
Proceedings on Privacy Enhancing Technologies ; 2019 (3):87–107

Adi Akavia*, Craig Gentry, Shai Halevi, and Max Leibovich

Setup-Free Secure Search on Encrypted Data:
Faster and Post-Processing Free
Abstract: We present a novel secure search protocol
on data and queries encrypted with Fully Homomor-
phic Encryption (FHE). Our protocol enables organiza-
tions (client) to (1) securely upload an unsorted data
array x = (x[1], . . . , x[n]) to an untrusted honest-but-
curious sever, where data may be uploaded over time
and from multiple data-sources; and (2) securely is-
sue repeated search queries q for retrieving the first
element (i∗, x[i∗]) satisfying an agreed matching crite-
rion i∗ = min { i ∈ [n] | IsMatch(x[i], q) = 1}, as well as
fetching the next matching elements with further inter-
action. For security, the client encrypts the data and
queries with FHE prior to uploading, and the server
processes the ciphertexts to produce the result cipher-
text for the client to decrypt. Our secure search pro-
tocol improves over the prior state-of-the-art for secure
search on FHE encrypted data (Akavia, Feldman, Shaul
(AFS), CCS’2018) in achieving:
– Post-processing free protocol where the server produces

a ciphertext for the correct search outcome with over-
whelming success probability. This is in contrast to
returning a list of candidates for the client to post-
process, or suffering from a noticeable error probabil-
ity, in AFS. Our post-processing freeness enables the
server to use secure search as a sub-component in a
larger computation without interaction with the client.

– Faster protocol: (a) Client time and communication
bandwidth are improved by a log2 n/ log logn factor.
(b) Server evaluates a polynomial of degree linear in
logn (compare to cubic in AFS), and overall number of
multiplications improved by up to logn factor. (c) Em-
ploying only GF(2) computations (compare to GF(p)
for p � 2 in AFS) to gain both further speedup and
compatibility to all current FHE candidates.

– Order of magnitude speedup exhibited by extensive
benchmarks we executed on identical hardware for im-
plementations of ours versus AFS’s protocols.

Additionally, like other FHE based solutions, our solu-
tion is setup-free: to outsource elements from the client
to the server, no additional actions are performed on x
except for encrypting it element by element (each ele-
ment bit by bit) and uploading the resulted ciphertexts
to the server.

Keywords: Secure search, Fully homomorphic encryp-
tion, Randomized algorithms, Universal hash functions

DOI 10.2478/popets-2019-0038
Received 2018-11-30; revised 2019-03-15; accepted 2019-03-16.

1 Introduction
Following the rapid advancement and widespread avail-
ability of cloud computing it is a common practice
to outsource data storage and computations to cloud
providers. Placing cleartext (i.e unencrypted) data on
the cloud compromises data security. To regain data
privacy one could encrypt the data prior to upload-
ing to the cloud. However, if using standard encryp-
tion (e.g. AES), this solution nullifies the benefits of
cloud computing: when given only ciphertexts the cloud
provider cannot process the underlying cleartext data in
any meaningful way.

Fully homomorphic encryption (FHE) [22, 23, 49] is
an encryption scheme that allows processing the under-
lying cleartext data while it still remains in encrypted
form, and without giving away the secret key (see Def-
inition 2.1). With FHE it is possible for the client to
securely outsource computations to the server as fol-
lows: The client first encrypts its data x with an FHE
scheme to obtain the ciphertext [[x]] ← Encpk(x), and
sends [[x]] to the server. The server can now compute any
function f on the underlying clear-text data x by eval-
uating a homomorphic version of f on the ciphertext
[[x]]. The outcome of this computation is a ciphertext
[[y]]← Evalpk(f, [[x]]) that decrypts to the desired output
y = f(x). The server can now send the ciphertext [[y]] to
the client who would decrypt y ← Decsk([[y]]) to obtain
the result.

The homomorphic computations achievable by the
known FHE candidates (e.g. [7, 19, 24, 43]) are specified

*Corresponding Author: Adi Akavia: University of Haifa,
E-mail: adi.akavia@gmail.com
Craig Gentry: IBM Research, E-mail: craigbgen-
try@gmail.com
Shai Halevi: IBM Research, E-mail: shaih@alum.mit.edu
Max Leibovich: University of Haifa, E-mail:
max.fhe.phd@gmail.com

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 88

by a polynomial over a finite ring (i.e. by repeated ap-
plication of homomorphic-addition and homomorphic-
multiplication for that ring). For example, for data
in binary representation, bitwise operations on plain-
text bits (addition and multiplication modulo 2) can
be replaced by their homomorphic counterparts on en-
crypted bits (homomorphic-addition and homomorphic-
multiplication).

Key factors influencing the running-time of such
homomorphic computations are the degree and overall
multiplications of the polynomial. Leading to the main
two constraints in designing algorithms that compute on
FHE encrypted data: they must be realized by a poly-
nomial of low degree and low amount of overall multi-
plications.

Note that this FHE approach for securely outsourc-
ing to the server the computation of y = f(x) has the
benefits of requiring only a single round of communica-
tion, and with low communication bandwidth (commu-
nicating only the encrypted input [[x]] and output [[y]]).
Furthermore, the server in this protocol learns no new
information about x or y (assuming the FHE is seman-
tically secure).

Secure search is a fundamental computational problem,
useful in numerous data analysis and retrieval tasks. An
abundance of proposed solutions were presented to solve
it using different cryptographic tools (see Section 1.1
and Tables 1-2). In particular, Gentry [22, 23] proposed
using FHE to securely search on encrypted data.

In this work we address the natural and simple for-
mulation for secure search on FHE encrypted data (se-
cure search) as considered by [2]: Secure search is a two
party protocol between a server and a client. The server
holds an unsorted array [[x]] =

(
[[x[1]]], . . . , [[x[n]]]

)
of en-

crypted elements (not necessarily distinct) that were
previously encrypted and uploaded by the client, as well
as a specification of a predicate IsMatch(a, b) ∈ {0, 1}
specifying the matching condition. The client submits
encrypted queries [[q]] to the server in order to re-
trieve the first matching element. The server returns
to the client the encrypted index and element pair
[[y]] =

(
[[i∗]], [[x[i∗]]]

)
for i∗ the index of the first element

satisfying the matching condition, i∗ = min{i ∈ [n] |
IsMatch(x[i], q) = 1}. See detailed definition and exten-
sions in Section 3 and 5.

Restrictions on protocols. Note that the above secure
search formulation, as addressed in this work, focuses on
protocols that involve (a) a single server, and where
the client-server interaction is of (b) a single round,
and (c) low communication complexity. Furthermore,

(d) no initial setup is performed on x except for en-
crypting it element-by-element (each element encrypted
bit-by-bit) and uploading the resulting ciphertexts to
the server.

We point out that the latter condition, among other
things, prevents speeding up the search by using stan-
dard data structures such as search-trees, hash-tables,
or sorted arrays (on top of, or instead of, the encrypted
unsorted array [[x]]). A linear scan lower bound is thus
implied by the addressed formulation, even if we were to
search on clear-text data. This restriction is nonetheless
motivated by many use-cases, as discussed next.

Use-cases motivating the aforementioned no-setup re-
striction arise in settings where, for example:
– Matching criteria are unknown in advance, thus pre-

cluding appropriate indexing or sorting at setup;
– High dimensional range queries, where index size is

exponential in the number attributes and infeasible
to compute or store;

– Streaming data with client discarding each element
immediately after encrypting and uploading to the
server, thus precluding client’s setup or maintenance
of the desired data-structures (and where for the
server, seeing only ciphertexts, secure maintenance
of advanced data structures seems even harder than
secure search);

– Low capacity clients that are too weak to run setup
over the entire cleartext array prior to encrypting
and uploading it to the server;

– Fragmented data uploaded to the server from mul-
tiple distinct client endpoints (data-sources) with
no single endpoint that can perform setup over the
entire cleartext data.
The single-round and low-communication restric-

tions are motivated by use-cases in settings where com-
munication is a major bottleneck, e.g. in being intermit-
tent or unreliable, or where communicating is with data-
sources that are mostly offline, or have restricted bat-
tery capacity as in sensors-networks or some Internet-
of-Things (IoT) devices.

The single server restriction is motivated, not only
by the simplicity of such architecture, but also by its
stronger security guarantee: requiring no non-collusion
assumption on servers.

Threat model. We address computationally-bounded
semi-honest adversaries that follow the protocol but
may try to learn additional information. Our security re-
quirement is that adversaries controlling the server can-
not distinguish between two adversarially-chosen equal
size queries or data arrays. See Section 3.3.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 89

The leakage of our protocols include only size in-
formation (specifically, upper-bounds on array size, ele-
ments’ sizes, number of queries, and queries’ sizes); see
detailed leakage discussion in section 3.3.

1.1 Prior Works
We survey related works, focusing primarily on works
addressing similar secure-search formulation as ad-
dressed in this work: single-server, single-round, low-
communication and no-setup. See Tables 1-2.

1.1.1 Secure Search on FHE Encrypted Data

The most relevant works are those addressing the same
secure-search formulation as considered in our work
(aka, secure search on FHE encrypted data); See above
and Definition 3.1.

Folklore solutions for secure search on FHE encrypted
data suffered from inefficient server runtime due to eval-
uating degree Ω(n) polynomials, for n the number of
elements; see discussion in [2].

SPiRiT. The prior state-of-the-art for secure-search on
FHE encrypted data appeared in a recent work of
Akavia, Feldman and Shaul CCS’2018 [2], where the
server evaluates a polynomial of logarithmic degree
log3 n (instead of degree at least linear in the folklore
solution). Their work proposes both a deterministic and
a randomized variant.

Their deterministic variant (SPiRiT Det.) uses
modern data summarization techniques known as
sketches [60] alongside multi-ring simultaneous evalu-
ations of their search polynomial to retrieve a poly-
logarithmic short list of candidates for the first match-
ing element. This novel technique essentially reduces the
degree of the polynomial evaluated by the server from
linear to poly-logarithmic in the number of elements n.

Their randomized variant (SPiRiT Rand.) offers an
efficiency improvement by working over a single random
ring instead of several different rings. The disadvantage
of this randomized variant is that it achieves an error
probability that is only polynomially small in n (i.e., no-
ticeable error) rather than a negligible error probability.

1.1.2 Other Related Works

We next discuss other related methods and works.

Setup vs. no-setup – server’s efficiency gap. There is
a major efficiency gap between works allowing initial
setup to works disallowing setup, as in our work. This
is because setup allows sub-linear search time (e.g. using
indexing, search trees or hash table), whereas disallow-

ing setup necessitates –even on cleartext data– a linear
scan of the data. Our work focuses on the no-setup case.

Secure two-party computation (2PC w/o FHE). Sem-
inal works dating back to the 1980s [26, 62] showed
that two parties can compute any polynomial-time com-
putable function of their private inputs via an interac-
tive protocol that reveals no information beyond what
can be inferred from the function’s output. In particular,
parties can securely compute the search functionality.

However, secure two-party protocols preceding the
constructions of FHE schemes (2PC w/o FHE) suffer
from a communication complexity, and hence also the
client’s time, grows with the complexity of the com-
puted function. This is in contrast to growing only with
the input and output sizes |q|+ |(i, x[i])| in FHE based
solutions.

We note that, while we focus on secure search in
the two parties settings (client and a single server),
promising results have been shown for settings where
the server can be partitioned into several non-colluding
entities that secret-share the data; a comprehensive sur-
vey of such works is beyond our scope. A few exam-
ples include [3, 5, 59], all addressing search on cleartext
data held by the multiple servers, namely, protecting
the query but not the data against the server.

