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Abstract: The app economy is largely reliant on data
collection as its primary revenue model. To comply with
legal requirements, app developers are often obligated to
notify users of their privacy practices in privacy policies.
However, prior research has suggested that many devel-
opers are not accurately disclosing their apps’ privacy
practices. Evaluating discrepancies between apps’ code
and privacy policies enables the identification of poten-
tial compliance issues. In this study, we introduce the
Mobile App Privacy System (MAPS) for conducting an
extensive privacy census of Android apps. We designed
a pipeline for retrieving and analyzing large app pop-
ulations based on code analysis and machine learning
techniques. In its first application, we conduct a privacy
evaluation for a set of 1,035,853 Android apps from the
Google Play Store. We find broad evidence of potential
non-compliance. Many apps do not have a privacy pol-
icy to begin with. Policies that do exist are often silent
on the practices performed by apps. For example, 12.1%
of apps have at least one location-related potential com-
pliance issue. We hope that our extensive analysis will
motivate app stores, government regulators, and app
developers to more effectively review apps for potential
compliance issues.
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1 Introduction
Privacy legislation around the world sets requirements
for the disclosure of privacy practices. Such laws in-
clude the Children’s Online Privacy Protection Act
(COPPA) and the California Online Privacy Protec-
tion Act (CalOPPA) in the US and the General Data
Protection Regulation (GDPR) in the EU. These and
other laws are creating stricter and more extensive obli-
gations for app developers to make their privacy prac-
tices transparent by means of privacy policies. Despite
their well-known shortcomings — they take a long time
to read [33] and are often difficult to understand [14] —
privacy policies remain the de iure standard for notify-
ing Internet users of applicable privacy practices.

When it comes to the dissemination of these policies
for apps, app stores are situated at a critical juncture.
In 2012, six major app stores signed an agreement with
the California Attorney General in which they obligated
themselves to urge developers to adopt privacy policies
and to provide functionality allowing developers to link
to their policies [6]. Consequently, on the Play Store,
Google is requiring Android developers to disclose how
their apps collect, use, and share user data [20]. How-
ever, we are not aware of Google or any other Android
app store operator engaging in a systematic and com-
prehensive review of apps’ privacy practices.

1.1 Research Questions

In order to advance the fundamental understanding of
privacy practices and potential compliance issues in the
Android ecosystem, we are introducing the Mobile App
Privacy System (MAPS). Its design, implementation,
and use cases are guided by the following research ques-
tions.
1. How many apps have privacy policies? (§ 5.1) Prior

work has measured the prevalence of links to pri-
vacy policies [54], but it is also of significant inter-
est whether privacy policies can actually be found
by following these links.
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2. Which privacy practices are developers describing in
their privacy policies? (§ 5.2) Which practices are
discussed the most? Are developers describing the
practices that their apps are performing or are they
making promises to users about what they will not
do?

3. Of the practices performed by apps, which are de-
scribed in privacy policies? (§ 5.3) If an app ac-
cesses users’ information, but that practice is not
described in a privacy policy, a compliance issue
may be present. Why does this happen? Are the
privacy practices of third parties described less of-
ten than those of first parties?

4. What characteristics of apps are associated with po-
tential compliance issues? (§ 5.4) For example, do
apps in certain Play Store categories have more po-
tential compliance issues?

1.2 Key Contributions

In order to answer our research questions, we leverage
MAPS. Our system compares apps’ privacy practices
to what their privacy policies state, and flags potential
privacy requirements conflicts, which we characterize as
potential compliance issues. Such issues arise when the
claims made (or absent) in the privacy policy conflict
with evidence that the app may be doing something else.
Our system’s evaluation of app behaviors is based on ef-
ficient and lightweight code analysis techniques. For the
policy analysis, we leverage natural language processing
and supervised machine learning models. The system is
capable of performing large-scale scans: we use it to an-
alyze over a million apps on the Google Play Store.

We believe that our system holds promise for app
developers, app stores, privacy activists, and regulators
alike. For example, regulators could focus their inves-
tigative efforts on those apps which our system has
flagged as having potential compliance issues. Automat-
ically identifying potential compliance issues could help
app stores moderate their stores more effectively.

We make the following contributions:
1. APP-350 Corpus (§ 3). The machine learning clas-

sifiers of our system were trained based on a corpus
of human-annotated app privacy policies. This cor-
pus is publicly available for further research.1 To
our knowledge, it is the only corpus for app privacy

1 The dataset is available at https://data.usableprivacy.org.

policies and the largest corpus of annotated privacy
policies overall.

2. MAPS (§ 4). Our system provides a scalable
pipeline to systematically analyze potential compli-
ance issues for sizable populations of apps. By evalu-
ating apps’ permissions, Android API usage, library
inclusion, privacy policies, and numerous types of
metadata, it enables a comprehensive evaluation of
privacy trends.

3. Google Play Store Privacy Analysis (§ 5). Based
on our system’s analysis, we present an extensive
privacy survey of 1,035,853 free Android apps on
the Google Play Store. Our analysis finds broad ev-
idence of potential compliance issues. Particularly,
many apps appear to not sufficiently disclose third
party practices concerning identifiers and locations.
We notified regulators of some of our findings (§ 6),
and performed a pilot study with a large European
electronic device manufacturer (§ 7).

This work has been conducted as part of the Usable
Privacy Policy Project [46] and the Personalized Privacy
Assistant Project.2

2 Related Work
Our work builds on prior work in large-scale privacy
studies (§ 2.1). We also employ code analysis (§ 2.2)
and natural language processing (§ 2.3) techniques.

2.1 Privacy Surveys

Our study is extending prior work on identifying privacy
practices in mobile apps and comparing them against
disclosures in privacy policies. As lawmakers introduce
new privacy legislation, privacy policies remain the pri-
mary means for disclosing and describing a service’s
privacy practices. Such policies, together with statu-
tory and other laws, provide the ground truth for ob-
jectively measuring privacy compliance. Consequently,
privacy policies have been used in the past for privacy
grading metrics [60, 66].

We are unaware of prior work analyzing potential
compliance issues across entire app stores. However, sev-
eral studies have performed privacy analyses of smaller

2 The Personalized Privacy Assistant Project, https://
privacyassistant.org.

https://data.usableprivacy.org
https://privacyassistant.org
https://privacyassistant.org
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numbers of apps. Zimmeck et al. [67] previously an-
alyzed potential compliance issues for a set of 17,991
apps. Wang et al. [61] analyzed 80 health and finance
apps for compliance with their privacy policies, detect-
ing 20 “strong” and 10 “weak” violations. Using Taint-
Droid, Enck et al. [13] performed an automated dynamic
privacy analysis of 30 popular Android apps.

Other studies have focused on data sharing with
third parties. In a longitudinal study Ren et al. [43] ob-
served 512 Android apps over eight years of version his-
tory and concluded that the increased number of third
party domains receiving data lead to higher privacy risk
over time. Because third party libraries and their host
apps have access to the same Android app permissions,
it is often difficult to discern who is processing what
data. Thus, end users are often forced to accept privacy-
relevant third party behavior if they want to make use
of the apps’ functionality [24]. Although their study
was focused only on websites and not mobile apps, Lib-
ert [26] audited the disclosure of third party data collec-
tion practices on 200,000 privacy policies for websites.
He found that the names of third parties are usually
not explicitly disclosed in website privacy policies. In
line with these observations, we examine the state of
potential privacy non-compliance with regard to third
party practices in particular.

2.2 Android App Analysis

The privacy practices of interest in our study are the
subject of studies in both the privacy and security com-
munities. Viennot et al. [59] found that more than half
of the apps they examined contained a third party ad
library. Some existing approaches [51, 64], however, are
not capable of distinguishing between first and third
party practices, limiting the utility of analysis under ex-
isting legal frameworks.3 Razaghpanah et al. [41] made
use of Lumen (previously Haystack) [40] to develop
methods for detecting previously unknown third party
libraries and uncovering relationships between parties.
Liu et al. found that native code use in ad libraries
makes up only about 1% [28]. It has negligible impact on
app populations as a whole [1], and is therefore omitted
from our study.

3 For example, CalOPPA requires operators of online services
to disclose in their privacy policies whether “other parties” are
collecting personally identifiable information on their services.
Cal. Bus. & Prof. Code §22575(b)(6).

