
Proceedings on Privacy Enhancing Technologies ; 2019 (3):170–190

Archita Agarwal, Maurice Herlihy, Seny Kamara, and Tarik Moataz
Encrypted Databases for Differential Privacy
Abstract: The problem of privatizing statistical
databases is a well-studied topic that has culminated
with the notion of differential privacy. The comple-
mentary problem of securing these differentially private
databases, however, has—as far as we know—not been
considered in the past. While the security of private
databases is in theory orthogonal to the problem of
private statistical analysis (e.g., in the central model
of differential privacy the curator is trusted) the re-
cent real-world deployments of differentially-private sys-
tems suggest that it will become a problem of increas-
ing importance. In this work, we consider the problem
of designing encrypted databases (EDB) that support
differentially-private statistical queries. More precisely,
these EDBs should support a set of encrypted oper-
ations with which a curator can securely query and
manage its data, and a set of private operations with
which an analyst can privately analyze the data. Us-
ing such an EDB, a curator can securely outsource its
database to an untrusted server (e.g., on-premise or in
the cloud) while still allowing an analyst to privately
query it. We show how to design an EDB that supports
private histogram queries. As a building block, we in-
troduce a differentially-private encrypted counter based
on the binary mechanism of Chan et al. (ICALP, 2010).
We then carefully combine multiple instances of this
counter with a standard encrypted database scheme to
support differentially-private histogram queries.

Keywords: Structured Encryption, Differential Privacy

DOI 10.2478/popets-2019-0042
Received 2018-11-30; revised 2019-03-15; accepted 2019-03-16.

1 Introduction
A statistical database system is a database management
system designed to support statistical analysis on the
data it stores. Statistical database systems are ubiqui-

Archita Agarwal: Brown University, E-mail:
archita_agarwal@brown.edu
Maurice Herlihy: Brown University, E-mail:
maurice_herlihy@brown.edu
Seny Kamara: Brown University, E-mail:
seny_kamara@brown.edu
Tarik Moataz: Brown University, E-mail:
tarik_moataz@brown.edu

tous and support decision making in almost every do-
main, including, technology, finance, education, Govern-
ment, sports and national security; just to name a few.
In fact, the proliferation and significance of statistical
databases has motivated the important and active field
of private statistical analysis which includes work on
privacy attacks [23, 53, 62] and on the design of statis-
tical mechanisms that achieve various notions of privacy
like k-anonymity, `-diversity and, ultimately, differential
privacy as introduced by Dwork, McSherry, Nissim and
Smith [25].

In this setting, a trusted curator stores the database
and responds to statistical queries made by an untrusted
analyst. By answering these queries with a differentially-
private mechanism, the curator can guarantee that the
analyst gets responses within some bound of the cor-
rect answer in such a way that the presence or ab-
sence of an individual person/entity does not affect
the output of the mechanism by much. Over the last
fifteen years, research in differential privacy has pro-
duced a multitude of mechanisms to support a wide ar-
ray of statistical analyses. In turn, these advances have
lead to real-world deployments of differentially-private
statistical databases in various domains. Some of the
most high-profile examples include the Census Bureau’s
deployment of differential privacy in their OnTheMap
project which supports analysis on the travel patterns
of commuters [49], Apple’s deployment of local differen-
tial privacy to study emoji usage, health data and media
preferences [22], and Google’s deployment of local dif-
ferential privacy to analyze Chrome settings [30].

While it is clear that the problem of “privatizing"
statistical databases has received significant attention,
as far as we know, the complementary problem of se-
curing differentially private statistical databases has
not been considered. While the security of statistical
databases is in theory orthogonal to the problem of pri-
vate statistical analysis—indeed in this setting the cu-
rator is trusted—we believe that the growing number
of real-world deployments of differential privacy will in-
creasingly highlight the problem of how exactly curators
should protect their data. This question is even more
pertinent given the highly sensitive nature of the data—
which is why differentially-private mechanisms are used
in the first place—and the constant occurrences of data
breaches.

Encrypted Databases for Differential Privacy 171

Security via pan privacy. One approach to address-
ing this security problem is to use a pan-private mecha-
nism [26, 27] which, roughly speaking, generates a rep-
resentation of the data—called the state—in such a way
that differential privacy is preserved even against an an-
alyst that has access to this state (in addition to the an-
swers to its statistical queries). For example, by using
a pan-private mechanism and only storing the state, a
curator could maintain a differential-privacy guarantee
in case of a data breach. While this is an improvement
over storing the database in plaintext, this approach
has some limitations. For instance, since the pan-private
mechanisms is lossy, the curator may not be able to re-
cover its data. Another limitation is that it only guaran-
tees differential privacy against any adversary, whereas
it would be preferable to provide stronger guarantees
against non-analyst adversaries. In other words, while
differential privacy is a strong (and perhaps the best)
guarantee possible against an adversary that is allowed
to compute statistical queries on the data, one would
like a stronger guarantee against adversaries that cannot
make such queries. A third limitation is that many pan-
private mechanisms achieve poor utility if used to guard
against more than a single intrusion which severely lim-
its their usefulness in protecting against data breaches,
malicious servers etc.

Security via encrypted databases. Over the last fif-
teen years, the area of encrypted search has emerged as
a promising solution to the problem of database secu-
rity and data breaches. Using an encrypted database,
a client/application can store and query its data on
an untrusted server without exposing itself to the risk
of insider and outsider threats, data breaches and
even unintentional data disclosures (e.g., due to mis-
configured access control lists). Solutions for various
kinds of databases and with varying levels of security
have been considered in the past, including for simple
key-value stores (i.e., dictionaries) [17, 20], multi-maps
[18, 21, 39, 41, 42, 54], graph databases [20, 51] and
relational databases [37, 57]. The availability of such a
diverse set of encrypted database solutions, motivates
the following natural question:

Can we design private encrypted databases;
that is, encrypted databases that support
differentially-private statistical queries?

With such a solution, a curator could store its
database on any untrusted server while still allowing an-
alysts to conduct private statistical analysis on the data.

As a concrete example, the Census Bureau could out-
source the storage and management of its OnTheMap
data to a server in Amazon’s cloud without losing any
of the properties provided by its differentially-private
mechanism.

At a high-level, our goal is to design encrypted
databases that support both encrypted and private op-
erations. The encrypted operations include query and
update operations and are used by the curator to query
and maintain the database. The private operations in-
clude statistical query operations used by the analyst to
analyze the data. Roughly speaking, a private encrypted
database should provide security against an untrusted
server and differential-privacy against an untrusted an-
alyst.

1.1 Our Contributions

In this work we introduce and address the problem of
securing private statistical databases. We make the fol-
lowing contributions.

Private encrypted databases. One of the contribu-
tions of this work is to delineate the scope of the prob-
lem and to propose a set of reasonable properties that
any encrypted and private statistical database should
achieve. We do this formally by extending the notion of
structured encryption [20] to support, in addition to a
set of encrypted queries, a set of differentially-private
queries. The encrypted queries are used by the cura-
tor to query and modify the database while the private
queries are used by the analyst to analyze the data.

New adversarial models. In our setting, there are
multiple adversaries to consider, including the server
that stores the database, the analyst that analyzes the
data and, possibly, an adversary that compromises the
server at a point in time and gets a snapshot of the
database.

More formally, the first corresponds to a persistent
adversary that compromises the server perpetually and
can monitor the transcripts of the interactions between
the curator, the analyst and the server. The second cor-
responds to a statistical adversary that has access to the
results of the private queries but not necessarily to the
transcript of the entire interaction. This captures the
standard untrusted analyst in differential privacy that
tries to infer information about the data from the re-
sponses of its queries. The third is a snapshot adversary
that gets multiple accesses to the database stored on
the server but does not have access to the transcripts of

Encrypted Databases for Differential Privacy 172

any interactions. This captures scenarios such as data
breaches, devices thefts, and subpoenas.