Searchable Encryption (SE) focuses on inherent ef-
ficiency versus security trade-off when searching on
encrypted data. Specifically SE focuses on achieving
sublinear search time. Main primitives for SE include
searchable symmetric encryption (SSE) and public key
encryption with keyword search (PEKS) with schemes
first introduced by Song et al. [56] and Boneh et al. [4]
respectively. See also [6] for a thorough survey.

To achieve sublinear time SE incorporates setup
such as sorting, indexing or usage of auxiliary data
structures. Furthermore SE deliberately leaks informa-
tion to enable highly efficient search over encrypted
data. This leakage typically includes the access pattern
(which elements match a given keyword) and/or search
pattern (whether different queries were generated for
the same searched keyword).

Starting with the work of [17], research on SE for-
malized security by defining a leakage profile that char-
acterizes the information an adversary may learn. In
some cases, an adversary can exploit a scheme’s leak-
age to completely reveal the content of elements and
queries it comes across. See discussions and example at-
tacks in [1, 10, 25, 29, 30, 33, 42, 47, 64].

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 90

Security Sub-Linear Single
Setup Allowed Hide Query Hide Elements Hide Search Hide Access Complexity Round

Content Content Pattern Pattern in |x|?
Cleartext ×

X(iii)

X
SE X(i) X(i) ×(ii) ×(ii) X
SE + ORAM X X X X ×
PIR by Keywords X × X X X

Table 1. Comparing search solutions that allow setup in the single-server settings. Rows correspond to related works (see Sec-
tion 1.1.2); Columns correspond to properties; Cells contain X if the column’s property is attained by the row’s work (× if not at-
tained). Acronyms and Abbreviations: Comm. – Communication; SE – Searchable Encryption; PIR – Private Information Retrieval;
FHE – Fully Homomorphic Encryption; ORAM – Oblivious RAM. Comments: (i) Known methods exploit leakage of SE protocols to
obtain query and/or elements content [1, 10, 25, 29, 30, 33, 47, 64]. (ii) SE deliberately leaks information to enable highly efficient
search over encrypted data, see additional info in [6]. (iii) Sub-linear client, server and communication complexity in |x|.

In contrast, in FHE based solutions such as our work
there is no leakage other than size information; see de-
tailed leakage discussion in Section 3.3.

SE using Oblivious RAM (SE+ORAM). ORAM [27] is
a cryptographic primitive that allows a client to conceal
its access pattern to a remote storage held by the server
via continuous re-shuffling of a dedicated structure and
re-encryption of the data as it is being accessed. Typ-
ical ORAM constructions (e.g. [51, 57]) achieve poly-
logarithmic server run-time by requiring the client to
perform a “download-decrypt-compute-encrypt-upload”
each round, for at least O(logn) rounds.

ORAM can be combined with other techniques to
suppress leakage in SE. This was demonstrated in sev-
eral recent works, including: TWORAM [21] in which
ORAM is utilized together with garbled circuits [61]
to hide search and access patterns while achieving con-
stant number of rounds; and [34] that provides generic
compilers that suppress leakage in SE schemes by using
Square-Root ORAM [27].

Private Information Retrieval (PIR) [16] in a single
server scenario [39, 44], allows a client holding the phys-
ical address i ∈ [n] to retrieve the ith element x[i] from
a data array x = (x[1], . . . , x[n]) held by the server.
The above is achieved while ensuring the server learns
no new information on i or x[i] and while keeping the
communication complexity strictly smaller than |x|. The
state-of-the-art communication complexity, as achieved
by FHE based PIR [8, 18, 22, 23], is proportional only
to the size of i, x[i] and the security parameter. We note
however that the server’s run-time in a single server PIR
(whether or not FHE based) is inherently linear in |x|.

PIR-by-Keywords via setup on unencrypted data. PIR-
by-keywords protocols [11, 15, 50] remove the require-

ment to know the physical address i of the sought ele-
ment x[i], and allow instead to retrieve elements using
keywords search. These works however address different
settings than our work: their server holds unencrypted
data and performs setup on that data to produce auxil-
iary data-structures used to speedup search (in contrast
to the server’s holding encrypted data and performing
no-setup in our work).

Several disadvantage of this PIR-by-keyword ap-
proach make it unsuitable for the use-cases and set-
tings considered in our work: (1) Their server holds
unencrypted data, offering no data protection against
the server. This is inherent for their setup, as efficient
setup on encrypted data is a challenging problem not
addressed by these works.1 (2) They require setup for
producing their data-structures, which is unsuitable for
use-cases where setup is disallowed or infeasible; See
use-cases examples above. (3) Their search-space is re-
stricted by the initial setup choices, e.g., the keywords
used in producing their index [11, 50].

In contrast, in our work (1) Data is encrypted by
the client to guarantee data protection against server.
(2) No initial setup or maintenance of additional data
structures is required, neither by the server nor by the
client. (3) We enable arbitrary matching criteria to be
chosen by the client, on the fly, for each query.

Private Set Intersection (PSI) [20] enables two parties
each holding a private set to securely compute the in-
tersection of their sets. PSI protocols were constructed
using various cryptographic primitives (e.g. [37, 45, 46],

1 In contrast, in standard PIR when given the physical address
i, it is irrelevant whether x is encrypted, because the server
simply retrieves whatever content is in x[i].

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 91

including FHE [12]). PSI protocols can be employed to
solve the decision problem of whether the lookup value
(size 1 set) appears in the data array (size n set); how-
ever, with server holding unencrypted data.

Secure Pattern Matching (SPM) on FHE encrypted
data [13, 14, 35, 36, 40, 58, 63], given an en-
crypted lookup value, returns a vector of n ciphertexts
(c1, . . . , cn), for n the number of elements, where ci in-
dicates whether the ith data element is a match to the
lookup value (or sometimes returning only a YES/NO
answer of whether a match exists). The main drawback
of these protocols is that the communication complexity
and client’s running time are proportional to the num-
ber of stored elements Ω(n).

1.2 Our Contributions
In this work we present a new and improved solution
for secure search on FHE encrypted data, analyze its
efficiency compared to the prior state-of-the-art and
demonstrate its concrete run-time performance by pro-
viding an implementation (built on top of HElib C++
library [31]) together with extensive experiments.

Our secure-search protocol is a single-server, single-
round, low-communication protocol that requires no ini-
tial setup or maintenance of additional data-structures.

Our protocol is compatible with generic match-
ing criteria, such as exact and wild-card match-
ing; similarity search in metric spaces, e.g., with
Hamming/Euclidean/Edit distance; Boolean and range
queries; and so forth. See Section 5 for specific instanti-
ations examples; efficiency improvements via universal
hashing; and employment for fetch-next queries.

The client’s complexity is optimal in the sense
of only encrypting the input and decrypting the out-
put. The communication consists only of the encrypted
input and output. The server sees only ciphertexts
for both data and queries, encrypted with FHE in a
black-box fashion and compatible with all known FHE
candidates. The server evaluates a search polynomial
over the encrypted data and encrypted query. This
polynomial for computing both index i∗ and element
x[i∗] is of degree log(n/ε) · d and overall multiplication
n (log(n/ε) + µ+ w). Here n is the number of data ele-
ments, ε the failure probability, w the binary represen-
tation length of x[i∗], and d, µ the degree and overall
multiplications respectively for the polynomial realizing
the matching criterion. See Table 3.

The security guarantee against semi-honest adver-
saries controlling the server is that our protocol leaks no
information on data and queries, except for size infor-

mation (aka, full-security). Namely, the leakage profile
consists solely of upper bounds on the counts and sizes
of queries and data elements. In particular, the adver-
sary cannot tell whether two queries are for the same
keyword, or whether the client issued a “fresh” query or
a “fetch-next” query, etcetera. See Section 3.3.

Comparison to prior works. We next compare our
protocol to prior works on secure search, focusing
on single-server, single-round protocols, and discussing
both works that allow and disallow setup; See Table 1
and Table 2, respectively.

Our work is incomparable to works allowing setup;
See SE, SE+ORAM and PIR-by-Keywords in Sec-
tion 1.1.2. On the one hand, setup enables attaining
search with sub-linear server complexity, which is im-
possible without setup even on cleartext data and query.
On the other hand, we attain a stronger security guar-
antee of hiding all the following: data content, query
content, access pattern, and search pattern; in contrast
to leaking at least some of the former in the aforemen-
tioned works; See Table 1.

Our work strictly improves over prior secure-search
works that disallow setup (see Folklore, SPiRiT, 2PC
w/o FHE, PIR, PSI and PSM in Section 1.1), in the fol-
lowing sense. Our secure-search protocol is the first to
simultaneously attain all desired properties that follows
(Properties 1-10, Section 3.2): full security (i.e., com-
pletely hiding all the following: query content, data ele-
ments content, search pattern, access pattern); efficient
client and communication (i.e., polynomial in input and
output size, and not in the time to compute the search
functionality), single and efficient server (in the sense of
evaluating over encrypted data a polynomial of degree
poly-logarithmic in the number of data elements); unre-
stricted search functionality; retrieval of both index and
element; post-processing free; negligible error probabil-
ity; and compatibility with all current FHE schemes. In
contrast, all prior secure search solutions achieve only a
strict subset of these properties. See Table 2.

In particular, when comparing to the prior
state-of-the-art secure-search on FHE encrypted data
(SPiRiT) [2] our protocol offers the following contribu-
tions:

Contribution 1. Our protocol simultaneously achieves
both the properties of post-processing free client and
negligible error probability. In contrast, the protocols
of [2] achieve either post-processing free client or neg-
ligible error probability, but not both. Simultaneously
achieving both properties, as in our work, is highly mo-
tivated as it allows the server to employ secure search

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 92

Security Sub-Linear Complexity in |x|? Allows Retrieval of Post Negligible Compatibility
Setup Disallowed Server Client Comm. Multiple Index and Processing Error with all FHE

Matches Element Free Probability Schemes
Cleartext ×

×

X X X X X X N/A
2PC w/o FHE X × × X X X X N/A
PIR X X X × X X X X

PSI X X X × × X X X

SPM X × × X × × X X

Folklore X X X X X X X X

SPiRiT Det. X X X X X × X ×
SPiRiT Rand. X X X X X X × ×
Binary Raffle X X X X X X X X

Table 2. Comparing search solutions that disallow setup in the single-server, single-round settings. Rows correspond to related works
(see Section 1.1); Columns correspond to properties (see Section 3.2); Cells contain X if the column’s property is attained by the row’s
work (× if not attained, N/A if not applicable). Acronyms and Abbreviations: Comm. – Communication; 2PC – Two Party Compu-
tation; PIR – Private Information Retrieval; FHE – Fully Homomorphic Encryption; PSI – Private Set Intersection; SPM – Secure
Pattern Matching; Folklore – Natural secure search on FHE encrypted data; SPiRiT Det. and Rand. – deterministic and randomized
protocols of AFS [2]; Binary Raffle – This Work. Comments: (i) All the works in this table attain Single Round protocols.

as a sub-component in a larger computation without
interaction with the client.

Contribution 2. Our secure search solution is asymp-
totically faster than [2], in attaining: (1) Optimal client
run-time in the sense of requiring only encrypting the
input and decrypting the output. (2) Considerable im-
provement of the server’s run-time: we reduce the de-
gree of the evaluated polynomial from cubic to linear
in logn, and from linear to logarithmic in 1/ε, and re-
duce the overall multiplications by up to logn factor.
See Table 3.

Contribution 3. Our secure search solution requires
computations solely over GF(2) (instead of GF(p) for
primes p > 2 in [2]). This leads to compatibility with
all currently known candidate FHE schemes including
GSW [24], unlike [2]. This also allows further run-time
speedup when using current FHE schemes implemen-
tations, including HElib [31] that implements BGV [7]
scheme. The reason for the speedup is that in all cur-
rent FHE schemes, working over GF(p) for larger primes
p > 2 causes a general slowdown of all the homomorphic
operations and size inflation of the keys and ciphertexts.