Many studies have explored app behavior by mea-
suring data leakage. Examining apps with WebViews,
Mutchler et al. [34] found that 28% of apps leak data
through overridden URLs or have similar vulnerabil-
ities. The aim of our research questions is distinct
from this area of research, as it is our objective to
analyze apps’ privacy practices — we are not explor-
ing patterns of exploiting security vulnerabilities. We
are aiming to identify disclosed use of permissions and
APIs [36] instead of detecting maliciously hidden infor-
mation flows and service invocations. In this context
Tuncay et al. [58] found that the coexistence of certain
app permissions can lead to unintentional loss of pri-
vacy. Our focus also differs from the goal of tools like
DroidSafe [22] and ISA [25].

Using dynamic analysis a previous study [45] re-
vealed that many Android apps track users via persis-
tent device identifiers, a practice Google prohibits for
advertising purposes [21]. Our method of triangulating
app behavior is based on static analysis. One of the
most popular static analysis tools is FlowDroid [2]. Our
approach is based on FlowDroid’s notion that the exe-
cution of particular APIs is indicative of certain privacy
practices, as shown in the Appendix, Table T2. How-
ever, FlowDroid’s runtime performance and reported
error rate of 102/477 app analyses given a 30-minute
time-out window [51] is not suitable for our purposes.
We opted to develop a lightweight analysis approach
that scales well and is sufficiently robust, similar to
the approach used in [27]. Alternative techniques apply
machine learning [31, 35, 38, 44], black box differential
analysis [9], or traffic signatures [7].

2.3 Privacy Policy Analysis

To answer our privacy policy-related research questions
our work leverages natural language processing and ma-
chine learning techniques, which stands in contrast to
Watanabe et al. [62], whose approach is based on key-
words. Using a naive Bayes classifier, Zimmeck and
Bellovin [66] built a browser extension for identifying
privacy practices in policy text. Tesfay et al. [55], also
using machine learning, identified various GDPR pro-
visions in policies. Many approaches to analyzing pol-
icy text are based on supervised machine learning tech-
niques that require expert annotated training and test
datasets. Previously, a corpus of annotated website poli-
cies was released by Wilson et al. [63] and used by Hark-
ous et al. [23]. We contribute to this effort by releasing
a privacy policy corpus specifically for apps (§ 3).
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It is a challenge to identify which natural language
text documents are indeed privacy policies as, for ex-
ample, privacy policy links in the Play Store may be
broken or redirect to non-policy documents. Also, pri-
vacy policies may be combined with terms of services.
Story et al. [54] studied metadata concerning apps on
the Play Store and found that many apps lack privacy
policy links on their Play Store pages altogether. Ear-
lier work focused on the structure of privacy policies in
more general domains outside of Android apps. Fei Liu
et al. [39] and Frederick Liu et al. [29] addressed the
problem of identifying policy sections relating to the
same topic. Sathyendra et al. [47] classified advertising
opt outs and other privacy-related options on websites.
Cranor et al. [10] evaluated financial institutions’ pri-
vacy notices. Bowers et al. [5] studied privacy policies
of mobile money services, and Ermakova et al. [14] an-
alyzed the readability of policies of healthcare websites.
Zhuang et al.’s work [65] aimed to help university re-
searchers by automating enforcement of privacy policies
of Institutional Review Boards.

3 The APP-350 Corpus
Our system analyzes privacy policy text based on su-
pervised machine learning classifiers. In order to train
the models and test their performance we created an
app privacy policy corpus — the APP-350 corpus —
which is available for further research.4 Legal experts
identified and annotated policy text relating to privacy
practices, or short practices, such as an app’s access of
GPS location information by a first or third party. The
nature of a practice may be general (e.g., “We access
your location information”) or specific (e.g., “We access
your GPS location information”).

A policy may describe the performance of a prac-
tice (e.g., “We access your location information”), make
the promise that a practice is not performed (e.g., “We
do not access your location information.”), may contain
statements on both performance and non-performance,
or may not mention a practice at all. As all policies were
comprehensively annotated with performance and non-
performance labels, it can be assumed that all unan-
notated portions of policy text do not describe any of
the practices and so can be used as training, validation,

4 The dataset is available at https://data.usableprivacy.org.

and test data to detect the absence of statements on
respective practices.

The legal experts annotated a total of 350 poli-
cies. We selected these policies from the most popu-
lar apps on the Google Play Store. We annotated the
policies linked from the Play Store pages of all apps
with more than 50 million installs (n = 247). In ad-
dition, we annotated the policies of randomly selected
apps with more than 5 million installs (n = 103). All
350 policies were consistently annotated by one of the
authors, who is a lawyer with experience in data pri-
vacy law. As the reliability of our classifiers depends on
the quality of annotations, we hired two law students
unrelated to our project. As recommended [4], the stu-
dents double-annotated 10% of the corpus. We paid the
students $14/hour and asked each to independently an-
notate a set of 35 policies that we randomly selected
from the full corpus of 350 policies. For evaluating the
reliability of the annotations we measured agreement
among the three annotators based on Krippendorff’s α,
which indicates agreement to be good above 0.8, fair
between 0.8 and 0.67, and doubtful below 0.67 [30].

With a mean of Krippendorff’s α = 0.78 the agree-
ment levels generally exceed previously reported re-
sults [67]. Detailed results are shown in the Appendix,
Table T1. Generally, inter-annotator agreement levels
in the privacy policy domain tend to be relatively low
due to the vagueness and ambiguity of policy language.
For example, prior work reported α = 0.48 for iden-
tifying statements on location sharing [67]. The lowest
agreement level for a practice we included in MAPS was
for SIM Serial access by third parties, with Krippen-
dorff’s α = 0.49.5 However, low levels of agreement do
not necessarily present a problem; classifiers can achieve
good performance despite being trained on data with
low inter-annotator agreement, so long as the disagree-
ment looks like random noise [42], as was the case for
the practices we used in MAPS.

Promises to not perform a certain practice are fairly
uncommon in privacy policies. Due to the rarity of neg-
ative annotation labels in our corpus, we enriched 142
randomly selected policies from our training and valida-
tion sets with synthetic data; we added sentences with

5 In preliminary tests we also considered city, ZIP code, postal
address, username, password, ad ID, address book, Bluetooth,
IP address (identifier and location), age, and gender practices.
However, we ultimately decided against further pursuing those
as we had insufficient data, unreliable annotations, or difficulty
identifying a corresponding API for the app analysis.

https://data.usableprivacy.org
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negative annotation labels by manually changing policy
text from a positive modality to a negative modality.
We apply the most common forms of negation [56] with
the same aggregate probability distribution as they ap-
peared in the rest of our corpus. Using this approach,
the synthetic data matches the statistical character of
the data collected through our annotation task.

4 Scaling the Privacy Analysis
We designed MAPS to efficiently and reliably analyze
large numbers of apps. Based on a pipeline of distributed
tasks (§ 4.1), our system achieves sufficient runtime per-
formance (§ 4.2). MAPS is comprised of separate mod-
ules for the analysis of policies (§ 4.3), apps (§ 4.4), and
potential compliance issues (§ 4.5).

4.1 Pipeline of Distributed Tasks

Our system begins its analysis by recursively crawl-
ing apps’ Play Store pages by following links to similar
apps [54]. Each newly discovered app’s metadata, such
as the app’s Play Store categories and privacy policy
URL, if any, are stored in a database.

Apps are downloaded using a fork of an unofficial
Python Google Play API,6 which we configured with
Google account credentials associated with a Google
Pixel phone running Android 7.1.2 to ensure compat-
ibility with a large number of apps. As more than 90%
of apps in the Play Store are free [54] and costs would be
prohibitive, we did not analyze paid apps. Each app is
decompiled into Smali bytecode with Apktool7 as part
of the app analysis (§ 4.4). In order to identify links
to privacy policies inside apps, our system performs a
search for relevant URLs in the Smali bytecode and the
apps’ strings.xml resource files. If a URL contains ei-
ther the words “privacy,” “policy,” or “legal,” it will be
identified as a policy URL.

The system uses headless Firefox browsers to down-
load privacy policies using the URLs found on Play
Store pages and in decompiled apps. Using a real
browser instead of a single HTTP request has the ad-
vantage of being able to capture dynamically loaded

6 Python Google Play API, https://github.com/NoMore201/
googleplay-api, accessed: June 28, 2019.
7 Apktool, https://ibotpeaches.github.io/Apktool/, accessed:
June 28, 2019.
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Fig. 1. A simplified depiction of our distributed system consisting
of a master node controlling multiple worker nodes.