There are several interesting subtleties that emerge
from this setting that must be addressed. Recall that in
the traditional setting of differential privacy, the curator
is trusted so one does not consider any security/privacy
guarantees for the analyst. In our setting, however, the
database is stored on an untrusted server so the ana-
lyst’s queries must also be protected. Another subtlety
is that, in our setting, the data stored in the database is
continually modified which requires differential privacy
to hold under continual observations.

An encrypted database for private histogram
queries. As a concrete goal, we focus on designing
private encrypted databases that support differentially-
private histogram queries. Histograms are one of the
most common and central queries in statistical analysis
and many other important queries can be formulated as
histograms (e.g., contingency tables, marginals).

A naive approach to solving our problem would be
for the curator to use a structured encryption scheme to
produce an EDB and then use a pan-private histogram
mechanism to produce a pan-private state. The curator
would then use the EDB to query and manage its data
and the server would use the pan-private state to answer
analyst queries. The main limitation of this approach,
however, is that it only guarantees differential privacy
against persistent and snapshot adversaries whereas we
would like a stronger guarantee.

To achieve this, we have to combine techniques from
structured encryption and differential privacy in a more
careful manner. Our first step, is to design an encrypted
counter that supports an encrypted add operation and
a differentially-private read operation. We build such a
counter using additively homomorphic encryption and
a differentially-private counter of Chan, Shi and Song
[19]. We refer to the resulting construction as CPX. We
then combine a standard encrypted data structure with
several instantiations of our encrypted counter to build
a private encrypted database that supports private his-
togram queries. There are several subtleties that come
up—not only due to our new adversarial models—but
also due to subtle and potentially dangerous interactions
between the operations on the encrypted database and
the contents of the private counter. To avoid these pit-
falls, we have to carefully consider how the queries of
the curator are executed so that they do not affect the
security of the CPX counters. This results in a scheme
we call HPX that has the same (encrypted) query com-
plexity as its underlying encrypted database and (en-

crypted) update complexity that is linear in the under-
lying encrypted database’s update complexity and in
the number of histogram bins. When HPX’s encrypted
counters are instantiated with CPX, it has private query
complexity that is logarithmic in the number of up-
dates1.

We note that designing a framework that composes
any differentially private algorithm with any structured
encryption scheme (while maintaining efficiency) is non-
trivial problem and we leave it as an open problem.

2 Related Work

Differential privacy. In their seminal work [25],
Dwork, McSherry, Nissim and Smith introduced the no-
tion of differential privacy that guarantees privacy of
individuals by ensuring similar outputs of queries on
data irrespective of whether an individual’s information
is present or absent in the data. Since its conception,
differential privacy has been an active research area [6–
9, 29, 44, 50], we refer the readers to [24, 28] for a com-
prehensive survey.

Differential privacy has also been deployed in prac-
tice, see for example the systems used at Google [30, 31],
Apple [22], the US Census Bureau [2, 49] and Uber
[35, 63].

Differential privacy with continual observations.
Dwork, Naor, Pitassi and Rothblum introduced a new
setting for differential privacy [26] where the data is con-
tinuously being modified. The motivation was to con-
sider scenarios where data analysis required repeated
computations over dynamic data, for example, real-time
traffic analysis, social trends observation and disease
outbreak discovery. Calandrino, Kilzer, Narayanan, Fel-
ten and Shmatikov [12] showed that continual release of
statistics leaks more information to the adversary and
is a bigger privacy threat. In [26], the authors construct
an ε-differentially-private continual counter with a small
error. Specifically, they show that with probability 1−δ,
the error at time step t is at most O(1

ε log1.5 t log 1
δ).

They also show that with probability at least δ, any ε-
differentially-private mechanism for λ time steps must
incur an additive error of at least Ω(1

ε (log λ + log 1
δ)).

Chan, Shi and Song, in an independent work, also con-
structed a similar counter with the same privacy and

1 While the HPX construction considers fixed number of his-
togram bins, Section A of Appendix explains how to extend
HPX to setup histogram bins dynamically.

Encrypted Databases for Differential Privacy 173

error guarantees [19]. The continual observation model
has been widely adopted and several problems have been
considered in the literature [3, 13–16, 45, 47, 59, 64, 65].

Structured encryption. Structured encryption
(STE) was introduced by Chase and Kamara in
[20] as a generalization of searchable symmetric en-
cryption (SSE) [21, 60]. There are STE construc-
tions for various data structures including multi-maps
[10, 11, 17, 18, 20, 21, 32, 38, 39, 41, 42, 54], graphs
[20, 36, 51, 67] and two-dimensional arrays [20, 43].

Snapshot security. Snapshot security was discussed
informally in several works [34, 56] but first formalized
in the context of property-preserving encryption (PPE)
by Lewi and Wu [46] and in the context of STE by
Amjad, Kamara and Moataz in [5].

3 Preliminaries

Notation. The set of all binary strings of length n is
denoted as {0, 1}n, and the set of all finite binary strings
as {0, 1}∗. [n] is the set of integers {1, . . . , n}, and 2[n] is
the corresponding power set. We write x← χ to repre-
sent an element x being sampled from a distribution χ.
The output x of an algorithm A is denoted by x ← A.
Given a sequence v of n elements, we refer to its ith
element as vi or v[i]. If S is a set then |S| refers to
its cardinality. If x and y are two integer sequences of
length n, then || · || denotes the Hamming distance. We
denote by Lap(b) the Laplace distribution with parame-
ter b that has probability density function 1

2be
− |x|

b with
mean 0 and variance 2b2.

Abstract data types. An abstract data type specifies
the functionality of a data structure. It is a collection of
data objects together with a set of operations defined
on those objects. Examples include sets, dictionaries
(also known as key-value stores or associative arrays)
and graphs. The operations associated with an abstract
data type fall into one of the two categories: query op-
erations, which return information about the objects;
and update operations, which modify the objects. If the
abstract data type supports only query operations it is
static, otherwise it is dynamic. We denote by Q, R, and
U the query, response and update spaces of the data
object, respectively.

Data structures. A data structure for a given data
type is a representation in some computational model

of an object of the given type.2 Typically, the repre-
sentation is optimized to support the type’s query op-
eration as efficiently as possible. For data types that
support multiple queries, the representation is often op-
timized to efficiently support as many queries as possi-
ble. As a concrete example, the dictionary type can be
represented using various data structures depending on
which queries one wants to support efficiently. Hash ta-
bles support Get and Put in expected O(1) time whereas
balanced binary search trees support both operations in
worst-case log(n) time. For ease of understanding and
to match colloquial usage, we will sometimes blur the
distinction between data types and structures.

Public-key encryption. A public key encryption
scheme is a set of three polynomial-time algorithms
AHE = (Gen,Enc,Dec) such that Gen is a probabilistic
algorithm that takes a security parameter k and returns
a pair of private and public keys (sk,pk); Enc is a proba-
bilistic algorithm that takes a public key pk and a mes-
sagem and returns a ciphertext ct; Dec is a deterministic
algorithm that takes a private key sk and a ciphertext
c and returns m if pk was the public key under which
ct was produced. A public key encryption scheme is an
additive homomorphic encryption scheme if for any two
messages m1 and m2, and any (sk,pk)← Gen(1k) for all
k ∈ N, we have that

Dec
(
sk,Enc(pk,m1) · Enc(pk,m2)

)
= m1 +m2.

