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Abstract: Audio-based sensing enables fine-grained hu-
man activity detection, such as sensing hand gestures
and contact-free estimation of the breathing rate. A
passive adversary, equipped with microphones, can
leverage the ongoing sensing to infer private informa-
tion about individuals. Further, with multiple micro-
phones, a beamforming-capable adversary can defeat
the previously-proposed privacy protection obfuscation
techniques. Such an adversary can isolate the obfusca-
tion signal and cancel it, even when situated behind
a wall. AudioSentry is the first to address the privacy
problem in audio sensing by protecting the users against
a multi-microphone adversary. It utilizes the commod-
ity and audio-capable devices, already available in the
user’s environment, to form a distributed obfuscator
array. AudioSentry packs a novel technique to carefully
generate obfuscation beams in different directions, pre-
venting the multi-microphone adversary from canceling
the obfuscation signal. AudioSentry follows by a dynamic
channel estimation scheme to preserve authorized sens-
ing under obfuscation. AudioSentry offers the advantages
of being practical to deploy and effective against an ad-
versary with a large number of microphones. Our ex-
tensive evaluations with commodity devices show that
AudioSentry protects the user’s privacy against a 16-
microphone adversary with only four commodity obfus-
cators, regardless of the adversary’s position. AudioSen-
try provides its privacy-preserving features with little
overhead on the authorized sensor.
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1 Introduction
The ubiquity of commodity devices with microphones
and speakers have made audio-based sensing of human
activity and health attributes feasible and attractive.
Contact-free and audio-based sensing systems can sense
fine-grained human gestures [12, 24, 42, 54, 60], move-
ments [28, 30], behavior [10, 21, 22, 29], and health at-
tributes [33, 37, 53, 55]. Akin to sonars, these audio-
based sensing systems transmit near-ultrasound signals
and analyze their reflections off the human body. As
the mechanical motion of the individuals and their body
parts shapes the reflected signal, the sensing system can
identify a range of human attributes. For example, mov-
ing hands in a certain direction results in a distinct re-
flected signal which allows for identifying hand gestures.
Also, fine-grained finger movements result in detectable
changes in the reflected signal, enabling the develop-
ment of new user interfaces (UIs) for devices. Chest
movement due to breathing impacts the reflected sig-
nal which allows for estimating health situation of an
individual.

Unfortunately, a stealthy adversary can passively ex-
ploit audio-based sensing at a low cost. While situated
outside the user’s environment, such an adversary can
employ a set of microphones, or gain access to the vul-
nerable user-owned audio devices, to capture and ana-
lyze the audio sensing signals that reflect off the user.
Capturing these reflections can lead to serious privacy
and security threats [35]. These threats extend beyond
identifying users’ attributes to impacting their physical
environment:

– Smart home systems and personal devices are in-
creasingly employing audio sensing to accept human
gestures as inputs [12, 24, 54]. In February 2018, El-
liptic Labs announced a new SDK that adds gesture
recognition capability to any programmable device
with a speaker and microphone [6]. The adversary
can stealthily record the audio sensing signals re-
flected by user’s gestures and replay them to con-
trol the smart environment (e.g., light, doors and
security camera). As audio reflections leak more in-
formation than gestures, an adversary can benefit
from the ongoing sensing to discretely monitor user
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behavior, such as their room occupancy and per-
formed activities.

– Audio-based sensing enables contact-free monitor-
ing of the health conditions of individuals. For ex-
ample, researchers have demonstrated the efficacy
of audio sensing in the detection of sleep apnea
(this technology has already been licensed by a sleep
health-care company) [33] and the monitoring of
breathing patterns [37, 53, 55]. A stealthy adver-
sary can leverage the ongoing sensing to remotely
collect sensitive health information about the user.

Preventing privacy leaks from contact-free sensing
has not been addressed previously, except for Phy-
Clock [38], which thwarts the sensing capability of a
single-antenna adversary in the context of wireless radio
signal sensing. PhyClock employs a single obfuscator to
prevent an adversary from correctly decoding the sens-
ing signal and its reflections. It is well-known, however,
that an adversary with multiple antennas can perform
beamforming by focusing its receiver at a particular di-
rection, thereby isolating and removing the effect of any
obfuscation signal [49]. As microphone arrays are very
cheap and accessible [1], a single obfuscator cannot pre-
vent privacy leaks from audio-based sensing.

In this work, we first investigate how a passive and
multi-microphone adversary can circumvent a single-
obfuscator defense, even when separated by a wall.
Then, we propose a mechanism that prevents a multi-
microphone adversary’s from monitoring the user’s be-
havior, activities and health attributes from a distance.
We consider two representative scenarios of audio sens-
ing: hand-gesture recognition and breathing rate estima-
tion. We find that an adversary, behind a wall and 6.5
meters far from the audio-sensing system, can correctly
identify user’s gestures and breathing rate. An adversary
with sensitive microphones can eavesdrop from even a
more extended range.

Naively adding more obfuscators does little to re-
duce privacy leaks from the multi-microphone adversary
because of three challenges. First, there is the issue of
practicality; the users are unlikely to purchase custom-
built obfuscator hardware that are dedicated to protect
their privacy, especially when privacy is a secondary con-
cern for individuals [57]. Second, even if the first issue
were to be overcome, determining how many obfuscators
to deploy is not straightforward. The attacker’s ability
to resolve signal directions is directly proportional to the
number of microphones it uses; trying to scale the num-
ber of deployed obfuscators with the adversary’s micro-
phones is a losing battle. Third, the authorized sensing

of the user has to be preserved even when obfuscation
is running, without requiring any hardware changes.

We propose AudioSentry, a system that prevents an
unauthorized adversary from stealthily identifying user
gestures and health attributes while preserving this ca-
pability for an authorized sensor. In particular, it pro-
tects the user against a strong passive adversary de-
ploying an external set of microphones. AudioSentry ad-
dresses the aforementioned challenges by employing the
widely available commodity devices such as smart TVs,
laptops, and smartphones as a distributed obfuscator
array. Instead of purchasing dedicated devices, the user
can install a program/app on their existing device to
enable AudioSentry. From a high-level perspective, Au-

dioSentry has two components: Multi-directional beam-
forming and obfuscation signal cancellation.

Multi-directional beamforming: AudioSentry

uses distributed beamforming (from the user’s commod-
ity devices) to transmit independent obfuscation signals
across all different directions, some of which will cover
the user. The reflected signal off the user contains a
component from the known sensing signal and another
from a randomized obfuscation signal. Since the signals
received along other directions are independent of the
obfuscation signal hitting the user, the adversary can-
not isolate the reflections from the sensing signal. This
design decision offers a significant advantage in the race
between AudioSentry and the adversary; with a limited
number of commodity devices, AudioSentry can thwart
sensing capability of an attacker with a larger number
of microphones.

Obfuscation Signal Cancellation: In the pres-
ence of multiple obfuscators, it is essential for AudioSen-

try to cancel their interference as to preserve autho-
rized sensing. Interference cancellation requires estimat-
ing the audio channel between each obfuscator and the
sensor which is challenging because of the user’s move-
ment. To address this problem, we propose a novel in-
verse channel estimation scheme that runs concurrently
with sensing. In this scheme, each of obfuscators esti-
mates the channel with the authorized sensor and com-
municates the estimated channel with the obfuscation
signal over a secure out-of-band channel, such as WiFi.
With access to such information, the authorized sensor,
but not the adversary, can cancel the interference caused
by obfuscation.

We have implemented AudioSentry using commodity
speakers and evaluated it extensively against different
adversaries. Our evaluation shows that, with only four
commodity speakers, AudioSentry limits the information
inferred about the user even when the adversary in-
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creases its array 16 microphones. With 16 microphones,
the adversary’s gesture recognition accuracy is close to
21% (11% for a random guess) and its average error for
breath rate estimation is more than seven breaths per
minute (the average human breathing rate is between 12
and 20 bpm). AudioSentry achieves this privacy protec-
tion across various adversary placements/configurations
and with little overhead on the authorized sensing.

