
Proceedings on Privacy Enhancing Technologies ; 2019 (3):6–25

Adam Groce, Peter Rindal, and Mike Rosulek*

Cheaper Private Set Intersection via
Differentially Private Leakage
DOI 10.2478/popets-2019-0034
Received 2018-11-30; revised 2019-03-15; accepted 2019-03-16.

In this work we demonstrate that allowing differen-
tially private leakage can significantly improve the con-
crete performance of secure 2-party computation (2PC)
protocols. Specifically, we focus on the private set in-
tersection (PSI) protocol of Rindal and Rosulek (CCS
2017), which is the fastest PSI protocol with security
against malicious participants. We show that if differen-
tially private leakage is allowed, the cost of the protocol
can be reduced by up to 63%, depending on the de-
sired level of differential privacy. On the technical side,
we introduce a security model for differentially-private
leakage in malicious-secure 2PC. We also introduce two
new and improved mechanisms for “differentially private
histogram overestimates,” the main technical challenge
for differentially-private PSI.

1 Introduction
Secure two-party computation (2PC) allows two parties
to evaluate a function on private inputs, and learn only
the output of the function. Standard security definitions
for secure computation provide extremely strong crypto-
graphic guarantees. In many situations it is reasonable
to consider relaxing these guarantees if it results in a
significantly faster protocol.

In this work, we consider relaxing security by allow-
ing the protocol to leak some “extra” information. This
raises the question, what extra information is reason-
able to leak without completely undermining the idea

Adam Groce: Reed College. agroce@reed.edu. Partially sup-
ported by NSF award SaTC-1817245. Work done partially
while visiting Oregon State University.
Peter Rindal: Visa Research. PeterRindal@gmail.com. Work
done while at Oregon State University.
*Corresponding Author: Mike Rosulek: Oregon State
University. rosulekm@eecs.oregonstate.edu. Partially sup-
ported by NSF award 1617197 and a Google Research Award.

of secure computation? A natural candidate is to leak
only differentially private (DP) information about the
private inputs. Differential privacy [8] ensures that the
adversary obtains similar leakage, whether a particular
individual’s information was used in the computation or
not.

1.1 Our Contributions

We show a sizeable tradeoff between performance and
differentially private leakage in the setting of private set
intersection (PSI). In PSI, two parties have input sets X
and Y , and wish to learn (only) their intersection X∩Y .
Differential privacy is an especially good match for this
problem, since many of its most notable applications
involve sets of individuals. For example, the application
of private contact discovery in social networks involves
a client with a small set of email addresses (i.e., ad-
dress book), and a server with a large set of user email
addresses, who compute the corresponding intersection.
Differential privacy in this setting would ensure that,
e.g., the server cannot learn whether a particular user
Charlie was present in the client’s address book.

Our starting point is the protocol of Rindal & Ro-
sulek [26], which is the fastest malicious-secure PSI pro-
tocol to date. Like many PSI protocols (especially in the
tradition of [10]), this one works by first having the par-
ties hash their items into bins (e.g., item x is placed in
bin h(x)), and a smaller PSI is performed in each bin.
When using hashing, dummy items must be added to fill
each bin to a maximum size. This is because the num-
ber of true items in each bin is information that cannot
be inferred from the intersection alone (i.e., it is leak-
age from a security standpoint). Unfortunately, dummy
items vastly outnumber real items, and so contribute
the majority of the protocol’s cost.

Instead of completely hiding the load of the bins
(by padding with dummy items to an upper bound),
we can consider releasing a differentially-private esti-
mate of the load. Furthermore, this estimate must be
an overestimate of the true load, in order to preserve
correctness of the PSI output. The challenge is to de-
sign a “differentially-private load overestimate” mecha-

Cheaper Private Set Intersection via Differentially Private Leakage 7

nism that is as close to the true load as possible, thereby
minimizing the number of dummy items.1

The idea of differentially-private over-estimates of
the true bin load has been used previously in the context
of PSI (and private record linkage) protocols (e.g., [12]).
As we show, the specific mechanism used in prior work
is less effective when the load in each bin is rather small
(e.g., typically 10-20), as is the case here. Hence, we
introduce two improved mechanisms (i.e., bet-
ter accuracy) for load overestimation.We consider
these new mechanisms in the context of the [26] PSI
protocol, but they can be used to give coresponding im-
provement in [12] and in other work unrelated to PSI
(e.g., [16]). Our first mechanism improves accuracy by
leveraging the fact that the load of a bin follows a known
binomial distribution. Our second mechanism is a sim-
ple rounding approach (round the number of items in
a bin up to either t1 or t2) that gives even better per-
formance. Since this second mechanism is deterministic,
it does not achieve standard differential privacy, but we
show that it provides a guarantee known as distribu-
tional differential privacy (DDP) [1]. The DDP model
applies when the adversary has sufficient uncertainty in
the sensitive data. We discuss how to interpret DDP
and assess its applicability for PSI in Section 5.3.

On the theoretical side, we introduce a secu-
rity model for malicious-secure MPC with dif-
ferentially private leakage. Previous work combin-
ing MPC and differential privacy (starting with [2])
considered only the semi-honest setting, which masks
some important subtleties that we discuss. We prove
that a straightforward generalization of the [26] proto-
col is a secure PSI protocol against malicious adver-
saries in this model, when using any suitable private
load-overestimate function.

Finally, we have incorporated our new techniques
into the implementation of [26] to present a thorough
empirical analysis of the tradeoff between pri-
vacy and performance. Allowing differentially pri-
vate leakage improves the performance of the protocol
by 33% (for a relatively strict ε = 0.5 guarantee) to 63%
(for a weaker ε = 4 guarantee). Allowing ε = 0.33 distri-
butionally DP leakage for the sender (and ε = 1 stan-
dard DP for the receiver) improves the performance by
52% over the fully secure variant.

1 One can think of the fully-secure protocol of [26] as a proto-
col that uses a very pessimistic load overestimate which leaks
nothing about the true load.

1.2 Related Work
Trading leakage for performance in generic
MPC. The dual execution paradigm, introduced by
Mohassel & Franklin [19] and extended in other
work [13, 17], relaxes the malicious security model by al-
lowing the adversary to learn an arbitrary bit about the
honest party’s input. The resulting protocol is only 2×
the cost of a standard semi-honest protocol. The dual
execution paradigm can be used to securely evaluate any
functionality, but does not guarantee that the leakage
satisfies any meaningful privacy limitation (other than
being 1 bit). Our approach also relaxes security by al-
lowing some leakage, but in the specific case of PSI we
ensure that the leakage is differentially private.

Beimel et al. [2] explored a model of MPC where
the standard privacy guarantee is replaced by the nat-
ural differentially private analog. This security model is
inherently tied to the semi-honest adversarial setting,
and not suitable for our malicious setting. We believe
our security model more clearly separates the different
intuitive security goals of MPC and makes it explicit
which goals are ensured in a cryptographic or differen-
tially private sense (e.g., we enforce correctness in the
standard sense but input independence and privacy in
a differentially private sense).

Trading leakage for performance in special-
purpose MPC. The most closely related work to ours
is that of He et al. [12]. They study the problem of pri-
vate record linkage (a generalization of private set in-
tersection) with differentially private leakage. They in-
clude several approaches that degrade the correctness of
the result — we do not consider these approaches since
we focus on computing the intersection exactly. Their
technique that preserves exact correctness uses a similar
high-level approach to ours, with “differentially private
load overestimates.” However, we show that their tech-
nique (also used in [16]) is less effective when applied
to the PSI protocol of [26] and realistic privacy param-
eters. Our new mechanisms for the same problem have
significantly better accuracy (i.e., fewer dummy items)
and lead to significant performance improvement. Our
mechanisms could easily be used in their protocol for a
corresponding improvement.

Another notable instance of trading leakage for per-
formance is in the context of searchable encryption,
and more generally secure database search. The en-
crypted database systems BlindSeer [24] and that of
Cash et al. [5] provide standard database (DBMS) func-
tionality, while hiding the nature of the query from the
server with the exception of some leaked information.

Cheaper Private Set Intersection via Differentially Private Leakage 8

Schoppmann et al. [27] perform nearest neighbor queries
on a private database, while allowing differentially pri-
vate leakage. As in our work, this leakage is tailored to
the protocol and specific functionality.

Oblivious RAM (ORAM) [11, 22] refers to a proto-
col between a client and server that allows the client to
read/write its data held by the server, but hiding the
client’s access pattern from the server. Some relatively
recent work [6, 18, 28] has explored relaxing the obliv-
iousness requirement of ORAM to allow the server to
learn only differentially private information about the
access pattern. Similar to our work, the goal is to com-
pute a “plain” functionality with the standard notion
of correctness — i.e., without adding any noise. In this
case, the functionality corresponds to RAM read/write
instructions; in our case the functionality is PSI.

In all works in this section, the security model is
honest-but-curious whereas we consider the malicious
security setting.

Securely Computing Differentially-Private Func-
tions. There is a great deal of work on using secure com-
putation to evaluate a differentially-private mechanism
– e.g., [3, 7, 14, 23, 25] – including protocols for closely
related functionalities like cardinality of set intersection
cardinality [20] and union [9]. In these works, the fo-
cus is to compute a differentially-private functionality,
under a standard security notion. In other words, the
parties learn only a differentially private answer, while
in our work the parties learn a non-differentially private
function, plus some additional (incidental) differentially
private information.

2 Differential Privacy Background
Differential privacy [8] is a condition meant to ensure
that releases from large databases do not violate the pri-
vacy of any of the individuals whose data that database
contains. In particular, let X = (X1, X2, . . . , Xn) be a
database of information about n individuals, with Xi
being the data corresponding to the ith individual. A
query is a (possibly randomized) function f that takes
a database as input. Differential privacy ensures that
the inclusion of individual i in the database does not
allow an adversary to infer anything about them.

The strength of the definition is controlled by a
parameter ε. Intuitively, differential privacy guarantees
that whatever f(X) outputs, that output would have
been roughly equally likely even if any individual had

instead changed their data arbitrarily. See [15] for a rig-
orous treatment.

More formally, we say that two databases X and
X ′ are neighboring if they differ only in the addition or
deletion of a single value. We can then define differential
privacy.

Definition 1. A query function f is ε-differentially
private (ε-DP) if for any two neighboring databases X
and X ′ and for any set S of possible outputs, we have

Pr[f(X) ∈ S]
Pr[f(X ′) ∈ S] ≤ e

ε. (1)

Differential privacy also benefits from composition.
That is, if f is ε1-differentially private and g is ε2-
differentially private, the function h that gives both
their outputs (i.e., h(X) = (f(X), g(X))) is (ε1 + ε2)-
differentially private. This is useful for two reasons.
First, it’s a useful tool for building differentially private
functions, since one can build them up from smaller pri-
vate components. Second, it means that the definition
protects people’s privacy even if many separate differen-
tially private computations are done, including queries
called by different people.