Informally, a public key encryption scheme is secure
against chosen-plaintext attacks if the ciphertexts it
outputs do not reveal any partial information about the
plaintext even to an adversary that can adaptively query
an encryption oracle.

3.1 Structured Encryption

Structured encryption (STE) schemes [20] encrypt data
structures in such a way that they can be queried. STE
schemes can be distinguished depending on the type of
operations they support. This includes non-interactive
and interactive schemes where the former require only
a single message while the latter require several rounds
for queries and updates. STE schemes can also be static
or dynamic where the former do not support update op-
erations whereas the latter do. We can also distinguish
between response-revealing and response-hiding schemes
where the former reveal the response to queries whereas
the latter do not.
2 In this work, the underlying model will always be the word
RAM.

Encrypted Databases for Differential Privacy 174

Interactive response-revealing STE schemes are
used as follows. During the setup phase, the client con-
structs an encrypted data structure EDS under a key
K. If the scheme is stateful, the setup also outputs a
state st. The server then receives EDS from the client.
During the query phase, the client and server execute
a two-party protocol where the client inputs its query
q, key K and state st while the server inputs the en-
crypted structure EDS. The client receives a response r
and an updated state st′ while the server receives noth-
ing. Similarly, during the update phase, either an add or
remove, the client and server execute a two-party proto-
col where the client inputs its update u+/u−, key K and
state st while the server inputs the encrypted structure
EDS. The client receives an updated state st′ while the
server receives an updated structure EDS′. We formally
define an interactive response-revealing STE as follows:

Definition 3.1 (Structured encryption). An interac-
tive structured encryption scheme ΣSTE = (Setup,Query,
Add,Remove) consists of one polynomial-time algorithm
and three interactive protocols that work as follows:
– (st,K,EDS) ← Setup(1k,DS): is a probabilistic algo-
rithm that takes as inputs the security parameter k
and a data structure DS and receives a state st, a key
K, and an encrypted data structure EDS.

– (st′, r;⊥) ← QueryC,S(st,K, q; EDS) is a (probabilis-
tic) protocol between the client C and the server S.
The client inputs its state st, the key K and the query
q, while the server inputs the encrypted data structure
EDS. The client receives a response r and the server
receives nothing.

– (st′; EDS′)← AddC,S(st,K, u+; EDS): is a (probabilis-
tic) protocol between the client C and the server S.
The client inputs its state st, the key K and the up-
date u+ ∈ U, while the server inputs the encrypted
data structure EDS. As output, the client receives an
updated state st′ and the server receives an updated
state EDS′.

– (st′; EDS′)← RemoveC,S(st,K, u−; EDS): is a (proba-
bilistic) protocol between the client C and the server
S. The client inputs its state st, the key K and the
update u− ∈ U, while the server inputs the encrypted
data structure EDS. As output, the client receives an
updated state st′ and the server receives an updated
state EDS′.

We defer the correctness and security definition of an in-
teractive structured encryption scheme to Appendix B.

A note on operation failures. Similarly to plain-
text data structures, operations over encrypted struc-
tures may fail. For queries, failures are in general the
result of an empty response or the nonexistence of the
query in the structure. We typically capture a query
failure by a null ⊥ element added to the data type re-
sponse space. However, update failures are in general
more complex. For example, in set data structures, an
add update might fail if the element already exists in
the structure. An update also might fail if it intends
to remove an element that does not exist or simply be-
cause the structure is empty. At a high level, we say
that an update fails if the update does not modify the
encrypted structure. Formally, an update u+ ∈ U fails if
EDS = EDS′ where (st′; EDS′) ← AddC,S(st,K, u; EDS)
for all k ∈ N , for all poly(k)-size structures DS, for
all (st,K,EDS) output by Setup(1k,DS) (similary for
Remove).3

A note on data structures and databases. Our
main construction, HPX, can be used to support his-
togram queries on any encrypted data structure. Un-
fortunately, most of the differential privacy and cryp-
tography literature does not distinguish between data
structures (e.g., arrays, two-dimensional arrays, dictio-
naries, multi-maps, trees etc.) and databases (e.g., rela-
tional databases, NoSQL databases). So to remain con-
sistent with the literature, in the remainder of this paper
we will refer to arbitrary data structures as databases.
So anytime we refer to a database DB or an encrypted
database EDB what we mean is some arbitrary data
structure DS and some arbitrary encrypted data struc-
ture EDS, respectively.

4 Private Structured Encryption
In this Section, we extend the notion of STE to support
private queries. We refer to the resulting primitive as
a private structured encryption (PSTE) scheme. With
a PSTE scheme, a curator can encrypt its database in
such a way that it can query and manage its database
through a set of encrypted queries and such that an
analyst can query the database through a set of private
queries. In Definition 4.1 below, we describe the syntax
of a PSTE scheme. Here, we only describe schemes that
support one encrypted and one private query operations
but the syntax can be extended to support schemes with

3 The encrypted structure can also be the output of a previ-
ous update protocol executions. The definition can be naturally
extended.

Encrypted Databases for Differential Privacy 175

multiple encrypted and private queries in the natural
way.

Definition 4.1 (Private structured encryption). An
interactive private structured encryption scheme ∆ =(
Setup,EAdd,ERemove,EQuery,PQuery

)
consists of five

polynomial-time protocols that work as follows:
–
(
(st,KC); PEDB;KA

)
← SetupC,S,A

(
(1k, ε,DB);⊥;⊥

)
:

is a three-party protocol between the curator C, the
server S and the analyst A. The curator inputs the
security parameter 1k, the privacy parameter ε and a
database DB, while the server and the analyst input
nothing. The curator receives a state st and a key
KC, the server receives an encrypted database PEDB
and the analyst receives a key KA.

– (st′; PEDB′) ← EAddC,S
(
(st,KC, u

+); PEDB
)
: is a

two-party protocol between the curator C and the
server S. The curator inputs its state st, a key KC
and an update u+ ∈ U, while the server inputs the
encrypted database PEDB. As output, the curator re-
ceives the updated state st′ and the server receives an
updated encrypted database PEDB′.

– (st′; PEDB′) ← ERemoveC,S
(
(st,KC, u

−); PEDB
)
is

a two-party protocol between the curator C and the
server S. The curator inputs its state st, a key KC
and an update u− ∈ U, while the server inputs the
encrypted database PEDB. As output, the curator re-
ceives the updated state st′ and the server receives an
updated encrypted database PEDB′.

–
(
(st′, r);⊥

)
← EQueryC,S

(
(st,KC, q); PEDB

)
is a

two-party protocol between the curator C and the
server S. The curator inputs its state st, a key KC
and a query q, while the server inputs the encrypted
database PEDB. The curator receives a response r and
an updated state st′, and the server receives nothing.

– (rp;⊥) ← PQueryA,S
(
(KA, q

p); PEDB
)
: is a two-

party protocol between the analyst A and the server S.
The analyst inputs its key KA and its private query
qp ∈ P, while the server inputs the encrypted database
PEDB. As output, the analyst receives a private re-
sponse rp ∈ O while the server receives nothing.

For visual clarity, we sometimes omit the subscripts of
the protocols when the parties involved is clear from the
context.

A PSTE scheme is used as follows. During a setup phase,
the curator, server and analyst execute the Setup proto-
col on the curator’s database DB. This results in a se-
cret key KC and state st for the curator, an encrypted
database PEDB for the server and a secret key KA for
the analyst. To query the database, the curator exe-

cutes the EQuery protocol with the server. To manage
the database (i.e., to add or remove items), it executes
the EAdd and ERemove protocols with the server. To
perform a statistical query on the data, the analyst ex-
ecutes the PQuery protocol with the server. Note that
the syntax of a PSTE scheme is similar to that of an
STE scheme since the curator uses the STE operations
to manage its encrypted database. The main difference
is the addition of a PQuery protocol which is needed for
the analyst to perform its analytical queries.