In summary, this paper has the following contribu-
tions:

– demonstrating that a single obfuscator is ineffective
against a modest and far multi-microphone adver-
sary, even when a wall separates them (Sec. 3);

– a novel mechanism to employ a limited number of
commodity devices to thwart the sensing of an at-
tacker with a larger number of microphones (Sec. 5);

– a novel inverse channel estimation approach to pre-
serving authorized sensing even with the presence
of multiple obfuscators (Sec. 6); and

– the implementation and extensive evaluation of Au-
dioSentry which highlights its privacy preserving ca-
pabilities and low overhead (Sec. 7).

2 Background
In this section, we provide a primer on audio-based sens-
ing and signal obfuscation.

2.1 Audio-based Sensing

In an audio sensing scenario, there are two entities:
the sensor and the target. The sensor has two com-
ponents, a transmitter (speaker) and a receiver (micro-
phone). While the microphone and speaker are usually
co-located (e.g., the smartphone as a sensor), they do
not have to be as such. The speaker emits a known sens-
ing signal, S(t) towards the target (e.g., an individual).
S(t) which can be modeled as a baseband signal s(t)
modulated at a carrier/sensing frequency fc, where fc
is in the inaudible range, typically between 17 kHz and
20 kHz. The signal S(t) travels through a physical chan-
nel to reach the microphone of the receiver. Within this
physical channel, when S(t) hits the target, the signal
undergoes three phenomena: (1) the user absorbs part
of it, (2) another part reflects back to the environment
in different directions, and (3) the reflected part under-

goes a Doppler shift (shift in the frequency) due to the
mechanical movement of the target.

As a result, the sensor’s microphone receives rφ(t)
along an incident angle φ, which can be expressed as:

rφ(t) = α× s(t)× cos(2π(fc + fD)(t−∆t)), (1)
where α is the amplitude change, ∆t is the delay and
fD is the Doppler shift. While these three parameters
are each function of φ, we slightly abuse the notation
by omitting φ from α, ∆t and fD in Eq. (1). A single
microphone receives omni-directionally where there is
no notion of φ. On the other hand, an array of micro-
phones is able to separate received signal across different
directions.

The parameters α, ∆t and fD, characterize the au-
dio channel between the target and the sensor. In the au-
dio channel, both free space propagation and reflection
attenuate the signal amplitude, resulting in a smaller α.
The propagation time (function of the distance), as well
as the target movement, determine the delay ∆t. Finally,
the target movement determines the value of Doppler
shift fD. Audio sensing applications utilize these three
parameters to characterize the target reflecting the sens-
ing signal. For example, the Doppler shift created by
hand movement can be used to identify different hand
gestures.

2.2 Sensing Obfuscation

An obfuscator aims to hide these three channel parame-
ters, at every signal path, to prevent the adversary from
obtaining useful information. Only the authorized sen-
sor should be able to sense the user and retrieve informa-
tion such as gesture or biometrics. Consider the case for
obfuscating the adversary’s received audio signal rφ(t).
The obfuscator emits a signal oφ(t) along direction φ so
that the microphone receives: ro(t) = oφ(t) + rφ(t). The
obfuscator designs oφ(t) in such a way that the received
signal ro(t) leaks little information about the parame-
ters of rφ(t): α, ∆t, and fD.
Amplitude gain α: Obfuscating the gain is straightfor-
ward as the obfuscator randomly modifies the amplitude
of the obfuscation signal through changing its normal-
ized volume between 0 and 1.
Delay ∆t: Directly delaying the obfuscation signal in
the digital domain introduces discrete delay (increments
of 22 µs for Fs = 44.1 kHz audio sampling rate). Instead,
an obfuscator can add an additional initial phase to the
sensing signal to manipulate the delay with higher res-
olution. With an initial phase θ, the obfuscation signal
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is:
oφ(t) = cos(2π(fc + fD)t+ θ) (2)

which can be organized as

oφ(t) = cos
(

2π(fc + fD)
(
t+ θ

2π(fc + fD)

))
The introduced equivalent delay is −θ

2π(fc+fD) , which
is a continuous function of θ. The obfuscator can then
modify θ to obtain fine-grained control over the equiva-
lent delay, without actually delaying the signal.
Doppler shift fD: To emulate Doppler shift effect,
the obfuscator transmits signals with different frequen-
cies to cover the possible Doppler shift range of the
original sensing signal. Specifically, the obfuscator si-
multaneously transmits on the frequencies {fl, · · · , fl +
n∆f, · · · , fh} to cover the reflected signal (rφ(t)). The
Doppler shift can be estimated as fD = ∆v

c fc, where ∆v
is the relative speed between reflector and receiver, c is
the speed of sound, and fc is the sensing frequency.
Obfuscation signal: In order to hide all three channel
parameters, the obfuscation signal along a certain signal
path, φ, can be given as:

oφ(t) =
fl+n∆f≤fh∑

n

αn × cos(2π(fl + n∆f)t+ θn) (3)

3 System and Threat Models

3.1 System Model

Our audio sensing scenario involves a sensor and the
user. The sensor employs a commodity device, with a
speaker and a microphone, to sense the user’s behav-
ior and attributes as explained earlier in Sec. 2. In the
same environment, AudioSentry leverages the existence
of other commodity devices, each with omni-directional
speakers and microphones, to provide its privacy pre-
serving features. AudioSentry requires those devices to
be programmable and equipped with WiFi, such as
smart TVs (or those with Chromecast), laptops, smart
home assistants (e.g., Google Home mini), tablets, and
smartphones. AudioSentry runs a software component
on those commodity devices to transmit a specifically-
coordinated obfuscation signal that prevents the unau-
thorized entities from sensing the user while preserving
this capability for the authorized sensor.

3.2 Threat Model

An adversary aims to stealthily exploit the ongoing au-
dio sensing to identify the user’s behavior and health
attributes. To that end, the adversary can be one of the
following two types: (i) It deploys an array of micro-
phones at a distance (e.g., at a neighboring apartment).
The adversary performs its attack with a dedicated
microphone array, and does not have access/control
over the user-owned commodity devices. (ii) Alterna-
tively, it could potentially compromise user-owned and
microphone-enabled devices to achieve stealthy audio-
based sensing. Such compromises can happen on mo-
bile/browser platforms by abusing microphone permis-
sions [13, 16, 17, 43]. Note than attacker can perform
this attack with a single microphone, but in this paper,
we consider a stronger threat model than can thwart
single-obfuscator defenses. We assume that the adver-
sary is capable of synchronizing its microphone array to
achieve receiving beamforming, to identify the different
signal paths (more on that in Sec. 3.3). The adversary
can steer its beam direction electronically during offline
processing, without needing to adjust the array config-
uration when eavesdropping.

Further, we assume a strong passive adversary that
can recover the precise locations of the target user, the
authorized sensor, and the obfuscators through blind
source separation. Conventionally, blind source separa-
tion is a signal processing technique that helps the re-
ceiver to recover independent signal streams from un-
known sources. In our model, the knowledge of all sig-
nal source locations allows the adversary to accurately
perform beam steering without the need for source sep-
aration, yielding the strongest performance. Note that
the precise user location is not absolutely necessary for
blind source separation, but can significantly improve
the performance of a strong adversary with such infor-
mation.

The adversary aims to extract the physical chan-
nel information of the sensing signal reflected off the
target user, which contains physical information about
the user. By eavesdropping and analyzing the physical
channel information, the adversary can obtain private
personal information about the target users in their pri-
vate spaces, such as health condition inferred from res-
piration rate information. Besides, the adversary can
replay the recorded reflected signal to impersonate the
user’s gestures and behavior. This possible attack raises
alarming security risks when audio sensing serves as a
user-input mechanism for devices [54].



Privacy Protection for Audio Sensing Against Multi-Microphone Adversaries 150

Fig. 1. Experiment setup
of a 8-microphone adversary
and a single obfuscator. Ox
short for obfuscator.

Fig. 2. Adversary micro-
phone array, separated with
the user by 6 meters and
with a wall in between.

Finally, AudioSentry utilizes WiFi as a secure out-
of-band (OOB) channel to synchronize the authorized
sensor with the other commodity devices. We assume
that all devices (authorized sensor and obfuscators) are
connected to the same WiFi network that is properly se-
cured, such that the adversary cannot intercept/modify
the WiFi traffic. AudioSentry has no option but to trust
those commodity devices; otherwise, its operation will
be compromised and will fail to deliver the promised
privacy provisions.