Differential privacy is also preserved by any addi-
tional post-processing. That is, if f is ε-differentially
private, then so is g ◦ f for any g. This means anything
that can be computed from a private output (with addi-
tional access to the database) is itself private. This, like
composition, is useful both because it’s an intuitively
desirable property of a privacy definition and because
it’s useful in practice when designing private queries.

There are differentially private mechanisms that ap-
proximate a wide variety of naturally desirable func-
tions. In the most simple query algorithms, the output
is simply equal to the desired (non-private) output plus
some carefully calibrated noise. In particular, say that
F is some function on databases with output in Rn.
We define the sensitivity F to be the maximum amount
of change F can see when one row of the database is
changed.

Definition 2. The sensitivity of a function F with
output in Rn is max ‖F (X) − F (X ′)‖, where the maxi-
mum is taken over all neighboring databases X and X ′

and the norm is an `1 norm.

Our techniques rely primarily on several uses of the
Laplace mechanism. This uses random noises generated
according to a Laplace distribution, a double-sided ex-
ponential distribution.

Cheaper Private Set Intersection via Differentially Private Leakage 9

Definition 3. The Laplace distribution Lapc is pa-
rameterized by a scaling parameter c. We denote the
probability density function at x with Lapc(x). Precisely,

Lapc(x) = 1
2ce
−|x|/c. (2)

Any function can be made differentially private by
adding Laplace noise proportional to its sensitivity and
1/ε. (In some cases this is optimal, while in others more
elaborate techniques can give greater utility.)

Theorem 4. Let F be a function with sensitivity ∆F
and output in Rn. Let f be a randomized algorithm with
output f(X) = F (X) + Lapn∆F/ε, where Lapn∆F/ε de-
notes a vector of n independently chosen values from the
Laplace distribution with parameter c = ∆F/ε. Then f

is ε-differentially private.

3 Security model

3.1 UC-Secure 2-party Computation

We define security for 2-party computation using the
Universal Composition (UC) framework of [4]. The for-
mal details of this model are beyond the scope of this
work, but we present a brief summary here.

Informally, security is defined in the real/ideal
paradigm. A protocol is deemed secure if, for any at-
tack against the protocol, there is an equivalent attack
in an “ideal” world where the function is computed by
a trusted third party.

In more detail, the UC model considers the follow-
ing entities: Functionalities are trusted third parties who
cannot be corrupted, and who carry out a specific be-
havior in response to commands/inputs from parties.
Parties execute a specified protocol interacting with
each other, the environment, and functionalities. Ad-
versaries corrupt parties, and cause them to deviate ar-
bitrarily from the protocol. In this work we consider
static security, where the identity of corrupt parties is
decided before the interaction starts, and parties cannot
become corrupted during the execution of the protocol.
The environment is an arbitrary program that chooses
the inputs of honest parties, receives their outputs, and
interacts arbitrarily with the adversary.

Suppose π is a protocol (i.e., π is the program that
describes the behavior of the honset parties). We al-
low protocols to be hybrid protocols in the sense that π
can instruct parties to send messages to each other and

also interact with a trusted functionality G. We write
uc(π,G,A,Z, κ) to denote the output of an interaction
between: honest parties running protocol π, function-
ality G, adversary A (possibly corrupting some of the
parties), and environment program Z, all with common
security parameter κ. The output is defined as the ter-
minal output of Z.

Definition 5. A protocol π UC-securely realizes a
functionality F if: for all adversaries A there exists an
adversary S (called a simulator) who corrupts the same
set of parties, such that for all environments Z:

Pr[uc(π,G,A,Z, κ) = 1]−Pr[uc(πdummy,F ,S,Z, κ) = 1]

is negligible in κ. Here πdummy is the so-called dummy
protocol where parties simply relay inputs from the envi-
ronment directly to the functionality, and relay outputs
from the functionality directly to the environment.

Intuitively, the goal of Z (with the help of A) is to deter-
mine whether it is controlling honest parties who run the
protocol (the first, “real-world” interaction), or commu-
nicating directly with the functionality F (the second,
“ideal-world” interaction).

The role of the simulator S is two-fold: (1) it must
provide to A messages that look like protocol messages
from honest parties running π, without knowing the
honest parties’ inputs — only seeing outputs given by F .
(2) it must observe A’s protocol messages and “extract”
meaning from them, so that it can send appropriate in-
puts to F that induce correct outputs of honest parties
(since Z sees these outputs).

3.2 UC Security with Differentially Private
Leakage

Prior Work. Prior work (e.g., [2, 12, 27]) introduces
security definitions for secure computation with differ-
entially private leakage. All of these works consider
only security against semi-honest adversaries (i.e., ad-
versaries who still follow the protocol), while in this
work we consider security against malicious adversaries
(who may deviate from the protocol). The semi-honest
setting is significantly simpler from a definition stand-
point.

To understand why, let’s consider the security defi-
nition given in [12] as a concrete representative example
of these prior works. For simplicity, consider only secu-
rity against a corrupt Bob. Their definition of security
is as follows: for all inputs y for Bob, and for all x, x′

Cheaper Private Set Intersection via Differentially Private Leakage 10

Parameters:

– Functions f1, f2 : ({0, 1}∗)2 → {0, 1}∗

– Class of leakage function pairs L

Behavior:
If no parties are corrupt:

1. Wait for inputs x1 from P1 and x2 from P2
2. Deliver output f1(x1, x2) to P1 and f2(x1, x2) to

P2

If any party is corrupt, let Pc denote the corrupt
party and Ph denote the honest party. Then:

1. Wait for input xh from Ph and (leak, Lpre) from
Pc, where L contains some pair of the form
(Lpre, ·).

2. Give Lpre(xh) to Pc
3. Wait for inputs xc and (leak, Lpost) from Pc,

where (Lpre, Lpost) ∈ L.
4. Give Lpost(xh) and fc(x1, x2) to Pc
5. Wait for input (deliver, b) from Pc. If b = 0

deliver output ⊥ to Ph; otherwise if b = 1 deliver
output fh(x1, x2) to Ph.

Fig. 1. Ideal functionality Fleak,f,L for securely evaluating func-
tion f = (f1, f2) with leakage.

which are “neighbors” in the DP sense, and that sat-
isfy f(x, y) = f(x′, y), consider the distribution of Bob’s
view when the parties run honestly with inputs (x, y)
vs (x′, y). Instead of requiring these view distributions
to be indistinguishable (as in standard 2PC security),
they require only that these two view distributions to be
close in a differentially-private sense. More precisely, the
randomized function that generates Bob’s view, from
Alice’s private input, is differentially private.

Challenges of Malicious Security. Generalizing
these existing definitions to the malicious setting is not
trivial. In particular, there are several problems that are
encountered.

First, note how in the semi-honest model, even a
corrupt Bob’s input y is fixed before the interaction
starts. It is therefore possible to quantify over inputs
x, x′ for Alice such that f(x, y) = f(x′, y). In the ma-
licious model, the input of a corrupt party is not well-
defined in the real interaction. Even in the ideal inter-
action, the input is not determined until the simulator
extracts it. To see one example of why this could be
a problem, consider a protocol that leaks differentially-

private information about x to Bob early in the protocol,
before Bob becomes bound to his own input. Our proto-
col indeed has this property, and it allows Bob’s choice
of input to depend on Alice’s. Intuitively, malicious-
secure 2PC guarantees not only privacy (the protocol
leaks no more than f(x, y)) but it also guarantees in-
put independence (Bob must choose y independently of
x). We may wish to consider protocols that degrade the
input-independence guarantee — not only the privacy
guarantee — in a differentially-private way! Even bet-
ter, we might want a model that allows granularity in
choosing to allow input-independence or only privacy to
be degraded in a differentially-private way.

Second, the model should allow adversarial influence
on the differentially-private leakage. Since a malicious
adversary has arbitrary influence over the protocol, and
the honest party responds to the adversary’s protocol
messages, the adversary has potential influence over the
leakage. As a simple example, suppose the protocol leaks
information L(x, q) about Alice’s input x, where q is
somehow chosen by the adversary. If for every q, the
function L(·, q) is differentially private, then the model
should allow such leakage.

Finally, the existing semi-honest definitions are not
simulation-based but indistinguishability-based. In the
semi-honest setting, these notions are equivalent, but in
general they are not for malicious security. In particular,
a desirable property of simulation-based security is that
it leads to a composability property: if π uses G to
securely realizes F , and ρ securely realizes G, then sub-
stituting calls to G in π with calls to ρ results in a secure
protocol for F . Hence, a simulation-based definition is
highly desirable.

Our Model. We choose to address these complications
by adding explicit leakage to the ideal functionality in
the UC security definition.

Figure 1 describes an ideal functionality for securely
evaluating a function while also giving some leakage.
The adversary’s choice of leakage is constrained to some
class L of allowable leakage functions (a parameter of
the functionality). The functionality allows the corrupt
party to obtain leakage on the honest party’s input at
two different times: both before and after choosing its
own input. If one restricts L to contain only pairs of the
form (Lpre,⊥) or of the form (⊥, Lpost), where ⊥ is over-
loaded to denote the function ⊥(x) = ⊥ for all x, then
one obtains a definition with just one leakage phase. In
particular, if the Lpre leakage is ⊥, then input indepen-
dence is guaranteed in a cryptographic sense (i.e., not
degraded in a differentially private manner), since the

Cheaper Private Set Intersection via Differentially Private Leakage 11

adversary must choose its input based on no information
about the honest party’s input.

Definition 6. A protocol π securely realizes f = (f1, f2)
with L leakage if π is a UC-secure protocol for Fleak,f,L
(Figure 1).

The protocol realizes f with ε-DP leakage if it re-
alizes f with L leakage, where for every (Lpre, Lpost) ∈ L,
the function x 7→ (Lpre(x), Lpost(x)) is ε-differentially
private (under the appropriate “neighbor” relation for
values of x).

For example, in the case of PSI, the neighbor relation is
addition/removal of a single item from a party’s input
set. Secure computation with ε-DP leakage ensures that
an adversary learns only ε-DP information about the
individuals in the honest party’s set.

Note that in this model, correctness of the output
is still guaranteed in the standard cryptographic sense
(e.g., with overwhelming probability).

Interplay Between Cryptographic and DP Guar-
antees. Our model allows differentially-private leakage
(explicitly from the functionality) in addition to neg-
ligible simulation error (as part of UC security defi-
nition). When the leakage is ε-DP, it is reasonable to
interpret the entire view of the adversary as having
(ε, δ)-differential privacy2, where δ is the negligible er-
ror from the UC-security simulation. Standard security
corresponds to the case of ε = 0 and δ negligible.