4.1 Correctness and Utility

We say that a PSTE scheme is correct if the encrypted
query protocol always returns the correct response with
high probability (possibly) on an updated encrypted
database output by an update operation (addition or
removal operation) that has previously occurred. More-
over, correctness also should hold independently of the
private queries made by the analyst. We formally define
correctness as follows.

Definition 4.2 (Correctness). Let ∆ = (Setup,EAdd,
ERemove,EQuery,PQuery) be a PSTE scheme. We say
that ∆ is correct if for all k ∈ N, for all ε > 0, for all
poly(k)-size databases DB0, for all (st,KC; PEDB0;KA)
output by Setup

(
(1k, ε,DB0);⊥;⊥

)
and all poly(k)-size

sequences of operations σ = (σ1, · · · , σλ), for all i ∈ [λ],
if σi = qi, then EQuery(sti−1,KC, qi; PEDBi−1) returns,
with all but negligible probability, a response ri equal to
the result of querying DBi−1 on qi, where PEDBi−1 and
DBi−1 result from applying all the update operations in
(σ1, . . . , σi−1) to the encrypted database PEDB0 and the
plaintext database DB0, respectively.

Utility. The correctness definition above guarantees
that the curator will get correct responses to its en-
crypted queries (with high probability) but does not
say anything about the utility of the analyst’s private
queries. Intuitively, in the setting of differential privacy
we say that a mechanism is useful if its responses are
close to the correct responses. Here, we apply the same
intuition to the encrypted database’s PQuery operation.
More precisely, we say that PQuery is (α, δ)-useful if,
with probability at least 1 − δ, it produces responses
within an additive factor of α to the true response. We
formally define this below.

Definition 4.3 (Utility). Let ∆ = (Setup,EAdd,ERemove,
EQuery,PQuery) be a PSTE scheme. We say that ∆ is

Encrypted Databases for Differential Privacy 176

(α, δ)-useful if for all poly(k)-size sequences of opera-
tions σ = (σ1, . . . , σλ), for all i ∈ [λ], if σi = qpi ,

Pr
[
|rpi − ri| ≤ α

]
≥ 1− δ

where (rpi ;⊥) ← PQuery
(
(KA, q

p
i); PEDBi−1

)
, ri is the

correct response and PEDBi−1 results from applying all
the updates in (σ1, . . . , σi−1) to the encrypted database
PEDB0 generated with Setup.

4.2 Security and Privacy

As discussed in Section 1, our adversarial setting is more
complex than that of STE and of differential privacy. In
particular, in our context we have to consider two ad-
versaries: namely, the server and the analyst. In addi-
tion, the server can be corrupted in two possible ways:
a persistent corruption and a snapshot corruption. We
summarize these models as follows:

– a persistent adversary corrupts the server perpetu-
ally. It has access to the encrypted database and can
monitor both the encrypted and private query op-
erations. This captures a corrupted server (e.g., an
untrusted cloud service or a possibly corrupted on-
premise server).

– a snapshot adversary is an adversary that corrupts
the server only at fixed points in time. It can ac-
cess a copy of the encrypted database at the time
of corruption, but cannot see the encrypted or pri-
vate query operations. This models certain kinds of
data-breaches, subpoenas and thefts.

– a statistical adversary is an adversary that corrupts
the analyst. It can see the responses to the private
queries but cannot see encrypted private database
or the encrypted query/update operations. This cap-
tures an untrusted analyst.

Collusions. While providing security against each of
these adversaries is non-trivial, we will discuss in Sec-
tion 7 how to maintain the same security guarantees
when some of these adversaries collude. Specifically, we
will consider the cases when: (1) a snapshot adversary
colludes with a statistical adversary; and (2) a per-
sistent adversary colludes with a statistical adversary.
Note that the case of a snapshot adversary colluding
with a persistent adversary reduces to the case of a per-
sistent adversary.

Security against a persistent adversary. The secu-
rity of PSTE schemes is a natural extension of the secu-
rity of standard STE schemes. Intuitively, we require

that a PSTE scheme guarantees that the encrypted
database reveals no information about its underlying
database beyond the setup leakage LS; that the en-
crypted query protocol reveals no information about the
database and the query beyond the query leakage LQ;
that the add and remove protocols reveal no informa-
tion about the database and the updates u+ and u−,
respectively, than the add and remove leakages LA and
LR; and that the private query protocol reveals no in-
formation about the database and the private query qp

beyond the private query leakage LP. If this holds for
non-adaptively chosen operations then this is referred to
as non-adaptive security. If, on the other hand, the op-
erations can be chosen adaptively, we have the stronger
notion of adaptive security [20, 21]. Observe that the se-
curity definition is parametrized with leakage functions
for the setup, query and update operations. An exam-
ple of a concrete setup leakage pattern is the size of the
database. Examples of concrete query leakage patterns
are the query equality pattern (also known as the search
pattern in the SSE literature) or the response identity
pattern (also known as the access pattern in the SSE
literature). Note that different schemes have different
leakage profiles; we refer the reader to [20, 21, 40] for
more details.

Definition 4.4 (Adaptive persistent security). Let
∆ = (Setup,EAdd,ERemove,EQuery,PQuery) be a pri-
vate structured encryption scheme. Consider the fol-
lowing probabilistic experiments where A is stateful
adversary, S1 and S2 are stateful simulators, C is a
challenger, LS, LQ, LA, LR, and LP are leakage pro-
files, and z ∈ {0, 1}∗:

Real∆,A(k, ε): given z, the adversary A outputs a
database DB and receives an encrypted database PEDB,
where (st,K; PEDB;KA) ← Setup

(
(1k, ε,DB);⊥;⊥

)
.

The adversary then adaptively chooses a poly(k)-size se-
quence of operations σ = (σ1, · · · , σλ). For all i ∈ [λ],
if
– (add operations) if σi is an add operation u+

i , then
the challenger C and the adversary A execute

(st′; PEDB′)← EAdd
(
(st,K, u+

i); PEDB
)
,

with C playing the curator and A playing the server.
– (remove operations) if σi is a remove operation u−,
then the challenger C and the adversary A execute

(st′; PEDB′)← ERemove
(
(st,K, u−i); PEDB

)
,

with C playing the curator and A playing the server.

Encrypted Databases for Differential Privacy 177

– (encrypted query) if σi is an encrypted query qi, then
the challenger C and the adversary A execute

(st′, r;⊥)← EQuery
(
(st,K, qi); PEDB

)
,

with C playing the curator and A playing the server.
– (private query) if σi is a private query qpi , then the
challenger C and the adversary A execute

(rp;⊥)← PQuery
(
(KA, q

p
i); PEDB

)
,

with C playing the analyst and the adversary playing
the server.

Finally, A outputs a bit b that is output by the experi-
ment.

Ideal∆,A,S1,S2(k, ε): given z, the adversary A generates
a database DB. The simulator S1 is then given z and
setup leakage LS(DB) from which it outputs an encrypted
database PEDB. Given PEDB, A adaptively chooses a
poly(k)-size sequence of operations σ = (σ1, · · · , σλ).
For all i ∈ [λ],
– (add operation) if σi is an add operation u+

i , then
S1(LA(DB, u+

i)) and A execute EAdd, with the sim-
ulator playing the curator and the adversary playing
the server.

– (remove operation) if σi is a remove operation u−,
then S1(LR(DB, u−i)) and A execute ERemove, with
the simulator playing the curator and the adversary
playing the server.