3.3 Privacy Threats from Passive Sensing

The state-of-art in protecting the privacy of users from
a passive adversary focuses on employing a single omni-
directional obfuscator, as explained in Sec. 2.2. In the
following, we show that a single omni-directional obfus-
cator does little to prevent a multi-microphone adver-
sary from correctly identifying the user’s fine-grained
gestures and accurately estimating the breathing rate.
In addition, we show that the adversary can effectively
compromise user’s privacy even when a wall separates
both of them.

3.3.1 Experiment Setup

Our experimental setup (Fig. 1) consists of four entities:
the sensor, the user, an obfuscator, and an adversary be-
hind a concrete wall with around 12 to 17 cm in width.
The sensor has a speaker that emits the sensing signal
and the obfuscator is another speaker emitting an ob-
fuscation signal. Fig. 2 shows the adversary microphone
array consisting of eight microphones, each with -30dB
sensitivity. Each pair of adjacent microphones are sepa-
rated by 7 cm. The cost of the microphone array is less
than $120 (including the synchronization board and the
microphones). The array is placed right next to the con-

crete wall, while the legit sensor, obfuscator device, and
user are in another room.

Close to the sensor, a user moves his hand back and
forth. The adversary aims to utilize its multiple micro-
phones to cancel the effect of the obfuscation signal and
estimate user’s hand movement as well as the breath-
ing rate. Behind-the-wall adversary demonstrates the
feasibility of a practical attack, where the adversary’s
microphones are deployed outside user’s room behind a
wall or door. The distance between the adversary’s ar-
ray and the target is 6 m, with the user standing around
5.5 m away from the wall. Beyond this range, it becomes
difficult for our low-cost microphone array to succeed in
attack, but With more sensitive microphones, the adver-
sary can considerably increase its sniffing range.

In the first scenario, the adversary tries to identify
the user’s gesture by observing the Doppler shift pattern.
The sensor transmits a single tone at 16 kHz as S(t), and
the obfuscator transmits o(t) such that:

o(t) =
fl+n∆f≤fh∑

n

αn × cos(2π(fl + n∆f)t+ θn) (4)

where fl = 15.85 kHz, fh = 16.15 kHz, n is integer,
∆f = 5 Hz, and θn changes randomly between 0 and 2π
every 100 ms.

In the second scenario, the adversary attempts
to identify the user’s breathing rate. We implement
the breathing rate estimation system, ApneaApp [33],
where the sensor plays Frequency Modulated Contin-
uous Wave (FMCW) signals between 16 kHz and 18
kHz. Each chirp is 512 samples long, and the receiver
groups ten chirps to improve FFT resolution similar To
ApneaApp. The obfuscator plays the same signal as in
Eq. (4), with fl and fh set to 16 kHz and 18 kHz, respec-
tively (to cover the frequency range of the transmitted
signal).

3.3.2 Signal Recovery

The objective of the adversary is to obtain hu,a which
is the acoustic channel between the user and adversary.
To that end, the adversary obtains each of S(t), o(t)
and ra(t) = (α · S(t) + β · o(t)) ∗ hu,t(t) by steering its
receiving beam off-line towards the sensor, obfuscator
and the user, respectively. The adversary utilizes its mi-
crophone array to achieve directional beamforming [48]
by delaying the signal received by each microphone by a
different amount, which coherently combines the signal
from a certain direction.
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Fig. 3. Doppler shift pattern extracted by the adversary be-
hind a wall 6 meters away from the user.
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Fig. 4. Chest motion signal recovered by adversary behind
a wall 6 meters away from the user, in (a) time domain (b)
frequency domain

To recover the channel, hu,a, the adversary removes
the effect of (α · S(t) + β · o(t)) from the received signal
ra(t). In our experiments we use a special preamble to
calibrate α and β. A real adversary could easily utilize
past information to achieve the calibration. Nonetheless,
we find that even if we do not consider these two param-
eters, the Doppler shift pattern can still be recovered, al-
beit with slight quality degradation. hu,a(t) is obtained
as:

ĥu,a(t) = F−1 F{ra(t)}
F{αS(t) + βo(t)} (5)

where F represents the Fourier Transformation.
For both applications, we experimented with a num-

ber of state-of-the-art approaches [12, 15, 24, 33, 54, 55]
to decide on the best performing techniques. We settled
on the approach of Das et al. [15] for the gesture recog-
nition application and that of Nadakumar et al. [33] for
the breathing rate estimation application.

Extracting hand gestures. In the first scenario,
a user moves his hand forward, backward and then for-
ward. Fig. 3 shows the Doppler shift, extracted from
ĥu,a(t) over 1.75 seconds. It is clear from the figure how
the Doppler shift pattern is consistent with the user
movement, although an obfuscator was running.

Extracted breathing rate. In the second sce-
nario, we estimate the channel ĥu,a(t) for 60 seconds,
during which the user is breathing normally. Using the
estimated channel, we extract the chest movement as ev-
ident from Fig. 4. The figure shows the extracted chest
movement pattern in the time and frequency domains.
The frequency spectrum of the chest movement reveals
a peak at 0.201 Hz, which corresponds to 12.1 breaths
per minute (bpm); the ground truth was 11 bpm.

Fig. 5. High-level overview of AudioSentry. The adversary
receives the combined reflections resulting from s(t) (blue
beam) and o1(t) (purple beam) hitting the user. Since the Ox
array sends decorrelated beams in all directions, AudioSentry
prevents the adversary from receiving o1(t) and estimating the
channel.

We also conducted the same attack experiments
with the adversary mic array placed in the same room
with the user, with the same 6 m distance between them.
Without the wall, the adversary receives much stronger
audio signals from the user, legit sensor and obfuscator,
leading to even better estimation accuracy.

4 AudioSentry Overview
AudioSentry addresses the above privacy threats by al-
lowing only authorized clients to sense the user. From
a high-level perspective, AudioSentry employs signal ob-
fuscation to hide the sensing signal’s reflections off the
user from a multi-microphone adversary. Such adversary
can focus its receiving beam into different signal paths
to isolate the obfuscation signal and then remove its ef-
fect from the user reflections. AudioSentry counters this
adversary by applying obfuscation along different sig-
nal paths, which necessitates using multiple speakers. It
preserves user’s privacy while by addressing three chal-
lenges: the number of speakers needed, the practicality
of deployment, and preserving the authorized sensing.

Multi-beam Beamforming.
AudioSentry could attempt to obfuscate as many signal
paths as possible, which locks it in an arms-race between
its number of speakers and the adversary’s number of
microphones. Alternatively, AudioSentry only hides the
signal paths corresponding to the user reflections while
preventing the leak of the obfuscation signal (otherwise
the adversary can cancel its effect). To hide those signal
paths, AudioSentry employs a novel multi-beam beam-
forming mechanism. It generates decorrelated and ran-
domized signals along the 360 degrees, as evident in
Fig. 5.
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As such, the reflections of the user will have two
overlapping components: those resulting from the orig-
inal (and known) sensing signal and those from the
obfuscation signal. Because the obfuscation signal is
decorrelated in different directions, the adversary can-
not employ beamforming to isolate the obfuscation sig-
nal. Without access to the obfuscation signal hitting
the user, the adversary cannot properly discern the re-
flections from the sensing signal.

Distributed Obfuscation with Commodity Devices.
Generating decorrelated obfuscation beam requires mul-
tiple speakers. It is highly impractical to require the user
install a set of dedicated obfuscator devices in their envi-
ronment, given that privacy is usually a secondary con-
cern [57]. AudioSentry meets this challenge through lever-
aging the commodity devices, such as smart TVs, home
assistants, and PCs, in the user’s environment to form a
distributed array of audio obfuscators. Our evaluations
of AudioSentry shows that it needs only four speakers
to defend against an adversary with 16 microphones.
Commodity devices that are already available in home
environments can easily meet this requirement. Smart-
phones, tablets and laptops generally pack two speak-
ers [2, 4]. Smart speakers1 contain multiple speakers; for
example, Apple HomePod has 7 speakers [3]. Also, con-
nected TVs2 usually have two speakers. These commod-
ity devices only need to perform AudioSentry obfuscation
when the audio sensing application is active, which pre-
serves Ox device battery life. In addition, devices such
as TV and smart speakers are typically plugged in, with-
out battery life concern.