Contribution 4. Our secure search solution is concretely
faster than [2] by an order of magnitude. This is demon-
strated by our implementation, based on the FHE HElib
C++ library [31], and our extensive run-time bench-
marks experiments, performed on a mid-range Linux
server of 16 CPU cores and 16GB RAM. A few examples
of comparing our results on same server and with simi-
lar parameters for bits per element, execution time and
error probability follow; See more details in Section B.3.

(i) We securely search on ≈ 3 × 106 (in contrast to
≈ 0.2×106 for SPiRiT) 16-bit elements in 4.5 hours,
with error probability 2−80.

(ii) We securely search on ≈ 3 × 106 (in contrast to
≈ 0.3 × 106 for SPiRiT) 16-bit elements in 1 hour,
with error probability 1/2.

(iii) We securely search on ≈ 1×106 (in contrast to run-
ning out of RAM and being unable to complete the
experiment for SPiRiT) 64-bit elements in 1 hour,
with error probability 1/2.

(iv) We securely search on > 10 × 106 (in contrast ≈
1.5× 106 for SPiRiT) 1-bit elements in 1 hour, with
error probability 1/2.

1.3 Our Techniques Highlights
When considering secure search over unsorted FHE en-
crypted data, approaches like binary-search are rejected
immediately.

The approach proposed by Akavia et. al. [2] for solv-
ing secure search on FHE encrypted array includes the
following steps: (1) Obtaining a binary array of indica-
tors after executing the desired IsMatch predicate be-
tween the given query and each array element; (2) Cal-
culating an array of prefix-sums of the array of binary
indicators; (3) Transforming the prefix-sums array to a
binary step-function array with value 1 at every non-
zero prefix-sum, namely, the first 1 bit is in the index
of the first match; (4) Transforming the step-function
array to a selector array where only the index of the
first match contains 1 (and all other indices contain 0);
(5) Utilizing this selector array to calculate and return
this first match (index and element).

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 93

Table 3. Complexity comparison of first match index (i∗) com-
putation phase between SPiRiT (rows (i)-(ii)) vs. our work
(rows (iii)-(v)). Notations: n – array size; ε – failure proba-
bility; d, µ – degree and overall multiplications of IsMatch;
k = log2 n/ log logn; α = O (log(1/ε)); c – a constant de-
pending on the density of prime numbers.

• Server’s Degree,
• Server’s Overall Multiplications
• Client’s Decryptions

(i) SPiRiT Det. • log3(n) · d
• k · n ·

(
log2(n) + µ

)
• k · log(n)

(ii) SPiRiT Rand. • c
2ε

log3(n) · d
• n ·

(
log
(

n
ε
· c

2 · logn
)

+ µ
)

• log(n)

(iii) Binary Raffle • log(n/ε) · d
• n · (log(n/ε) + µ)
• log(n)

(iv) Binary Raffle + • 2 · log2(2n/ε)
Universal Hash • n · (3 · log(2n/ε))

• log(n)
(v) Binary Raffle + • log(3n) · d
Client Probability • α · n · (log(3n) + µ)
Amplification • α · log(n)

Realizing this approach however is challenging: Step
(2) (computing prefix-sums) has high degree if working
with binary plaintext space and using standard addition
circuits such as full-adders. Step (3) (zero-testing each
prefix-sum) has high degree if working over plaintext
spaces larger than the array size and utilizing Fermat’s
Little Theorem for the zero-test.

To address this challenge Akavia et. al. [2] propose
combining steps (2)-(3) above to a single probabilis-
tic step that returns the required step-function (albeit,
with noticeable error probability). They later show how
to eliminate the error using few repetitions over mul-
tiple rings GF(p) for p > 2 together with client post-
processing for selecting the correct result.

To avoid the aforementioned post-processing we
propose an alternative for the probabilistic test com-
bining steps (2)+(3). First, we make the straightfor-
ward observation that instead of testing if the sum of
binary indicators is zero (as done in [2]), we can com-
pute the logical-OR of these indicator values. However,
this would result in high degree, as the logical-OR over
n variables has degree n. Next, to reduce the degree, we
employ the method of Razborov and Smolenski [48, 55]
for low-degree approximation of the logical-OR func-

tion. This method yields a polynomial of degree loga-
rithmic in both n and 1/ε, for ε the failure probability.

Elaborating on the above, the Razborov-Smolenski
method is applicable in GF(q) for any q ≥ 2; we ap-
ply it with q = 2 on all k-th prefix

(
v[1], . . . , v[k]

)
∈

{0, 1}k of the aforementioned vector of n binary in-
dicator values. Their low-degree approximation for
OR
(
v[1], . . . , v[k]

)
∈ {0, 1} is computed as follows.

First, for N(ε) = dlog2(n/ε)e uniformly random i.i.d.
r1, . . . , rN(ε) ∈ {0, 1}n, we compute the parity of the
corresponding random subset of entries,

p(rj) =
k∑
i=1

rj [i] · v[i] mod 2.

The parity bit p(rj) is always zero when v = 0k and
it is one with probability half when v 6= 0k. Next, we
compute the OR of these parity values using the stan-
dard degree N(ε) polynomial for the logical-OR of N(ε)
binary values:

OR
(

p
(
r1
)
, . . . , p

(
rN(ε)

))
= 1−

N(ε)∏
j=1

(
1− p

(
rj
))

mod 2.

This is equal to OR(v[1], . . . , v[k]) with probability 1− ε
n .

We note that the Razborov’s and Smolenski’s [48,
55] approximation method has numerous uses in com-
puter science. In particular, in the context of secure
search Barkol and Ishai [3], building on [32, 48, 55],
gave a generic transformation from constant-depth un-
bounded fan-in boolean circuits to low-degree polynomi-
als. They employ their technique for secure multi-party
computation of common search functionalities; albeit,
in settings of multiple-servers holding unencrypted data
(cf. single-server holding encrypted data in our work).

1.4 Article Road-map
The rest of this paper is organized as follows. Prelim-
inary definitions and notations in Section 2; Problem
statement and threat model in Section 3; Our proto-
col and the main theorem in Section 4; Instantiations
of IsMatch demonstrating performance and functional-
ity enhancements and extensions in Sections 5-6; Con-
clusions in Section 7. We have moved to the appendix
protocols summary (Appendix A), and detailed experi-
mental results (Appendix B).

2 Preliminaries
We state some preliminary notations and definitions.

For natural numbers k < n, denote [n] = {1, . . . , n},
[k, n] = {k, . . . , n}, and (k, n) = {k + 1, . . . , n − 1}. For

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 94

array v denote v[i] the i-th element in v. Similarly, for
x ∈ {0, 1}∗, x[i] denotes its i-th bit. We follow the con-
vention of enumerating array entries starting from entry
number 1 (not 0), unless stated otherwise. For matrix
M the element in row i and column j will be denoted
as M [i, j]. For a field F, vectors v, u ∈ Fn and k ∈ [n],
denote: 〈v, u〉 =

∑n
i=1 v[i] · u[i] (mod 2), prefixk(v) =

(v1, . . . , vk) ∈ Fk, suffixk(v) = (vk+1, . . . , vn) ∈ Fn−k,
and |v| the size (length, dimension) of v (= n).

For k, n ∈ N, denote by r1, . . . , rk ←$ {0, 1}n the
sampling of k arrays independently at random from
the uniform distribution over {0, 1}n. As standard, PPT
denotes probabilistic polynomial time; and a function
ν : N → R is called negligible in κ, denoted negl(κ), if
for every constant c > 0 there exists n0 such that for all
n > n0, ν(n) < κ−c.

Definition 2.1 (FHE). A leveled homomorphic en-
cryption (FHE) scheme is defined by a quadruple of PPT
algorithms FHE = (KGen,Enc,Dec,Eval) as follows.
– Key generation. (pk, sk) ← KGen(1κ, 1L) takes a
security parameter κ and a circuit depth upper-bound
L, and outputs public key pk and secret key sk.

– Encryption. [[b]]← Encpk(b) takes the public key pk
and a message b ∈ {0, 1}, and outputs a ciphertext
[[b]]. For x ∈ {0, 1}n, we denote its bit-by-bit encryp-
tion [[x[i]]]← Encpk(x[i]) by [[x]] =

(
[[x[1]]], . . . , [[x[n]]]

)
.

– Decryption. x′ ← Decsk([[x]]) takes the secret key
sk and a ciphertext [[x]], and outputs a message x′ ∈
{0, 1}∗. When [[x]] is an array of ciphertexts, decryp-
tion is ciphertext-by-ciphertext.
Correctness says that Decsk(Encpk(x)) = x.

– Homomorphic evaluation. [[y]] ← Evalpk(f,
[[x[1]]], . . . , [[x[t]]]) takes pk, a function f : {0, 1}t →
{0, 1} represented as an arithmetic circuit over
GF(2) and a set of t ciphertexts

(
[[x[i]]]

)t
i=1 out-

puts a ciphertext [[y]] such that Decsk([[y]]) =
f(x[1], . . . , x[t]). As a shorthand notation we write
f([[x]]) in place of Evalpk(f, [[x]]).

We will use the standard equality operator, for a, b ∈
{0, 1}w, of degree w and w − 1 overall multiplications:

IsEqualw(a, b) =
∏
i∈[w]

(
1 + a[i] + b[i]

)
mod 2 (1)

We will also use the standard “greater than” operator
(a > b), for a, b ∈ {0, 1}w, of degree w+1 and 2w overall

multiplications:

IsGrtw(a, b) =
∑
i∈[w−1]

[(
a[i] · (b[i] + 1)

)
·

IsEqualw−i
(

suffixi(a), suffixi(b)
)]

+(
a[w] · (b[w] + 1)

)
mod 2

(2)

3 Problem Statement
Suppose a client (Alice) wants to use a server (cloud ser-
vice provider, Bob) for data storage, management and
retrieval (Search, Insert, Update, Delete). To protect her
privacy Alice uploads only encrypted data to the cloud.
She encrypts it using FHE so that Bob has process-
ing capabilities on the data, with single round and low
communication protocols that hide Alice’s data, queries,
returned results and access pattern from Bob.

3.1 Secure-Search on Encrypted Data
In this paper we focus on the problem of setup-free
secure-search on FHE encrypted data, following [2]; see
Definition 3.1 below. In this problem given an unsorted
and encrypted data array [[x]] =

(
[[x[1]]], . . . , [[x[n]]]

)
and encrypted query [[q]] the goal is to find the en-
crypted index [[i∗]] and element [[x[i∗]]] so that x[i∗]
is the first match for query q in array x (formally,
IsMatch(x[i∗], q) = 1 and ∀j < i∗ : IsMatch(x[j], q) = 0).
The predicate IsMatch can be generic (see below).

Definition 3.1 (Secure search). The server holds an
array of encrypted elements (previously encrypted and
uploaded by the client to the server, and where the server
has no access to the secret decryption key):

[[x]] =
(
[[x[1]]], . . . , [[x[n]]]

)
The original array x = (x[1], . . . , x[n]) is unsorted and
its elements are not necessarily distinct. The client
sends to the server an encrypted query [[q]]. The server
returns the client an encrypted index [[i∗]] and element
[[x[i∗]]] where the index i∗ is satisfying the condition that
it is the index of the first match for query q in array x:
i∗ = min

{
i ∈ [n] | IsMatch(x[i], q) = 1

}
We note that returning a fixed number of matches is
inherent in the FHE model. This is because the process-
ing server has to be oblivious of the query, and hence
the length of the result has to be the same for every
query.

We also would like to point out that above defini-
tion does not prevent the client from retrieving multi-
ple matches to a given query. The client can retrieve
additional matches by issuing “fetch-next” queries (cf.
Section 5.6). This is done without introducing any leak-
age and without revealing whether “fresh” queries or

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 95

Fig. 1. Depiction of secure search on FHE encrypted data

“fetch-next” queries were issued (see also leakage pro-
file discussion in Section 3.3).