– (encrypted query) if σi is an encrypted query qi, then
S1(LQ(DB, qi)) and A execute EQuery, with the sim-
ulator playing the curator and the adversary playing
the server.

– (private query) if σi is a private query qpi , then
S2(LP(DB, qpi)) and A execute PQuery, with the sim-
ulator playing the analyst and the adversary playing
the server.

Finally, A outputs a bit b that is output by the experi-
ment.

We say that ∆ is adaptively (LS,LQ,LA,LR,LP)-
secure if there exists ppt simulators S1 and S2 such
that for all ppt adversaries A, for all ε > 0 and all
z ∈ {0, 1}∗, the following expression is negligible in k:

|Pr[Real∆,A(k, ε) = 1]− Pr[Ideal∆,A,S1,S2(k, ε) = 1]|

Security against a snapshot adversary. Security
against a persistent adversary is a strong notion of secu-
rity in that it guarantees security against an adversary
that not only has access to the encrypted database but
also to transcripts of the operations. In many real-world
scenarios, however, we are concerned with a weaker

adversary that can periodically access the encrypted
database but, in particular, cannot access any of the
query transcripts. This captures, for example, certain
kinds of data breaches, malicious employees, thefts and
subpoenas. This kind of adversary is referred to as a
snapshot adversary and it was recently formalized in
the context of structured encryption by Amjad, Kamara
and Moataz [5].

In the following Definition, we adapt the formal-
ization of [5] to our context. Intuitively, the adversary
is given access to multiple snapshots of the encrypted
database each of which is interspersed with a batch of
encrypted and private queries (and updates). We then
require that encrypted database reveals no information
about the underlying database and the sequence of op-
erations executed prior to the snapshot, beyond some
snapshot leakage LSN. In the worst case, the adversary
can have a snapshot after every operation.

Definition 4.5 (Snapshot security). Let ∆ =
(Setup,EAdd,ERemove,EQuery,PQuery) be a private
structured encryption scheme and consider the fol-
lowing probabilistic experiments where A is a stateful
adversary, S is a stateful simulator, C is a stateful chal-
lenger, LSN is a stateful leakage function, z ∈ {0, 1}∗,
and m ≥ 1:

Real∆,A(k, ε,m): given z, the adversary A outputs an
initial database DB0. The challenger then computes
(st,KC; PEDB0;KA) ← Setup

(
(1k, ε,DB0;⊥;⊥

)
. Given

PEDB0, A outputs an adaptively chosen poly(k)-size se-
quence σ1 = (σ1,1, . . . , σ1,m). For all i ∈ [n],
– the challenger applies the operations in σi to

PEDBi−1 which results in PEDBi;
– given PEDBi, the adversary outputs a sequence of
operations σi+1 = (σi+1,1, · · · , σi+1,m) where σi+1
refers to the sequence of operations between the ith

and the (i + 1)th snapshots, where σi+1,j ∈ {PQuery,
EAdd,ERemove,EQuery};
Finally, A outputs a bit b that is returned by the

experiment.

Ideal∆,A,S(k, ε,m): given z, the adversary A out-
puts a database DB0. The simulator S(z,LSN(DB0,⊥))
simulates PEDB0. The adversary A(PEDB0) outputs
an adaptively chosen poly(k)-size sequence σ1 =
(σ1,1, · · · , σ1,m). For all i ∈ [n],
– the challenger applies the operations in σi to DBi−1
which results in DBi;

– the simulator S(LSN(DBi,σi)) simulates PEDBi;
– given PEDBi, the adversary A outputs a sequence of
operations σi+1 = (σi+1,1, · · · , σi+1,m);

Encrypted Databases for Differential Privacy 178

Finally, A outputs a bit b that is output by the experi-
ment.

We say that ∆ is (n,LSN)-snapshot secure if there
exists a ppt simulator S such that for all ppt adver-
saries A, for all ε > 0 and all z ∈ {0, 1}∗, the following
expression is negligible in k:∣∣Pr

[
Real∆,A(k, ε,m) = 1

]
− Pr

[
Ideal∆,A,S(k, ε,m) = 1

]∣∣
Breach resistance. In [5], the authors formalize the
notion of a breach-resistant STE scheme as a scheme
with snapshot leakage that reveals at most the size of
the underlying structure at the time of the snapshot.
We extend this to the setting of private structured en-
cryption by allowing the snapshot leakage to include, in
addition, the size of the private query space.

Definition 4.6 (Breach resistance). Let ∆ = (Setup,
EAdd,ERemove,EQuery,PQuery) be an (m,LSN)-
snapshot secure private structured encryption scheme.
We say that ∆ is breach-resistant if for all m = poly(k),

LSN(DB,σi) =
(
|DBi|, |P|

)
where DBi is the structure that results from applying
σ1, . . . ,σi to DB0 and P is the private query space.

Remark. Note that our security definitions for PSTE
against both persistent and snapshot adversaries are in-
spired from previous works [5, 20, 21]. The main differ-
ence, however, is that we allow the analyst to perform
PQuery operations as part of the overall sequence of op-
erations. In fact, the analyst’s queries can also impact
the encrypted structure so an additional leakage pattern
needs to be considered in our security definitions.

Security against a statistical adversary. We now
turn to our notion of privacy against a statistical adver-
sary which captures privacy against an untrusted ana-
lyst. Specifically, we wish to guarantee differential pri-
vacy against the analyst. Informally, differential privacy
formalizes privacy by requiring that the probability of
the output of a mechanism is roughly the same for any
two “neighboring" databases.

Continual observations. In our setting, we do not
have a fixed database so we cannot use the standard
definition of differential privacy. Because our database is
dynamic we need a variant referred to as differential pri-
vacy under continual observations [26]. This definition
is formalized as follows. LetM be a privacy mechanism,
let S ⊆ Im(M)λ and let DB0 be a database. The defini-
tion says that M is ε-differentially-private over contin-

ual observations if for all neighboring sequences of cu-
rator operations σ = (σ1, . . . , σλ) and σ′ = (σ′1, . . . , σ′λ),

Pr
[(
M(DB1), . . . ,M(DBλ)

)
∈ S

]
≤ eε · Pr

[(
M(DB′1), . . . ,M(DB′λ)

)
∈ S

]
,

where DBi results from applying σi to DBi−1 and DB′i
results from applying σ′i to DB′i−1. In our context, the
PQuery protocol is effectively a private mechanism so it
would be tempting to just apply the definition above.

Variable queries. The difficulty with this is that in
the definition above, the mechanism M is a fixed op-
eration that has no operand whereas PQuery allows the
analyst to choose an operand qp. There are several pos-
sible ways to handle this but here we take the worst-case
which is to assume that, after each curator operation,
the analyst makes every possible private query qp ∈ P. If
we can quantify the privacy against such an analyst, it
will provide an upper bound on the privacy we achieve
against all possible analysts.

Before we formalize this intuition, we describe our
notion of neighboring sequences. Let an operation σ

be composed of an operator/operand pair (op, o). We
consider two sequences of curator update operations
σ = (σ1, . . . , σλ) and σ′ = (σ′1, . . . , σ′λ) neighbors if they
differ by at most a single update operation and operand;
that is, there exists at most a single i ∈ [λ] such that
(opi, oi) 6= (op′i, o′i).