There are three problems associated with beamform-
ing on a set of distributed and heterogeneous devices:
device synchronization, beamforming weight computa-
tion and audio hardware heterogeneity. We address the
first issue by retrofitting an existing mobile device syn-
chronization solution that forms a distributed micro-
phone array on a set of smartphones [48]. For the sec-
ond problem, we first perform audio-based localization
to determine the relative locations among obfuscators.
Then, we estimate the phase offset of each transmitter to
steer multiple beams to different signal paths. AudioSen-
try overcomes the third issue by performing a one-time
initial calibration to compensate for audio hardware di-
versity at run time as will be evident in Sec. 6.

1 16% of Americans own a smart speaker [7].
2 58% of TV households in the US have a connected TV [5].

Fig. 6. Linear array directional beamforming example.
Preserving Authorized Sensing.
As a result of obfuscation, the authorized sensor experi-
ences interference from the obfuscation signals. We de-
vise an interference cancellation mechanism that pre-
serves the functionality of the authorized sensor. The
interference, to be canceled, is a function of each of the
obfuscation signals and the channel between each obfus-
cator and the sensor. The authorized sensor has to know
each of the obfuscation signals and each of the channels
as to cancel them. Achieving the first task is straight-
forward; AudioSentry utilizes WiFi as an OOB channel
to communicate the obfuscation signal information from
each obfuscator to the sensor.

For the second task, we propose a dynamic channel
estimation scheme; it has to be dynamic because the
user movement continuously changes the channel. One
approach is to have each obfuscator transmit a known
signal sequence so that the sensor can perform the chan-
nel estimation. This process introduces additional inter-
ference to the channel and requires more coordination
between the obfuscators. Instead, AudioSentry leverages
the channel reciprocity to have the sensor broadcast a
training signal on a close, but different, frequency range
from that of the sensing. After receiving the training
signal, each obfuscator estimates the channel between
itself and the sensor. Then, it sends the estimated chan-
nel parameters over the OOB channel to the sensor.

5 Multi-Beam Beamforming
In this section, we explain how AudioSentry employs mul-
tiple commodity devices to create a distributed beam-
forming array. As described earlier, this array gener-
ates decorrelated obfuscated signals along different di-
rections.

5.1 Directional Audio Transmission

Audio beamforming employs multiple speakers (micro-
phones) to transmit (receive) directional audio signals
— i.e., boost the transmitted (received) signal in specific
directions and decrease it towards others.
Consider the N -speaker array, in linear arrangement,
with distance d separating the speakers in Fig. 6. To
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create a directional signal towards an Angle of Depar-
ture (AoD) ψ, the signal from each speaker is delayed
by a specific time delay to compensate for the different
path length of each of the signals. For example, Fig. 6
shows the path length difference of the transmitted sig-
nal from 1st speaker relative to the ith speaker’s along
ψ as (i−1)d cosψ. To constructively combine the signals
along ψ, a classical beamforming algorithm delays the
transmitted signal from the ith speaker by (i− 1)d cosψ

c

(c is the speed of sound in air).
We adapt this classical beamforming algorithm to

fit AudioSentry’s context. AudioSentry employs a set of
heterogeneous and arbitrarily placed speaker elements
to steer an obfuscation beam in different directions.
In order to steer the beam towards a particular direc-
tion, AudioSentry picks a reference speaker and computes
the desired delay τ between the reference and each of
the other speakers based on their positions (estimating
the position will be described later). As long as each
speaker’s signal is constructively combined with the ref-
erence speaker’s signal along ψ, the overall signal would
be boosted along this direction. Suppose the reference
speaker and another speaker, i, have coordinates (x0, y0)
and (xi, yi), then their path length difference along ψ
(same angular coordination system as Fig. 6) is:

pdi =
√

(y0 − yi)2 + (x0 − xi)2 cos
(
ψ − arctan

(
y0 − yi

x0 − xi

))
(6)

Then, the obfuscation signal to be transmitted from
the speaker i has to be delayed by τi = di

c . We follow the
same approach of Sec. 2.2 to control the delays of the
obfuscation signals by manipulating their initial phases.

5.2 Steering Multiple Beams

AudioSentry transmits obfuscation beams with different
channel parameters (delay, magnitude, and frequency
shift) along different AoDs. Suppose we aim to create
multiple obfuscation signals o1(t), · · · , om(t) with AoD
as ψ1, · · · , ψm, respectively. We create each directional
om(t) following the method described in Sec. 5.1. For
simplicity, we first assume each om(t) is a narrow band
signal cos(2πfmt) and extend to wideband signal in
Sec. 5.3. The signal transmitted by the ith speaker to
create om(t) along ψm is:

oim(t) = αm cos(2πfm(t− τ im) + θi) (7)
where τ im is the delay created by the ith speaker relative
to the reference speaker in the way described in Sec. 5.1.

The signal received at a far away position along direction
ψ can be expressed as (propagation loss omitted):

om(t, ψ) =
∑
i

αm cos(2πfm(t−τ im)+θm+ pdi
λm

2π), (8)

where pdm is the path difference as defined by Eq. (6)
and λm = c

fm
. Next, we have each speaker i play∑

m oim(t). With N speakers, we are able to steer N − 1
independent beams. Since the parameters of each om(t)
are independent, AudioSentry creates different obfusca-
tion signals along different directions.

5.3 Obfuscation Signal Design

The obfuscator samples αm and θm from two uniform
distributions in the range of (0, 1) and (0, 2π), respec-
tively. It continuously varies both parameters to create
time-varying channel parameters that are uncorrelated
with the actual channel.

To cover the Doppler shift of the sensing signal, Au-
dioSentry performs wideband obfuscation, which can be
obtained by summing the expression of Eq. (8) over the
different tones fm covering the desired frequency range:
{fl, · · · , fl + n∆f, · · · , fh}. Since the sensor has a fixed
location, the obfuscator sets the values of fl and fh ac-
cording to the maximum velocity of the target, which
depends on the sensing application. ∆f – a function of
the signal collection time τ – is chosen such that the
obfuscation signal contains as much frequency compo-
nents as possible. Given τ and the sampling rate Fs,
the receiver collects Fs · τ samples in the time domain.
The frequency resolution, ∆f , is then the width of each
FFT bin: FS

FS ·τ = 1
τ .

Even though the obfuscation signals parameters
change continuously (which affects the obfuscation
beam pattern), the obfuscation signal still consists of
de-correlated beams in all the directions.

5.4 Enabling a Distributed Speaker Array

AudioSentry relies on commodity devices to form a dis-
tributed obfuscator array. Its beamforming technique
has two requirements: (i) the speakers in the array need
to be synchronized to audio sample level and (ii) the
relative positions of the speakers need to be known. For-
tunately, both of these problems have been solved for
commodity devices [36, 48]; AudioSentry adopts both so-
lutions to enable its operation as follows.
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AudioSentry employs Dia [48] to achieve sample-level
synchronization between the audio I/O clocks commod-
ity devices. It first synchronizes the CPU clocks of
the different devices by timestamping the WiFi bea-
cons overheard from the access point. Then, it synchro-
nizes the audio I/O clock of each device with its CPU
clock. The average audio synchronization error of Dia
for Nexus smartphones is between 1 to 3 audio samples
at a sampling rate equal to 44100 Hz. AudioSentry per-
forms the synchronization over WiFi, which we assume
is secure. Aside from jamming, the adversary cannot
manipulate the synchronization process to hinder Au-

dioSentry’s protection.
AudioSentry addresses the localization issue through

BeepBeep [36], which can achieve an accuracy of 0.8 cm
in ranging commodity smartphones. AudioSentry breaks
the localization into a series of stages, by ranging each
pair of its devices at each stage – taking n(n−1)/2 stages
for n devices in the speaker array. AudioSentry needs to
perform the relative localization of its devices only once
unless some device moves (where it has to repeat for
the moving device relative to two other devices with
a known location). At each stage (involving a pair of
devices), a device (initiator) emits a specially-designed
sound signal (beep), while simultaneously recording its
own and the peer’s (responder) beep. By measuring the
time between these two beeps, each device can compute
the round trip time of the beep, consequently the dis-
tance between the two devices. With more than three
devices in the array, AudioSentry can easily map the pair-
wise distances to locations relative to the reference de-
vice (every three devices form a triangle which can be
defined using the lengths of its sides). Apart from Beep-
Beep, a recently proposed audio localization scheme
Sonoloc [18] can also be applied in AudioSentry. Sonoloc
localizes up to 100 commodity devices in a fully auto-
matic fashion without user intervention, and only re-
quires software changes to the commodity audio devices,
similar to BeepBeep. Both these two solutions requires
minimum user effort.