In order to compare to the original, fully-secure PSI
protocol of [26], we use the same security parameters
in our work. In particular, the protocol can fail with
probability 2−40. The reader who prefers to think of
the entire system in terms of (ε, δ)-DP can do so with
δ = 2−40.

4 PSI Protocol Framework
In this section we describe our PSI protocol framework
(i.e., PSI with histogram leakage). The framework is
based on the PSI protocol of Rindal & Rosulek [26],
which is the fastest known PSI protocol achieving ma-
licious security.

2 This definition demands that Pr[f(X) ∈ S] ≤ eε Pr[f(X′) ∈
S] + δ, for all neighboring X,X′ and all S. Standard DP corre-
sponds to δ = 0.

4.1 Overview

We first review the Rindal-Rosulek protocol. At a high
level, the protocol works by having the parties first hash
their items into bins (with a random hash function).
Within each bin, they perform a quadratic-cost PSI pro-
tocol on the items assigned to that bin. However, the
abstraction boundary is broken slightly by an optimiza-
tion that combines together some information across all
of the bins.

Quadratic PSI. This step of the protocol uses an obliv-
ious encoding functionality, which can be thought of as
an oblivious pseudorandom function (OPRF) or a vari-
ant of random oblivious transfer over an exponentially
large number of values. The functionality chooses a ran-
dom function which we denote as x 7→ JxK. A receiver
can learn JxK for a single, chosen value x, while the
sender can compute JxK for any number of values x.
Looking forward, each party will choose n such func-
tions which for j ∈ [n] we denote as x 7→ JxKBj when
Bob is the sender and x 7→ JxKAj for Alice. Concretely,
the encoding protocol uses the OT extension protocol
of Orrù, Orsini & Scholl [21], which is secure in the ran-
dom oracle model. It achieves a slight relaxation of this
functionality where a corrupt sender is allowed to choose
the mapping J·K. This variant functionality is described
formally in Figure 2, and it is sufficient for use in the
PSI protocol.

If Alice has n items {x1, . . . , xn} and Bob has n
items {y1, . . . , yn}, they can use this oblivious encoding
functionality to perform PSI in the following way:

1. For each xj , the parties perform an instance of the
oblivious encoding with Alice acting as receiver, so
that Alice learns JxjKBj . We use J·KBj to signify that
Bob can compute the encoding for any value.

2. Symmetrically, for each yi, the parties perform an
oblivious encoding instance in the other direction,
with Bob learning JyiKAi .

3. The parties define n2 “common encodings” of the
form:

JvK*i,j
def= JvKAi ⊕ JvKBj

E.g, for each JxjKBj Alice learned in step 1, she com-
putes the n common encodings {JxjK*i,j = JxjKAi ⊕
JxjKBj | i ∈ [n]}.

The idea of the common encodings is that Alice can pre-
dict the value of JvK*i,j if and only if she used v as input
to the encoding step involving J·KBj . Bob can predict the
value iff he used v as input to the encoding J·KAi .

Cheaper Private Set Intersection via Differentially Private Leakage 12

Parameters: two parties denoted as Sender and Re-
ceiver. The input domain {0, 1}σ and output domain
{0, 1}` for a private F .

1. [Initialization] Create an initially empty asso-
ciative array F : {0, 1}σ → {0, 1}`.

2. [Receiver Encode] Wait for a command
(Encode, sid, c) from the Receiver, and record c.
Then:

3. [Adversarial Map Choice] If the sender is
corrupt, then send (RecvInput, sid) to the ad-
versary and wait for a response of the form
(Deliver, sid, Fadv). If the sender is honest, set
Fadv = ⊥. Then:

4. [Receiver Output] If Fadv = ⊥ then
choose F [c] uniformly at random; otherwise set
F [c] := Fadv(c), interpreting Fadv as a cir-
cuit. Give (Output, sid, F [c]) to the receiver and
(Output, sid) to the sender. Then:

5. [Sender Encode] Stop responding to any re-
quests by the receiver. But for any number of
commands (Encode, sid, c′) from the sender, do
the following:
– If F [c′] doesn’t exist and Fadv = ⊥, choose
F [c′] uniformly at random.

– If F [c′] doesn’t exist and Fadv 6= ⊥, set
F [c′] := Fadv(c′).

– Give (Output, sid, c′, F [c′]) to the sender.

Fig. 2. The Oblivious Encoding ideal functionality Fencode [21]

The protocol continues with Alice sending the (ran-
domly ordered) set of encodings:

E = {JxjK*i,j | i, j ∈ [n]}

Bob can check this set for encodings that are known to
him (i.e., all encodings of the form JyiK*i,j). Bob com-
putes the protocol output as:

Z = {yi | ∃j : JyiK*i,j ∈ E}

Suppose the encodings J·K have length λ+ 2 log2 n bits.
Then the probability of JxjK*i,j = JyiK*i,j for xj 6= yi is
bounded by 2−λ. Conditioned on this event not happen-
ing, the protocol is correct.

To see the security of the protocol, note that the
simulator can observe the adversary’s inputs when the
adversary plays the role of the Fencode-receiver. If some
x is never used as such an input to Fencode, then the
adversary could never predict any common encoding of
the form JxK*i,j . In other words, the adversary’s input

(which the simulator must extract) must be a subset of
this set of candidates known to the simulator. In the
case of a corrupt Alice, the simulator must further test
which of these candidates are represented in the encod-
ings sent in the message E. The details are discussed in
Appendix A.

Hashing and Dummy Items. This basic protocol re-
quires only 2n instances of the oblivious encoding func-
tionality (n in each direction), but requires Alice to com-
municate n2 encodings.

A standard approach to reduce the complexity of a
PSI protocol (dating back at least to [10]) is for parties
to first choose3 a random hash function h : {0, 1}∗ → [m]
and use this function to assign their items into m bins.
Then the quadratic-cost protocol can be performed on
the items within each bin.

As mentioned in Section 1.1, it is necessary to hide
the number of items per bin — in the ideal world, it is
not possible to infer the number of items that honest
party has that satisfy h(x) = b for a chosen bin b. To
obscure this information, the parties add dummy items
to each bin until each bin has exactly the worst-case
number of items (such a bound can be computed using
standard balls-in-bins analysis).

A typical choice of parameters is m = O(n/ logn)
bins. In that case, both the expected and worst case
(with overwhelming probability) number of items per
bin is O(logn). Then the overall cost of the protocol is
m ·O(log2 n) = O(n logn).

However, further optimization is still possible. Let
µ be the (padded) size of each bin. As currently de-
scribed, Alice would send µ encodings for each of her
items, including her dummy items! However, it is pub-
lic information that overall Alice has only n items and
hence only nµ encodings corresponding to them. Only
the distribution of these dummies within the bins is se-
cret. So the suggestion of [26] is to let Alice gather all
nµ non-dummy encodings from all bins, shuffle them,
and send them together. Now the encodings must be
somewhat longer (the probability of a spurious collision
in these encodings has increased), and Bob must lookup
candidate encodings in a larger set, rather than in small
bin-specific sets. However, the gain in communication
makes this optimization an overall improvement to the
protocol.

3 For security reasons, h should be chosen by a secure coin-
tossing protocol.

Cheaper Private Set Intersection via Differentially Private Leakage 13

4.2 Our Generalization and Details

As mentioned in Section 1.1, our modification of the
Rindal-Rosulek protocol is to release some differentially
private information about the number of items in each
bin. We begin by defining the properties we require:

Definition 7. Let h : {0, 1}∗ → [m] be a hash function.
For a set of items X hashed into m bins by h, the load
of bin i is:

Ldh(X, i) = #{x ∈ X | h(x) = i},

The load of all bins can be written as a vector:

Ldh(X) =
(

Ldh(X, 1), . . . ,Ldh(X,m)
)

Definition 8. For two vectors u = (u1, . . . , um) and
v = (v1, . . . , vm), write u ≤ v if ui ≤ vi for all i ∈
[m]. Let L̃h be a randomized function. We call L̃ a load
overestimate if for all X,

Pr[Ldh(X) ≤ L̃h(X)] is overwhelming,

where the probability is taken over the randomness of L̃
and the choice of h.

One can think of the function L̃h(X) = (µ, . . . , µ) to be
the load-overestimate used in [26], where µ is an upper
bound on bin size computed using balls-in-bins analysis.

Our generalization of Rindal-Rosulek is parameter-
ized by a load overestimate L̃. Roughly speaking, after
choosing the hash function h:

– Alice hashes her items X into bins, computes the
load of each bin (a1, . . . , an) = Ldh(X), and an over-
estimate (ã1, . . . , ãm) ← L̃h(X). She adds dummy
items to each bin until the load (including dummy
items) equals the overestimate.

– Likewise, Bob hashes his items Y into bins. He
can compute an overestimate (̃b1, . . . , b̃m)← L̃h(Y),
however [26] security proof / simulation breaks
down in the case where Alice has more items in a bin
than Bob (we discuss this fact in Appendix A). We
must therefore have Bob compute c̃i = max{ãi, b̃i}
and add dummy items so that the load in the bins
is (c̃1, . . . , c̃m).4

4 Note that Alice’s privacy depends only on the load overesti-
mate that she computes; it does not depend on any property
of Bob’s load overestimate (and vice-versa). An adversary hurts
only itself by reporting a different overestimate.

Parameters: σ is the bit-length of the parties’ items. n is the
size of the honest parties’ sets. n′ > n is the allowed size of
the corrupt party’s set.

– On input (Receive, sid, Y) from Bob where Y ⊆ {0, 1}σ ,
ensure that |Y | ≤ n if Bob is honest, and that |Y | ≤ n′

if Bob is corrupt. Give output (bob-input, sid) to Alice.
– Thereafter, on input (Send, sid, X) from Alice where
X ⊆ {0, 1}σ , likewise ensure that |X| ≤ n if Alice is
honest, and that |X| ≤ n′ if Alice is corrupt. Give out-
put (Ouput, sid, X ∩ Y) to Bob.

Fig. 3. Ideal functionality FPSI for private set intersection (with
one-sided output)

– Within each bin i, the parties perform the standard
quadratic PSI between ãi and c̃i (≥ ãi) items.

In [26], it is public information that Alice will have
nµ total non-dummy encodings, since each bin contains
exactly µ items. In our case, Alice will have

∑
aic̃i non-

dummy encodings. She cannot simply send the non-
dummy encodings as in [26] since the number of these
items is indeed sensitive to her true bin-load. To protect
this information, we need a differentially-private over-
estimate of this inner product:

Definition 9. We say that randomized function Ĩ

is a inner-product overestimate if for all vectors
u = (u1, . . . , um) and v = (v1, . . . , vm), Pr[〈u, v〉 ≤
Ĩ(u, v)] is overwhelming.