Definition 4.7 (Differential privacy). Let ∆ = (Setup,
EAdd,ERemove,EQuery,PQuery) be a private structured
encryption scheme. We say that ∆ is ε-differentially-
private (under continual observations) if for all neigh-
boring sequences of curator operations σ = (σ1, . . . , σλ)
and σ′ = (σ′1, . . . , σ′λ), and for any subset S ⊆ Oλ,

Pr
[((

r1,qp

)
qp∈P, . . . ,

(
rλ,qp

)
qp∈P

)
∈ S

]
≤ eε · Pr

[((
r′1,qp

)
qp∈P, . . . ,

(
r′λ,qp

)
qp∈P

)
∈ S

]
,

where ri,qp is the result from executing (ri,qp ;⊥) ←
PQuery(KA, q

p; PEDBi) and PEDBi results from apply-
ing the curator operations (σ1, . . . , σi) to PEDB0. Here
r′i,qp is defined analogously.

Encrypted Databases for Differential Privacy 179

5 CPX: A Private Encrypted
Counter

A counter is a data structure that stores an integer
and supports Add and Read operations. Add takes as
input a counter ctr and an integer a ∈ {−1, 0, 1} and
returns an updated counter ctr′ that stores c+ a, where
c is the current value of the counter. The Read opera-
tion takes as input a counter ctr and returns its cur-
rent value. Counters are a basic data structure that
are heavily used throughout all of computer science.
A private counter [19, 26] is a counter that supports
a differentially-private read operation. This is typically
achieved by adding noise to the counter value. In this
section, we are concerned with designing an encrypted
private counter which supports encrypted add opera-
tions and private read operations. Note that CPX builds
on the binary mechanism of Chan et al. [19]. While CPX
follows almost the same steps as [19], it adds noise and
increments the counters homomorphically as opposed
to over plaintext values. Our modification also relies on
slight changes to the way the counter is set up. Below,
we recall the binary mechanism and describe our new
encrypted add operations.

The binary mechanism. The binary mechanism is
a differentially-private (under continual observations)
counter introduced by Chan, Shi and Song [19] which
offers reasonable privacy and utility tradeoffs. The
counter supports increment, decrement and no-op op-
erations represented as additions of values in {−1, 0, 1}.
When read, it returns a value that is the true counter
with some noise added to it.

The counter is represented as a range tree with a
local register. The local register just stores the total
number of addition operations performed until now. A
range tree is a complete binary tree T that stores val-
ues in such a way that all the values within a range
can be computed efficiently. More precisely, range trees
maintain a tree with λ leaves associated to λ values.
Each node in the tree represents a unique range: the
tth leaf represents the range [t, t] whereas an internal
node that is the root of a subtree with leaves ranging
from t1 to t2 represents the range [t1, t2]. The cover of a
range [t1, t2] is defined as the set of nodes such that the
union of the ranges of the nodes is equal to [t1, t2]. The
minimum cover is the cover with minimum cardinality.
Range trees have the property that the size of the min-
imum cover of a range [1, t], for any t, is at most 2 log t.

We abuse the notation and refer to the minimum cover
of [1, t] as the minimum cover of t.

During setup, the binary mechanism takes as in-
put a parameter λ denoting the maximum number of
addition operations to be performed on the counter,
and it initializes a range tree with λ leaves. Each node
stores a value of 0. For the tth add operation, it takes as
input a value a ∈ {−1, 0, 1}, and adds a to all the nodes
on the path from [t, t] to the root. It also adds noise
γt ← Lap(2 log λ/ε) to all the nodes of the form [·, t] on
this path. To answer read operations, the mechanism
outputs the sum of the nodes in the minimum cover of
t, where t is the current register value which denotes
the number of add operations performed until this point.

We now describe an encrypted private counter based on
the binary mechanism called CPX. Our construction is
described in Fig. (1) and works as follows.

Setup. The Setup algorithm takes as input the security
parameter 1k, the privacy parameter ε and the number
of update operations to be made λ. The curator ini-
tializes a binary tree T with λ leaves where every node
consists of an additively-homomorphic encryption of 0.
The private encrypted counter ectr is a tuple composed
of the tree T, the privacy parameter ε, a time step t

initialized to 0 and the public key of the homomorphic
encryption.

Encrypted add. To add an integer a ∈ {−1, 0, 1} to
the encrypted counter, the curator sends the encryption
of the integer cta to the server. The server, given the
time step t, first fetches all the nodes in the path Pt
starting from the root and ending at the leaf [t, t]. The
server then adds cta to every node in Pt. The server then
selects all nodes in Pt with a range of the form [., t], to
which it adds the encryption of a freshly sampled noise.
The server also increments the internal time step t.

Private read. To read the value of the counter after
the ith operation, the server simply sends to the analyst
the sum of all nodes belonging to the minimum cover of
[1, i] which the analyst later decrypts.

5.1 Efficiency and Utility

The complexity of both the encrypted add and private
query are

O(log λ · timeAHE),

where λ is the upper bound on the number of updates
while timeAHE is the time complexity of a homomorphic

Encrypted Databases for Differential Privacy 180

Let Lap(·) denote the Laplace distribution. Let AHE =
(Gen,Enc,Dec) be an additively homomorphic encryption
scheme. Consider the private encrypted counter scheme
∆ctr = (Setup,EAdd,PRead) defined as follows:

– Setup
(
1k, ε, λ, ctr

)
:

1. generate (pk, sk)← AHE.Gen(1k);
2. initialize a binary tree T with λ leaves;
3. for each node N ∈ T,
(a) set N = AHE.Enc(pk, 0);
4. set t = 0;
5. C receives KC = pk, S receives ectr = (T, ε, t, pk) and

A receives KA = sk;

– EAddC,S
(
KC, a; ectr

)
:

1. S parses ectr as (T, ε, t, pk);
2. S sets t = t+ 1;
3. C sends cta ← AHE.Enc(pk, a) to S;
4. S does the following
(a) it finds the path Pt from the [t, t] leaf of T to its root;
(b) for all nodes N in Pt, it sets N = N · cta;
(c) it creates a subset S ⊂ Pt of nodes in Pt whose range

has the form [·, t];
(d) for each node N in S,

i. it computes γN ← Lap(2 logλ
ε

);
ii. it sets N = N · AHE.Enc(pk, γN);

(e) C receives ⊥ and S receives an updated encrypted
counter ectr′ = (T′, ε, t, pk);

– PReadA,S
(
⊥; ectr

)
:

1. S does the following:
(a) it parses ectr as (T, ε, t, pk);
(b) it finds the minimal cover Ct of the interval [1, t];
(c) it sends ctr =

∑
N∈Ct

N to A;
2. A computes r ← AHE.Dec(sk, ctr);
3. A receives r and S receives ⊥;

Fig. 1. CPX: Range tree based Encrypted private counter.

operation. This stems from the fact that the size of the
minimum cover in a range tree is upper bounded by
2 log λ. Moreover, the round complexity of both proto-
cols is equal to 1.

Theorem 5.1. For each t ∈ [λ], CPX is (α, δ)-useful,
where α = O(1

ε · (log λ)
√

log λ · log 1
δ), and ε, δ > 0.

The proof of Theorem 5.1 is in Appendix. C.1.

5.2 Security

In the following, we detail the security guarantees of
CPX against persistent, snapshot and statistical adver-
saries, respectively.

Against a persistent adversary. The setup leakage
of CPX consists of the size of the tree which is equal to

the upper bound on the number of updates λ such that

Lctr
S (ctr) = λ.

Both the add leakage and the private query leakage of
CPX are equal to ⊥ as they do not depend of the cura-
tor’s input such that

Lctr
A (ctr, a) = ⊥ and Lctr

P (ctr,⊥) = ⊥.

Theorem 5.2. If AHE is CPA-secure, then CPX is
(Lctr

S ,Lctr
A ,Lctr

P)-secure.

The proof of Theorem 5.2 is deferred to the full version
of the paper.