The original BeepBeep and Sonoloc are potentially
vulnerable to the adversary playing forged beeps at a
high power. The forged beeps can lead the initiator to
miscalculate peer locations, significantly impairing the
beamforming performance. AudioSentry addresses this
problem by having the initiator prepend a preamble
waveform to the beep. The initiator randomly decides
on the preamble and communicates it to the responder
over secure WiFi connection. The responder can verify
whether the beep originated from the initiator or not.
Note that the adversary recording the preamble and

playing it back does not compromise the localization
procedure, as the forged response only deceives the ini-
tiator if it arrives earlier than the true response. The
latter can happen only if the adversary is closer to the
initiator than the responder.

5.5 Privacy Properties

AudioSentry achieves its privacy protection through a
two-step process. First, it hides the reflections off-the-
user from the sensing signal by covering them with the
reflections from the obfuscation signal. Second, it uses
beamforming to prevent leaking the obfuscation signal
to the adversary.

Single-path Obfuscation. Since the distributed
obfuscator array covers the 2π range, one obfuscator
path is guaranteed to hit the target user. With the user
not being a perfect mirror, the obfuscating signal hitting
the user deflects over a wide angle range (almost π as our
experiments show). In practice, the obfuscators are dis-
tributed in the environment around the user, and each
of their signals deflects around the π range, together
covering the whole 2π range almost for certain. As a re-
sult, the adversary receives on the path between it and
the target user: r(t) = (α · S(t) + β · oi(t)) ∗ hu,a(t). The
received signal contains two components, the reflections
from the sensing signal and those from the obfuscation
signal. Since oi(t), by design, is independent from S(t),
the adversary cannot extract hu,a(t) if it does not have
access to oi(t).

Obfuscation Signal Leak. The second task of Au-
dioSentry is then to prevent the adversary from receiving
oi(t). The adversary is only likely to succeed if its loca-
tion allows it to be in the signal path of the obfuscation
signal hitting the user; the obfuscation signal is not a
zero-width beam. In the most extreme case, with a sin-
gle obfuscator (Sec. 3.3), the two copies of obfuscation
signal received by the adversary are highly correlated.
The adversary is successful at sensing the user with ac-
curacy.

Nevertheless, AudioSentry utilizes the multi-
directional beamforming technique to create uncor-
related and non-overlapping beams towards different
directions. As AudioSentry utilizes a distributed array,
it can leverage more transmitters to create more non-
overlapping and narrower obfuscation beams [32, 52].

Fig. 7 shows simulated beam patterns created by
a linear obfuscator as well as a distributed array. Both
arrays consist six obfuscators and generate five indepen-
dent beams. The transmitters of the linear array are
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Fig. 7. Obfuscator beam pattern created by (a) linear array
with half-wavelength separation (b) distributed array. Each
colored line represents a different beam.

each separated by half-wavelength. On the other hand,
the obfuscators of the distributed array are randomly lo-
cated within a 4 m by 8 m area. In the textbook case of
the linear array [50, 51] (which we show for comparison),
it is evident that each beam is made up of one single
wide main lobe and a series of very weak side lobes. In
the distributed array (the real-world case of AudioSen-

try), the individual beams do not exhibit a well-defined
shape. Instead, they contain a series of thin lobes with
similar strengths pointing at different directions.

In the case of AudioSentry, which employs a dis-
tributed obfuscator array, it is difficult for the adversary
to position itself in the same lobe as the target user to
perform effective eavesdropping. The reason is that each
of the obfuscation beams is a series of very thin lobes, in-
stead of a single wide main lobe in the case of the linear
array. We also confirm this observation in our evalua-
tion findings, displayed in Fig. 9. There, we show that
the adversary’s performance is consistently low when we
move its position around the target user. In addition,
the adversary is unlikely to recover the original obfusca-
tion signal even if it collects signals at various locations.
Since the Ox signal directions are randomly changed, it
is almost impossible for the adversary to keep moving
to the correct angle to receive the correct Ox signal that
it needs to remove from the received signal.

6 Preserving Authorized Sensing
The key to preserving authorized sensing is to cancel the
obfuscation signal at the authorized sensor – essentially
an interference cancellation problem. The interference
(obfuscation signals) received by the authorized sensor
can be expressed as:

I(t) =
∑
i

oi(t) ∗ hOi,S (9)

where hOi,S represents the channel from Oi to the au-
thorized sensor. The obfuscation signal transmitted by
Oi, denoted by oi(t), can be known via the secure WiFi

link between Oi and authorized sensor. The sensor has
to know each hOi,S to perform its sensing.

A common approach to estimate the audio chan-
nel hOi,S is the Swept Sine technique [19], where the
obfuscator’s speaker plays an exponential time-growing
frequency sweep signal as a channel sounding sequence.
The sensor’s microphone deconvolves the received signal
with the original one (sounding sequence) to obtain the
channel impulse response.

Reverse Channel Estimation.
Allowing each obfuscator to transmit a channel sound-
ing sequence is not scalable. It introduces coordination
problems between the obfuscators in the time and fre-
quency domains, as each obfuscator has to perform the
channel sounding on a separate frequency or time slot.
Instead, AudioSentry leverages the audio channel reci-
procity [19] to estimate the channel between each obfus-
cator and the authorized sensor. The authorized sensor’s
speaker plays a single channel sounding sequence to be
received by all obfuscators’ microphones. The obfusca-
tors need not play multiple channel sounding sequences
simultaneously. This operation is feasible as the obfus-
cators, which are the mobile devices, TV, laptops or
smart speakers at home, are already equipped with mi-
crophones, so our solution requires no additional hard-
ware.

AudioSentry places the channel sounding sequence
at a different frequency range from the sensing signal
so that the obfuscators can transmit oi(t) and receive
the swept sine signal at the same time. Once the sound-
ing sequence is received, the obfuscator estimates the
channel and sends it to the authorized sensor via WiFi.
Given the obfuscation signal described in Equation 3,
AudioSentry uses a sweep sine signal in the frequency
range of fl − 1000 to fl − 500 Hz. It is played every 100
ms by the authorized sensor, which provides ten chan-
nel measurements per second. The 500 Hz gap between
the channel sounding signal and the obfuscation signal
serves to prevent interference.

Obfuscation Signals Synchronization at the Sensor.
Although the obfuscators are synchronized for transmis-
sion beamforming, different distances between the ob-
fuscators and the authorized sensor result in different
arrival time of the signals. Hence, Eq. (9) should be re-
written as:

I(t) =
∑
i

oi(t− τi) ∗ hOi,S (10)
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where each oi(t) experiences a different delay τi. Au-

dioSentry compensate for this delay by adding a pream-
ble, a sweep sine signal spanning 200 Hz, to each obfus-
cator’s transmitted signal oi(t) for the authorized sensor
to synchronize them by performing correlation. The au-
thorized sensor distinguishes each preamble by placing
them on different frequencies. Since the obfuscators and
the authorized sensor are connected via WiFi, the autho-
rized sensor acts as a central controller to allocate all the
obfuscators preambles to non-overlapping frequencies.

As commodity devices have limited audio sampling
rate (mostly up to 44.1 kHz), which supports at most
22 kHz sound playback, this approach limits the max-
imum number of co-existing obfuscators. Nonetheless,
each obfuscator’s preamble only takes up 200 Hz band-
width; a 2 kHz unused frequency range in the ultrasound
range would make enough room for up to 10 obfuscators.
Consider the ApneaApp [33] example where the system
transmits a chirp between 18 kHz to 20 kHz as the sens-
ing signal. The obfuscation signal and channel sounding
preamble occupy additional 300 Hz and 1000 Hz, respec-
tively. Thus, there is still 2.7 kHz within the inaudible
range (16 kHz to 22 kHz) – enough to fit around ten
obfuscators.

Removing the Obfuscation Signal.
Eventually, the sensor obtains the estimated channel
ĥOi,S and the obfuscation signal oi(t) from each of the
obfuscators. The authorized sensor then removes the es-
timated interference factor, Î(t) =

∑
i oi(t)∗ ĥOi,S , from

its received signal. At this stage, the sensor can perform
its sensing logic over the cleaned signal (without inter-
ference).