JavaScript content. Our system handles HTML and
PDF policies. In a test with 110 links our browser prop-
erly retrieved 105 documents. However, as some poten-
tial policy URLs lead to pages that are not policies (e.g.,
homepages), our system uses a logistic regression clas-
sifier [49] to identify (English-language) policies. Based
on a test set of 100 retrieved documents with 65 positive
instances, the classifier achieves 99.0% accuracy and a
99.2% F1 score. The test set was labeled independently
by two authors, who agreed on 100% of the labels. As
some policy URLs are for privacy landing pages (e.g.,
lists of policies for different countries), our system per-
forms a limited crawl using the policy classifier to iden-
tify privacy policies. After the policy download, the sys-
tem performs the privacy policy analysis to determine
the practices described therein (§ 4.3). The system’s fi-
nal step is the comparison of an app’s policy and app
analyses to identify potential compliance issues (§ 4.5).

Our system runs on a cluster of distributed com-
puters. The system’s long-term storage is hosted at
one of our institutions, the master node on Amazon
EC2,8 and the worker nodes on XSEDE’s TACC Jet-
stream cluster [57]. Figure 1 shows a general overview.
Docker9 is used to encapsulate dependencies, with each
task corresponding to at least one container. We use
Docker Swarm10 to distribute our system’s containers
across worker nodes. Our system uses Celery11 with

8 Amazon EC2, https://aws.amazon.com/ec2/, accessed: June
28, 2019.
9 Docker, https://www.docker.com/, accessed: June 28, 2019.
10 Swarm mode overview, https://docs.docker.com/engine/
swarm/, accessed: June 28, 2019.
11 Celery—Distributed Task Queue, http://celery.readthedocs.
io/en/latest/, accessed: June 28, 2019.

https://github.com/NoMore201/googleplay-api
https://github.com/NoMore201/googleplay-api
https://ibotpeaches.github.io/Apktool/
https://aws.amazon.com/ec2/
https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
http://celery.readthedocs.io/en/latest/
http://celery.readthedocs.io/en/latest/
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Fig. 2. The progression of app analyses during our Play Store
sweep, which ran for 512 hours at an average rate of 2,023
apps/hour.

RabbitMQ12 to distribute tasks and collect analysis
results. In order to monitor system health and trou-
bleshoot problems, we aggregate and search system logs
using Graylog.13 We further make use of Telegraf,14 In-
fluxDB,15 and Grafana16 to visualize time-series instru-
mentation data, such as CPU usage, load averages, and
the rates of task completion.

4.2 Hardware and Runtime Performance

We performed our Play Store analysis from April 6 to
May 15, 2018 as depicted in Figure 2. Our fastest rate of
4,529 apps/hour was achieved on May 8 with 10 com-
plete and several small worker nodes. Each complete
worker node runs all of the services in Figure 1 and
has 6 virtual CPUs, 16 GB of memory, and 60 GB of
disk space. We also use small worker nodes with 2 vir-
tual CPUs, 4 GB of memory, and 20 GB of disk space.
Small worker nodes only run the app download task.
One small worker node also hosts the shared storage
to store downloaded apps prior to analysis. Our master
node is an Amazon EC2 t2.2xlarge instance with 8 vir-
tual CPUs, 32 GB of memory, and 200 GB of gp2 SSD
storage.

Of the 1,049,790 retrieved apps, 1,035,853 (98.67%)
were analyzed successfully. Of the apps which were not
analyzed successfully, 1.03% failed to download, 0.21%
failed in the app analysis, 0.08% failed in the policy

12 RabbitMQ, https://www.rabbitmq.com, accessed: June 28,
2019.
13 Graylog, https://www.graylog.org, accessed: June 28, 2019.
14 Telegraf, https://github.com/influxdata/telegraf, accessed:
June 28, 2019.
15 InfluxData, https://www.influxdata.com, accessed: June 28,
2019.
16 Grafana, https://grafana.com, accessed: June 28, 2019.

analysis, and 0.01% failed during our re-analysis.17 The
1,039,003 apps we downloaded occupy approximately
13TB of storage. Compared to an earlier Play Store
crawl from April 24 through June 22, 2013 that lead to
5.3TB of data for about 960,000 apps [59], the average
app size more than doubled over the last five years, from
about 5MB to about 13MB. This increase could be the
result of more app code, more third party library code,
or larger resources (e.g., to support higher-resolution
screens).

4.3 Privacy Policy Analysis

We characterize the detection of privacy practice de-
scriptions in privacy policies as a classification task. The
goal of the task is to assign annotation labels to pol-
icy segments, that is, structurally related parts of pol-
icy text that loosely correspond to paragraphs [29, 63].
We decompose the classification task into three sub-
tasks: classifying (1) data types (e.g., Location), (2)
parties (i.e., 1stParty or 3rdParty), and (3) modalities
(i.e., whether a practice is explicitly described as be-
ing performed or not performed).18 For example, the
Performed Location Cell Tower 3rdParty classifica-
tion will be assigned to a segment if the Location Cell
Tower, 3rdParty, and Performed classifiers all return a
positive result for the segment. The decomposition of
the classification task allows for an economic use of an-
notated data. We randomly divided the APP-350 corpus
into training (n = 188), validation (n = 62), and held-
out test (n = 100) sets, the latter of which we only used
to calculate classifier performance.

As classifier performance depends on adequate pre-
processing of policy text as well as domain-specific fea-
ture engineering, we normalize whitespace and punctu-
ation, remove non-ASCII characters, and lowercase all
policy text. Because stemming did not lead to perfor-
mance improvements, we are omitting it. In order to
run our classifiers on the most relevant set of features,
we use an optional preprocessing step of sentence filter-
ing. Based on a grid search, in cases where it improves

17 After completing the Play Store analysis we noticed a bug
in our app analysis code. As a result, we re-ran the app analyses
and re-calculated all statistics. 135 additional analyses failed
yielding a final total of 1,035,853 successfully analyzed apps.
18 Note that the Single Sign On and Single Sign On:
Facebook practices do not use a party classifier, as all data is
exchanged between the app developer as first party and the SSO
provider as third party.

https://www.rabbitmq.com
https://www.graylog.org
https://github.com/influxdata/telegraf
https://www.influxdata.com
https://grafana.com
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classifier performance, we remove a segment’s sentences
from further processing if they do not contain keywords
related to the classifier in question [67]. For example,
the Location classifier is not trained on sentences which
only describe cookies. We identified relevant keywords
based on a manual review of segments from our train-
ing and validation data and added additional synonyms.
Sentence filtering improved the performance of about
half our classifiers.

Prior to training, we generate vector represen-
tations of the segments. Specifically, we take the
union of a TF-IDF vector and a vector of manually
crafted features. Our TF-IDF vector is created us-
ing the TfidfVectorizer [48] configured with English
stopwords (stop_words=’english’), unigrams and bi-
grams (ngram_range=(1, 2)), and binary term counts
(binary=True). This configuration is similar to what
was used in prior work [29]. Our vector of manually
crafted features consists of Boolean values indicating the
presence or absence of indicative strings we observed in
our training and validation data. For example, we in-
clude the string not collect, because we assumed it
would be a strong indicator of the negative modality.

For all but four classifiers, we used scikit-
learn’s SVC implementation [50] and trained with
a linear kernel (kernel=’linear’), balanced class
weights (class_weight=’balanced’), and a grid
search with five-fold cross-validation over the penalty
parameter (C=[0.1, 1, 10]) and gamma param-
eter (gamma=[0.001, 0.01, 0.1]). For four data
types (Identifier, Identifier IMSI, Identifier SIM
Serial, and Identifier SSID BSSID), we created key-
word based rule classifiers due to the limited amount of
data and their superior performance.