Leakage against a snapshot adversary. The snap-
shot leakage Lctr

SN of CPX is equal, for all i ∈ [m], to

Lctr
SN(ctr,σi) = λ.

Theorem 5.3. If AHE is CPA-secure, then CPX is
(m,Lctr

SN)-snapshot secure.

The proof of Theorem 5.3 is deferred to the full version
of the paper. Note that CPX is breach-resistant based
on Definition 4.6 when m = poly(k).

Against a statistical adversary. As detailed above,
CPX is an encrypted variant of the binary mechanism.
In particular, the private responses of CPX have the
same exact distribution (on the same sequences of oper-
ations) as the binary mechanism and, therefore inherits
the same differential privacy parameters. In particular
we have the following Theorem.

Theorem 5.4. The PRead protocol in CPX is ε-
differentially private as per Definition 4.7.

The proof of this theorem is similar to the one of the
binary mechanism in [19] and we defer it to the full
version of this work.

6 HPX: An Encrypted Database
for Private Histograms Queries

In this section, we describe our encrypted database
scheme, HPX, which supports private histogram
queries. With our solution, a curator can outsource its
statistical database to an untrusted server. The curator
can update the data using the EDB’s encrypted queries
and an analyst can analyze the data using the EDB’s

Encrypted Databases for Differential Privacy 181

private queries. We note that while our work relies on
the counter of Chan et al., we address a different prob-
lem than the one considered in [19, 26]. While these
works construct pan-private counters, we design an
encrypted database that supports differentially-private
histogram queries. In the setting of [19, 26], the cura-
tor is a trusted party that stores a pan-private counter
and answers read queries from an untrusted analyst. In
our setting, the curator first outsources its encrypted
database to an untrusted server. It can then query and
update its outsourced encrypted database by interact-
ing with the server. In addition, an untrusted analyst
can make differentially-private histogram queries on the
encrypted database by interacting with the untrusted
server. As one can see, we not only consider a different
object than [19, 26], but our adversarial model is also
very different: in addition, to an adversarial analyst, we
also have to consider an adversarial server.

Overview. At a high-level, HPX works as follows.
We are given a database DB and a histogram H =
{ctr1, . . . , ctrn} initialized to 0. We also assume the ex-
istence of a function Map1 that maps database updates
u to multiple counters in H. Our construction produces
(n + 1) encrypted structures: EDB and ectr1, . . . , ectrn.
The first results from encrypting the database DB with
an appropriate structured encryption scheme. The cura-
tor interacts with EDB to query and update its database.
The structures (ectr1, . . . , ectrn) are private encryptions
of the histogram counters (ctr1, . . . , ctrn) and are used
by the server to answer the analyst’s queries. Whenever
the curator successfully updates its EDB with an update
u+, it also increments the ith counter ctri by 1, where
i ∈ Map1(u+). To hide which counter was updated, how-
ever, it also increments all the remaining counters by 0.

The efficiency of our scheme depends on the effi-
ciency of the underlying encrypted database EDB and is
linear in n. In terms of security, we provide a black-box
leakage analysis of HPX’s leakage. We then show that
if its underlying encrypted structures are instantiated
with zero leakage or almost zero-leakage constructions
then HPX’s leakage profile is minimal.

HPX makes use of a dynamic response-hiding struc-
tured encryption scheme ΣDB = (Setup,Query,Add,
Remove) and a private encrypted counter scheme
∆ctr = (Setup,EAdd,PRead) (e.g., the construction de-
scribed in Section 5). Our construction is described in
detail in Figs. (2) and (3) and works as follows.

Setup. The Setup algorithm takes as input a database
DB and the size of the histogram n. It initializes n

counters (ctr1, . . . , ctrn). It then encrypts DB with ΣDB
which results in EDB, and encrypts each ctri with ∆ctr
which results in (ectr1, . . . , ectrn). The private EDB is
PEDB = (EDB, ectr1, . . . , ectrn).

Encrypted queries. To query the EDB, the curator
and server execute the ∆.Query protocol where the cu-
rator inputs its query q and the server inputs PEDB.
This protocol in turn executes EDB’s query protocol on
the same inputs and returns the response to the curator.

Database updates. To add or remove an item u

to/from the database, the curator first updates EDB
using the appropriate update protocol (either ΣDB.Add
or ΣDB.Remove). The server then returns a message to
the curator indicating whether the operation succeeded
or failed. The curator and server then update all the
private encrypted counters (ectr1, . . . , ectrn) as follows.
If the operation succeeded and i ∈ Map1(u) (i.e., the
update is associated to the ith counter) then ectri is
incremented by 1 (in case of addition, otherwise it is
decremented by 1), otherwise ectri is incremented by 0.
Incrementing all the counters—even the ones that are
not relevant to the update—hides which counter is up-
dated from the server. This is crucial to hide the val-
ues of the histogram from the server. To see why, sup-
pose we did not hide which counter is updated after an
EDB operation (i.e., an EAdd or ERemove). Note that
the server knows whether the EDB operation was an
add or a remove and whether the operation succeeded
or failed. It can determine the success or failure sim-
ply by comparing EDB to EDB′. If, in addition to this,
it also knew which counter got updated after the EDB
operation, it would know whether that counter was in-
cremented, decremented or kept constant. And from this
information the server effectively knows the histogram.

Private queries. To query the ith counter, the analyst
and the server execute a private read operation on ectri.

6.1 Efficiency and Utility

The query complexity of HPX is equal to the query com-
plexity of the underlying database encryption scheme
ΣDB. In other words, its query complexity is

O

(
timeqDB(q)

)
,

where timeqDB is the query complexity ΣDB. Similarly,
the round complexity of the query protocol is equal to
the round complexity of the query protocol of ΣDB. The
update complexity (whether it is an EAdd or a ERemove)

Encrypted Databases for Differential Privacy 182

Let ΣDB = (Setup,Query,Add,Remove) be a database en-
cryption scheme and let ∆ctr = (Gen, Setup,EAdd,PRead)
be a PSTE scheme for counters. Let λ be a upper
bound on the number of updates and ε be the differen-
tial privacy parameter. Consider the PSTE scheme ∆HIS =
(Setup,EAdd,ERemove,EQuery,PHist) defined as follows:

– SetupC,S,A

((
1k, ε,DB

)
;⊥;⊥

)
:

1. C does the following:
(a) computes (KDB, stDB,EDB)← ΣDB.Setup(1k,DB);
(b) for all i ∈ [n], it computes

(Ki
C; ectri;Ki

A)← ∆ctr.SetupC,S,A(1k, ε, λ, ctri);

2. C receives KC = (KDB,K
1
C, . . . ,K

n
C) and stC = stDB;

3. S receives PEDB = (EDB, ectr1, . . . , ectrn);
4. A receives KA = (K1

A, . . . ,K
n
A).

– EAddC,S

((
stC,KC, u

+
)
; PEDB

)
:

1. C parses stC as stDB and KC as (KDB,K1, . . . ,Kn);
2. S parses PEDB as (EDB, ectr1, . . . , ectrn);
3. C and S execute

(st′DB; EDB′)← ΣDB.AddC,S(stDB,KDB, u
+; EDB);

4. if EDB = EDB′ then S sets fail = 1 otherwise it sets
fail = 0;

5. S sends fail to C;
6. for all i ∈ [n],
(a) if fail = 0 and i ∈ Map1(u), then C and S execute

(⊥; ectr′i)← ∆ctr.EAddC,S(Ki,+1; ectri);

(b) otherwise they execute

(⊥; ectr′i)← ∆ctr.EAddC,S(Ki, 0; ectri);

7. C receives an updated state st′C = st′DB;
8. S receives an updated structure PEDB′ = (EDB′,

ectr′1, . . . , ectr′n).