In our generalization, Alice computes a differentially-
private5 inner-product overestimate ẽ =
Ĩ((a1, . . . , am), (c̃1, . . . , c̃m)). She includes the non-
dummy encodings in a set E, adds random values until
|E| = ẽ, and finally sends the (permuted) contents of E
to Bob.

The formal details of the protocol are given in Fig-
ure 4. Unsurprisingly, the security proof is extremely
similar to that of [26]. For the sake of completeness, we
present the self-contained proof in Appendix A. Roughly
speaking, the only differences from [26] are that (1)
the number of items per bin is changed to be input-
dependent; (2) the number of common encodings sent
by Alice is input-dependent. However, if the simulator
is given these values (e.g., as leakage from the function-
ality), then simulation proceeds just as in [26].

5 Specifically, for all second arguments, Ĩ should be a differen-
tially private function of its first input.

Cheaper Private Set Intersection via Differentially Private Leakage 14

Parameters: X is Alice’s input, Y is Bob’s input, where X,Y ⊆ {0, 1}σ . m is the number of bins. The protocol uses instances
of Fencode with input length σ, and output length λ+ 2 log(nµ), where λ is the security parameter and µ is an upper bound
on the number of items in a bin.
Finally, a load-overestimate function L̃ and an inner-product overestimate function Ĩ.

1. [Parameters] Parties agree on a random hash function h : {0, 1}σ → [m] using a coin tossing protocol.
2. [Hashing]

(a) For x ∈ X, Alice adds x to bin BX [h(x)]. She computes load overestimate (̃a1, . . . , ãm) ← L̃h(X) and announces
this value to Bob. She adds dummy items to the bins so that each bin i has exactly ãi items (she aborts in the
event that there are already more than ãi items in bin i). The items in each bin BX [i] are randomly permuted.

(b) For y ∈ Y , Bob adds y to bin BY [h(y)]. He computes an overestimate (̃b1, . . . , b̃m) ← L̃h(X) and computes
(c̃1, . . . , c̃m) = (max{ã1, b̃1}, . . . ,max{ãm, b̃m}) and announces it to Alice. He adds dummy items until each bin i
contains exactly c̃i items.

3. [Encoding] For bin index d ∈ [m]:
(a) For p ∈ [̃ad], let x be the pth item BX [d]. Alice sends (Encode, (sid,B, d, p), x) to the Fencode functionality which

responds with (Output, (sid,B, d, p), JxKBd,p). Bob receives (Output, (sid,B, d, p)) from Fencode.
(b) For p ∈ [̃cd], let y be the pth item BY [d]. Bob sends (Encode, (sid,A, d, p), y) to the Fencode functionality which

responds with (Output, (sid,A, d, p), JyKAd,p). Alice receives (Output, (sid,A, d, p)) from Fencode.
4. [Output]

(a) [Alice’s Common Mask] For each x ∈ X, in random order, let d, p be the bin index and position that
x was placed in during Step 2a. For j ∈ [̃cd], Alice sends (Encode, (sid,A, d, j), x) to Fencode and receives
(Output, (sid,A, d, j), JxKAd,j) in response. Alice adds JxKAd,j ⊕ JxKBd,p to a set E.

(b) Now E contains Ldh(X)·(c̃1, . . . , c̃m) items. Alice computes inner-product overestimate ẽ← Ĩ(Ldh(X), (c̃1, . . . , c̃m))
and adds randomly chosen values to E until |E| = ẽ. She sends E (randomly permuted) to Bob.

(c) [Bob’s Common Mask] Similarly, for y ∈ Y , let d, p be the bin index and position that y was placed in during
Step 2b. For j ∈ [̃ad], Bob sends (Encode, (sid,B, d, j), y) to Fencode and receives (Output, (sid,B, d, j), JyKBd,j) in
response. Bob outputs {

y ∈ Y
∣∣∣ ∃j : JyKAd,p ⊕ JyKBd,j ∈ E

}
Fig. 4. Our malicious-secure PSI protocol (with leakage).

Theorem 10. The protocol, in the Fencode hybrid, se-
curely realizes the leaky PSI functionality Fleak,PSI,L, for
leakage L where every (Lpre, Lpost) ∈ L has the form:

Lpre(S) = L̃h(S)

Lpost(S) =

{
Ĩ(Ldh(S), (c̃1, . . . , c̃m)) if Bob corrupt
⊥ if Bob honest

(i.e., for some c̃1, . . . , c̃m).

Recall that in our security model, the adversary is al-
lowed to choose the leakage function from a class of
allowable functions. In the case of a corrupt Bob, that
choice includes the choice of c̃i’s.

Using the efficient Fencode protocol of [21], the entire
protocol can be instantiated in the random oracle model
assuming UC-secure oblivious transfer. [26] also present
a less efficient standard-model instantiation that is se-
cure assuming UC-secure oblivious transfer and a se-
cure PRG. Our implementation uses the random-oracle
instantiation.

Adversary’s set size.. The adversary may “under-
report” the number of items it actually has. For exam-
ple, we expect ãi and c̃i to be significant over-estimates
of the true number of items, but a corrupt Alice could
use ãi different non-dummy items in the calls to Fencode
for bin #i (similarly, Bob could use c̃i distinct items).

This fact is reflected in the ideal functionality (Fig-
ure 3), where honest parties agree to use sets of size n,
but a corrupt party is allowed to actually provide a set
of n′ > n items for some bound n′. We stress that the
original protocol of [26] has the same property, and the
same analysis of the n′ bound in [26] applies here: briefly,
with overwhelming probability we have n′ = O(n) with
a small hidden constant factor, e.g. 3.

5 Choosing Appropriate Leakage
In this section we introduce private load overestimates
and inner-product overestimates that can be used in the
PSI protocol to provide different flavors of differential

Cheaper Private Set Intersection via Differentially Private Leakage 15

privacy. We begin with standard differential privacy and
then consider a variant called distributional differential
privacy.

5.1 Differentially private load overestimate

Recall that Alice & Bob assign each item z to a bin
h(z) specified by a random hash function. The load of
the bins Ldh(X) leaks information about a party’s input
set X, hence our protocol instructs the parties to reveal
a load overestimate L̃h(X) instead. We introduce more
accurate and differentially-private load overestimates.
The more accurate L̃h is, the fewer dummy items need
to be added, and the cheaper the protocol becomes.

As a reference point, one can think of the fully
malicious-secure protocol of [26] as using the overesti-
mate L̃h(X) = (µ, µ, · · ·µ), where µ is computed such
that:

Pr
β←Binomn,1/m

[β > µ] < 1/m2λ.

The fact that this is an overestimate follows from the
union bound. With m bins, the probability of some bin
having more than µ items is at most 2−λ. This overesti-
mate mechanism is independent of the input, and hence
leaks nothing.

Simple Laplacian mechanism. A simple approach
is to add Laplacian noise and also add a fixed “safety
buffer” z, setting ãi = ai + Lap1/ε1 + z. The buffer z is
chosen so that z+ Lap1/ε1 is positive (i.e., ãi ≥ ai) with
high probability – a condition that does not depend on
ai. The mechanism is described formally in Figure 5.

Theorem 11. The load overestimate in Figure 5 is ε1-
DP and is an overestimate of the true load with proba-
bility at least 1− 2−λ.

Proof. Differential privacy follows from the privacy of
the Laplacian mechanism, and the fact that adding z to
each component is input-independent post-processing.

z is chosen so that Pr[ãi ≥ ai] < 1/m2λ for each i.
By a union bound over the m bins, we have Pr[∃i : ãi ≥
ai] < 1/2λ.

This is the mechanism used in [12] for private record
linkage, and also in other contexts unrelated to PSI
(e.g., by Kellaris et al. [16]).

Our experiments show that this overestimate mech-
anism only gives a modest improvement to the PSI pro-
tocol. For example, with n = 220 items, m = 220/12
bins, ε = 1, and λ = 40, the safety buffer is z = 38.4.

To put that into perspective, 98% of bins have less than
20 items. (See Figure 7 for a comparison to our new
mechanism for these parameters.)

In [12], only relatively large bins (i.e., with many
items) are considered. Since the effect of the safety
buffer is additive, it has less of an effect for such large
bins. However, in the RR17 PSI protocol, bins are much
smaller in order to optimize the tradeoff between num-
ber of bins and the quadratic costs within each bin.

Recall that the RR17 protocol computes a worst-
case bin load µ and then treats all bins as if they have
µ items (µ = 51 for the example parameters above). For
low ε and small expected load, the safety buffer mecha-
nism can lead to many bins whose reported size exceeds
µ. However, it is safe to truncate all overestimates at
µ, since the computation of µ is input-independent. In
doing so, the bins are never larger than they are in the
fully-secure RR17 protocol.

Improved Bayesian-update mechanism. We refine
the Laplacian mechanism by taking into account the
prior knowledge Alice and Bob have about the distribu-
tion of the true load. In particular, they know that that
items are mapped to bins uniformly, so the load of each
bin follows a binomial distribution parameterized by n
items and success probability p = 1/m.

We want Alice and Bob to use the differentially pri-
vate bin size estimates not to replace their binomial
distribution priors, but rather to update them in the
standard Bayesian sense.

Suppose β is sampled from some known distribu-
tion (e.g., binomial) D. For any threshold τ , we can
compute Prβ←D[β > τ]. After getting some partial in-
formation about the actual value of β in the form of
â ← β + Lap1/ε1 , we can update this prior distribution
to compute a more accurate probability:

Pr
β←D

[β > τ | β + Lap1/ε1 = â]

Such probabilities can be computed via a straight-
forward Bayesian calculation from the known distribu-
tions D and Lap. For each concrete value of â, we get a
different posterior distribution over β. Hence, for each
value of â, and for any desired cutoff probability p, it is
possible to compute the minimum τ such that

Pr
β←D

[β > τ | β + Lap1/ε1 = â] < p.

In practice, the mapping â 7→ τ can be computed as a
lookup table hard-coded into the protocol. When such
a threshold τ is computed for every bin (with respect to
the appropriate binomial distribution), we get the load
overestimate described formally in Figure 6.

Cheaper Private Set Intersection via Differentially Private Leakage 16

L̃h(X):
compute true load (a1, . . . , am) = Ldh(X)
compute z such that Pr[Lap1/ε1 < −z] < 1/m2λ

for i = 1 to n:
ãi ← ai + Lap1/ε1 + z

return (̃a1, . . . , ãm)

Fig. 5. Simple load overestimate based on Laplacian noise and
safety buffer.