Commodity Speaker and Microphone Frequency
Responses.
Although the audio channel between an obfuscator and
the authorized sensor is reciprocal, their speakers and
microphones are very likely to exhibit different fre-
quency responses. Let the channel sounding sequence
be x(t), obfuscator’s speaker and microphone frequency
responses as DOTx and DORx, authorized sensor’s speaker
and microphone frequency response as DSTx and DSRx.
Then, the signal received in AudioSentry’s reverse chan-
nel estimation is DSTx ∗ x(t) ∗ DORx. In comparison, the
signal received in the regular channel sounding process
is DOTx ∗ x(t) ∗DSRx.

AudioSentry requires a one-time initial calibration to
compensate for the frequency responses of speakers and

microphones. In the calibration process, the user places
the authorized sensor next to each obfuscator, where Au-

dioSentry has each device transmit a channel sounding
sequence once at a time. By deconvolving the received
signal with the sounding sequence, AudioSentry obtains
DOTx∗DSRx when using the obfuscator as the transmitter,
and DSTx∗DORx the other way around. The user does not
need to repeat this process as the device’s audio hard-
ware do not experience significant changes over time.

When AudioSentry intends to estimate hOi,S , the sen-
sor plays the channel sounding sequence x(t) and the
obfuscator Oi receives yi(t). The sensor estimates the
channel ĥOi,S as:
ĥOi,S = yi(t)∗−1x(t)∗−1(DSTx∗DORx)∗(DOTx∗DSRx) (11)

Computational Overhead.
This interference cancellation scheme poses little over-
head on the real-time performance of the authorized
sensing. The additional computations of the authorized
sensor involve convolving the estimated channel with
the obfuscation signal for each obfuscator, and then sub-
tracting them from the received signal. Thus the com-
plexity is O(Q log(Q)R), where Q is the length of obfus-
cation signal, and R is the number of obfuscators. In a
typical deployment, these values are 4410 and 6, respec-
tively.

We evaluate AudioSentry’s computational overhead
by measuring the total sensing time for an authorized
sensor with and without enabling AudioSentry. We use a
Google Pixel smartphone running Android 7.1.1 as the
authorized sensor. With six obfuscators, the average ad-
ditional delay introduced by AudioSentry is around 360
ms for both gesture detection and breath rate estima-
tion. This delay is unlikely to hinder user experience as
it is insignificant compared to the time the user needs to
perform the gesture (1 to 2 seconds) and the breathing
measurement time (30 to 60 seconds).

7 Implementation and Evaluation
We now present a prototype of AudioSentry along with
its evaluation.
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Fig. 8. AudioSentry’s operation in sensing applications.

7.1 AudioSentry’s Operation

Fig. 8 shows the basic operations of our AudioSentry’s
prototype during the sensing which follows this proce-
dure.

Initiation process. The user controls AudioSentry

through an end device, such as a smartphone. First, the
user installs AudioSentry on the sensor device and desig-
nates it as the authorized sensor device. The user selects
a group of commodity devices in the environment and
connects them to the same WiFi access point. Next, she
installs the AudioSentry app on those devices and desig-
nates them as the obfuscators. At this point, the user
needs to perform the one-time bootstrapping process,
described in Sec. 6, between each obfuscator device and
the authorized sensor. The information about the fre-
quency response of each device is stored at the autho-
rized sensor to be used for obfuscation signal cancella-
tion.

Obtaining obfuscator positions. AudioSentry

asks the user to choose a fixed device as a reference
point for the relative localization procedure. As de-
scribed in Sec. 5.2, AudioSentry requires the relative po-
sitions of obfuscators to perform directional beamform-
ing. When the obfuscators are initially deployed, Au-

dioSentry utilizes the audio ranging approach described
in Sec. 5.4 to perform obfuscator localization. It commu-
nicates the relative location information to the obfusca-
tors via WiFi. It only repeats this process for a device
that has been moved.

Application specific parameter setting. De-
pending on the particular sensing applications, AudioSen-
try sets the parameters for obfuscation signal, such as fl,
fh and ∆f , which we describe in more detail below.

Start the sensing application. The user can start
the sensing application with her end device, which in-
structs obfuscators to start the obfuscation simultane-
ously. During the sensing, AudioSentry keeps performing
the channel estimation and obfuscation signal cancel-
lation at the authorized sensor as long as the sensing
application is active. During this process, the obfusca-
tor distributed synchronization process (Sec. 5.4) runs
once every one second.

7.2 Experiment Setup

We use six commodity speakers as the obfuscator ar-
ray; we distribute them randomly in a 4m × 8m living
room, with random orientations to emulate the position-
ing of commodity devices in a practical home environ-
ment. For the adversary microphone array, we use the
bottom microphones of multiple Pixel phones in a linear
array formation, with every two phones separated by 7
cm. We use eight microphones to form the adversary’s
array unless otherwise specified. We synchronize the ad-
versary microphones offline so that we can fully analyze
the adversary’s performance. Using the phones for the
adversary array instead of a synchronized board was
purely a logistical decision; it does not affect the fidelity
of the reported results. Our authorized sensing system
consists of two co-located Pixel phones, one acting as
the transmitter and the other as the receiver.

We implement two audio sensing scenarios: gesture
recognition and breathing rate estimation. For the for-
mer, we implement a recognition algorithm that identi-
fies nine different hand-based gestures. This algorithm,
akin to those proposed in the literature, extracts the
Doppler shift pattern to recognize the gesture with a
matching pattern. For breath rate estimation, we de-
termine the breath rate as the highest peak in the fre-
quency spectrum of chest motion within the normal
breath rate range (below 20 bpm). In our evaluation,
a user (one of the authors) performs a set of gestures
while both the sensing system and AudioSentry are run-
ning.

The obfuscation signal design follows the descrip-
tion of Section 5.3. We set the values of ∆f , fl, and
fh so that the Doppler shift from the obfuscated sig-
nal covers that from the sensing signal’s reflections. In
our scenarios, the user’s gesture and breathing induce a
relative movement up to 2 m/s. A sensing signal at 20
kHz creates a Doppler shift equal to 118 Hz. Therefore,
in our evaluation, we set fl and fh to fc − 150 Hz and
fc + 150 Hz, respectively (fc is the sensing frequency –
depending on the application).

Following suit of earlier audio sensing applications,
we set ∆f = 5 Hz to ensure that the obfuscated Doppler
shift pattern cannot be distinguished from that of the
authorized sensor.

Although it’s more practical for the adversary to
place its microphones behind a wall, we only evaluate
AudioSentry against the adversary in the same room with
the user for the similar reason we explained in Sec. 3.3.2:
It’s much easier to recover the sensing signals with-
out the wall’s blockage. If AudioSentry is able to defend
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this ’stronger’ adversary, it could also defend against a
’weaker’ adversary behind a wall.

7.3 Evaluation Results

Evaluation Metrics.
We evaluate our system using three metrics: mutual
information, gesture recognition accuracy, and breath-
ing rate estimation error. The latter two metrics are
application-dependent; gesture accuracy measures the
portion of correctly identified gestures at the adversary.
The estimation error metric measures the absolute dif-
ference between the ground truth and the adversary’s
estimate of the breathing rate.

We also report the mutual information between
the channel extracted by the adversary and the autho-
rized sensor, each viewed as a random variable. For
each measurement scenario, we frequently sample the
sensor’s and adversary channel estimates to obtain an
empirically-derived distribution of both. The mutual in-
formation between two random variables characterizes
the amount of information one variable reveals about
another.

Definition 7.1. Mutual Information: Let the random
variable representing the adversary’s estimated channel
be Ĥ, and the random variable representing the au-
thorized sensor’s estimated channel be H. Then the
mutual information can be computed as I(Ĥ;H) =∑
ĥ

∑
h p(ĥ, h) log( p(ĥ,h)

p(ĥ)p(h)
).

The mutual information metric quantifies how much of
the sensing signal’s reflections is embedded in the adver-
sary’s recovered channel. The higher the metric is, the
more descriptive is the adversary’s estimated channel of
the user’s sensing. This metric offers the advantage of
being application independent. It quantifies the informa-
tion leakage in the adversary’s estimated channel, irrel-
evant to what signal processing algorithm the adversary
employs after obtaining the channel.