Setup-free secure-search protocol employing a solution
to the above secure search problem follows (cf. Figure 1):
1. Keys Generation: Alice initializes the scheme
FHE = (KGen,Enc,Dec,Eval) and generates the
keys (pk, sk). Alice keeps pk, sk and sends pk to Bob.

2. Array Upload: Alice gradually, over time, encrypts
and uploads elements to Bob. At any given moment,
Bob holds an encrypted and unsorted array [[x]] =(
[[x[1]]], . . . , [[x[n]]]

)
.

3. Secure search: At any time, Alice may issue a search
query q by encrypting it and sending [[q]] to Bob.
Bob employs the secure search solution to obtain
and send to Alice the encrypted search outcome
([[i∗]], [[x[i∗]]]) for i∗ the index of the first match and
x[i∗] the corresponding element. Alice then decrypts
to obtain i∗ and x[i∗].

Usage could be versatile. For example, the client (Al-
ice) may upload additional data over time with search
queries interleaved between uploads; See Section 6.2.
Furthermore, Alice could be instantiated by multiple
parties with distinct roles: a key generation authority
in Step 1, and multiple data-sources and search-clients
in Steps 2 and 3 respectively, where the key generation
authority sends pk to the data-sources and server, and
sends pk, sk to the search-clients.

Generic IsMatch. In order for secure search to be appli-
cable to versatile settings we emphasize that it can be
instantiated with various IsMatch predicates: any pred-
icate that when evaluated on two elements a, b, for a
from the space of data elements and b from the space
of queries, returns a binary indicator accepting value
IsMatch(a, b) = 1 if a, b are considered a match in the
context of the given settings (0 otherwise). The server’s
complexity depends on the complexity of the IsMatch
predicate.

3.2 Desired Properties
We define properties desired from a secure search pro-
tocol (following [2]); see Tables 1-2:
1. Full security: two (equal size) adversarially-

chosen queries and data arrays are computationally-
indistinguishable from the search and upload proto-
cols; see formal statement in Definition 3.2.

2. Efficient client: client’s running-time is polyno-
mial in the time to encrypt the query q and decrypt
the search outcome ciphertexts ([[i∗]], [[x[i∗]]]).

3. Efficient server: the server evaluates polynomials
f([[x]], [[q]]) of degree polynomial in logn and the de-
gree of IsMatch, and of size (i.e. the overall number
of multiplication and addition operations) polyno-
mial in n and the size of IsMatch.

4. Efficient communication: the protocol has single-
round protocol and communication bandwidth poly-
nomial in |q|, |i∗| = logn and |x[i∗]| (for |z| denoting
the binary representation length of z).

5. Setup-free: data elements are maintained in an un-
sorted array where each new element is inserted at
the end of the array.2

6. Unrestricted search functionality: no restric-
tions are placed on the number of array elements
that match the query.

7. Retrieval of both index and element: client’s
output consists of both index and element (i∗, x[i∗]).

8. Post-processing free: the server sends the en-
crypted search outcome ([[i∗]], [[x[i∗]]]) for the client
to decrypt, with no client’s post-processing needed.

9. Negligible error probability: with overwhelm-
ing probability the client’s output (i∗, x[i∗])
is the correct search outcome, i.e., i∗ =
min { i ∈ [n] | IsMatch(x[i], q) = 1}.

10. Compatibility with all FHE schemes: the proto-
col can employ (as a black-box) any FHE scheme.

3.3 Threat Model
The untrusted party in our scenario is the honest-but-
curious (also called, semi-honest) and computationally-
bounded adversary controlling the server (as in the case
of hacked cloud servers). Semi-honest means, as stan-
dard, that the adversary follow the protocol, but may
try to learn sensitive information. Namely, for the up-

2 Examples to techniques that require setup include: pre-
processing of the entire plaintext data, as in sorting or indexing;
maintenance of additional search-oriented data structures such
as search-trees or hash tables; in general, the use of any addi-
tional tools for the purpose of achieving sub-linear search time.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 96

load functionality the server provides the storage facil-
ity and is prohibited from modifying or destroying the
encrypted array ([[x]]). Likewise, for the search function-
ality the server receives encrypted queries ([[q]]) and is
obligated to follow the protocol and return encrypted
search outcomes accordingly ([[i∗]], [[x[i∗]]]). On the other
hand, the adversary can try to derive sensitive informa-
tion from the stored elements, received queries, data
access patterns and search outcomes. Computationally-
bounded means, as standard, that the adversary’s ac-
tions are captured by a probabilistic polynomial time
(PPT) algorithm.

We mention that there is no need to consider adver-
saries controlling the client as it can trivially simulate
the entire protocols (Upload, Search) by herself. This is
because the server’s role is not to provide input or re-
ceive output, but rather to take the bulk of computa-
tional burden off the client.

Our security requirement is that if the client issues
the protocol with one of two adversarially-chosen equal
size queries q(0), q(1) (similarly, arrays x(0), x(1)), the
adversary controlling the server cannot distinguish be-
tween them; see the formal attack games below.

Definition 3.2 (Full security). We say that an upload
and search protocol provides full security if every PPT
semi-honest adversary A controlling the server has no
more than a negligible advantage Adv(A,FHE , κ) =
negl(κ) in winning the attack games on query or data
(as specified below).

Attack on query (respectively, data). The attack games
involve the adversary A and a challenger C, both given
the FHE scheme FHE = (KGen,Enc,Dec,Eval) and the
security parameter κ, proceeding as follows.
1. C executes the key generation step (Step I, Figure 3)

to obtain (pk, sk)←$ KGen(1κ), and sends pk to A.
2. A chooses parameters n,w,w′ for array size, ele-

ments size, and query size, respectively; generates
and sends to C the tuple (x, q(0), q(1)) for x an array
of n elements of size w, and q(0), q(1) queries of size
w′ (respectively, the tuple (x(0), x(1), q) for arrays
x(0), x(1) and query q of sizes as specified above).

3. C samples b←$ {0, 1} uniformly at random.
4. C and A execute the upload and search protocols

(Step II-III, Figure 3) playing the roles of client and
server respectively. The client’s input is x and q(b)

(respectively, x(b) and q); the server has no input.
5. A sends b′ ∈ {0, 1} to C, and wins if b′ = b.

The advantage of A in the search attack on query (re-
spectively, data) is defined to be

Adv(A,FHE , κ) =
∣∣Pr
[
b′ = b

]
− 1/2

∣∣
We remark that, since A holds pk, he can simulate on its
own the upload step for additional data entries x′ of its
choice. Likewise, since A holds x, q(0), q(1) (respectively,
x(0), x(1), q), he can simulate on its own the search step –
excluding the client’s final decryption step– for whatever
and as many queries q′ as A wishes, including queries
q(0), q(1) (respectively, q). These upload and search steps
can occur both before and after the challenge.

Full security leakage profile discussion. Full security im-
plies that the adversary participating in the protocol
does not learn new information on data, queries, and
search outcomes, other than the following size informa-
tion: (1) plaintext space; (2) array size upper-bound; (3)
element size upper-bound; (4) overall count of executed
queries. This holds both for data-at-rest (upload) and
data-in-use (search).

In particular, the protocol hides access-patterns to
prevent, for example, identifying frequently searched
data elements; and hides search-patterns to prevent in-
ferring from search outcomes whether two searches use
related query values. The overall count of executed
queries does not reveal any information regarding the
content or distribution of stored elements; and the server
is unable to distinguish between “fresh” queries and
“fetch-next” queries (cf. Section 5.6).

4 Secure Search
We specify our secure search protocol (see Figures 3-4,
Section A) that we name: Binary Raffle Protocol.

This section is organized as follows. The simple keys
generation and data upload steps are in Sections 4.1–4.2;
the secure search step, which is the heart of this work,
in Section 4.3; and our main theorem in Section 4.4.

4.1 Keys Generation Step
In the keys generation step the client executes the key
generation algorithm of the leveled scheme FHE =
(KGen,Enc,Dec,Eval) (see Definition 2). The input to
the KGen algorithm are the security parameter κ and the
level L = log2(d) for d the degree of the secure search
polynomial (see Section 4.3 below).

In details, the level L depends on the follow-
ing upper-bounds: (1) error probability ε; (2) array
size n; (3) degree of the desired matching polyno-
mial dIsMatch. Specifically it needs to be set to L =
dlog log(n/ε) + log(dIsMatch)e.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 97

The output is (pk, sk)← KGen(1κ, 1L) where (pk, sk)
are kept by the client, and pk is sent to the server.

4.2 Data Upload Step
In the array upload step the client encrypts its data
array x =

(
x[1], . . . , x[n]

)
and sends the ciphertexts

[[x]] =
(
[[x[1]]], . . . , [[x[n]]]

)
to the server. The encryption

is performed element by element. Each element x[i] is
given by its binary representation and contains up to w
bits. Prior to encryption, to avoid revealing the number
of bits in each element the client pads all elements with
leading zeros until all of them are of length w. To pad
an element without “losing” its leading zeros one can
slightly modify the aforementioned padding by adding
a single 1 bit next to the MSB position of the element
and afterwards add 0 bits up to the desired size. The
encryption of each element is then performed bit by bit.

We would like to emphasize that we do not conciser
the padding procedure described above as setup. This
is due to padding being performed locally element-by-
element with only constant additional memory, requir-
ing no processing of the entire plaintext data, and with
no reduction in the search time.

4.3 Secure Search Step
We specify the secure search step, which is the heart of
our protocol (Figure 3, Step III).

The starting point of the secure search protocol is
after the client obtained sk, pk, the server obtained pk
and the encrypted array [[x]] =

(
[[x[1]]], . . . , [[x[n]]]

)
has

been uploaded to the server (see Sections 4.1-4.2).
The secure search step (Figure 3, Step III) proceeds

as follows. First the client encrypts her search query
[[q]]← Encpk(q) and sends it to the server (Step III.(a)).
Next, the server evaluates the steps specified below on
the stored array [[x]] and the query [[q]] to obtain and
send to the client ([[b∗]], [[x[i∗]]]) for b∗ ∈ {0, 1}dlog2 ne+1

the binary representation of the index of the first match
i∗ = min{i ∈ [n] | IsMatch(x[i], q) = 1} (Step III.(b)).
Finally, the client decrypts to obtain the desired output
(b∗, x[i∗]) (Step III.(c)).

We elaborate below on the server’s computations
(Step III.(b)). We start by specifying how to return a
selector array s′ ∈ {0, 1}n accepting value 1 on entry i∗

and 0 otherwise (Section 4.3.1), then elaborate on our
key algorithm for achieving the former (Section 4.3.2),
and finally specify the additional actions for returning
the ciphertext for index and element (b∗, x[i∗]) (Sec-
tion 4.3.3).

4.3.1 Binary Raffle for Computing Selector Array s′

We specify how the server computes (the encryption of)
a selector array s′ ∈ {0, 1}n accepting value 1 on entry
i∗ and 0 otherwise (Figure 3, Step III.(b).(1)–(3)).

First (Step III.(b).(1)), the server evaluates the
specified pattern matching polynomial IsMatch on each
entry of the stored array [[x]] and the lookup value [[q]].
This results in an encrypted array [[ind]] that contains
in every index i ∈ [n] the encrypted boolean result
IsMatch([[x[i]]], [[q]]) ∈ {[[0]], [[1]]}:

[[ind]]←
(

IsMatch([[x[1]]], [[q]]), . . . , IsMatch([[x[n]]], [[q]])
)

Next (Step III.(b).(2)), the heart of the protocol is
converting [[ind]] to a step function array of size n

[[s]] =
(
[[0]], . . . , [[0]], [[1]], . . . , [[1]]

)
that contains [[0]] in every index before i∗ and [[1]] from
index i∗ and further on. This [[s]] is computed using our
randomized algorithm detailed in Section 4.3.2:

[[s]]← BinaryRaffleStepFunctionn,ε([[ind]])

With probability 1− ε, the result [[s]] of our randomized
algorithm will be the encryption of the step function
described above.