L̃h(X):
compute true load (a1, . . . , am) = Ldh(X)
for i = 1 to n:
âi ← ai + Lap1/ε1
compute (e.g., via a lookup table) minimum τ such that

Pr
β←Binomn,1/m

[
β > τ

∣∣∣ β + Lap1/ε1 = âi

]
< 1/m2λ

ãi := τ

return (̃a1, . . . , ãm)

Fig. 6. Load overestimate based on Bayesian updating.

Laplacian load estimate âi Resulting output ãi

âi ≤ 7 31
7 < âi ≤ 10 32

10 < âi ≤ 13 33
13 < âi ≤ 15 34
15 < âi ≤ 17 35
17 < âi ≤ 19 36
19 < âi ≤ 22 37

Fig. 7. Example lookup table for the Bayesian-update mechanism.
We use n = 220 items, m = n/12 bins, ε = 1, and λ = 40.
Because the expected bin size is 12, the most likely Laplacian
estimate is also 12, so the most common overestimate is 33. In
the fully-secure RR17 protocol with same parameters, all bins
are taken to have size µ = 51. When using the simple Laplacian
method (with same ε and λ), the safety buffer alone is 38.4.

Theorem 12. The load overestimate in Figure 6 is ε1-
DP and is an overestimate of the true load with proba-
bility at least 1− 2−λ.

Proof. Differential privacy follows the fact that τ is com-
puted depending only on âi (not ai), but the âi’s are a
differentially private function of X.

The definition of ãi ensures that Pr[ai > ãi] <

1/m2λ for each i. Again, by a union bound over the
m bins, Pr[∃i : ãi ≥ ai] < 1/2λ.

In Figure 7 we show a concrete example of a lookup
table for load overestimates, for typical parameters en-
countered in the PSI protocol context. This approach
does indeed lead to significantly tighter load overesti-
mates compared to the simple approach of adding a
safety buffer to the differentially-private estimate.

5.2 Differentially private inner product
overestimate

The protocol requires an inner product overestimate
function Ĩ, to upper bound the number of masks that
Alice must send to Bob. The number of non-dummy
masks that Alice has is I =

∑
i aib̃i, but this cannot be

released exactly since ai is sensitive.
In this case, the simple mechanism involving Lapla-

cian noise and a safety buffer is good enough. Taking
the b̃i values as constant, we view I as a function of
Alice’s input set X:

I(X) =
∑
i

Ldh(X, i) · b̃i.

It is clear that the sensitivity of I is ∆I = maxi{̃bi} −
mini{̃bi}. Hence, adding Laplacian noise with parameter
∆I/ε2 is sufficient for ε2-differential privacy. As before,
we compute z such that Pr[Lap∆I/ε2 < −z] < 1/2λ. The
final overestimate function is therefore:

Ĩ(X) =
∑
i

Ldh(X, i) · b̃i + Lap∆I/ε2 + z.

Theorem 13. Ĩ above is ε2-differentially private and
is an overestimate of I with probability at least 1−1/2λ.

The reason this simpler mechanism is sufficient here
(rather than the Bayesian-update mechanism) is due to
the scale of the numbers involved. With typical param-
eters, the load in a single bin is roughly the same mag-
nitude as the safety buffer z. So adding z to the load of
each bin has a huge effect. However, the inner product I
is, e.g., 5 orders of magnitude larger than the load of a
single bin. So adding z to this value has minimal effect.

Allocating the privacy budget. We have described
the load overestimate from the previous section to have
privacy parameter ε1, and the inner-product overesti-
mate to have privacy parameter ε2. The overall PSI
protocol will leak both of these values, leading to overall
differential privacy parameter ε = ε1 + ε2 by the com-
position theorem for DP.

If a privacy budget of ε is desired for the entire PSI
protocol, this budget must be divided between these two
mechanisms somehow. We found it best to allocate the
vast majority of the privacy budget to the load overes-
timates, letting ε2 be quite small in comparison to ε1
(e.g., ε1 = 0.99ε and ε2 = 0.01ε).

Cheaper Private Set Intersection via Differentially Private Leakage 17

5.3 Distributional-differentially-private
load overestimate

Say the receiver was to take the histogram of hash val-
ues and announce for each bin whether or not it was
larger than the average bin size n/m. This would allow
removing most of the dummies in roughly half of the
bins, but it is a deterministic function of the histogram
so can’t possibly be differentially private (for any ε).
However, actually exploiting such information would re-
quire the adversary to have significant knowledge about
the set of items — for example, knowing with certainty
n/m items that happen to be placed in the same bin,
with another target item of interest also being mapped
to that bin. Then the inclusion/exclusion of the target
item will change whether this bin is above/below the
threshold.

If one is working in a use case where this sort of side
information is unlikely, then we can use more nuanced
notions of privacy to give better efficiency. In particu-
lar, we consider here distributional differential privacy
(DDP), introduced by Bassily et al. [1].6 Rather than
considering the worst case over all possible databases,
DDP treats the database itself as a random variable,
modeling adversarial uncertainty.

Definition 14. Say ∆ is a set of distributions for
(X,Z), where X is the database and Z is the adversary’s
auxiliary information about the database. A mechanism
f has (ε, δ,∆)-distributional differential privacy if
for all distributions D ∈ ∆, all i, all (xi, z) in the sup-
port of (X,Z), and all possible sets of output Q,

Pr[f(X) ∈ Q | Xi = xi, Z = z]
≤ eε Pr[f(X−i) ∈ Q | Xi = xi, Z = z] + δ

and

Pr[f(X−i) ∈ Q | Xi = xi, Z = z]
≤ eε Pr[f(X) ∈ Q | Xi = xi, Z = z] + δ,

6 DDP is a special case of coupled-worlds privacy. Coupled-
worlds privacy has additional parameters and allows for more
flexibility in choosing the most relevant privacy definition for
a particular use case. Here we use DDP because it is the
most straightforward instantiation, the one we feel is most well-
motivated here, and the one that is most analogous to differential
privacy.

L̃h(X):
compute true load (a1, . . . , am) = Ldh(X)
compute µ such that Prβ←Binomn,1/m

[β > µ] < 1/m2λ

for i = 1 to n:
ãi := if ai < t then t− 1 else µ

return (̃a1, . . . , ãm)

Fig. 8. Load overestimate based on deterministic rounding.

where Xi is the ith item of the database and X−i is the
database with that row removed.7

Inuitively, the definition guarantees to an indi-
vidual that, given the adversary’s present knowl-
edge/uncertainty, the mechanism will output roughly
the same distribution of values whether or not that in-
dividual’s data is included in the database. As a result,
the inclusion of this data does not reveal anything about
this value beyond the leakage which is parameterized by
ε. The definition is less stringent than differential pri-
vacy, more narrowly tailored to a subset of all possible
auxiliary information. But this is not without ramifica-
tions. If the adversary knows more about the database
than ∆ allows, then there is no guarantee of privacy.
(Fortunately, if the adversary knows less there is no
problem.) Additionally, DDP does not have automatic
composition in the way that differential privacy does,
so it cannot safely be combined with other private data
releases without a case-by-case analysis. The nuances of
this privacy definition can be quite subtle, and we refer
the reader to [1] for a more detailed discussion.

Deterministic rounding mechanism.. We consider
a load-overestimate mechanism in which the bin size
is rounded up to either t − 1 or the a-priori maximum
bin size – whichever is closer. Hence, for each bin we
reveal whether its load is in {0, . . . , t − 1} or {t, . . .}.
The mechanism is described formally in Figure 8.

Theorem 15. The load overestimate in Figure 8 is an
overestimate of the true load with probability at least
1− 2λ.

Proof. By construction, ãi cannot be an underestimate
in the case that ãi = t − 1. Hence, L̃ fails to be an
overestimate only in the case that some ai exceeds µ.

7 The original DDP definition uses a simulator Sim(X−i) in
place of F (X−i). In all cases here we will choose Sim = F , so
we present a simplified definition.

Cheaper Private Set Intersection via Differentially Private Leakage 18

By the definition of µ and a standard union bound, the
probability of such an ai existing is at most 1/2λ.

Understanding the concrete privacy of the mechanism
is not easy. As mentioned, the analysis depends on the
choice of threshold t and the characterization of the ad-
versary’s auxiliary information (∆). A simple formula
relating these parameters to the privacy of the mech-
anism is not known, and any kind of meaningful for-
mula/bound is left as important open work on this
mechanism.

To give some sense of the privacy guarantee, we have
analyzed the mechanism’s guarantees for a specific set of
parameters: n = 216 items, m = n/10 = 6553 bins, and
threshold t = 13. The analysis considers the case where
the adversary’s auxiliary information of X leaves h(X)
uniform. More formally, ∆ contains all joint distribu-
tions over (X,Z) such that the conditional distribution
h(X) | Z is uniform in {1, . . . ,m}n.

Theorem 16. With ∆ as above, and n = 216, m =
n/10, t = 13, the mechanism from Figure 8 gives (∆, ε =
0.33, δ = 5× 10−5)-DDP.

The calculations are quite tedious and given in Ap-
pendix B. As we discuss there, increasing n (keeping
m = n/10) can only decrease ε and δ (i.e., improve pri-
vacy), as the relevant binomial distributions converge
more closely to a normal distribution.

Relaxing the assumption on adversarial knowl-
edge. The analysis assumes that every h(x) of the hon-
est party is random given the adversary’s auxiliary in-
formation. When the adversary does in fact have some
information about some of the items in the set, the DDP
privacy of the mechanism is not completely compro-
mised. Information about items that are placed outside
the bin in question (the bin into which the target item
is placed) is similar in nature to decreasing n by that
amount. Information about items that are placed in the
same bin as the target item is similar to reducing t by
that amount. That means privacy will degrade rapidly
when the adversary knows (or has significant certainty
about) several values that would all hash to the same
bin under the random function h. The chances of this are
low unless the adversary knows a large amount about
the input set. However, while we are confident of these
general statements, quantifying the privacy guarantees
with a specific choice of adversarily knowledge would
(given the techniques discussed here) require re-running
the simulation in a slightly more complex way. Finding
a clear and simple characterization of how privacy de-

grades as adversarily knowledge increases remains an
open question.

6 Experiments
We now explore the concrete tradeoff between differ-
entially private leakage and performance (computation
and communication) in the Rindal-Rosulek PSI proto-
col. We will see that our protocol offers a smooth trade-
off, with performance improving by as much as 60% for
some leakage settings.

The baseline for comparison was the Rindal-Rosulek
protocol as-is. We obtained the implementation from
the authors and modified it to support our variations
on reported bin sizes and number of encodings in the
final message, as outlined in Section 4. One can think of
the unmodified Rindal-Rosulek protocol as the special
case of our generalization, with ε = 0 (i.e., no leakage at
all). The Fencode functionality is instantiated with the
construction of [21].