Table 1 shows the performance of the classifiers. For
example, we say a policy describes a first party prac-
tice, that is, there is a + Support instance for a first
party practice, if the data type, first party, and positive
modality classifiers return a positive result for at least
one policy segment. If that is not the case for any of the
segments, a - Support instance exists. Since our defini-
tion of a potential compliance issue does not depend on
the negative modality classifier, we do not include it in
Table 1. A segment can contain multiple first and/or
third party practices. As potential compliance issues
are dependent on practices being not described in poli-
cies [67], negative predictive value, specificity, and neg-
ative F1 are particularly meaningful performance met-
rics. With negative F1 scores ranging from 78% to 100%,
23 of the classification tasks achieved higher negative F1
scores than the closest comparable previous classifiers

Policy Classification NPV Specificity Neg. F1 +/- Support
Contact 1stParty 92% 96% 94% 30/70
Contact 3rdParty 95% 96% 95% 8/92
Contact Email Address 1stParty 78% 90% 84% 80/20
Contact Email Address 3rdParty 91% 83% 87% 13/87
Contact Phone Number 1stParty 93% 93% 93% 54/46
Contact Phone Number 3rdParty 97% 93% 95% 5/95
Identifier 1stParty 93% 68% 78% 20/80
Identifier 3rdParty 97% 76% 85% 8/92
Identifier Cookie 1stParty 100% 92% 96% 63/37
Identifier Cookie 3rdParty 94% 92% 93% 52/48
Identifier Device ID 1stParty 86% 96% 91% 54/46
Identifier Device ID 3rdParty 97% 95% 96% 21/79
Identifier IMEI 1stParty 99% 99% 99% 17/83
Identifier IMEI 3rdParty 99% 100% 99% 4/96
Identifier IMSI 1stParty 100% 100% 100% 3/97
Identifier IMSI 3rdParty 99% 100% 99% 1/99
Identifier MAC 1stParty 95% 98% 96% 19/81
Identifier MAC 3rdParty 99% 96% 97% 6/94
Identifier Mobile Carrier 1stParty 90% 100% 95% 21/79
Identifier Mobile Carrier 3rdParty 98% 97% 97% 3/97
Identifier SIM Serial 1stParty 100% 97% 98% 8/92
Identifier SIM Serial 3rdParty 100% 99% 99% 1/99
Identifier SSID BSSID 1stParty 99% 100% 99% 5/95
Identifier SSID BSSID 3rdParty 100% 99% 99% 0/100
Location 1stParty 92% 81% 86% 58/42
Location 3rdParty 96% 83% 89% 23/77
Location Cell Tower 1stParty 98% 94% 96% 14/86
Location Cell Tower 3rdParty 98% 95% 96% 4/96
Location GPS 1stParty 99% 94% 96% 29/71
Location GPS 3rdParty 99% 94% 96% 6/94
Location WiFi 1stParty 99% 86% 92% 12/88
Location WiFi 3rdParty 100% 95% 97% 2/98
Single Sign On 89% 90% 90% 37/63
Single Sign On: Facebook 95% 84% 89% 32/68

Table 1. Classifier performance for determining whether a pol-
icy states that a practice is performed in our policy test set
(n = 100). Negative predictive value (NPV) and Specificity
are precision and recall for negative instances, respectively. Nega-
tive F1 (Neg. F1) is the F1 for negative instances. In the Support
column, + is the number of ground truth positive instances (i.e.,
a policy truly describes a practice being performed) and - is the
number of ground truth negative instances (i.e., a policy truly
does not describe a practice being performed).

and 3 performed equally [67]. Our results reveal that
generally + Support is lower for third party practices,
that is, third party practices are often not as extensively
described in privacy policies as first party practices. For
additional details about our classifiers’ performance, in-
cluding error and ablation analyses, please consult our
related study [53].

4.4 Android App Analysis

Since MAPS is designed to detect potential compli-
ance issues at app store-wide scale, we needed to em-
ploy lightweight, reliable techniques for analyzing apps’
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practices. After decompiling apps into Smali,19 our sys-
tem operates on four app resources: Android APIs,
strings, permissions, and class structure. We assume
a threat model which considers data as compromised
from the moment a privacy-sensitive API appears to be
called [36]. Table T2 in the Appendix lists the APIs our
system searches for in the Smali bytecode. As some lo-
cation and identifier API behavior is dependent on a
string parameter (e.g., the GPS_PROVIDER string), our
system also performs a call graph analysis to trace rel-
evant strings. Since an API call will fail if an asso-
ciated Android permission is not granted, the system
checks that the APIs’ permissions are included in the
app’s AndroidManifest.xml file. First and third party
classes are distinguished based on Java’s reverse do-
main name notational convention [37]. In particular, a
.smali file’s package name is compared to the app’s
Play Store package name: if (1) both top and second
level domain match, (2) the file is not part of any pack-
age, or (3) the .smali file’s package appears to be ob-
fuscated (e.g., a/b.smali), the API call is considered a
first party call. Otherwise, it is categorized as a third
party call. Note that our app analysis does not in-
volve taint tracking, which appears infeasible to per-
form at app store-wide scale [51]. Detecting apps’ usage
of Facebook’s Single Sign On functionality is dependent
on whether it retrieves an access token via Facebook’s
getCurrentAccessToken() API and whether it contains
a Facebook app ID string.

To verify our system’s analysis we performed a man-
ual dynamic evaluation of 100 apps, each of which is
associated with one of our test policies. If a developer
provided more than one app under the same policy, we
selected one randomly. We ran each app on a rooted
Android Moto X phone with an Xposed20 module we
wrote. 17 apps could not be analyzed due to forced au-
tomatic app updates, apps’ refusal to run on a rooted
phone, or failures in API logging. For some observed
calls we were not able to detect whether it came from a
first or third party. In those instances we searched the
decompiled app code in order to determine if all call
sites originated in either first or third party classes, in
which case we declare a first or third party practice,
respectively. Otherwise, the result is dismissed as un-

19 The decompilation is based on Apktool (version 2.3.1.),
https://ibotpeaches.github.io/Apktool/, accessed: June 28,
2019.
20 Xposed Installer, http://repo.xposed.info/module/de.robv.
android.xposed.installer, accessed: June 28, 2019.

App Practice Precision Recall F1 +/-/? Support
Contact Email Address 1stParty 84% 100% 91% 26/55/19
Contact Email Address 3rdParty 47% 89% 62% 9/72/19
Contact Phone Number 1stParty 92% 100% 96% 11/72/17
Contact Phone Number 3rdParty 50% 100% 67% 4/79/17
Identifier Cookie 1stParty 63% 100% 77% 12/59/29
Identifier Cookie 3rdParty 82% 100% 90% 50/21/29
Identifier Device ID 1stParty 87% 98% 92% 40/39/21
Identifier Device ID 3rdParty 97% 100% 99% 75/4/21
Identifier IMEI 1stParty 88% 100% 94% 22/59/19
Identifier IMEI 3rdParty 75% 96% 84% 28/53/19
Identifier IMSI 1stParty 44% 100% 62% 4/77/19
Identifier IMSI 3rdParty 73% 100% 85% 11/70/19
Identifier MAC 1stParty 74% 100% 85% 14/67/19
Identifier MAC 3rdParty 58% 100% 74% 25/56/19
Identifier Mobile Carrier 1stParty 85% 97% 91% 35/46/19
Identifier Mobile Carrier 3rdParty 93% 100% 97% 71/11/18
Identifier SIM Serial 1stParty 50% 100% 67% 3/80/17
Identifier SIM Serial 3rdParty 50% 100% 67% 8/75/17
Identifier SSID BSSID 1stParty 80% 100% 89% 12/71/17
Identifier SSID BSSID 3rdParty 52% 100% 68% 16/67/17
Location Cell Tower 1stParty 100% 88% 93% 8/70/22
Location Cell Tower 3rdParty 91% 95% 93% 22/56/22
Location GPS 1stParty 83% 100% 91% 5/72/23
Location GPS 3rdParty 79% 88% 83% 17/60/23
Location WiFi 1stParty 100% 86% 92% 7/71/22
Location WiFi 3rdParty 81% 89% 85% 19/59/22
Single Sign On: Facebook 81% 57% 67% 30/53/17

Table 2. Performance for determining the practices in our app
test set (n = 100). In the Support column, + and - are the re-
spective numbers of ground truth positive and negative instances
and ? is the number of instances for which the manual analysis
failed or the ground truth is unknown.

known. Our approach for distinguishing first and third
parties, according to our three step process described
above, is subject to an error rate of 7% for third parties
who should have been categorized as first parties. There
were no first parties that should have been categorized
as third parties.

