [add (ME , t) = ME ∧ME ∈M1 | t ∈ E]
+ Pn [add (ME , t) = ME ∧ME ∈M2 | t ∈ E] .

The same reasoning as in the proof of Lemma 13 gives

Pn [add (ME , t) = ME ∧ME ∈M1 | t ∈ E]
≤ 2eε · Pn [add (ME , t) = ME ∧ME ∈M1 | t /∈ E]
≤ 2eε · Pn [add (ME , t) = ME | t /∈ E]

and since Pn [ME ∈M2 | t ∈ E] ≤ 2δ, we immediately
have

Pn [add (ME , t) = ME ∧M ∈M2 | t ∈ E] ≤ 2δ.

We conclude that

Pn [add (ME , t) = ME | t ∈ E]
≤ 2eε · Pn [add (ME , t) = ME | t /∈ E] + 2δ.

Now, Lemma 3 gives P [add (ME , t) = ME | t ∈ E] = 1,
and finally Pn [add (ME , t) = ME | t /∈ E] ≥

( 1
2 − δ

)
·

e−ε.

D Proof of Lemma 26
Let n ≥ N and δ > 0. Suppose that a cardinality estima-
tor does not satisfy

(
ε
δ , δ
)
-sketch privacy at cardinality

n. Then with probability strictly larger than δ, the out-
put does not satisfy ε

δ -sketch privacy. Formally there
is M2 ⊆ M such that Pn [ME ∈M2 | t ∈ E] > δ, and
such that εn,t,M > ε

δ for all M ∈ M2. Since all values
of εn,t,M are positive, we have∑

M

Pn [ME = M | t ∈ E] · εn,t,M

≥
∑

M∈M2

Pn [ME = M | t ∈ E] · εn,t,M

>
ε

δ

∑
M∈M2

Pn [ME = M | t ∈ E]

> ε.

Hence this cardinality estimator does not satisfy ε-
sketch average privacy at cardinality n.

E Proof of Theorem 30
First, let us formally define a HyperLogLog cardinality
estimator.

Definition 32. Let h be a uniformly distributed hash
function. A HyperLogLog cardinality estimator of param-
eter p is defined as follows. A sketch consists of a list
of 2p counters C0, . . . , C2p−1, all initialized to 0. When
adding an element e to the sketch, we compute h(e),
and represent it as a binary string x = x1x2 . . .. Let
b(e) = 〈x1 . . . xp〉2, i.e., the integer represented by the
binary digits x1 . . . xp, and ρ (e) be the position of the
leftmost 1-bit in xp+1xp+2 . . .. Then we update counter
Cb(e) with Cb(e) ← max

(
Cb(e), ρ (e)

)
.

For example, suppose that x = 10001101 . . . and p = 2,
then b (e) = 〈10〉2 = 2, and ρ (e) = 3 (the position of
the leftmost 1-bit in 001101 . . .). So we must look at the
value for the counter C2 and, if C2 < 3, set C2 to 3.

To simplify our analysis, we assume in this proof
that |U| is very large: for all reasonable values of n, pick-
ing n elements uniformly at random in U is the same as
picking a subset of U of size n uniformly at random.
In particular, we approximate Pn [ME = M | t /∈ E] by
Pn [ME = M ].

First, we compute εn,t,M for eachM , by considering
the counter values of M . We then use this to determine
εn,t, and averaging them, deduce the desired result.
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Step 1: Computing εn,t,M
Let t ∈ U , and M ∈ M such that

Pn [ME = M | t ∈ E] > 0. Decompose the binary string
h (t) = x into two parts to get b (t) and ρ (t). Denote by
C0, . . . , C2p−1 the counters of M . Note that M = ME is
characterized by two conditions:

– REACHE(i) for all 0 ≤ i < 2p, where REACHE(i)
abbreviates Ci > 0 −→ ∃e ∈ E. b(e) = i ∧ ρ(e) = Ci.
For each non-empty bucket, an element with this
number of leading zeroes was added in this bucket.

– ∀e ∈ E. ρ(e) ≤ Cb(e) (notation MAXE). No ele-
ment has more leading zeroes than the counter for
its bucket.

Now, we compute the value of εn,t,M , depending on
the value of Cb(t). Without loss of generality, we assume
that b(t) = 0.