With ran all protocols on a single server similar to
that used by [26] with the difference that we only con-
sider single-threaded performance. We stress that the
only difference in experiments is the bin size and num-
ber of final-round encodings, resulting from our differ-
entially private leakage. The benchmark machine has
256GB of RAM and 36 physical cores at 2.6 GHz where
a single core is assigned to each party. Two network set-
tings were considered, 1) the LAN setting where latency
is less than a millisecond and throughput is 10Gbps
of which about 1% was actually utilized. 2) the WAN
setting with a 80ms round trip latency and 40Mbps
throughput. Both parties run on the same physical ma-
chine, communicating via a simulated LAN achieved us-
ing a Linux kernel loop-back device and the parameters
listed above. Performance numbers are reported using
the wall-clock time and include network latency. For
each setting of parameters, we report the average of 5
runs.

Parameters. In Figure 9 we report the performance
of our protocol for various choices of differential pri-
vacy parameter ε. Recall that there are two pieces of
differentially-private leakage: the overestimate of the
bin loads, and the overestimate of the number of encod-
ings (inner product). Given an overall privacy budget of
ε we found it advantageous to allocate the lion’s share
to the histogram mechanism. The row in the table cor-
responding to privacy budget ε corresponds to 0.99ε-DP
load overestimate and 0.01ε-DP inner-product overesti-

Cheaper Private Set Intersection via Differentially Private Leakage 19

n Protocol ε

LAN Setting WAN Setting

n/m
Total Online Comm.

n/m
Total Online Comm.

Time (ms) Time (ms) (MB) Time (ms) Time (ms) (MB)

216

4 12 525 464 23.0 12 4341 3806 23.60
2 12 589 541 30.4 12 5472 4951 30.4
1 12 714 670 39.6 12 6829 6310 39.6

This 0.5 12 850 812 47.4 12 8054 7549 47.4
(Bayesian) 0.1 12 1137 1093 56.3 12 10848 10387 56.3

0.05 12 1246 1198 58.6 12 11395 10868 58.6
0.01 12 1375 1308 59.9 12 11742 10994 59.9
0.005 12 1419 1350 60.6 12 11839 11021 60.6
4 12 744 671 27.2 12 7036 6407 27.2

This 2 12 977 906 38.3 12 9433 8806 38.3
(simple) 1 12 1433 1361 59.2 12 13879 13248 59.2

0.5 12 1438 1368 61.7 12 14407 13779 61.7
0.05 12 1444 1373 61.7 12 14419 13789 61.7

RR17 (0) 4 1318 1005 69.1 10 10651 9932 54.1

220

4 12 6780 6719 398.3 12 60579 60033 398.3
2 12 8662 8614 530.4 12 80486 79942 530.4
1 12 10873 10777 689.7 12 103517 102982 689.7

This 0.5 12 12393 12167 838.9 12 124531 123986 838.9
(Bayesian) 0.1 12 16288 16290 998.5 12 172089 174612 998.5

0.05 12 17547 17485 1021.3 12 184206 183672 1021.3
0.01 12 20774 20701 1033.7 12 186201 182962 1033.7
0.005 12 21602 21533 1075.4 12 193092 190121 1075.4
4 12 7963 7897 468.4 12 71137 70590 468.4

This 2 12 10632 10570 672.1 12 96454 95918 672.1
(simple) 1 12 16472 16412 1043.8 12 155900 155370 1043.8

0.5 12 16849 16795 1075.0 12 160304 159764 1075.0
0.05 12 21121 21031 1075.4 12 219289 218651 1075.4

RR17 (0) 4 18478 16295 1302.1 10 191709 189792 1071.7

Fig. 9. The effect of different differential privacy parameters on our protocol performance, compared to the baseline (fully-secure)
RR17 protocol which has no leakage. (Simple) refers to Simple Laplacian mechanism (Figure 5) while (Bayesian) refers to our new
overestimate mechanism (Figure 6).

n Protocol Sender ε Receiver ε
LAN Setting WAN Setting

n/m Total Online n/m Total Online Comm.
Time (ms) Time (ms) Time (ms) Time (ms) (MB)

216 This

DDP 0.33 DP 4 10 531 451 10 4901 4368 25.52
DDP 0.33 DP 2 10 496 452 10 5726 5207 30.31
DDP 0.33 DP 1 10 611 568 10 6636 6112 36.48
DDP 0.33 DP 0.33 10 697 651 10 7334 6816 41.64

RR17 (0) (0) 4 1318 1005 10 10651 9932 54.04

220 This

DDP 0.33 DP 4 10 6793 6727 10 66139 65593 436.92
DDP 0.33 DP 2 10 7224 7155 10 79135 78598 527.24
DDP 0.33 DP 1 10 8833 8770 10 95958 95424 634.10
DDP 0.33 DP 0.33 10 10108 10035 10 110983 110449 725.52

RR17 (0) (0) 4 18478 16295 10 191709 189792 1071.65

Fig. 10. The effect of different distributional differential privacy parameters on our protocol performance, compared to the baseline
RR17 protocol which has no leakage. All of our DDP protocol executions use the mechanism with threshold t = 13.

mate for the sender. The receiver uses the entire privacy
budget for the bin-load overestimate. We consider both

the simple Laplacian overestimate mechanism and our
improved Bayesian-update mechanism.

Cheaper Private Set Intersection via Differentially Private Leakage 20

The main parameters that effects performance,
apart from ε, is the expected bin load n/m. This pa-
rameter controls the relative number of dummy items
that occupy each bin. More items per bin leads to fewer
dummy items proportionally, but more communication
because of the quadratic number of encodings sent in
the last protocol message. These trade-offs must be bal-
anced. In [26], the preferred value of n/m was found
to be 4. In our setting, we have fewer dummy items
thanks to differential privacy, and we found n/m be-
tween 10 and 16 minimizes latency. The ideal parameter
n/m also depends on the network latency (i.e., WAN
vs LAN setting). In both our experiments and RR17,
the ideal value of n/m was determined empirically. For
vastly different network settings, a different n/m value
may be preferable.

Smooth privacy-performance tradeoff. Focusing
on the case of n = 220 items, in the LAN setting ε = 4
results in a speed reduction of 63%; ε = 2 gives 53%
reduction; ε = 1 gives 41% reduction; ε = 0.5 gives 33%
reduction. In the WAN setting, where communication is
more of a bottleneck, ε = 4 reduces communication by
62%, ε = 2 by 50%, ε = 1 by 35%, and ε = 0.5 by 22%.

We attempted to determine a value of ε beyond
which our protocol gives only marginal improvement
over the fully-secure protocol. Experimentally, we found
that the improvement drops off for ε ≤ 0.05, where the
performance is within 5% of the fully secure protocol.
The difference in cost between the DP and fully-secure
protocols depends strongly ε on n/m (expected load)
and only minimally on n. The preferred choice of n/m
parameter is quite stable for all reasonable values of n
that could be considered for PSI. We therefore believe
that the threshold of ε = 0.05 is representative of our
limit for all n.

Improvement over simple Laplacian mechanism.
For the case of n = 220 we also implemented the simple
Laplacian load overestimate that involves a large safety
buffer. For higher ε ∈ {2, 4}, our Bayesian method im-
proves over the basic approach by 14-18%. But for more
demanding ε ∈ {0.5, 1}, our approach gives an improve-
ment of roughly 25%.

Distributional Differential Privacy. We also ex-
plored allowing DDP leakage, as explained in Sec-
tion 5.3. In this setting, the sender can set a threshold t,
and for each bin announce whether it contains t or more
items. Then each bin is treated as if it has either t − 1
items or the worst-case number of items (i.e., whatever
the fully-secure protocol would do).

Because the analysis of this mechanism depends
heavily on the adversary’s auxiliary information about
the inputs, we only propose using it for the sender.
The receiver eventually learns the intersection, which
becomes side information that cannot be predicted in
advance (i.e., when the privacy parameters are being
determined). In these experimends, the sender uses the
deterministic-rounding mechanism and the receiver uses
our Bayesian-updating mechanism.

Due to the difficulty in obtaining concrete quan-
titative bounds on the privacy level, we consider only
one privacy setting for the DDP case. Specifically, for
n ∈ {216, 220} items, and m = n/10 bins, we let
the sender announce whether each bin has less than
t = 13 items. Following the analysis in Section 5.3, we
conservatively estimate that this mechanism provides
(ε = 0.33, δ = 0.00005)-DDP.

The performance of the DDP mechanism is reported
in Figure 10. We observe that this result in decreased
communication/running time in all cases except when
compared to our standard DP protocol with ε = 4. For
instance, with n = 220 and a ε = 0.33 our DDP protocol
is 18% faster than the 0.5-DP protocol. The decrease in
communication is of particular note for the WAN setting
where communication is the main bottleneck. However,
even in the LAN setting we observe a considerable de-
crease in running time.

7 Future Work
Looking more closely at our protocol, the differentially
private leakage is on a random histogram — i.e., a
random function applied to the private input set. In-
deed, the nature of this leakage motivates the choice
of distributional DP — rather than arguing that an at-
tacker has limited information about some of the private
items, it is enough to say that the attacker’s auxiliary
information about the items is sufficiently limited to
make most of the hashes look random.

An interesting future direction is to extend differ-
ential privacy definitions and mechanisms to give better
accuracy in such a setting — i.e., where we are trying to
sanitize information that is already somewhat “random
information” about the private inputs.

The most challenging part of our analysis is obtain-
ing good concrete bounds for the DDP privacy analysis.
We obtain estimates using intensive computations, but
analytical bounds would be more convenient.

Cheaper Private Set Intersection via Differentially Private Leakage 21

There is also an issue that the DDP mechanism can
only be applied to one party’s histogram. This stems
from the fact that DDP does not automatically com-
pose with auxiliary information — yet, the PSI output
itself will become auxiliary information but is not known
at the time that DDP parameters are chosen. A bet-
ter understanding of this composition problem would
be helpful, since our DDP mechanism gives better per-
formance.

References
[1] R. Bassily, A. Groce, J. Katz, and A. Smith. Coupled-worlds

privacy: Exploiting adversarial uncertainty in statistical data
privacy. In 54th FOCS, pages 439–448. IEEE Computer
Society Press, Oct. 2013.

[2] A. Beimel, K. Nissim, and E. Omri. Distributed private
data analysis: Simultaneously solving how and what. In
D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 451–468. Springer, Heidelberg, Aug. 2008.

[3] M. Burkhart, M. Strasser, D. Many, and X. Dimitropou-
los. Sepia: Privacy-preserving aggregation of multi-domain
network events and statistics. Network, 1(101101), 2010.

[4] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In 42nd FOCS, pages
136–145. IEEE Computer Society Press, Oct. 2001.