Table 2 shows the app analysis performance as com-
pared to the ground truth of our manual evaluation.
If our system’s static analysis flagged a practice, we
counted a true positive if we manually observed the
practice and a false positive if we did not (e.g., due
to unreachable code). If the static analysis did not flag
a practice, we counted a true negative if we did not
manually observe the practice and a false negative if we
did manually observe the practice (e.g., due to code ob-
fuscation). In contrast to our policy results (§ 4.3), it
can be observed that many practices are performed by
third parties more often than by first parties. For exam-
ple, we observe 50 + Support instances for Identifier
Cookie 3rdParty, but only 12 for Identifier Cookie
1stParty. This result is consistent with earlier findings
of nearly every ad library leaking phone data and, if
available, location data [17]. It further suggests that
many apps may not be compliant with Google’s pro-
hibition of using device identifiers for purposes of ad

https://ibotpeaches.github.io/Apktool/
http://repo.xposed.info/module/de.robv.android.xposed.installer
http://repo.xposed.info/module/de.robv.android.xposed.installer
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Potential Compliance Issue Precision Recall F1 +/-/? Support
Contact Email Address 1stParty 75% 75% 75% 4/77/19
Contact Email Address 3rdParty 38% 71% 50% 7/74/19
Contact Phone Number 1stParty 100% 100% 100% 1/82/17
Contact Phone Number 3rdParty 29% 67% 40% 3/80/17
Identifier Cookie 1stParty 50% 100% 67% 1/70/29
Identifier Cookie 3rdParty 83% 87% 85% 23/48/29
Identifier Device ID 1stParty 70% 88% 78% 16/63/21
Identifier Device ID 3rdParty 96% 86% 91% 58/21/21
Identifier IMEI 1stParty 79% 65% 71% 17/64/19
Identifier IMEI 3rdParty 76% 85% 80% 26/55/19
Identifier IMSI 1stParty 33% 67% 44% 3/78/19
Identifier IMSI 3rdParty 69% 82% 75% 11/70/19
Identifier MAC 1stParty 83% 91% 87% 11/70/19
Identifier MAC 3rdParty 58% 78% 67% 23/58/19
Identifier Mobile Carrier 1stParty 78% 70% 74% 20/61/19
Identifier Mobile Carrier 3rdParty 92% 75% 83% 64/18/18
Identifier SIM Serial 1stParty 50% 50% 50% 2/81/17
Identifier SIM Serial 3rdParty 50% 88% 64% 8/75/17
Identifier SSID BSSID 1stParty 83% 56% 67% 9/74/17
Identifier SSID BSSID 3rdParty 53% 62% 57% 16/67/17
Location Cell Tower 1stParty 100% 100% 100% 2/76/22
Location Cell Tower 3rdParty 79% 73% 76% 15/63/22
Location GPS 1stParty N/A N/A N/A 0/77/23
Location GPS 3rdParty 70% 70% 70% 10/67/23
Location WiFi 1stParty 50% 100% 67% 1/77/22
Location WiFi 3rdParty 75% 75% 75% 12/66/22
Single Sign On: Facebook 56% 45% 50% 11/72/17

Table 3. Performance for detecting potential compliance issues
on our test set of app/policy pairs (n = 100). In the Support
column, + and - are the respective numbers of ground truth pos-
itive and negative instances of potential compliance issues, and
? is the number of instances where missing ground truth data
from our app analyses makes it unclear whether such issues exist.
N/A is shown where the metrics are undefined, or where a lack
of positive ground truth instances would always make the metric
zero.

tracking [21]. App developers integrate a diverse set of
third party libraries in their apps. Beyond ad networks
and analytics services, many developers leverage devel-
oper frameworks, which may be less privacy-invasive.
However, in a random sample of 50 instances compris-
ing libraries of five popular developer frameworks, we
found that in 68% (34/50) there was at least one ad
network or analytics service performing the same prac-
tice as a developer framework.

4.5 Compliance Analysis

We define a potential compliance issue, or short potential
issue, to mean that an app is performing a privacy prac-
tice (e.g., a first party is accessing GPS location data)
while its associated privacy policies do not disclose it
either generally (e.g., “Our app accesses your location
data.”) or specifically (e.g., “Our app accesses your GPS
data.”). Table 3 shows our system’s identification of po-
tential compliance issues and its performance. For the 26

practices for which positive ground truth instances were
present, we observe a mean F1 score of 71%. Many po-
tential compliance issues relate to the access of identifier
information by third parties, most notably, the access
of mobile carrier (64 + Support instances) and device
identifier (58 + Support instances) information. How-
ever, the three third party location practices Cell Tower,
GPS, and WiFi account for 15, 10, and 12 respective +
Support instances as well. Notably, all third party prac-
tices exhibit a higher number of potential compliance
issues than their first party counterparts.

We conducted a statistical analysis of our tech-
niques in order to determine the effect of our error rates
on the large scale analysis results in the subsequent sec-
tion. Our statistical analysis, as described in the Ap-
pendix and depicted there in Figure F1, strongly sug-
gests that our techniques provide a sound basis on which
we can reliably build our large-scale analysis.

5 What Is the State of Privacy in
the Google Play Store?

Our large-scale analysis of free apps in the Google Play
Store provides us with a rich dataset for evaluating the
state of privacy in a substantial part of the Android
ecosystem. In particular, we examine how many apps
have privacy policies (§ 5.1) and what practices are
discussed in them (§ 5.2). We also analyze how preva-
lent potential compliance issues are (§ 5.3) and what
app characteristics are associated with their occurrence
(§ 5.4).

5.1 How Many Apps Have Policies?

Oftentimes, apps are required to have a privacy policy,
for example, if they collect personally identifiable infor-
mation from California or Delaware residents.21 How-
ever, as shown in Figure 3, our analysis reveals that only
50.5% of apps have links to privacy policies on their Play
Store pages. In addition, our app analysis found links
to policies in the code of 4.4% of apps. However, 4% of
these apps also have a policy link on their Play Store
page, so the retrieval of policy links from inside the app
only marginally increased policy coverage by 0.4%.

21 Cal. Bus. & Prof. Code §22575(a) and Del. Code Tit. 6
§1205C(a).
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Fig. 3. Locations where apps’ privacy policy links, if any, can be
found.

Fig. 4. The percent of apps with privacy policy links which do
not lead to analyzable policies (i.e., English-language policies).

Overall, 49.1% of apps do not have privacy policy
links, despite the fact that our analysis of apps’ practices
shows that 88.6% of apps perform at least one practice.
These findings suggest that Google does not comprehen-
sively enforce its requirement for developers to disclose
their apps’ privacy practices, especially as developers
“must ... [p]ost a privacy policy in both the designated
field in the Play Console and within the app itself” to
the extent their app handles “sensitive user data in-
clud[ing] ... personally identifiable information” [20].

Of those apps with Play Store and/or in-app policy
links, our system identified that 31% are still missing
analyzable privacy policies, as shown in Figure 4. Many
of these apps’ links redirected to invalid domains, 404
pages, non-English policy pages, and pages with non-
privacy related content. This finding is especially note-
worthy as our system does not require the links to di-
rectly point to a privacy policy. For links found on the
Play Store, MAPS performs a limited crawl at the desti-
nation page in order to identify policies which are linked
indirectly (§ 4.1).

Also, as we performed our analysis for the US ver-
sion of the Play Store, policy links leading to non-
English privacy policies highlight the challenge of en-
forcing privacy-related rules and laws in a global com-
munity of app developers. Consequently, we believe it
would be promising to extend our analysis in future
work to build classifiers for other languages or to test

Fig. 5. Third party practices are discussed less frequently than
first party practices, which is precarious given that the former are
usually more opaque from a user’s perspective. Note that a policy
both affirming and denying a practice at the same time does not
necessarily represent a contradiction, but could also indicate its
discussion in different contexts (e.g., “We disclose your phone
number to advertisers, but not to data brokers.”).

our classifiers’ performance on automatically translated
non-English webpages and privacy policies.

5.2 Which Practices are Described in
Policies?

Figure 5 depicts the occurrence of policy statements re-
lating to the practices we examine. It can be observed
that most practices are described only infrequently; that
is, a policy does not mention it at least once. Further,
the statements that are present typically affirm that
a practice is occurring. This finding reveals that users
seem to be given little assurance of potentially objec-
tionable practices not being performed (e.g., disclosing
users’ phone numbers to third parties). Silence about
privacy practices in privacy policies is problematic be-
cause there are no clear statutory default rules of what
the privacy relationship between a user and a service
should be, in the absence of explicit statements in the
policy [32].

The Federal Trade Commission (FTC) — the main
arbiter of privacy notice and choice in the US — is
moving towards requiring “complete” or “meaningful”
privacy notices [52]. For example, in United States v.
Path [16], the defendant disclosed that its app collects
“certain information [...], such as your Internet Protocol
(IP) address, your operating system, the browser type,
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Fig. 6. The distribution of the number of potential issues broken
down based on whether and where the apps’ policies were found.
The leftmost plot covers all apps — with and without policies
and independent of policy location. Store & App Policies were
found by following both links from the app’s Play Store page and
from the app code. No Policies means that despite the presence
of links on the Play Store or in the app, no policies were found
by following those links. No Policy Links means that there was
neither a policy link on the app’s Play Store page nor in its code.

the address of a referring site and your activity on our
site.” However, the FTC did not find this language suffi-
cient to cover the allegedly wrongfully collected contact
data and determined Path’s privacy policy to be incom-
plete [52]. Thus, the relatively sparse discussion of pri-
vacy practices — which continues to exist in many apps’
policies despite the wide adoption of ad libraries [59] —
suggests broad evidence of non-compliance, which we
will explore in detail in the subsequent sections.