Case 1 : Suppose C0 = ρ(t).
We compute the probability of observing M given

t ∈ E. REACHE (0) is already satisfied by t as C0 = ρ (t).
So for ME to be equal to M , E’s other elements only
have to satisfy REACH (i) for i ≥ 1, and MAXE for all
i:

Pn[ME = M | t ∈ E] = Pn−1[MAXE∧∀i≥1.REACHE(i)] .

Next, we compute the probability of observing M

given t /∈ E. This time, all elements of E are chosen
randomly, so

Pn [ME = M | t /∈ E] ' Pn [ME = M ]
= Pn [MAXE ∧ ∀i.REACHE(i)] .

We can decompose this condition: there is a witness e ∈
E for REACHE(0) (i.e., b(e) = 0 and ρ(e) = C0 = ρ(t))
and all others elements satisfy the same condition as in
the case t ∈ E, namely MAXE ∧ ∀i≥ 1.REACHE(i), as
this is equivalent to MAXE\{e}∧∀i≥1.REACHE\{e}(i)
by the choice of e. If e is chosen uniformly in U , then

– The probability of b(e) = 0 is 2−p, since h is a uni-
formly distributed hash function.

– The probability of ρ(e) = ρ(t) is 2−ρ(t): since h

is a distributed hash function, if we note h(t) =
x1 . . . xp.xp+1 . . ., then xp+1 = 1 with probability 1/2,
xp+1xp+2 = 01 with probability 1/4, etc.

Thus, the probability that an element e witnesses
REACHE(0) is 2−p−ρ(t) as x1 . . . xp are independent
of xp+1xp+2 . . .. Since the set E has size n, there are
n possible chances that such an element is chosen:
the probability that at least one element witnesses

REACHE(0) is 1 −
(
1− 2−p−ρ(t))n. We can thus ap-

proximate Pn [ME = M | t /∈ E] by(
1−
(

1− 2−p−ρ(t)
)n)
·Pn−1 [MAXE ∧ ∀i≥ 1.REACHE(i)]

and thus
Pn [ME = M | t ∈ E]
Pn [ME = M | t /∈ E] '

(
1−

(
1− 2−p−ρ(t)

)n)−1
.

Case 2 : Suppose C0 > ρ (t).
We can compute the probabilities Pn [ME = M | t ∈ E]

and Pn [ME = M | t /∈ E] in a similar fashion.

Pn [ME = M | t ∈ E] = Pn−1 [MAXE ∧ ∀i. REACHE(i)]

Pn [ME = M | t /∈ E] ' Pn [ME = M ]
= Pn [MAXE ∧ ∀i. REACHE(i)] .

Since (by hypothesis) Pn [ME = M | t ∈ E] > 0, there
exist n − 1 distinct elements of U which, together, sat-
isfy this condition MAXE∧∀i. REACHE(i). This allows
us to bound Pn [ME = M ] from below. Suppose one el-
ement e of E satisfies b(e) = 0 and ρ(e) = ρ(t), and the
n − 1 other elements in E \ {e} satisfy the conditions
MAXE\{e} and REACHE\{e}(i) for all i. Then E satis-
fies MAXE and REACHE(i) for all i. The lower bound
follows as before:

Pn [ME = M | t /∈ E] >∼(
1−

(
1− 2−p−ρ(t)

)n)
· Pn−1 [MAXE ∧ ∀i.REACHE(i)]

and thus
Pn [ME = M | t ∈ E]
Pn [ME = M | t /∈ E] <∼

(
1−

(
1− 2−p−ρ(t)

)n)−1
.

We can use the results of both cases and immediately
conclude that

εn,t,M <∼ − log
(

1−
(

1− 2−p−ρ(t)
)n)

and that the equality holds if M satisfies Cb(t) = ρ(t).
Step 2: Determining εn

The previous reasoning shows that the worst case
happens when the counter corresponding to t’s bucket
contains the number of leading zeroes of t, i.e., when
ρ(t) = Cb(t):

εn,t = max
M

(εn,t,M ) ' − log
(

1−
(

1− 2−p−ρ(t)
)n)

.

We can then average this value over all t. Since the
hash function is uniformly distributed, 1/2 of the values
of t satisfy ρ (t) = 1, 1/4 satisfy ρ (t) = 1/4, etc. Thus

εn ' −
∑
k≥1

2−k log
(

1−
(
1− 2−p−k

)n)
.
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