[5] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu,
and M. Steiner. Highly-scalable searchable symmetric en-
cryption with support for Boolean queries. In R. Canetti and
J. A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of
LNCS, pages 353–373. Springer, Heidelberg, Aug. 2013.

[6] T.-H. H. Chan, K.-M. Chung, B. Maggs, and E. Shi.
Foundations of differentially oblivious algorithms. Cryp-
tology ePrint Archive, Report 2017/1033, 2017. http:
//eprint.iacr.org/2017/1033.

[7] M. Chase, R. Gilad-Bachrach, K. Laine, K. Lauter, and
P. Rindal. Private collaborative neural network learn-
ing. Cryptology ePrint Archive, Report 2017/762, 2017.
https://eprint.iacr.org/2017/762.

[8] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrat-
ing noise to sensitivity in private data analysis. In S. Halevi
and T. Rabin, editors, TCC 2006, volume 3876 of LNCS,
pages 265–284. Springer, Heidelberg, Mar. 2006.

[9] E. Fenske, A. Mani, A. Johnson, and M. Sherr. Distributed
measurement with private set-union cardinality. In B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors,
ACM CCS 17, pages 2295–2312. ACM Press, Oct. / Nov.
2017.

[10] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient pri-
vate matching and set intersection. In C. Cachin and
J. Camenisch, editors, EUROCRYPT 2004, volume 3027
of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

[11] O. Goldreich. Towards a theory of software protection and
simulation by oblivious RAMs. In A. Aho, editor, 19th ACM
STOC, pages 182–194. ACM Press, May 1987.

[12] X. He, A. Machanavajjhala, C. J. Flynn, and D. Srivastava.
Composing differential privacy and secure computation:
A case study on scaling private record linkage. In B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors,
ACM CCS 17, pages 1389–1406. ACM Press, Oct. / Nov.
2017.

[13] Y. Huang, J. Katz, and D. Evans. Quid-Pro-Quo-tocols:
Strengthening semi-honest protocols with dual execution.
In 2012 IEEE Symposium on Security and Privacy, pages
272–284. IEEE Computer Society Press, May 2012.

[14] P. Kairouz, S. Oh, and P. Viswanath. Differentially private
multi-party computation: Optimality of non-interactive ran-
domized response. arXiv preprint arXiv:1407.1546, 2014.

[15] S. P. Kasiviswanathan and A. Smith. A note on differential
privacy: Defining resistance to arbitrary side information.
Cryptology ePrint Archive, Report 2008/144, 2008. http:
//eprint.iacr.org/2008/144.

[16] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Accessing
data while preserving privacy. CoRR, abs/1706.01552, 2017.

[17] V. Kolesnikov, P. Mohassel, B. Riva, and M. Rosulek. Richer
efficiency/security trade-offs in 2PC. In Y. Dodis and J. B.
Nielsen, editors, TCC 2015, Part I, volume 9014 of LNCS,
pages 229–259. Springer, Heidelberg, Mar. 2015.

[18] S. Mazloom and S. D. Gordon. Differentially private access
patterns in secure computation. Cryptology ePrint Archive,
Report 2017/1016, 2017. http://eprint.iacr.org/2017/1016.

[19] P. Mohassel and M. Franklin. Efficiency tradeoffs for mali-
cious two-party computation. In M. Yung, Y. Dodis, A. Ki-
ayias, and T. Malkin, editors, PKC 2006, volume 3958 of
LNCS, pages 458–473. Springer, Heidelberg, Apr. 2006.

[20] A. Narayan and A. Haeberlen. Djoin: Differentially private
join queries over distributed databases. In C. Thekkath
and A. Vahdat, editors, 10th USENIX Symposium on Op-
erating Systems Design and Implementation, OSDI 2012,
Hollywood, CA, USA, October 8-10, 2012, pages 149–162.
USENIX Association, 2012.

[21] M. Orrù, E. Orsini, and P. Scholl. Actively secure 1-out-of-N
OT extension with application to private set intersection.
In H. Handschuh, editor, CT-RSA 2017, volume 10159 of
LNCS, pages 381–396. Springer, Heidelberg, Feb. 2017.

[22] R. Ostrovsky. Efficient computation on oblivious RAMs. In
22nd ACM STOC, pages 514–523. ACM Press, May 1990.

[23] A. Papadimitriou, A. Narayan, and A. Haeberlen. Dstress:
Efficient differentially private computations on distributed
data. In Proceedings of the Twelfth European Conference on
Computer Systems, pages 560–574. ACM, 2017.

[24] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G.
Choi, W. George, A. D. Keromytis, and S. Bellovin. Blind
seer: A scalable private DBMS. In 2014 IEEE Symposium
on Security and Privacy, pages 359–374. IEEE Computer
Society Press, May 2014.

[25] V. Rastogi and S. Nath. Differentially private aggregation of
distributed time-series with transformation and encryption.
In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 735–746. ACM,
2010.

[26] P. Rindal and M. Rosulek. Malicious-secure private set
intersection via dual execution. In B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 17,
pages 1229–1242. ACM Press, Oct. / Nov. 2017.

http://eprint.iacr.org/2017/1033
http://eprint.iacr.org/2017/1033
https://eprint.iacr.org/2017/762
http://eprint.iacr.org/2008/144
http://eprint.iacr.org/2008/144
http://eprint.iacr.org/2017/1016

Cheaper Private Set Intersection via Differentially Private Leakage 22

[27] P. Schoppmann, A. Gascón, and B. Balle. Private nearest
neighbors classification in federated databases. Cryptology
ePrint Archive, Report 2018/289, 2018. https://eprint.iacr.
org/2018/289.

[28] S. Wagh, P. Cuff, and P. Mittal. Root oram: A tun-
able differentially private oblivious ram. arXiv preprint
arXiv:1601.03378, 2016.

A Security Proof
In this section we prove the security of the (leaky) PSI
protocol (Figure 4). The proof is essentially the same as
the one in [26], and is presented here with many aspects
identical to [26]. The modifications have to do with the
leakage handling in the simulator, which is highlighted
below.

Proof. We start with the case of a corrupt Bob. The
simulator must extract Bob’s input, and simulate the
messages in the protocol. We first describe the simula-
tor:

The simulator plays the role of the ideal Fencode func-
tionality. The simulator obtains leakage (̃a1, . . . , ãm) ←
Lpre(X) = L̃h(X) from the functionality and simulates
this as the message from Alice in Step 2a. It receives
(c̃1, . . . , c̃m) from corrupt Bob in Step 2b. To extract Bob’s
set, the simulator observes all of Bob’s Fencode messages
(Encode, (sid,A, d, p), yd,p) in Step 3b. The simulator com-
putes Y = {yd,p} and sends it to the ideal FPSI functionality
which responds with the intersection Z = X ∩ Y .
For each z ∈ Z, compute bin index d = h(z) and place z
into a random unused position p ∈ [̃ad] in bin BX [z]. For
j ∈ [̃cd], add value JzKAd,p ⊕ JzKBd,j to a set E. Then obtain
leakage ẽ ← Lpost(X) = Ĩ(Ldh(X), (c̃1, . . . , c̃m)) from the
functionality and pad E with random values until it has
size ẽ. The simulator then sends E (randomly permuted) to
the adversary.

To show that this is a valid simulation, we consider a
series of hybrids.

Hybrid 0 The first hybrid is the real interaction where
Alice honestly uses her input X, and Fencode is imple-
mented honestly.

Observe Bob’s commands to Fencode of the form
(Encode, (sid,A, d, p), yd,p) in Step 3b. Based on
these, we can define (but not use) the set Ỹ = {yd,p}.

Hybrid 1 In this hybrid, we modify Alice to send
dummy values to Fencode in Step 2a (rather than her
actual inputs). The hybrid is indistinguishable by the
properties of Fencode.

Hybrid 2 In Step 4a, for each x ∈ X the simulated Al-
ice sends common encodings of the form JxKAd,j⊕JxKBd,p,
for some position p, where d = h(x). Suppose x 6∈ Ỹ .
By construction of Ỹ , Bob never obtained an encod-
ing of the form JxKAd,j . This encoding is therefore dis-
tributed independent of everything else in the simula-
tion. In particular, the common encoding of the form
JxKAd,j⊕JxKBd,p, which is added to the set E, is uniform.

We therefore modify the hybrid in the following
way. In Step 4a, simulated Alice generates encod-
ings for the set E only for items in the intersection
Z = X ∩ Ỹ , instead of X as before. She still pads the
set E to contain ẽ items, as before. By the above ar-
gument, the adversary’s view is identically distributed
in this modified hybrid.

We can see that the final hybrid uses the contents X
only in the following way: It uses the bin-load overesti-
mate L̃h(X); it uses the result of X ∩ Ỹ for some set Ỹ
that it computes; it uses the inner-product overestimate
Ĩ(Ldh(X), (c̃1, . . . , c̃m)). Hence, this hybrid corresponds
to our final simulator, where we obtain leakage from the
functionality, send Ỹ to the ideal FPSI functionality and
receive X ∩ Ỹ in response.

We now turn our attention to a corrupt Alice.
In this case the simulator must simply extract Alice’s
effective input (Alice receives no output from FPSI). The
simulator is defined as follows:

The simulator plays the role of the ideal Fencode functional-
ity. The simulator obtains (̃a1, . . . , ãm) from the adversary
in Step 2a and obtains leakage (̃b1, . . . , b̃m) ← Lpre(Y) =
L̃h(Y) from the functionality. It computes (c̃1, . . . , c̃m) as
in the protocol and simulates this as the message from Bob
in Step 2b. In Step 3a, the simulator intercepts Alice’s com-
mands of the form (Encode, (sid,B, d, p), xd,p). The simula-
tor computes a set of candidates X̃ = {xd,p} and for x ∈ X̃
let c(x) denote the multiplicity of x in its bin; i.e., the num-
ber of values p for which x = xh(x),p.
The simulator computes a hash table B as follows. For
x ∈ X̃ the simulator places c(x) copies of x in bin B[h(x)].
Note that we place

∑
x:h(x)=d c(x) items in bin index d. By

construction
∑

x:h(x)=d c(x) ≤ ãd ≤ c̃d, and hence simu-
lated Bob has enough space in bin d. Let the items in each
bin be randomly permuted, and for each x, let p(x) denote
the set of positions of x in its bin.
Let E denote the set of values sent by Alice in Step 4a. The
simulator computes

X∗ =
{
x ∈ X̃ | ∃j ∈ [̃ch(x)], p ∈ p(x) :

JxKAh(x),j ⊕ JxKBh(x),p ∈ E
} (3)

where the encodings are obtained by playing the role of
Fencode. The simulator sends X∗ to the FPSI functionality.

https://eprint.iacr.org/2018/289
https://eprint.iacr.org/2018/289

Cheaper Private Set Intersection via Differentially Private Leakage 23

Hybrid 0 The first hybrid is the real interaction where
Bob honestly uses his input X, and Fencode is imple-
mented honestly.