Third (Step III.(b).(3)), we compute the pairwise
difference of adjacent indices in [[s]] (i.e. its derivative):

∀i ∈ [2, n] : [[s′[i]]]← [[s[i]]]− [[s[i− 1]]] (mod 2) and

[[s′[1]]]← [[s[1]]], [[s′[n+ 1]]]← [[1]]− [[s[n]]]

The resulting array [[s′]] will contain [[0]] in every index
except in the index of the first match i∗ (or at index
n+ 1 if no match exists) where it will be [[1]].

4.3.2 BinaryRaffleStepFunctionn,ε Algorithm

We next describe the BinaryRaffleStepFunctionn,ε algo-
rithm, which is the heart of our secure search protocol
(Figure 3, Step III.(b).(2)).

The BinaryRaffleStepFunctionn,ε algorithm trans-
forms any array v ∈ {0, 1}n of binary values into an
array t = (0, . . . , 0, 1, . . . , 1) ∈ {0, 1}n that contains the
step function with value 1 starting from the first index
i where v[i] = 1. This algorithm is a randomized Monte
Carlo algorithm with failure probability ε (see Figure
4). In addition we provide an illustration for the main
steps of the algorithm in Figure 2.

For clarity of presentation we present the algo-
rithm as preforming computations on plaintext val-
ues. Modifying the algorithm to apply it on FHE en-
crypted data is straightforward: simply replace each ad-
dition/multiplication operation with its homomorphic
counterpart.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 98

Fig. 2. An illustration of the main steps in
BinaryRaffleStepFunctionn,ε algorithm: On input array v the
following steps are performed: (1) Sample N(ε) random binary
arrays r1, . . . , rN(ε) of length n; (2) Matrix S will hold N(ε) · n
random partial prefix sums as follows ∀j ∈ [N(ε)], ∀k ∈ [n] :
S[j, k] = 〈prefixk(v), prefixk(rj)〉; (3) Each index k ∈ [n] in t

will hold the logical OR between the elements in column k of S.
That is, calculate t[k] = 1 −

(∏N(ε)
j=1

(
1− S[j, k]

))
(mod 2).

With probability 1 − ε, the output is array t that contains a step
function with 0s before index i∗ and 1s from index i∗ and on-
wards.

Random Partial Prefix Sums To determine whether a
k-prefix vector prefixk(v) =

(
v[1], . . . , v[k]

)
∈ {0, 1}k of

the binary indicator vector v =
(
v[1], . . . , v[n]

)
∈ {0, 1}n

is non-zero (i.e. not 0k = (0, . . . , 0) of size k), we do
the following. We compute the parity of a random
subset for the entries of prefixk(v), that is parity(r) =∑k
i=1 r[i] · v[i] for uniformly random r ∈ {0, 1}n. The

parity bit parity(r) is always zero when v = 0k and it is
one with probability half when v 6= 0k. By repeating for
N(ε) i.i.d. random variables r1, . . . , rN(ε) ∈ {0, 1}n (for
sufficiently large N(ε)) and computing the OR of the re-
sulting bits parity

(
r1
)
, . . . , parity

(
rN(ε)

)
, i.e. computing:

t[k] = OR
(

parity
(
r1
)
, . . . , parity

(
rN(ε)

))
we obtain the

desired step-function t =
(
t[1], . . . , t[n]

)
∈ {0, 1}n with

overwhelming probability.

4.3.3 Returning Index and Element

Finally we specify the additional server’s steps for
returning the ciphertext for index and element
(b∗, x[i∗]) that are sent then to the client (Figure 3,
Step III.(b).(4)-(5)).

Computing [[b∗]]. The server computes [[b∗]] = B · [[s′]]
for B ∈ {0, 1}(dlog2 ne+1)×n the matrix that contains in
each column k ∈ [n] the binary representation of k. The

resulting array [[b∗]] will hold the binary representation
of the index i∗ of the single [[1]] in [[s′]] (or 0 if the ar-
ray contains only [[0]]’s). This is because multiplying the
matrix B by any array of size n+ 1 that contains a sin-
gle 1 bit in some index j ∈ [n] results in a array of size
dlog2 ne + 1 that holds the binary representation of j
(and a array of zeros if j = n+ 1).

Computing [[x[i∗]]]. Since the problem of privately re-
trieving a uniquely identifiable element from an en-
crypted array has efficient FHE based solutions, we first
focused above (Sections 3-4.3.2) on the task of comput-
ing and returning the encrypted index alone. We next
explain how to retrieve also the corresponding element.

The most straightforward way to retrieve the ele-
ment x[i∗] in addition to i∗ is to utilize a Private In-
formation Retrieval (PIR) protocol (see Section 1.1) on
the encrypted array [[x]] and index [[i∗]]. This would re-
quire no further interaction (as the server already had
[[i∗]]); However it would increase the degree of our secure
search protocol by a factor of dPIR = logn.

Instead we suggest a more efficient alternative for
retrieving the matched element [[x[i∗]]]. This is by re-
using the array [[s′]] that already contains [[0]]’s in all
indices except in the index of the first match i∗, where
it contains [[1]]. The additional step would be to cal-
culate for each index j ∈ [n] and each bit k ∈ [w]:
[[x[i∗][k]]] =

∑n
j=1([[x[j][k]]] · [[s′[j]]]). This method would

increase the degree of our secure search protocol only by
1 since [[x]] =

(
[[x[1]]], . . . , [[x[n]]]

)
are freshly encrypted

ciphertexts.

4.4 Main Theorem
The advantages and properties of our secure search pro-
tocol are given in the following theorem.

Theorem 4.1. There exists a secure search protocol at-
taining desired properties 1-10 as specified in Section
3.2.

In particular, the protocol of Figure 3, when ex-
ecuted on shared parameters (IsMatch,FHE , κ, ε, n, w)
and client’s input data array x = (x[1], . . . , x[n]) for
x[i] ∈ {0, 1}w and query q, satisfies the following:
1. Correctness: With probability 1− ε, the client’s out-

put is (b∗, x[i∗]) for

i∗ = min { i ∈ [n] | IsMatch(x[i], q) = 1}

and b∗ ∈ {0, 1}dlog2 ne+1 the binary representation
of i∗. The server has no output.

2. Complexity of the search step (Step III, Figure 3):
The client’s running-time is the time compute |q|
encryptions and |b∗|+|x[i∗]| decryptions. The server

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 99

evaluates a polynomial of degree log(n/ε) · d and
overall multiplications n · (log(n/ε) + µ+ |x[i∗]|) for
d and µ the degree and overall multiplications of
IsMatch. The communication is 1-round, consisting
of |q| ciphertexts sent from client and |b∗| + |x[i∗]|
ciphertexts from server. See Table 3.

3. Security: The protocol attains full security (see Def-
inition 3.2), assuming semantic security of FHE.

Proof. Correctness follows from the correctness of
BinaryRaffleStepFunctionn,ε algorithm, which holds with
probability 1−ε. Complexity analysis follows by inspec-
tion. See the security proof below. Showing that prop-
erties 1-10 holds easily follows.

Suppose there exists a PPT algorithm A for the
query attack game (Section 3.3). (The case of the data
attack game is analogous; details omitted.) We con-
struct a PPT algorithm A′ for the (single message) IND-
CPA game for FHE (see Definition 11.2 in [41]), and
show A′ has the same advantage as A. By semantic se-
curity of FHE we conclude that no PPT adversary A
has non-negligible advantage in the former.

The adversary A′ plays the role of the adversary
in the IND-CPA game for FHE , and of the chal-
lenger in the query attack game: (1) Upon receiving
(pk, sk)←$ KGen(1κ) from the challenger in the IND-
CPA game for FHE (CFHE), A′ invokes the query at-
tack game with A′ playing the challenger’s role and A
the adversary, by sending (pk, sk) to A. (2) Upon re-
ceiving from A the array x and two queries q(0), q(1), A′

sends the two queries to CFHE . (3) Upon receiving from
CFHE the challenge ciphertext c = [[q(b)]], A′ encrypts
(element-by-element and bit-by-bit) to produce the ci-
phertexts array [[x]], and sends [[x]], c to A. (4) Upon re-
ceiving a guess b′ from A, A′ sends b′ to CFHE . Clearly,
A′ perfectly simulates the challenger in the query attack
game and wins the (single message) IND-CPA game for
FHE if-and-only-if A wins the query attack game. Thus,
they have the same advantage.

5 Make IsMatch Great Again!
To demonstrate the strength of our compatibility with
generic matching criteria we present versatile matching
criteria that can be integrated into our protocol, ex-
hibiting advantageous properties for both performance
(Section 5.1) and functionality (Sections 5.2-5.6). We
stress that security holds for all examples to follow, due
to the server obliviously performing homomorphically
operations on ciphertexts; See Theorem 4.1, Section 4.4.

5.1 Faster Exact Match via Hashing
To speedup performance in exact match search we pro-
pose applying Universal Hashing [9, 38] to reduce the de-
gree and overall multiplications for computing IsMatch
from O (w) to O (log(n/ε)), where w is the elements’
size, n the number of elements, and ε the probability
of error. This is particularly appealing in use-cases with
large elements, specifically, when w > 2 log(2n/ε). See
Table 3, row (iv).

In details, we propose that the server first chooses
a uniformly random Toeplitz Matrix A ∈ {0, 1}v×w and
a random vector b ∈ {0, 1}v for v = 2 log(2n/ε) to spec-
ify a hash function hA(x) = Ax + b mod 2 mapping
{0, 1}w to {0, 1}v. The server then homomorphically ap-
plies on encrypted values the following equality operator
on hashed values:

IsMatch(x[i], q) := IsEqualv (hA(x[i]), hA(q))

for IsEqualv as specified in Section 2.
To analyze the complexity of the above IsMatch

polynomial note that this hashing requires solely homo-
morphic additions operations. So the degree and overall
multiplications is d = v and µ = v − 1 respectively. The
failure probability due to collision is ε/2.

Note that the above optimization does not contra-
dict the setup-freeness of the whole solution, because
the hash function is applied by the server on x while x
is already encrypted.

5.2 Boolean Logic Queries
The matching criterion in our protocol can express any
Boolean logic, such as conjunction, disjunction, nega-
tion or their combination. This logic can be applied,
for example, on elements’ sub-fields (e.g. first and last
names in personal records) or characters.

The expression of Boolean logic as a polynomial
over GF(2) is via the standard arithmetization tech-
niques: expressing negation by not(a) = 1− a, conjunc-
tion by conj(a1, . . . , at) =

∏t
j=1 aj and disjunction by

disj(a, b) = a⊕ b⊕ a · b.
The degree d (respectively, overall multiplications

µ) is the maximum composition length (respectively,
overall number) of disjunction and conjunction oper-
ations. See concrete examples in the following sections.

5.3 Wild-Card Queries
Wild-card queries are specified by q ∈ {0, 1, ∗}w. “Wild-
card positions” are the entries j where q accepts ∗. Wild-
card match returns is true when x[i] and q agree on all
the non wild-card positions.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 100

In case the client is willing to leak the wild-card po-
sitions, we simply apply the equality test (see Section 2)
on the substrings of x[i] and q corresponding to the non
wild-card positions. Complexity is only improved by this
(compared to exact match on entire strings).