5.3 How Many Apps Have Potential
Compliance Issues?

Our system allows for identification of potential compli-
ance issues, that is, instances in which an app performs
a practice but does not have a policy which affirms that
the practice is performed. Note that when our system
finds multiple privacy policies for a given app, it pools
the practice descriptions across all policies, which makes
the analysis results more conservative. Overall, we mea-
sure a mean of 2.89 potential compliance issues per app
and a median of 3. However, as Figure 6 shows, there is
a significant amount of variation in the number of po-
tential issues depending on whether an app has a policy
and where its link is located.

The Prevalence of Potential Compliance Issues
Differs Depending on Policy Link Location

It is striking that the number of potential issues for apps
which only have policy links in their code (“Only App
Policies”) is higher than for all other categories, even
higher than for apps with no policy links at all. How-
ever, as shown in Figure 3, the number of such apps
is relatively small (0.4%). While apps that do not pro-
cess personally identifiable information may not need
a policy, it appears that many apps without one (“No
Policies” and “No Policy Links”) are in fact performing
pertinent practices and, consequently, exhibit potential
issues. It should be noted that some of the apps for
which our system did not find a policy may have a pol-
icy in a language other than English. These apps would
be included in the “No Policies” category of Figure 6,
which may explain why the median and mean numbers
of potential compliance issues are higher for the “No
Policies” category than for the “No Policy Links” cate-
gory (median: 3 vs 2; mean: 3.93 vs 2.50). To err on the
side of caution, avoiding detection of potential issues in
cases where apps have policies in languages other than
English, we are omitting the apps in the “No Policies”
category (n = 160, 695) in all subsequent figures and
statistics, which makes the analysis results more con-
servative. However, in principle, it is not the burden of
the user to translate policies from another language that
is not commonly spoken in the country in which goods
or services are offered.22

Performance of a Practice is Correlated with the
Occurrence of a Potential Issue

Figure 7 demonstrates that in most cases the perfor-
mance of a practice is strongly correlated with the oc-
currence of a potential issue: if a practice is performed,
then there is a good chance a potential issue exists as
well. This result suggests a broad level of potential non-
compliance. Identifier-related potential issues are the
most common. Three different types of identifiers make
up most potential issues: cookies, device IDs, and mo-
bile carriers. In particular, the use of device IDs may
constitute a misuse for purposes of ad tracking [21]. We
also observed elevated numbers of location-related po-
tential compliance issues. 15.3% of apps perform at least

22 See generally GDPR, Recital 23.
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Fig. 7. The percent of apps performing the examined practices
alongside the percent of apps whose policies affirmatively describe
the practices and the percent of apps with potential issues. The
percents of apps describing the practices are calculated based
on the practice being described either specifically or generally
(§ 4.5). Note that some policies describe practices which are
not performed by their apps, which is why there can be more
descriptions than practices performed.

one location-related practice, and 12.1% of apps have at
least one location-related potential issue.

Third Party Practices Are More Opaque Than First
Party Practices

For all data types, third party practices are more
common than first party practices, and so are third
party-related potential issues. Figure 8 shows the most
frequently occurring advertising and analytics-related
third party packages in our dataset. One reason for the
prevalence of potential issues for third party practices
could be that app developers are unaware of the func-
tionality of the libraries they integrate. However, the
developer documentation for each of the ten third party
services in Figure 8 obligate developers to obtain user
consent for the data processing in connection with the
third party code integration. For example, the Google
Analytics Terms of Service [19] obligate the developer to
explicitly disclose the library integration in their privacy
policy. Furthermore, various laws require app develop-
ers to disclose third party practices of their apps in their

Fig. 8. Packages are only counted if they performed at least one
of the practices we studied. Percents are calculated based on a
random sample of 10,000 apps. Note that com.google combines
AdMob, Google Analytics, and other Google services.

own privacy policy.23 Under those laws, it is not suffi-
cient to include a statement that the user should consult
the third party’s privacy policies.

App developers might benefit from assistance in
their task of disclosing third party data processing. Our
results suggest that the information transfer from the
third party, via the developer, to the user is susceptible
to omissions and mistakes. We believe that our system
can assist app developers, which we tested with a ma-
jor European electronic device manufacturer in order
to help them identify the privacy practices of various
legacy apps (§ 7).

5.4 What Characteristics of Apps Are
Associated with Potential Compliance
Issues?

Our system downloads the Play Store metadata asso-
ciated with each app. This metadata describes various
characteristics of apps, such as the date the app was last
updated, the Play Store categories the app belongs to,
and the Entertainment Software Rating Board (ESRB)
content rating of the app. In this section, we discuss how
different app characteristics are associated with poten-
tial compliance issues.

23 See, e.g., Cal. Bus. & Prof. Code §22575(b)(6).
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Fig. 9. We find that the mean number of potential issues is
greater for more recently updated apps (A). The graphs cover
January 2011, the start of the first year with at least 1,000 apps
in our dataset, to May 2018, the month in which our analysis ran
at scale. 95% confidence intervals are shown in lighter color.

More Recently Updated Apps Have More Potential
Issues

For every app, our system retrieved the date when it
was last updated (or, if it was never updated, when it
was initially published). Figure 9 shows how more re-
cently updated (newer) apps differ from less recently
updated (older) apps. Despite newer apps being more
likely to have privacy policies (Figure 9 B), they have
more potential issues than older apps (Figure 9 A). Our
analysis suggests that as newer apps perform more prac-
tices (Figure 9 C), they also provide more opportunities
for potential issues to occur. The number of practices
described in privacy policies has also increased (Fig-
ure 9 D); evidently, this increase has not kept pace with
the simultaneous increase in practices performed. Thus,
transparency is not guaranteed by apps simply hav-
ing privacy policies. Rather, transparency requires that
those policies comprehensively describe apps’ practices.

Overall, our findings suggest that Google’s efforts
to compel developers to post privacy policies [8] may

not suffice by itself. Without the proper tools and in-
centives, developers may not be able or willing to com-
prehensively describe their apps’ behaviors. Conversely,
we also observe positive developments. The ratio of the
number of potential compliance issues to the number of
practices performed is decreasing for newer apps (Fig-
ure 9 E), even as the total number of apps is increasing
overall (Figure 9 F). App developers seem to be getting
better at describing their apps’ practices, though not
enough to offset the fact that newer apps perform more
practices.

Even Kids’ Apps Have Potential Issues

Location-related information is particularly sensitive,
yet our analysis found location-related potential is-
sues to be relatively common (§ 5.3). Thus, we use
our analysis results to gain greater insight into which
apps are affected by these potential issues. Figure 10
shows a heatmap with the ratio of location-related po-
tential issues to location-related practices performed,
grouped by Play Store category. It can be observed
that apps in certain categories have greater trans-
parency than others. In particular, our results suggest
a relatively low prevalence of potential issues in the
FAMILY_ACTION and FAMILY_PRETEND categories. How-
ever, apps in FAMILY_CREATE and FAMILY_EDUCATION do
not appear to be significantly better than the other
store categories. Regardless, the detection of any po-
tential issues in the FAMILY categories may subject apps
to regulatory scrutiny (§ 6), as apps in those categories
have to adhere to the heightened privacy requirements
of COPPA. Google will only include apps in FAMILY cat-
egories if developers have affirmed vis-a-vis Google that
their apps are COPPA compliant and eligible to partici-
pate in the Designed for Families program [18]. Potential
issues of apps in these categories are in direct conflict
with such affirmations.