Observe Alice’s commands to Fencode of the form
(Encode, (sid,B, d, p), xd,p) in Step 3a. Based on
these, define X̃ = {xd,p}.

Hybrid 1 In this hybrid, we modify Bob to send
dummy inputs to Fencode in Step 2b (rather than his
actual items). The hybrid is indistinguishable by the
properties of Fencode.

Hybrid 2 Note that in this hybrid, Bob’s output is
computed as specified in Step 4c. We then modify
the interaction so that Bob removes all output items
which are not in X̃. The hybrids differ only in the
event that simulated Bob computes an output in
Step 4c that includes an item y 6∈ X̃. This happens
only if JyKAd,j ⊕ JyKBd,p ∈ E, where Bob places y in po-
sition p of bin d = h(y). Since y 6∈ X̃, however, the
encoding JyKBd,p is distributed uniformly. The length
of encodings is chosen so that the overall probability
of this event (across all choices of y 6∈ X̃) is at most
2−λ. Hence the modification is indistinguishable.

Hybrid 3 We modify the hybrid in the following way.
When building the hash table, the simulated Bob uses
X̃ instead of his actual input Y . Each x ∈ X̃ is in-
serted with multiplicity c(x). Then he computes the
protocol output as specified in Step 4c; call itX∗. This
is not what the simulator gives as output — rather,
it gives X∗ ∩ Y as output instead.

The hashing process is different only in the fact that
items of Y \ X̃ are excluded and replaced in the hash
table with items of X̃ \ Y (i.e., items in Y ∩ X̃ are
treated exactly the same way). Note that the defini-
tion of X̃ ensures that the hash table can hold all of
these items without overflowing. Also, this change is
local to Step 4c, where the only thing that happens is
Bob computing his output. However, by the restric-
tion added in Hybrid 2 , items in Y \ X̃ can never be
included in X∗. Similarly, by the step added in this
hybrid, items in X̃ \ Y can never be included in the
simulator’s output. So this change has no effect on the
adversary’s view (which includes this final output).

The final hybrid works as follows. A simulator interacts
with the adversary and at some point computes a set
X∗, without the use of Y . Then the simulated Bob’s
output is computed as X∗ ∩ Y . Hence, this hybrid cor-
responds to our final simulator, where we send X∗ to

the ideal FPSI functionality, which sends output X∗ ∩Y
to ideal Bob.

B Calculations for DDP Leakage
We assume (for now) that the sender knows nothing at
all about the hashes of the receiver’s inputs.8 Note that
this does not mean that the receiver’s inputs are com-
pletely unknown, just that they have sufficient uncer-
tainty that their hashes under the random hashing func-
tion appear uniform. Note also that this is an assump-
tion we can make regarding only the sender’s knowledge
of the receiver’s input, because the PSI protocol itself
gives output to the receiver, which is auxiliary informa-
tion about the sender’s input that violates this assump-
tion.

We now wish to compute the privacy parameters ε
and δ for the deterministic rounding mechanism with
threshold t. We first want to fix a given output S and
consider the following ratio:

ρ = Pr[q(X) = S | h(Xi) = j]
Pr[q(X−i) = S | h(Xi) = j] (4)

We note first of all that the calculation will be the same
for all choices of i and j, so we assume without loss of
generality that i = n and j = m. We also leave the
conditioning implicit, since from this point forward all
probabilities are conditioned on h(Xn) = m. We now
want to examine the same ratio, with the following sim-
plified notation:

ρ = Pr[q(X) = S]
Pr[q(X−n) = S] (5)

We first consider the case where m ∈ S, i.e. the
case where ρ ≥ 1. Let S−m = S \ {m} and let Cm be a
random variable equal to the size of bin m. We can then
rewrite the numerator.

Pr[q(X) = S] = Pr[q(X−n) = S] (6)
+ Pr[q(X−n) = S−m ∧ Cm = t− 1]

= Pr[q(X−n) = S]
+ Pr[q(X−n) = S−m | Cm = t− 1] Pr[Cm = t− 1]

We now define a random variable Hn,m equal to the
set of indices of bins of size t or greater when n balls

8 Formally, ∆ consists of all distributions on (X,Z) such that
conditioned on any value z in the support of Z, the distribution
on X is such that with high probability of the choice of h, each
h(Xi) is a uniform, independent value.

Cheaper Private Set Intersection via Differentially Private Leakage 24

are thrown into m bins. For example, q(X−n) = Hn−1,m
and once we condition on Cm = t−1, we have q(X−n) =
Hn−t,m−1. (To see this, note that it’s clear when we
condition on a particular set of t−1 values ending up in
bin m, and the overall probability is the average of the
value when conditioned on each specific set.) We also
note that Pr[Cm = t − 1] = Binomn−1,1/m(t − 1). As a
result, we have

Pr[q(X) = S] = Pr[Hn−1,m = S]
+ Pr[Hn−t,m−1 = S−m] · Binomn−1,1/m(t− 1).

Note that the denominator in Equation 5 can also be
written this way, with Pr[q(X−n) = S] = Pr[Hn−1,m =
S]. Putting these two simplifications together, we get

ρ = 1 + Binomn−1,1/m(t−1)
Pr[Hn−t,m−1 = S−m]

Pr[Hn−1,m = S] . (7)

We then note that all sets S of a given size are
equally likely values of H (for any choice of subscripts),
so setting s = |S| we can rewrite the fraction in the
above equation as

Pr[Hn−t,m−1 = S−m]
Pr[Hn−1,m = S] =

Pr[|Hn−t,m−1| = s− 1]/
(
m−1
s−1
)

Pr[|Hn−1,m| = s]/
(
m−1
s

) .

The binomial expressions then simplify:(
m−1
s

)(
m−1
s−1
) = (m− 1)!/[s!(m− s− 1)!]

(m− 1)!/[(s− 1)!(m− s)!]

= (s− 1)!(m− s)!
s!(m− s− 1)! = (m− s)/s

That leaves us with the following expression for the ratio
ρ:

ρ = 1+Binomn−1,1/m(t−1)·m− s
s
·
Pr[|Hn−t,m−1| = s− 1]

Pr[|Hn−1,m| = s]

We must then also consider the case where m 6∈ S
and ρ < 1. The analysis of the denominator is un-
changed, but the numerator must be handled separately
in this case. Luckily it proceeds quite similarly. We have

Pr[q(X) = S] = Pr[q(X−n) = S]
− Pr[q(X−n) = S ∧ Cm = t− 1].

This is almost the same as in Equation 6, except that
the addition has changed to subtraction and in the sec-
ond term we have S instead of S−m. Doing the same
manipulation gives us

ρ = 1− Binomn−1,1/m(t− 1)
Pr[Hn−t,m−1 = S]
Pr[Hn−1,m = S] . (8)

As before we use the symmetry of Pr[Hn−t,m−1 = S]
across all sets S of the same size. Again using |S| = s

we have

Pr[Hn−t,m−1 = S]
Pr[Hn−1,m = S] =

Pr[|Hn−t,m−1| = s]/
(
m−1
s

)
Pr[|Hn−1| = s]/

(
m−1
s

) .

Unlike in the previous case, these binomial coefficients
cancel and we are left with

ρ = 1− Binomn−1,1/m(t− 1) ·
Pr[|Hn−t,m−1| = s]
Pr[|Hn−1,m| = s] .

Estimating concrete parameters. If we knew how
to compute an exact probability distribution for |Hn,m|
we would now be finished. The distribution of |Hn,m|
approximates a normal distribution. The value of ρ is
worst when s is far from its expected value, so we could
simply define an interval [α, β] and compute the values
of ρ with s = α and s = β and set ε = max | ln(ρ)|.
That would bound the ratio for all values in [α, β] and
we could then compute the probability that s 6∈ [α, β]
and set δ to that value. By adjusting α and β we could
control a tradeoff between ε and δ.

Unfortunately we cannot find an efficiently com-
putable closed-form expression for the distribution of
|Hn,m|, and the normal approximation, while pretty
good, is unreliable for very precise estimates of the ex-
treme tails needed for δ calculations. So we instead re-
sort to experimental estimation of these values. We run
a simulation of throwing n − t (resp. n − 1) balls into
m− 1 (resp. m) bins many times, each time noting the
number of bins ending up with at least t balls.

Concretely, computational limitations meant we
could only run a large simulation for a single choice
of parameters, and not for the largest values of n. We
choose n = 216, m = n/10 = 6553, and t = 13 (meaning
that each bucket is said to be either in [0, 12] or [12,∞)).
We were able to run a simulation with 20 million data
points. On average 1366 bins will be over the threshold,
and our data gave us confidence to say that by choosing
[α, β] = [1257, 1473] we achieve delta of approximately
1/500, 000. In principle ε should be worst near the ex-
treme tails, but we found that as we moved to the ex-
treme tails we hit a point where our data was too sparse
to make accurate estimates before we hit a point where
ε was increasing. In the entire range where we have suf-
ficient data, variation in ε is minimal and the maximum
value it takes is 0.33. This is a lower value that we were
using in the differentially private protocol, so we should
ideally accept a worse ε value in exchange for an even
better δ value, but our data is insufficient to quantify
the tradeoff beyond this point.

Cheaper Private Set Intersection via Differentially Private Leakage 25

We note also that while simulations with larger n
will take even more computational power, it is clear that
the privacy parameters will only improve, as the distri-
bution of |Hn,m| is still approximately normal but now
with a larger standard deviation and therefore a better
ratio between adjacent values. We therefore consider the
protocol withm = n/10 and t = 13 to be (0.33, 5×10−5)-
DDP in the n = 220 case as well. In reality, the param-
eters are probably significantly better than this.

Because we saw no sign of increasing ε in the range
of values we could estimate, we believe these estimates
are in fact much worse than what is really achieved.
A successful theoretical analysis of these parameters,
rather than relying on empirical estimation, would be a
highly desirable result of future work.

	Cheaper Private Set Intersection via Differentially Private Leakage
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Differential Privacy Background
	3 Security model
	3.1 UC-Secure 2-party Computation
	3.2 UC Security with Differentially Private Leakage

	4 PSI Protocol Framework
	4.1 Overview
	4.2 Our Generalization and Details

	5 Choosing Appropriate Leakage
	5.1 Differentially private load overestimate
	5.2 Differentially private inner product overestimate
	5.3 Distributional-differentially-private load overestimate

	6 Experiments
	7 Future Work
	A Security Proof
	B Calculations for DDP Leakage