In case the client wishes to hide the wild-card posi-
tions, she can augment the query with the (encrypted)
indicator vector I ∈ {0, 1}w accepting 1 on all non wild-
card positions, and 0 otherwise. The matching polyno-
mial (to be homomorphically evaluated on encrypted
values) is:

IsMatch′ (x[i], (q, I)) = IsMatch (x[i] · I, q · I)

for · the entry-wise product.
Correctness follows as on wild-card entries both x[i]

and q are turned to 0 to guarantee equality, and they
keep their original values on the non wild-card position.

Complexity overhead for the client is |w| additional
encryptions. The server evaluates a polynomial with de-
gree increased by 1, and overall number of multiplica-
tions increased by an additive term of 2w. Saving a fac-
tor of w in the overall multiplication is easy: by replacing
each ∗ value in q with 0, and compute IsMatch (x[i] · I, q).

5.4 Range Queries
Range queries specify lower and upper boundaries (l, u
respectively) to retrieve elements in the range (l, u).
I.e., retrieving (i, x[i]) for i = min { i ∈ [n] | l < x[i] < u}.
Boundaries and data are encrypted by the client.

Range queries are easily implemented as the con-
junction of two boundary-tests. Specifically, for ele-
ments x[i] in {0, 1}w, the matching polynomial (to be
homomorphically evaluated on encrypted values) is:

IsMatch (x[i], (l, u)) = conj (IsGrtw (x[i], l) , IsGrtw (u, x[i]))

for IsGrtw and conj operators as in Sections 2 and 5.2.
The complexity of the client is dominated by en-

crypting |l| + |u| = 2w bits for specifying the query,
and by decrypting the outcome. The server’s complex-
ity grows with the matching degree and overall multi-
plications: d = 2(w + 1) and µ = 4w + 1, respectively.

5.5 Search In Sub-Array
In sub-array search for IsMatch, the client specifies
boundaries l, u ∈ [n] together with the query q in or-
der to retrieve from the server the first match for q
in the sub-array (x[l + 1], . . . , x[u − 1]). I.e. retriev-
ing (i, x[i]) for i = min { j ∈ (l, u) | IsMatch(x[j], q) = 1}.
Boundaries, query and data are all encrypted by the
client.

A sub-array search is easily computed as the con-
junction of three requirements: IsMatch(x[i], q) = 1,
i > l, and u > i. Specifically, for indices specified by
length m = logn binary representation, the matching
polynomial (to be homomorphically evaluated on en-
crypted values) is:

IsMatch_InSubArrayn (x[i], (q, l, u)) =
conj (IsMatch (x[i], q) , IsGrtm (i, l) , IsGrtm (u, i))

for IsGrtw and conj operators as in Sections 2 and 5.2.
The complexity overhead compared to the underly-

ing IsMatch (cf. Table 3) is as follows. The client’s over-
head is encrypting |l| + |u| = 2 log(n) additional bits.
The server evaluates a matching polynomial with de-
gree and overall multiplications d′ = d + 2(m + 1) and
µ′ = µ + 4m respectively, for d, µ the degree and over-
all multiplications for the underlying matching criterion
IsMatch. Namely, an additive overhead of O(logn).

We note that to search on a suffix [x[l+ 1], . . . , x[n]]
of the array it suffices for the client to specify only the
lower boundary l and for the server to compute the con-
junction of only two conditions: IsMatch(x[i], q) = 1 and
i > l. Analogously, for prefix search. This reduces the
complexity overhead by a factor of 2.

5.6 Sequential Retrieval (“Fetch-Next”)
We extend our secure search functionality to return, not
only the first match, but also the next matching ele-
ment (Fetch-Next), with further interaction. I.e. given
a match (i, x[i]) retrieving the next match (i′, x[i′]) for
i′ = min { j ∈ [i+ 1, n] | IsMatch(x[j], q) = 1}. For this
purpose we initiate the protocol with an augmented
matching criteria that enables searching in an array suf-
fix [x[l + 1], . . . , x[n]] for boundary l specified by the
client; see Section 5.5. Boundary, query and data are all
encrypted by the client.

To issue a Fetch-Next query for q, after the client
has already retrieved a match (i, x[i]), the client simply
sets l to be i. This causes the search to be performed
on indices [i+ 1, . . . , n] (without revealing the sub-array
to the server). This routine can go on until the client
receives the response that indicates that there are no
more matches (possibly padding with dummy queries).
To issue a “fresh” query, the client will simply set l = 0.

The server cannot distinguish between a “fresh”
query and a “fetch-next” query as in both cases the
index l and query q are encrypted. The amount of ele-
ments that match a query q, out of the total number of
queries, is not leaked to the server.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 101

6 Extensions
We overview extensions to our secure search protocol.

6.1 Client-Side Amplification
To reduce the server’s complexity load due to de-
gree’s growth in inverse-error 1/ε, we can employ stan-
dard client-side amplification; See [53] Lemma 10.5.
Specifically, by setting the protocols error parameter
to 0 < ε0 < 1/2, repeating the protocol in parallel
− log2(1/ε)

log2(4ε0(1−ε0)) time, and letting the client select the
most frequent result, we get error ε but degree growth
only with ε0; See Table 3, row (v).

6.2 Dynamic Data Management
The client can have the benefits of dynamic data man-
agement: Insert, Update and Delete (see below). She can
also execute search and the above commands multiple
times and in any order that she wants.
Insert: Insertion of additional elements requires the
server to append another ciphertext to the end of the
encrypted array (here, and throughout this work, we as-
sume that the size of the array n is known to the server,
see Section 3.3).
Update: To update a specific element x[i] the client
first retrieves its index i using our Secure Search. Af-
terwards, to change the value of x[i], denoted old, to
a different value new the client submits the following
tuple the server:

(
UPDATE, [[i]], [[diff]] = [[new − old]]

)
.

The server now homomorphically adds to each elements
[[x[j]]] of the stored array the value IsEqual([[i]], j)·[[diff]].
This results in a new encrypted array [[x′]] satisfying
x′[i] = new and ∀j 6= i, x′[j] = x[j].
Delete: Deletion of elements can be achieved by up-
dating them to a reserved “Deleted” symbol. Another
option is switching the value of the element we wish to
delete to that of the last element in the array and reduc-
ing the number of elements n by 1 (for cases when the
dynamic value of n is either maintained by the client,
or is not a secret and can be kept with the server).

7 Conclusions
In this work we presented a new and improved solu-
tion for secure search on FHE encrypted data. Our so-
lution improves over the prior state-of-the-art of setup-
free searching on FHE encrypted data in being: (1) post-
processing free and with negligible error probability, (2)
faster for both client and server, and (3) compatible with
all FHE candidates. We implemented our secure search
protocol and performed extensive benchmarks showing
concrete run-time speedup by an order of magnitude.

Acknowledgment
This work was supported in part by the Center for Cy-
ber Law & Policy at the University of Haifa, and by
the BIU Center for Research in Applied Cryptography
and Cyber Security. Both in conjunction with the Is-
rael National Cyber Directorate in the Prime Minister’s
Office.

References
[1] Mohamed Ahmed Abdelraheem, Tobias Andersson, and

Christian Gehrmann. Inference and record-injection attacks
on searchable encrypted relational databases. IACR Cryptol-
ogy ePrint Archive, 2017:24, 2017.

[2] Adi Akavia, Dan Feldman, and Hayim Shaul. Secure search
via multi-ring sketch for fully homomorphic encryption. In
Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 985–1001. ACM,
2018.

[3] Omer Barkol and Yuval Ishai. Secure computation of
constant-depth circuits with applications to database search
problems. In Annual International Cryptology Conference,
pages 395–411. Springer, 2005.

[4] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and
Giuseppe Persiano. Public key encryption with keyword
search. In International conference on the theory and ap-
plications of cryptographic techniques, pages 506–522.
Springer, 2004.

[5] Dan Boneh, Craig Gentry, Shai Halevi, Frank Wang, and
David J Wu. Private database queries using somewhat
homomorphic encryption. In International Conference on
Applied Cryptography and Network Security, pages 102–118.
Springer, 2013.

[6] Christoph Bösch, Pieter Hartel, Willem Jonker, and Andreas
Peter. A survey of provably secure searchable encryption.
ACM Computing Surveys (CSUR), 47(2):18, 2015.

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.
(leveled) fully homomorphic encryption without bootstrap-
ping. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 309–325. ACM, 2012.

[8] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully
homomorphic encryption from (standard) lwe. In Proceed-
ings of the 2011 IEEE 52nd Annual Symposium on Founda-
tions of Computer Science, pages 97–106. IEEE Computer
Society, 2011.

[9] J Lawrence Carter and Mark N Wegman. Universal classes
of hash functions. In Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 106–112. ACM,
1977.

[10] David Cash, Paul Grubbs, Jason Perry, and Thomas Risten-
part. Leakage-abuse attacks against searchable encryption.
In Proceedings of the 22nd ACM SIGSAC conference on
computer and communications security, pages 668–679.
ACM, 2015.

[11] Gizem S Çetin, Wei Dai, Yarkin Doröz, William J Martin,
and Berk Sunar. Blind web search: How far are we from a
privacy preserving search engine? IACR Cryptology ePrint
Archive, 2016:801, 2016.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 102

[12] Hao Chen, Kim Laine, and Peter Rindal. Fast private set
intersection from homomorphic encryption. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 1243–1255. ACM, 2017.

[13] Jung Hee Cheon, Miran Kim, and Myungsun Kim. Opti-
mized search-and-compute circuits and their application to
query evaluation on encrypted data. IEEE Transactions on
Information Forensics and Security, 11(1):188–199, 2016.

[14] Jung Hee Cheon, Miran Kim, and Kristin Lauter. Homo-
morphic computation of edit distance. In International Con-
ference on Financial Cryptography and Data Security, pages
194–212. Springer, 2015.

[15] Benny Chor, Niv Gilboa, and Moni Naor. Private informa-
tion retrieval by keywords. Citeseer, 1997.

[16] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu
Sudan. Private information retrieval. In Foundations of
Computer Science, 1995. Proceedings., 36th Annual Sympo-
sium on, pages 41–50. IEEE, 1995.

[17] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostro-
vsky. Searchable symmetric encryption: improved definitions
and efficient constructions. Journal of Computer Security,
19(5):895–934, 2011.

[18] Yarkın Doröz, Berk Sunar, and Ghaith Hammouri. Band-
width efficient pir from ntru. In International Conference on
Financial Cryptography and Data Security, pages 195–207.
Springer, 2014.

[19] Junfeng Fan and Frederik Vercauteren. Somewhat practical
fully homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144, 2012.

[20] Michael J Freedman, Kobbi Nissim, and Benny Pinkas. Effi-
cient private matching and set intersection. In International
conference on the theory and applications of cryptographic
techniques, pages 1–19. Springer, 2004.

[21] Sanjam Garg, Payman Mohassel, and Charalampos Papa-
manthou. Tworam: Efficient oblivious ram in two rounds
with applications to searchable encryption. In Annual Cryp-
tology Conference, pages 563–592. Springer, 2016.

[22] Craig Gentry. A fully homomorphic encryption scheme.
Stanford University, 2009.

[23] Craig Gentry. Fully homomorphic encryption using ideal lat-
tices. In Proceedings of the Forty-first Annual ACM Sympo-
sium on Theory of Computing, STOC ’09, pages 169–178,
2009.

[24] Craig Gentry, Amit Sahai, and Brent Waters. Homomor-
phic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

[25] Matthieu Giraud, Alexandre Anzala-Yamajako, Olivier
Bernard, and Pascal Lafourcade. Practical passive leakage-
abuse attacks against symmetric searchable encryption. In
14th International Conference on Security and Cryptogra-
phy SECRYPT 2017. SCITEPRESS-Science and Technology
Publications, 2017.

[26] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
play any mental game. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing, pages
218–229. ACM, 1987.

[27] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. Journal of the ACM
(JACM), 43(3):431–473, 1996.