Individual Developer Activity May Impact the Overall
Number of Potential Issues

It is striking that apps in the BOOKS_AND_REFERENCE,
COMICS, and LIBRARIES_AND_DEMO categories have par-
ticularly high ratios of performed practices to potential
issues, for both first and third party practices. One rea-
son may be that a large number of apps in these cat-
egories come from the same developers, who are using
the same location APIs across their apps without dis-
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Fig. 10. The ratio of location-related potential compliance issues and practices performed. Lighter colors indicate greater transparency
of practices. Darker colors indicate that practices are being performed but not disclosed. Cells with fewer than 25 apps performing
the practice are annotated with the respective number of apps. Figure F3 in the Appendix has been extended to include all types of
potential compliance issues.

closing it in their privacy policy (which is also the same
for all their apps). For example, there are 1,104 apps
in the BOOKS_AND_REFERENCE category that access cell
tower location data as a first party. 58% (644/1,104)
have at least one policy, which is, in fact, a higher per-
cent than the mean for all apps in our dataset (§ 5.1).
However, 23% (146/644) of those apps appear to come
from the same developer, who supplies custom apps for
trade group conferences and other venues, and whose
apps seem to use location functionality without disclos-
ing it in their privacy policy. This example illustrates the
impact an individual developer can have on the over-
all state of privacy in segments of an app ecosystem.
In these areas, targeted enforcement may be impactful
(§ 6). In general, our results in Figure 10 once more
highlight the need for providing transparency for third
party practices, as they appear to be substantially more
opaque compared to first party practices. Note that the
set of third party libraries is diverse. It includes ad net-
works, analytics services, social networks, and developer
tools. Arguably, some may be considered less privacy-
invasive, such as developer tools.

“Unrated” Apps Have Poor Transparency

The ESRB content ratings [15] are indicators of the in-
tended audience of an app; these content ratings also
appear to be associated with the existence of potential
compliance issues. Figure 11 displays the ratio of apps
with potential issues to performed practices grouped by
ESRB content rating. The apps shown as “Unrated” on
the Play Store have dramatically lower rates of practice
disclosure. A similar pattern holds for almost all other

Fig. 11. The ratio of apps with location-related potential issues
to practices performed grouped by ESRB content rating. ESRB
ratings describe an app’s appropriateness for different age groups
and are determined based on a questionnaire completed by app
developers. Lighter colors indicate greater transparency of prac-
tices. Darker colors indicate that practices are being performed
but not disclosed. Cells with fewer than 25 apps performing the
practice are annotated with the respective number of apps. Fig-
ure F2 in the Appendix has been extended to include all types of
potential compliance issues.

practices (Figure F2 in the Appendix). Apps are shown
as “Unrated” on the Play Store if their developers have
not completed a questionnaire describing their apps’ age
appropriateness.

Despite Google announcing their plan to remove
“Unrated” apps in 2015 [11], at the time of our anal-
ysis in April through May 2018 there were still 43,533
such apps on the Play Store. However, as of August 2,
2018, 91.8% of these apps were no longer available, 6.8%
were still present but now had ESRB ratings, and 1.3%
were still present but without ESRB ratings. These re-
sults suggest that Google intensified the removal of apps
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Fig. 12. Our system’s user interface allows the user to filter apps
according to various criteria, such as specific types of privacy
practices which the app engages in, or the specific third party
libraries the app accesses. The names of the apps have been
redacted.

without ESRB ratings during this time period, which
may have had the side effect of increasing the trans-
parency of privacy practices on the Play Store overall.
The results also indicate that Google is willing to re-
move apps which do not adhere to its developer policies,
albeit with some delay.

6 Supporting Regulators
The number of mobile apps published in app stores,
their complexity, and the many different third party li-
braries with which they can interface, make it impossi-
ble for regulators to comprehensively check all mobile
apps for potential compliance issues. This problem is
further compounded by the frequency at which apps
are updated. A scalable system for identifying potential
compliance issues offers the promise of changing this sit-
uation. Our web-based system provides a user interface
(Figure 12) that enables users at regulatory agencies to
filter analysis results according to a number of criteria,
e.g., Play Store category. This functionality has been
piloted with several regulatory agencies. Most recently,
we interacted with personnel at the FTC to focus on
potential compliance issues under COPPA (§ 5.4). We
used our interface to impose selective criteria to identify
code that could allow the collection of personal informa-
tion, and our analysis zoomed in on a set of 9 popular
apps from Google’s Designed for Families program, a

program under which app developers affirm to Google
that their apps are COPPA compliant [18].

Based on the selected criteria, our automatic anal-
ysis identified 60 practices performed across the 9 apps.
We manually verified the app analysis as before (§ 4.4)
and found 47 true positives, 10 false positives, and 0
false negatives resulting in a precision of 82%, a recall
of 100%, and an F1 score of 90%. We also observed 3
unknown instances. Legal experts reviewed the content
of each privacy policy and confirmed our system’s inter-
pretation of relevant statements (or absence thereof) in
the apps’ privacy policies. Some of the potential compli-
ance issues were easy to spot. For example, the privacy
policy of one app was only one line, stating that it does
not collect or disclose any personal information. In fact,
our system’s analysis as well as our manual verification
showed that third party code within this app accesses
cookies, device IDs, and mobile carrier identifiers. How-
ever, our system is designed to detect data access, which
does not necessarily mean that the data leaves the de-
vice (§ 4.4). For a COPPA violation to occur we need
evidence of data leaving the device. This study never-
theless shows the value of our static analysis, as it can be
used to quickly zoom in on a small number of apps with
potential compliance issues. Determining for apps iden-
tified in this manner whether data is actually transferred
off the device could then be done using dynamic analysis
tools [13, 45]. Because dynamic analysis of this type is
computationally intensive, MAPS can significantly re-
duce processing requirements by quickly zooming in on
apps with potential compliance issues and limiting the
use of dynamic analysis to only those apps.

7 Supporting App Developers
While it is our objective to support regulatory agencies
and app store operators, another important goal is to
support app developers as they check their apps for po-
tential compliance issues. Many apps are developed by
one or two developers who often lack the expertise and
resources necessary to properly disclose their app’s pri-
vacy practices [3]. Larger outfits can also benefit from
compliance tools as they check for compliance with pri-
vacy regulations. In particular, our analysis shows that
developers often struggle to identify privacy practices
associated with third party libraries (§ 5.3). With leg-
islation such as the GDPR, which has opened the door
to steeper penalties for privacy compliance violations,
tools that can help organizations spot potential com-
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pliance issues can be expected to become increasingly
important.

We piloted our system with a large European elec-
tronic device manufacturer to evaluate its usefulness
in helping a sophisticated organization identify GDPR-
related potential issues in some of its mobile apps. Apps
selected for this study included both apps developed in-
house and an app that the company added to its line-
up as a result of an acquisition. The company no longer
had access to the developers who had originally devel-
oped one of the apps. Our system was used to initiate
a due diligence process, helping focus manual efforts on
problems it automatically identified as potential issues.
The system also provided a basis for developing a com-
prehensive methodology for GDPR compliance analysis,
which included additional potential compliance issues
our system is not able to detect. Because our system is
not perfect, all potential issues were manually checked.
While a more comprehensive study would need to be
conducted to accurately evaluate the usefulness of our
system, anecdotal evidence suggests that it enabled the
compliance team to speed up its review process and
helped to quickly identify various potential issues that
required careful attention.

8 Conclusions
In this study we introduced MAPS, a distributed system
for assessing the state of privacy in the Android ecosys-
tem at app store-wide scale. Our results from analyzing
1,035,853 free apps on the Play Store suggest that pri-
vacy can be improved for large numbers of apps, par-
ticularly when it comes to the disclosure of third party
practices. Notice and choice is an elementary building
block of Internet privacy. However, while privacy poli-
cies are intended to disclose applicable privacy practices,
they are often incongruous with the actual practices per-
formed.

In the app ecosystem, app stores are particularly
well positioned to act as gatekeepers for the evalua-
tion of whether the apps they are hosting are privacy-
compliant. We believe that approaches like ours can
help them to systematically and consistently analyze
and improve privacy compliance. Further, it is the role
of privacy regulators to identify problematic privacy
practices and uphold privacy laws. However, with lim-
ited resources they have not been able to keep up with
the increasing number of apps exhibiting potentially
non-compliant practices. Our system has the potential

to change this unsatisfactory situation: regulators can
quickly zoom in on suspicious apps based on various fil-
tering criteria and investigate potential compliance is-
sues. Taken together, our different pilot studies suggest
that our system can add value in different contexts —
both at scale and in more focused tasks as piloted with
the FTC for COPPA and with an electronic device man-
ufacturer for the GDPR.

It is becoming increasingly clear that large plat-
forms — whether they are app stores or other services
— are not sustainable without sufficiently protecting
their users’ privacy. As privacy legislation is evolving,
it is desirable to have technologies that can help with
enforcement too. We understand our system as a contri-
bution towards scaling privacy protection. In this study,
we shed light on some of the most pressing privacy ques-
tions. However, substantial future work remains. Var-
ious stakeholders provided valuable feedback that we
hope to incrementally incorporate into our system. For
example, we hope to extend our system with functional-
ity for detecting data processing via side-channels. We
also would like to perform repeated analyses of app pop-
ulations and run analyses on other Android app stores.
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9 Appendix

9.1 Inter-annotator Agreement

Table T1 shows the inter-annotator agreement per prac-
tice among three annotators for 35 randomly selected
policies in the APP-350 corpus. We calculated annota-
tor agreement at the level of each privacy policy. Our
measured agreement level is generally higher in compar-
ison to previously reported results [67]. To the extent
that the annotated practices are comparable, we hy-
pothesize that our uniform approach of instructing and
training the annotators could be a factor in the higher
agreement levels.