For each experiment, with a different location and
number of adversary microphones, we record the chan-
nel between the adversary and the user along with all
the beams the adversary’s array can discern. Then, we
apply Eq. (5) to obtain the adversary’s channel using the
known sensing signal and each of the recorded beams. In
the following, we report the results for the beam that
results in a channel estimate that maximizes the mutual
information with authorized sensor’s extracted channel.
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Fig. 9. Adversary mutual information when eavesdropping
from different directions.

Adversary Position. We first investigate the im-
pact of the adversary’s position. In this experiment, we
use six obfuscators and uniformly move the position of
the adversary array around the target user, who ran-
domly performs one of the nine gestures (similar to the
one shown in Fig. 3). The target user is in the center
of the living room, and the separation between the user
and the authorized sensor is 2.5 m. We use two types
of obfuscator array configuration, linear and distributed.
The speakers have half-wavelength separation in the lin-
ear array, and the array is 1.5 m away from the user.
Also, the array aligns with the user and adversary when
the adversary is at the angle of 1.3 rad in Fig. 9. The
distributed array’s speaker positions are randomly cho-
sen inside the room. Fig. 9 shows the measured mutual
information when the adversary array is placed at dif-
ferent angles relative to the user. The authorized sensor
is at the angle of 0 rad.

It is evident that both obfuscator arrays provide sig-
nificant privacy protection, with the mutual information
dropping in half when employing the obfuscators (from
3 bits to 1.5 on average). With around 3 bits of mu-
tual information, without an obfuscator, the adversary
achieves accurate detection results for both the gesture
and breath rate. On the other hand, with around 1.5 bits
mutual information, the adversary’s estimated channel
is completely corrupted (see examples in Fig. 10 (a) and
Fig. 11), which causes the detection to fail.

Interestingly, we find that the linear obfuscator ar-
ray fails to provide decent protection when the adver-
sary, the user, and the obfuscator array are aligned. In
this case (at 1.3 rad), the same obfuscation beam hits
both the adversary and the user, because of the linear
array’s wide main lobe. This allows the adversary to re-
move the obfuscation signal from the user’s reflection,
thus revealing more information about the channel. On
the other hand, the distributed array does not have this
drawback, where we find that the mutual information
suffers some fluctuation, but is consistently low regard-
less of the adversary’s position. This result confirms the
arguments explained in Sec. 5.5.
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Fig. 10. Doppler shift pattern extracted by (a) adversary (b)
authorized sensor. The adversary is located at angle 0 rad.
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domain (b) frequency domain. The adversary is located at
angle 0 rad.

 0  10  20  30  40  50  60

C
h
e
s
t 
m

o
v
e
m

e
n
t

Time (s)(a)
 0

 10

 20

 30

 40

 50

 60

 0  0.5  1  1.5  2  2.5  3  3.5  4

A
m

p
lit

u
d
e
 (

d
B

)

Frequency (Hz)

Detected  breath  
rate:  13.0  bpm

(b)

Fig. 12. Authorized sensor extracted chest motion signal in
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Next, we examine the application level performance
of the adversary with distributed obfuscator array.
Fig. 10 presents examples of the Doppler shift pat-
terns extracted by the adversary and authorized sen-
sor. Across all adversary positions, the average gesture
recognition accuracy of the adversary and the autho-
rized sensor are 12% and 94%, respectively. Note that
for nine total gestures, an accuracy of 12% is equivalent
to a random guess.

Fig. 11 shows an example of the chest motion signal
extracted by the adversary, which contains no observ-
able peak corresponding to the correct breathing rate.
On the other hand, the chest motion signal extracted by
the authorized sensor, plotted in Fig. 12, clearly shows
a peak at 0.21 Hz (13.0 bpm), while the true breathing
rate is 14 bpm. For all adversary positions, the average
estimation error for the adversary and authorized sensor
are 8.8 and 0.6 bpm, respectively.

Adversary array size. Then, we investigate the
impact of the adversary’s array size. We change the num-
ber of microphones on the array from 6 to 16 and mea-
sure the adversary’s mutual information as well as the
application level performance. For each array size, we
also change the number of obfuscators. The authorized
sensor is placed at the angle of -1.5 rad, 2.5 m from the
user. The adversary array is placed at the angle which
maximizes the mutual information, 1.5m from the user.
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The user performs a gesture as the mutual information
is being measured.

Fig. 13 shows that the mutual information slowly
increases with the adversary’s array size. However, this
trend is far from being linear; increasing the array size
provides limited benefits to the adversary. Although
having a larger array offers more fine-grained receiving
directionality, AudioSentry’s multi-directional beamform-
ing technique ensures that the adversary is unlikely to
obtain the true obfuscation signal in the user body’s
reflection. As a result, the channel estimated by the ad-
versary does not improve significantly with the array
size. The same observation holds true for both 4 and
6 obfuscators; using more obfuscators provides slightly
better privacy protection.

Fig. 15 shows the gesture recognition accuracy and
breath rate estimation error. Not surprisingly, the de-
tection performance improves slightly as the adversary
array expands, albeit with a marginal benefit. Even with
16 obfuscators, the gesture recognition accuracy is 21%
and 16% for 4 and 6 obfuscators, and the breath rate
estimation error is higher than 7 bpm.

These results highlight an important aspect if Au-

dioSentry. It provides privacy protection with a limited
number of obfuscator against a large adversary array.

Number of obfuscators. We assess the effect of
the number of obfuscators in the environment on the
performance of the obfuscation and authorized sensing.
We only change the number of obfuscators, while keep-
ing the experiment setup as before (adversary with eight
microphones, 6.5 m from the adversary and at a location
that maximizes mutual information). Fig. 14 presents
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Fig. 16. Adversary and authorized sensor’s performance in (a)
gesture recognition (b) breathing rate estimation with different
number of Ox.

the adversary mutual information, where we observe
a decrease as more obfuscators are used. Fig. 16 also
shows similar observations: where the adversary’s per-
formance in these two applications is worse on average
when we use more obfuscators. On the other hand, al-
though increasing the number of obfuscators introduces
more interference to the authorized sensor, our interfer-
ence cancellation technique proves to be resilient to the
number of obfuscators. As a result, we see in Fig. 16
that the authorized sensing performance is consistently
high. With six obfuscators, the gesture detection accu-
racy is around 95%, and the breath rate estimation error
is within one bpm.

Synchronization error. We further investigate
how the synchronization error among distributed ob-
fuscators could harm the obfuscation and authorized
sensing performance. We still use six obfuscators and
introduce additional random delays on each speaker to
emulate possible synchronization errors that could hap-
pen in a practical commodity device array. For example,
we create an average synchronization error of 3 samples
by varying the delay randomly between 0 and 6 samples.
For each obfuscator, we vary the delay randomly every
100 ms.

Fig. 17 shows the adversary’s mutual information
under different levels of synchronization error. The mu-
tual information increases with the error because the
beamforming is affected by synchronization accuracy.
Under perfect synchronization, each beam covers a dis-
tinct and non-overlapping range of the AoD. With
higher error, the direction (AoD) of each beam may de-
viate from the intended direction, which causes different
beams to overlap largely. As a result, The same beams
will cover a broader range of AoD, which causes the
overall obfuscation signal to be correlated along a wider
range of angles. The adversary will enjoy an increased
chance to cancel the obfuscation signal. Fortunately, as
we explain in Section 5.4, the measured average audio
synchronization error is fewer than two samples, which
is more than sufficient to achieve sufficient obfuscation
for AudioSentry.
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In Fig. 18, we show the gesture recognition and
breathing rate estimation accuracy as a function of the
synchronization error. We find that although the obfus-
cation effectiveness degrades as the synchronization er-
ror increases in general, the impact if not significant
when the average synchronization error is no greater
than 4 audio samples. Under 4 samples of average er-
ror, adversary’s average accuracy in gesture recognition
is around 13%, and the average error in breathing rate
estimation is around 7.2 bpm. As the synchronization
error increases to 14 samples, these two metrics become
32% and 3.6 bpm, which provides a decent estimation
of the user’s activity and physical status.