[28] Torbjrn Granlund et al. GNU MP 6.1.2 Multiple precision
arithmetic library. Samurai Media Limited, 2016.

[29] Paul Grubbs, Richard McPherson, Muhammad Naveed,
Thomas Ristenpart, and Vitaly Shmatikov. Breaking web
applications built on top of encrypted data. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1353–1364. ACM, 2016.

[30] Paul Grubbs, Kevin Sekniqi, Vincent Bindschaedler, Muham-
mad Naveed, and Thomas Ristenpart. Leakage-abuse at-
tacks against order-revealing encryption. In Security and
Privacy (SP), 2017 IEEE Symposium on, pages 655–672.
IEEE, 2017.

[31] S Halevi and V Shoup. The helib library, 2015.
[32] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials:

A new representation with applications to round-efficient
secure computation. In focs, page 294. IEEE, 2000.

[33] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantar-
cioglu. Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In Ndss, volume 20,
page 12, 2012.

[34] Seny Kamara, Tarik Moataz, and Olya Ohrimenko. Struc-
tured encryption and leakage suppression. In Annual Inter-
national Cryptology Conference, pages 339–370. Springer,
2018.

[35] Myungsun Kim, Hyung Tae Lee, San Ling, Shu Qin Ren,
Benjamin Hong Meng Tan, and Huaxiong Wang. Better se-
curity for queries on encrypted databases. IACR Cryptology
ePrint Archive, 2016:470, 2016.

[36] Myungsun Kim, Hyung Tae Lee, San Ling, Benjamin
Hong Meng Tan, and Huaxiong Wang. Private compound
wildcard queries using fully homomorphic encryption. IEEE
Transactions on Dependable and Secure Computing, 2017.

[37] Ágnes Kiss, Jian Liu, Thomas Schneider, N Asokan, and
Benny Pinkas. Private set intersection for unequal set sizes
with mobile applications. Proceedings on Privacy Enhancing
Technologies, 2017(4):177–197, 2017.

[38] Hugo Krawczyk. Lfsr-based hashing and authentication. In
Annual International Cryptology Conference, pages 129–139.
Springer, 1994.

[39] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not
needed: Single database, computationally-private informa-
tion retrieval. In Foundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium on, pages 364–373.
IEEE, 1997.

[40] Kristin Lauter, Adriana López-Alt, and Michael Naehrig.
Private computation on encrypted genomic data. In Interna-
tional Conference on Cryptology and Information Security in
Latin America, pages 3–27. Springer, 2014.

[41] Yehuda Lindell and Jonathan Katz. Introduction to modern
cryptography. Chapman and Hall/CRC, 2014.

[42] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-An
Tan. Search pattern leakage in searchable encryption: At-
tacks and new construction. Information Sciences, 265:176–
188, 2014.

[43] Adriana López-Alt, Eran Tromer, and Vinod Vaikun-
tanathan. On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption. In Proceedings
of the forty-fourth annual ACM symposium on Theory of
computing, pages 1219–1234. ACM, 2012.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 103

[44] Rafail Ostrovsky and William E Skeith. A survey of single-
database private information retrieval: Techniques and appli-
cations. In International Workshop on Public Key Cryptogra-
phy, pages 393–411. Springer, 2007.

[45] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael
Zohner. Phasing: Private set intersection using permutation-
based hashing. In USENIX Security Symposium, volume 15,
pages 515–530, 2015.

[46] Benny Pinkas, Thomas Schneider, and Michael Zohner.
Faster private set intersection based on ot extension. In
USENIX Security Symposium, volume 14, pages 797–812,
2014.

[47] David Pouliot and Charles V Wright. The shadow nemesis:
Inference attacks on efficiently deployable, efficiently search-
able encryption. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages
1341–1352. ACM, 2016.

[48] Alexander A Razborov. Lower bounds on the size of
bounded depth circuits over a complete basis with logical
addition. Mathematical Notes of the Academy of Sciences of
the USSR, 41(4):333–338, 1987.

[49] Ronald L Rivest, Len Adleman, and Michael L Dertouzos.
On data banks and privacy homomorphisms. Foundations of
secure computation, 4(11):169–180, 1978.

[50] Sujoy Sinha Roy, Frederik Vercauteren, Jo Vliegen, and In-
grid Verbauwhede. Hardware assisted fully homomorphic
function evaluation and encrypted search. IEEE Transactions
on Computers, 66(9):1562–1572, 2017.

[51] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei
Li. Oblivious ram with o ((logn) 3) worst-case cost. In
International Conference on The Theory and Application
of Cryptology and Information Security, pages 197–214.
Springer, 2011.

[52] Victor Shoup. Ntl: A library for doing number theory, 10.5.0.
http://www. shoup. net/ntl/, 2017.

[53] Michael Sipser. Introduction to the Theory of Computation,
volume 2. Thomson Course Technology Boston, 2006.

[54] Nigel P Smart and Frederik Vercauteren. Fully homomor-
phic simd operations. Designs, codes and cryptography,
71(1):57–81, 2014.

[55] Roman Smolensky. Algebraic methods in the theory of
lower bounds for boolean circuit complexity. In Proceedings
of the nineteenth annual ACM symposium on Theory of
computing, pages 77–82. ACM, 1987.

[56] Dawn Xiaoding Song, David Wagner, and Adrian Perrig.
Practical techniques for searches on encrypted data. In
Security and Privacy, 2000. S&P 2000. Proceedings. 2000
IEEE Symposium on, pages 44–55. IEEE, 2000.

[57] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: an extremely simple oblivious ram protocol. In
Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security, pages 299–310. ACM,
2013.

[58] Haixu Tang, Xiaoqian Jiang, Xiaofeng Wang, Shuang Wang,
Heidi Sofia, Dov Fox, Kristin Lauter, Bradley Malin, Amalio
Telenti, Li Xiong, et al. Protecting genomic data analytics in
the cloud: state of the art and opportunities. BMC medical
genomics, 9(1):63, 2016.

[59] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod
Vaikuntanathan, and Matei Zaharia. Splinter: Practical
private queries on public data. In NSDI, pages 299–313,
2017.

[60] David P Woodruff et al. Sketching as a tool for numerical
linear algebra. Foundations and Trends® in Theoretical
Computer Science, 10(1–2):1–157, 2014.

[61] Andrew Chi-Chih Yao. Protocols for secure computations. In
FOCS, volume 82, pages 160–164, 1982.

[62] Andrew Chi-Chih Yao. How to generate and exchange se-
crets. In Foundations of Computer Science, 1986., 27th
Annual Symposium on, pages 162–167. IEEE, 1986.

[63] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro
Yokoyama, and Takeshi Koshiba. Secure pattern matching
using somewhat homomorphic encryption. In Proceedings
of the 2013 ACM workshop on Cloud computing security
workshop, pages 65–76. ACM, 2013.

[64] Yupeng Zhang, Jonathan Katz, and Charalampos Papa-
manthou. All your queries are belong to us: The power of
file-injection attacks on searchable encryption. In USENIX
Security Symposium, pages 707–720, 2016.

A Protocols’ Summary
See Figure 3 and Figure 4.

B Experimental Results
In this section we describe in detail the benchmarks
performed to evaluate our Binary Raffle protocol and
discuss our results. As a reference point, we executed
benchmarks on an implementation of the SPiRiT pro-
tocol [2], the state-of-the-art secure search solution di-
rectly related to our FHE based protocol. We evalu-
ated both the deterministic and randomized variants of
SPiRiT.

We first present benchmarks with the same match-
ing criteria predicate IsMatch as in [2]: IsEqual (see Equa-
tion 1, Section 2). Additionally, is Section B.3.5, we give
selected benchmarks results for several other matching
criteria (see more details in Section 5).

B.1 Experimental Setup
We executed the protocols on top of the HElib C++ li-
brary [31] that was compiled with NTL [52] running over
GMP [28]. We utilized a single Ubuntu Server 16.04.4
LTS Linux machine with Intel Xeon E7-4870 CPU run-
ning at 2.40GHz on 16 cores, 30MB Cache and 16GB
RAM.

Parallelization and SIMD In all experiments we utilized
all available CPU cores by dividing the input array into
equally sized segments that were processed by each core.
After completing its execution, every core returned the
first matched index candidate for its array segment.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 104

Parameters (Shared Input): • Description of matching condition polynomial IsMatch
(
x, y
)
∈ {0, 1} with upper bound on the

degree d. • Scheme FHE = (KGen,Enc,Dec,Eval). • Security parameter κ. • Error probability ε (upper-bound). • Array size n
(upper-bound). • Element bit length w (upper-bound).
Inputs: The client’s inputs are: • Plaintext array x =

(
x[1], . . . , x[n]

)
, each element x[i] given in binary representation of length

w. • The query/lookup value q. The server has no input.
Outputs: With probability 1 − ε, the client’s output is (b∗, x[i∗]) for i∗ = min { i ∈ [n] | IsMatch(x[i], q) = 1} and b∗ ∈
{0, 1}dlog2 ne+1 the binary representation of the index i∗. The server has no output.

I Keys generation. The client performs the following: (1) Select the level L = dlog2 log2(n/ε) + log2(dIsMatch)e.
(2) Execute (pk, sk)← KGen(1κ, 1L). (3) Keep pk, sk with the client. (4) Send pk to the server.

II Data upload. For each element x[i] the client performs the following: (1) Pad element x[i] with leading zeros until its size is
w bits. (2) Encrypt the padded element bit by bit to receive [[x[i]]] = Encpk(x[i]).
The client sends [[x]] =

(
[[x[1]]], . . . , [[x[n]]]

)
to the server.

III Secure Search. The following steps are executed whenever the client issues a search query.
(a) Client’s search query. The client encrypts q bit by bit [[q]]← Encpk(q) and sends it to the server.
(b) Server’s computation. Using the public key pk the server computes the following:

(1) For every i ∈ [n] evaluate the IsMatch polynomial on [[x[i]]] and the query value [[q]] to get the indicators array of size
n: [[ind]]←

(
IsMatch([[x[1]]], [[q]]), . . . , IsMatch([[x[n]]], [[q]])

)
(2) Execute the following sub-routine (see Section 4.3.2) on the [[ind]] array: [[s]]← BinaryRaffleStepFunctionn,ε

(
[[ind]]

)
(3) Compute a pairwise difference of adjacent indices in [[s]] (the derivative of [[s]]):

[[s′[1]]]← [[s[1]]] (mod 2) and ∀i ∈ [2, n] : [[s′[i]]]← [[s[i]]]− [[s[i− 1]]] (mod 2)
(4) Compute [[b∗]] , the encrypted binary representation of the location of the single [[1]] in [[s′]]:

Let B ∈ {0, 1}(dlog2 ne+1)×n be the matrix that contains in each column k ∈ [n] the binary representation of k.
Calculate [[b∗]] = B · [[s′]].

(5) Compute for each index j ∈ [n] and each bit k ∈ [w]: [[x[i∗][k]]] =
∑n

j=1([[x[j][k]]] · [[s′[j]]]) (see Section 4.3.3)
(6) Send ([[b∗]], [[x[i∗]]]) to the client.

(c) Client’s decryption. The client decrypts b∗ ← Decsk([[b∗]]), x[i∗]← Decsk([[x[i∗]]]) and outputs (b∗, x[i∗]).

Fig. 3. Binary Raffle Secure Search Protocol

We also took advantage of HElib’s SIMD [54] capa-
bilities and “packed” multiple plaintext values (at least
500) into each ciphertext. We remark that we did not
attempt to optimize the SIMD factor besides setting its
minimal required value. By slight modification of HE-
lib’s level parameter it is often possible to reach much
higher SIMD factors, around several thousands.

To summarize, with each CPU core executed the
protocol on an input array of n ciphertexts, the to-
tal amount of elements processed in each experiment is
given by n′ = n ·SIMD ·CORES and the client obtained
in the end of the experiment SIMD · CORES results.