Policy Annotation K’s α +/-/+-/0 Support
Contact 1stParty 0.75 26/0/0/79
Contact 3rdParty 0.65 5/0/1/99
Contact Email Address 1stParty 0.70 82/7/5/11
Contact Email Address 3rdParty 0.80 12/3/2/88
Contact Phone Number 1stParty 0.96 67/6/0/32
Contact Phone Number 3rdParty 0.92 9/3/2/91
Identifier 1stParty 0.63 38/0/0/67
Identifier 3rdParty 0.55 19/0/0/86
Identifier Cookie 1stParty 0.81 81/3/0/24
Identifier Cookie 3rdParty 0.76 67/0/1/37
Identifier Device ID 1stParty 0.69 59/0/0/46
Identifier Device ID 3rdParty 0.76 29/0/0/76
Identifier IMEI 1stParty 0.94 20/0/0/85
Identifier IMEI 3rdParty 0.79 5/0/0/100
Identifier IMSI 1stParty 0.90 11/0/0/94
Identifier IMSI 3rdParty 1.00 3/0/0/102
Identifier MAC 1stParty 0.73 24/0/0/81
Identifier MAC 3rdParty 0.89 10/0/0/95
Identifier Mobile Carrier 1stParty 0.82 21/0/0/84
Identifier Mobile Carrier 3rdParty 0.76 9/0/0/96
Identifier SIM Serial 1stParty 0.65 17/0/0/88
Identifier SIM Serial 3rdParty 0.49 2/0/0/103
Identifier SSID BSSID 1stParty 1.00 3/0/0/102
Identifier SSID BSSID 3rdParty 1.00 0/0/0/105
Location 1stParty 0.67 58/9/3/35
Location 3rdParty 0.71 28/5/0/72
Location Cell Tower 1stParty 0.66 22/0/0/83
Location Cell Tower 3rdParty 0.89 7/3/0/95
Location GPS 1stParty 0.85 29/8/0/68
Location GPS 3rdParty 0.92 9/4/0/92
Location WiFi 1stParty 0.77 22/6/0/77
Location WiFi 3rdParty 0.80 7/4/0/94
Single Sign On 0.64 41/0/0/64
Single Sign On: Facebook 0.78 33/0/0/72

Table T1. Inter-annotator agreement as measured with Krip-
pendorff’s α (K’s α). The Support column (+/-/+-/0 Support)
shows the sum of all three annotators’ positive (+), negative (-),
positive and negative (+-), and silent (0) annotations, respec-
tively.

9.2 Android APIs

Table T2 shows the Android APIs used in our system’s
static analysis module (§ 4.4) to identify the privacy
practices an app performs. We included some of the
most frequently used APIs as indicated by their preva-
lence on publicly accessible GitHub repositories.

Privacy Practice APIs
Contact Email Address android.accounts.AccountManager.getAccounts

android.accounts.AccountManager.getAccountsByType
android.accounts.AccountManager.getAccountsByTypeAndFeatures
android.accounts.AccountManager.getAccountsByTypeForPackage
android.accounts.AccountManager.hasFeatures
android.net.MailTo.getTo
android.net.MailTo.getCc

Contact Phone Number android.telephony.TelephonyManager.getLine1Number
Identifier Cookie android.webkit.CookieManager.getInstance
Identifier Device ID android.provider.Settings.Secure.getString
Identifier IMEI android.telephony.TelephonyManager.getDeviceId

android.telephony.TelephonyManager.getImei
Identifier IMSI android.telephony.TelephonyManager.getSubscriberId
Identifier MAC android.net.wifi.WifiInfo.getMacAddress
Identifier Mobile Carrier android.telephony.TelephonyManager.getNetworkOperator

android.telephony.TelephonyManager.getNetworkOperatorName
android.telephony.TelephonyManager.getSimOperator
android.telephony.TelephonyManager.getSimOperatorName

Identifier SIM Serial android.telephony.TelephonyManager.getSimSerialNumber
Identifier SSID BSSID android.net.wifi.WifiManager.getConfiguredNetworks

android.net.wifi.WifiInfo.getBSSID
android.net.wifi.WifiInfo.getSSID

Location Cell Tower FusedLocationProviderClient.getLastLocation
android.location.LocationManager.requestLocationUpdates
android.location.LocationManager.requestSingleUpdate
android.location.LocationManager.getLastKnownLocation
android.location.LocationManager.addProximityAlert
android.telephony.gsm.GsmCellLocation.getCid
android.telephony.gsm.GsmCellLocation.getLac
android.telephony.TelephonyManager.getCellLocation
android.telephony.TelephonyManager.getAllCellInfo
android.telephony.TelephonyManager.getNeighboringCellInfo

Location GPS and WiFi FusedLocationProviderClient.getLastLocation
android.location.LocationManager.requestLocationUpdates
android.location.LocationManager.requestSingleUpdate
android.location.LocationManager.getLastKnownLocation
android.location.LocationManager.addProximityAlert

Table T2. Android APIs used in our system’s static analysis mod-
ule. For each privacy practice it is sufficient that one API is de-
tected.

9.3 Confidence Intervals for Identifying
Potential Compliance Issues

We conducted a statistical analysis of our techniques for
detecting potential compliance issues in order to deter-
mine the effect of their error rates (§ 4.5, Table 3) on
our large-scale analysis results (§ 5). Our goal was to
quantify the extent to which we may over- or under-
count potential compliance issues due to the error rates
of our techniques. We used bootstrap statistics [12] to
estimate the true percent of potential compliance issues
for each practice. Specifically, for each practice, we ran-
domly resample with replacement from our test set. For
each resampling, we calculate an estimate of the percent
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Fig. F1. The observed prevalence of potential compliance issues
generally falls in or below the 95% confidence interval for each
practice. Thus, we do not find evidence that we overestimate the
number of potential compliance issues, on average.

of potential compliance issues with:(
P (TP|TP or FP) ∗ Positive Observed
+ P (FN|FN or TN) ∗Negative Observed

)
÷ Total Observed ∗ 100

where TP, FP, TN, and FN denote true positives, false
positives, true negatives, and false negatives, respec-
tively, in the resample of the test set. “Observed” refers
to the number of observed positive, negative, and total
instances in our large-scale analysis.

After 1,000 resamplings and recalculations of the es-
timate, the 2.5 and 97.5 percentiles of the bootstrapped
estimates formed the 95% confidence interval of the es-
timates. One caveat to this procedure is that for prac-
tices with few positive instances, the estimate can be
undefined, due to division by zero when calculating the
conditional probabilities. In cases where fewer than 5%
of the 1,000 bootstrapped estimates were undefined, we
simply discarded the undefined estimates. If 5% or more
estimates were undefined, we did not calculate a confi-
dence interval for the practice.

Comparing the confidence intervals to our observed
values, as depicted in Figure F1, the observed preva-
lence of potential compliance issues generally falls in or
below the 95% confidence interval. This result suggests
that our results underestimate the number of potential
compliance issues for some practices. However, we find
no evidence that our results overestimate the number

of potential compliance issues, on average. The confi-
dence intervals support two of our main conclusions.
First, various identifier- and location-related potential
compliance issues are prevalent. Second, third party po-
tential compliance issues are generally more prevalent
than first party potential compliance issues.

9.4 Ratio of Potential Compliance Issues
to Practices Performed by ESRB
Content Rating

Figure F2 shows the ratio of apps with potential issues
to performed practices grouped by ESRB content rat-
ing.

Fig. F2. Lighter colors indicate greater transparency of practices.
Darker colors indicate that practices are being performed but not
disclosed. Cells with fewer than 25 apps performing the practice
are annotated with the respective number of apps.

9.5 Ratio of Potential Compliance Issues
to Practices Performed by Play Store
Category

Figure F3 shows the ratio of apps with potential issues
to performed practices grouped by Play Store category.
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Fig. F3. Lighter colors indicate greater transparency of practices. Darker colors indicate that practices are being performed but not
disclosed. Cells with fewer than 25 apps performing the practice are annotated with the respective number of apps.
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