We notice that the synchronization error hardly has
any impact on the authorized sensing accuracy. This re-
sult highlights the efficacy of our synchronization ap-
proach introduced in Sec. 6 as part of AudioSentry’s in-
terference cancellation. The synchronization preamble
of each obfuscator allows the authorized sensor to es-
timate the relative timing of each copy of obfuscation
signal and perform interference cancellation.

8 Discussion
Privacy-aware Sensing. AudioSentry’s obfuscation
mechanism can also be built into a privacy-aware sens-
ing system, instead of utilizing commodity devices as
obfuscators. For example, the sensing system could add
additional speakers as built-in obfuscators, akin to Au-

dioSentry’s distributed obfuscators. In such a case, some
of AudioSentry’s operation could be simpler; there is need
for extra procedures for synchronization or localization
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as the speakers will be co-located on the same board.
Also, there will be no need to trust the commodity de-
vices in the same environment, where an adversary can
compromise multi-microphone devices such as Amazon
Echo. The built-in obfuscator, however, presents some
issues. Since it still needs to perform reverse channel esti-
mation (to cancel the effect of obfuscation), each built-in
obfuscator needs a co-located microphone, which signifi-
cantly increases the hardware and space requirement. A
privacy-aware sensor with six obfuscators, for example,
requires seven microphone-speaker pairs. In contrast,
AudioSentry achieves its privacy protection without re-
quiring any dedicated hardware.

Active attacker. We design AudioSentry to thwart
a strong passive attacker with multiple microphones and
full knowledge of the environment. AudioSentry is equally
effective against an active attacker operating within the
same frequency range as AudioSentry’s devices. Still, the
active attacker could employ costlier ultrasound speak-
ers and microphones to overcome AudioSentry’s protec-
tion. Moreover, an active attacker could also affect the
channel estimation procedure by jamming the obfusca-
tors to prevent the authorized sensor from operating
correctly. This attack, however, is not specific to Au-

dioSentry; a regular active adversary can jam the sensor
and prevent it from sensing the environment. AudioSen-
try could detect such an attacker, by having the sensor
communicate the training sequence over the OOB chan-
nel to detect if there has been any interference in the
channel.

Channel hopping. Channel hopping has been
used in some wireless communication systems for se-
curity purposes. However, applying this technique in
audio sensing is impractical for two reasons. First, an
adversary can listen to the entire spectrum and moni-
tor the sensing frequency as it hops – a problem that is
likely to for electromagnetic-based sensing as well. Sec-
ond, there is not sufficient audio bandwidth on most
commodity devices. Such devices’ operating frequency
is below 24 kHz and audio sensing applications oper-
ate in between 18 kHz and 22 kHz (inaudible range).
Most audio sensing applications require high bandwidth
for higher accuracy. For example, ApneaApp requires
at least 2 kHz bandwidth to accurately estimate chest
movement, which makes frequency hopping difficult in
practice.

Ultrasound Frequencies. One potential concern
is the effect of AudioSentry’s obfuscation signals on pets
and wildlife, some of which are capable of hearing ul-
trasound signals. However, AudioSentry only operates in
the same frequency range as the audio sensing applica-

tion it protects; it does not create ultrasound “noise" in
additional frequency ranges.

Eavesdropping private speech. An adversary
that can sniff audio sensing signal is also likely to be able
to eavesdrop private user conversations, a severe privacy
threat. However, addressing both problems (eavesdrop-
ping on sensing vs. conversations) requires different ap-
proaches. The information in human speech is the audio
waveform itself, while for sensing, the information is em-
bedded in the audio channel, and the raw audio signal is
not directly relevant. There are ongoing research efforts
in protecting the privacy of human speech [40, 41], but
it’s out of the scope of AudioSentry.

9 Related Work
Audio sensing applications. The low propagation
speed of audio signal has enabled a wide range of au-
dio sensing applications, many on commodity devices.
One of the most popular applications is to detect ges-
ture and body movements [10, 12, 15, 21, 22, 24, 29,
34, 42, 54, 56]. SoundWave detects hand gestures by
playing an inaudible tone, measuring, and analyzing
the Doppler shift pattern [24]. FingerIO proposes an
OFDM-based audio ranging design to track finger posi-
tion with millimeter-level accuracy [34]. A more recent
work, LLAP, can detect more fine-grained hand move-
ments using a continuous wave radar, where it extracts
the phase change of the audio signal to track finger po-
sition [54]. Shake and Walk demonstrates the feasibil-
ity of localizing and determining the direction of device
movement using audio signals [26]. The similar principle
also enables tracking and localization, such as tracking
smartphones to emulate a mouse or for interactive ap-
plications [8, 12, 36, 46, 47, 59]. The ability to detect
and distinguish finger strokes at different positions also
enables an extended human-computer interaction inter-
face [14, 25].

Audio sensing has been utilized in health monitor-
ing, especially for breathing rate sensing, thanks to its
ability to detect centimeter-level movements. For exam-
ple, ApneaAPP is a breath monitoring application run-
ning on a smartphone [33]. As an FMCW radar, it plays
a sweep frequency chirp in the inaudible human range
(18kHz → 20kHz), and perform FFT on the reflected
signal to detect chest motion. This information can be
used to detect diseases such as sleep apnea remotely
in a non-intrusive way. Similarly, SonarBeat [55] uses
a smartphone as a continuous wave radar (18kHz to
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22kHz) to measure the phase of the reflected audio sig-
nal to estimate chest motion, thus being able to mea-
sure breath rate. All of those techniques have not been
designed with privacy in mind. They allow a passive ad-
versary to infer a set of privacy-infringing information
about the users, including their movements, behavior,
interactions, and health attributes. AudioSentry targets
these privacy threats.

Sensing and communication obfuscation. Phy-
Cloak addresses the sensing privacy problem in the RF
domain through an obfuscation technique [38]. It uses a
single specialized full-duplex radio as both the obfusca-
tor and authorized sensor, where the device forwards the
signal for sensing and distorts the channel parameters
to mislead the adversary. The single-obfuscator design
makes PhyCloak ineffective against a multi-antenna at-
tacker with directional beamforming capabilities. Also,
extending PhyCloak’s design to multiple obfuscators is
hardly feasible, as it’s impractical for regular users to
deploy several dedicated full-duplex radios (commodity
RF devices are not full-duplex).

Other works employ friendly jamming to protect
the content of the communication between wireless de-
vices. Implantable medical device (IMD) Shield pro-
tects the communication between an IMD and its au-
thorized reader [23]. It jams the RF signal transmit-
ted by the IMD to prevent eavesdropping and unau-
thorized connections using a full-duplex radio. Simi-
larly, BLE-Guardian is an active obfuscator that jams
the advertisement messages from Bluetooth Low En-
ergy (BLE) devices to prevent privacy leakage [20]. Due
to their single jammer nature, both and similar tech-
niques [9, 11, 27, 31, 39, 44, 45, 58, 61] are ineffec-
tive against a multi-antenna receiver, which could sepa-
rate the obfuscation signal and the communication sig-
nals [49].

Sound injection to prevent audio recording.
Recently, researchers have established that it is possible
to play specially crafted sound in the ultrasonic range
to inject an audio signal in lower frequencies into a mi-
crophone [40, 62]. This technique can thwart an eaves-
dropper attempting to record conversations. It, however,
faces the same drawbacks of the other approaches when
relying on a single obfuscator. Extending to a multiple-
obfuscator system has the same challenges which we ad-
dress in this work.

10 Conclusion
In this paper, we show that a multi-microphone adver-
sary can overcome a single obfuscator from a distance
and with a wall separates them. Taking advantage of
commodity devices in the environment, AudioSentry per-
forms multi-beam beamforming to de-correlate the ob-
fuscation signals towards different directions. While ef-
fective with all types of audio sensing applications in
principle, we extensively evaluate AudioSentry for the
two most popular applications: gesture and breath rate
sensing. Our evaluations show that AudioSentry can de-
fend against an adversary with a large microphone array
with only a small number of obfuscators, while still be-
ing able to preserve authorized sensing.

The design principle of AudioSentry can be extended
to other domains as well, such as RF sensing and
speech recording, to protect user’s privacy against multi-
receiver adversaries. For WiFi sensing, one problem
worth investigating in future work is how to utilize
commodity devices without full duplex capabilities to
achieve obfuscation as well as preserving authorized
sensing. For speech recording, we can adapt AudioSen-

try to leverage a mechanism such as backdoor [40].
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