B.2 Experiments Description
Binary Raffle. Our main focus in Binary Raffle’s bench-
marks was to evaluate the running-time of the protocol
as a parameter of total input array size (n′), word width
(i.e. bit length w) and error probability (ε).

For word widths of w > 1 we use the equality oper-
ator (see Equation 1, Section 2) as the selected IsMatch
predicate. Beyond that, we also experiment on elements
with single bit (w = 1). These experiments on w = 1
were meant to filter out the running-time of evaluat-
ing the IsMatch polynomial on all elements (step (2.a)
in Figure 3) from the remaining steps of protocol. This

can be thought as using an IsMatch predicate that is the
degenerate identity function that does nothing, in order
to evaluate the performance of the rest of the protocol
on a binary vector of indicators.

For w ∈ {16, 64} input array sizes ranged up to n′ ≈
3 · 106 elements. For w = 1 input array sizes ranged up
to n′ ≈ 20 · 106 elements.

The failure probabilities we experimented with were
ε ∈ {2−80, 2−40, 2−20, 2−10, 2−1}. Regarding above fail-
ure probabilities, ε ∈ {2−80, 2−40} can be viewed as a
negligible error probability, and any ε > 2−1 as an error
probability that allows standard probability amplifica-
tion (see Section 6.1).

SPiRiT. As mentioned, we used an implementation of
SPiRiT as a reference point. On array of sizes n′ =
n · SIMD ·CORES, the deterministic variant was evalu-
ated using k = dlog2 n/ log logne sequential executions
for different primes larger then logn. We would like to
mention that we did not parallelize these k executions as
we already exhausted all available employed parallelism
to partition the input array into segments assigned to
each CPU core.

Similarly to Binary Raffle, SPiRiT was executed on
elements with w = 1. Additionaly, due to relatively low

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 105

Parameters: • Integer n ∈ N. • Failure probability ε.
Input: • Array v =

(
v[1], . . . , v[n]

)
∈ {0, 1}n.

Output: The array is array t ∈ {0, 1}n as follows. If v 6= (0, . . . , 0), then with probability 1 − ε, t[0] = . . . = t[i∗ − 1] = 0 and
t[i∗] = . . . = t[n] = 1 for i∗ = min{i ∈ [n] | v[i] = 1} (step function). Else (if v = (0, . . . , 0)), t = (0, . . . , 0) (with probability 1).
Algorithm:
1. Set N(ε) = dlog2(n/ε)e and sample N(ε) uniformly random arrays r1, . . . , rN(ε) ←$ {0, 1}n

2. Recall that for v ∈ {0, 1}n and k < n we denote prefixk(v) = (v1, . . . , vk).
Compute N(ε) · n random partial prefix sums: ∀j ∈ [N(ε)], ∀k ∈ [n] : S[j, k] = 〈prefixk(v), prefixk(rj)〉

3. Compute the binary step function array t ∈ {0, 1}n where each k ∈ [n], t[k] is the OR of the values in the k-th column of S:

∀k ∈ [n] : t[k] = 1−
(∏N(ε)

j=1

(
1− S[j, k]

))
(mod 2)

4. Return array t

Fig. 4. BinaryRaffleStepFunctionn,ε Algorithm

amounts of RAM (16GB) in our test machine we were
unable to execute SPiRiT over elements with w = 64
for sufficiently large array sizes (n′) and had to settle for
w = 16 only. Given this amount of RAM the maximum
array sizes that we were able to process ranged between
n′ ≈ 0.5 · 106 for w = 16 and n′ ≈ 2 · 106 for w = 1.

The running-time of the randomized variant of
SPiRiT with error probability ε = 2−1 was obtained
by taking the mean and standard deviation over the
running-time of 2k = 2 · dlog2 n/ log logne executions
for different primes larger then logn, as required by the
protocol. In some cases, due to RAM restrictions, execu-
tions for less than 2k (although at least k) primes were
performed leading to an outcome of error probability
higher than 2−1.

B.3 Experimental Results
Our experimental results are presented below, showing
the server’s running time for different executions of both
Binary Raffle and SPiRiT protocols. The client’s run-
ning time for encrypting the query and decrypting the
result can be ignored as it is negligible in comparison to
the server’s operations.

B.3.1 Binary Raffle with Negligible Error Probability
(vs. SPiRiT Deterministic)

First we compare the performance Binary Raffle with
ε = 2−80 to the deterministic variant of SPiRiT for both
w ∈ {1, 16} (Figures 5a and 5b).

It can be immediately observed from both graphs
that Binary Raffle achieves faster execution time in an
order of magnitude compared to SPiRiT. Also we can
observe that for SPiRiT with w = 1 and w = 16 there
is an approximate ×10 increase in run time between the
first and the second. In comparison, for Binary Raffle
with w = 1 and w = 16 the increase in run time is
relatively minor.

Notice that the SPiRiT curves in both graphs are
terminated for smaller array sizes than the ones of Bi-
nary Raffle. The reason for this is that SPiRiT exe-
cutions for larger array sizes were unable to complete
successfully. This occurs due to the increase in required
levels for larger primes in HElib and the penalty on
RAM that is associated with it.

B.3.2 Binary Raffle with Error Probability Half
(vs. SPiRiT Randomized)

Now we compare the performance Binary Raffle with
ε = 2−1 to the randomized variant of SPiRiT (also with
error probability half) for both w ∈ {1, 16} (Figures 5c
and 5d).

Again, it can be seen in both graphs that Binary
Raffle achieves faster execution time in an order of mag-
nitude compared to SPiRiT. And again, the SPiRiT
curves in both graphs are terminated for smaller ar-
ray sizes than the ones of Binary Raffle. This happens,
similarly to the described in previous section, because
working with large primes in HElib increases RAM con-
sumption.

B.3.3 Impact of Error Probability (ε) on Binary Raffle

We executed Binary Raffle with different error probabil-
ities ε ∈ {2−80, 2−40, 2−20, 2−10, 2−1} and observed the
effect on run time performance (Figures 5e and 5f).

One can see in the graphs that although we jump
from half error probability to a negligible error probabil-
ity (ε = 2−80) the difference in execution time is around
×20−×50 for words with a single bit and around ×2−×3
for words with 64 bits.

This can be explained by the logarithmic depen-
dence between 1/ε and both degree and overall multipli-
cations of the polynomial executed by the server during
the Binary Raffle protocol.

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 106

B.3.4 Impact of Word Size (w) on Binary Raffle

We executed Binary Raffle with both w ∈ {1, 64} and
observed the effect on run time performance (Figures 5g
and 5h).

As opposed to the previous section, in this section
the change in execution time is more noticeable as word
size w increases. When going from a single bit to 64 bit
words the difference in execution is around ×20 − ×40
for error probability half and around ×2 for negligible
error probability (ε = 2−80).

This can be explained by the linear dependence be-
tween word size w and both degree and overall multipli-
cations of the polynomial executed by the server during
the Binary Raffle protocol.

This observation brings into being our improvement
to the Binary Raffle protocol specified in section 5.1.

B.3.5 Other Matching Criteria

The benchmarks below were performed with the same
setup described in Section B.1 with the exception of
using a server with different CPU (less cores yet each
core more powerful): Intel Core i7-4790 CPU running at
3.60GHz on 8 cores, 8MB Cache and 16GB RAM.

Experiment 1 was the conjunction between two
equality queries over an array with two w = 64 bit sub-
fields (see Section 5.2). Experiment 2 was a range query,
with lower and upper values restriction, over an array
with w = 64 bit unsigned integers (see Section 5.4). Ex-
periment 3 was of equality queries over an array with
w = 64 bit with 32 publicly known wildcard positions
(see Section 5.3). The results are presented in Table 4.

In the results one can clearly see the relative over-
head of the additional multiplications performed during
the execution of IsGrt64 (Equation 2, Section 2) in the
second experiment compared to IsEqual64 (Equation 1,
Section 2) in the first experiment. Similarly, the third
experiment, in which the matching criteria includes ex-
ecution of solely IsEqual32, is even faster than the two
previous experiments.

(i) Conjunction (ii) Range (iii) Wild-cards
Error Array Time Array Time Array Time
Prob. Size (min.) Size (min.) Size (min.)

2−1

38K 5 44K 23 38K 1
77K 10 87K 50 77K 3
154K 19 175K 98 154K 5
307K 37 349K 195 307K 10

2−40

44K 7 47K 50 44K 3
87K 15 92K 99 87K 6
175K 30 184K 199 175K 11
349K 60 369K 396 349K 23

2−80

44K 8 46K 55 44K 4
87K 17 92K 111 87K 5
175K 36 184K 223 175K 16
349K 68 369K 443 349K 32

Table 4. Binary Raffle benchmarks for various matching criteria:
(i) Conjunction of two w = 64 bits equality-test;
(ii) Range queries over w = 64 bit unsigned integers;
(iii) Wild-card queries over w = 64 bits with 32 wild-card posi-
tions. Array sizes are in thousands of elements (denoted, K).

Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free 107

(a) Binary Raffle With Negligible Error Probability (ε = 2−80) Versus
SPiRiT Deterministic for Word Width w = 1

(b) Binary Raffle With Negligible Error Probability (ε = 2−80) Versus
SPiRiT Deterministic for Word Width w = 16

(c) Binary Raffle Versus SPiRiT Randomized Both With Error Probability
ε = 2−1 for Word Width w = 1

(d) Binary Raffle Versus SPiRiT Randomized Both With Error Probability
ε = 2−1 for Word Width w = 16

(e) Binary Raffle Comparing Different Failure Probabilities (ε) for Word
Width w = 1

(f) Binary Raffle Comparing Different Failure Probabilities (ε) for Word
Width w = 64

(g) Binary Raffle Comparing Different Word Sizes (w) for Error Probability
ε = 2−1

(h) Binary Raffle Comparing Different Word Sizes (w) for Error Probability
ε = 2−80

Fig. 5. Server’s execution time for different experiments. Y axis – minutes in logarithmic scale; X axis – array size in millions.

	Setup-Free Secure Search on Encrypted Data: Faster and Post-Processing Free
	1 Introduction
	1.1 Prior Works
	1.1.1 Secure Search on FHE Encrypted Data
	1.1.2 Other Related Works

	1.2 Our Contributions
	1.3 Our Techniques Highlights
	1.4 Article Road-map

	2 Preliminaries
	3 Problem Statement
	3.1 Secure-Search on Encrypted Data
	3.2 Desired Properties
	3.3 Threat Model

	4 Secure Search
	4.1 Keys Generation Step
	4.2 Data Upload Step
	4.3 Secure Search Step
	4.3.1 Binary Raffle for Computing Selector Array s'
	4.3.2 BinaryRaffleStepFunctionn, Algorithm
	4.3.3 Returning Index and Element

	4.4 Main Theorem

	5 Make IsMatch Great Again!
	5.1 Faster Exact Match via Hashing
	5.2 Boolean Logic Queries
	5.3 Wild-Card Queries
	5.4 Range Queries
	5.5 Search In Sub-Array
	5.6 Sequential Retrieval (``Fetch-Next'')

	6 Extensions
	6.1 Client-Side Amplification
	6.2 Dynamic Data Management

	7 Conclusions
	A Protocols' Summary
	B Experimental Results
	B.1 Experimental Setup
	B.2 Experiments Description
	B.3 Experimental Results
	B.3.1 Binary Raffle with Negligible Error Probability (vs. SPiRiT Deterministic)
	B.3.2 Binary Raffle with Error Probability Half (vs. SPiRiT Randomized)
	B.3.3 Impact of Error Probability () on Binary Raffle
	B.3.4 Impact of Word Size (w) on Binary Raffle
	B.3.5 Other Matching Criteria