– ERemoveC,S

((
stC,KC, u

−
)
; PEDB

)
:

– similar to EAdd except that
1. on line (3) C computes ΣDB.RemoveC,S(stDB,

KDB, u
−; EDB);

2. on line (6a) C and S execute

(⊥; ectr′i)← ∆ctr.EAddC,S(Ki,−1; ectri);

– EQueryC,S

((
stC,KC, q

)
; PEDB

)
:

1. C parses stC as stDB and KC as KDB;
2. S PEDB as (EDB, ectr1, . . . , ectrn);
3. C and S execute

(r;⊥)← ΣDB.QueryC,S(stDB,KDB, q; EDB)

4. C receives r;
5. S receives ⊥.

Fig. 2. HPX: our PSTE construction for histograms (Part 1).

– PHistA,S

((
KA, q

p
)
; PEDB

)
:

1. A parses KA as (K1, . . . ,Kn);
2. S parses PEDB as (EDB, ectr1, . . . , ectrn);
3. A and S execute

(rp;⊥)← ∆ctr.PReadA,S

(
Kqp ; ectrqp

)
4. A outputs rp and S outputs ⊥.

Fig. 3. HPX: our PSTE construction for histograms (Part 2).

of HPX is

O

(
timeuDB(v) + n · timectr(λ)

)
,

where timeuDB is the update complexity of the database
encryption scheme ΣDB, timectr is the add complexity
of the private counter encryption scheme ∆ctr, n is the
number of bins in the histogram, and λ is the upper
bound on the number of updates. We stress that even
though the update complexity is linear in n, the number
of bins is often decided a-priori by the analyst and is
usually a small constant [4, 48, 58, 66]. In this case, the
update complexity of HPX is

O

(
timeuDB(v) + timectr(λ)

)
.

The round complexity of both EAdd and a ERemove is

O

(
roundsuDB(v) + roundsactr(λ)

)
,

where roundsuDB and roundsactr are the round complexities
of the update and the add protocols of ΣDB and ∆ctr,
respectively. The private query complexity of HPX is

O

(
timepctr(λ)

)
,

where timepctr is the private query complexity of ∆ctr.
Similarly, the round complexity is equal to the round
complexity of the private query complexity of ∆ctr.

Additional remarks about update complexity. As
discussed above, in practice, the number of bins is a
small constant but there are applications where the
number of bins might be ω(1). In particular, Sturges [61]
shows that, when the data is approximately normally
distributed, then setting n to

n = 1 + dlog |U|e

is sufficient for data analytics, where U is the update
space of the database. In this case, the update complex-
ity is equal to

O

(
timeuDB(v) + log |U| · timectr(λ)

)
.

Encrypted Databases for Differential Privacy 183

Note also that there is a variant of our construction that
reduces the update complexity to

O

(
timeuDB(v) + n

)
.

at the cost of increasing the private query complexity
to

O

(
timepctr(λ) + log λ · timectr(λ)

)
Due to space limitation, we defer the details of this vari-
ant to the full version of this work.

Theorem 6.1. For each t ∈ [λ], HPX is (α, δ)-useful,
where α = O(1

ε · (log λ)
√

log λ · log 1
δ), and ε, δ > 0.

The utility of HPX is equal to the utility of CPX. This
is because for each private query, one of the counters is
read and returned.

6.2 Security

In the following, we detail the security guarantees of
HPX against standard, snapshot and statistical adver-
saries, respectively.

Security against a persistent adversary. The setup
leakage of HPX consists of the setup leakage of its un-
derlying building blocks. In particular, this includes the
setup leakage of the database encryption scheme and the
setup leakage of the encrypted private counter, for all n
counters. The query leakage is equal to the query leak-
age of the underlying database encryption scheme. The
update leakage, whether it is an add or remove leakage,
includes the update leakage of the underlying database
encryption scheme and, for all i ∈ [n], the add leakage of
the underlying encrypted private counter scheme. The
private query leakage of a query consists of, the private
query leakage of the underlying private counter scheme
along with the counter identifier. We now give a precise
description of HPX’s leakage profile and show that it is
adaptively-secure with respect to it. Its setup leakage is

LS(DB) =
(
Ldb

S (DB),
(
Lctr

S (ctri)
)
i∈[n]

)
.

Its query leakage is equal to

LQ(DB, q) = Ldb
Q (DB, q).

Its respective add and remove leakages LA and LR on
the respective add and remove updates u+ and u− are
equal to for all a ∈ {−1, 0, 1}

LA(DB, u+) =
(
Ldb

A (DB, u+),
(
Lctr

A (ctri, a)
)
i∈[n]

)
,

LR(DB, u−) =
(
Ldb

R (DB, u−)),
(
Lctr

A (ctri, a)
)
i∈[n]

)
.

Its private query leakage is equal to

LP(DB, qp) =
(
qp,Lctr

P (ctrqp ,⊥)
)
.

Theorem 6.2. If ΣDB is (Ldb
S ,Ldb

Q ,Ldb
A ,Ldb

R)-secure,
and ∆ctr is (Lctr

S ,Lctr
A ,Lctr

P)-secure, then HPX is (LS,LQ,

LA,LR,LP)-secure.

The proof of Theorem 6.2 deferred to the full version of
the paper.

Security against a snapshot adversary. The snap-
shot leakage LSN of HPX is equal to the snapshot leak-
age of its underlying primitives such that

LSN(DB,σi) =
(
Ldb

SN(DB,σi),
(
Lctr

SN(ctrj ,σi)
)
j∈[n]

)
.

Theorem 6.3. If ΣDB is (m,Ldb
SN)-snapshot secure, and

∆ctr is (m,Lctr
SN)-snapshot secure, then HPX is (m,LSN)-

snapshot secure.

The proof of Theorem 6.3 is deferred to the full version
of the paper. Clearly, if both ΣDB and ∆ctr are breach-
resistant then HPX is breach-resistant as well based on
Definition 4.6.

Leakage vs. update complexity and utility. Recall
that the update complexity is linear in n because all
the counters are updated during an HPX update. More
precisely, the counters in Map1(v) are incremented with
+1/− 1 and the rest are incremented with 0. This is to
hide the identity of the counters in Map1(v) from the
adversaries. If one is willing to leak this, the update
complexity improves to

O

(
timeuDB(v) + |Map1(v)| · timectr(λ)

)
,

while the add/remove leakage and the snapshot leak-
age will now include, in addition, the identities of the
updated counters Map1(v). This will also improve the
utility of the counters because, roughly speaking, they
will be incremented less often so less noise will be added.

Security against a statistical adversary. To show
that our HPX construction is differentially private, we
need to show that PHist is differentially private as per
Definition 4.7. For this, we first show that any two neigh-
boring update operation sequences induce operation se-
quences on the counters that differ in at most two time
places (refer to Lemma D.2).As the next step of the

Encrypted Databases for Differential Privacy 184

proof, we show that, given that ∆ctr is differentially pri-
vate, PHist is differentially private. We state below our
main theorem.

Theorem 6.4. If ∆ctr is ε-differentially-private, then
HPX is 2ε ·maxu∈U(|Map1(u)|)-differentially private as
per Definition 4.7.

We provide the proof of Theorem 6.4 in Appendix D.1.

7 Handling Collusions
In this Section, we describe how our constructions can
be extended to handle collusions.

Snapshot and statistical adversary. First, note that
collusion between a snapshot and statistical adversary
is equivalent to the adversary considered in the pan-
privacy literature. In [19], Chan et al. construct a pan-
private counter for a single unannounced intrusion and
multiple announced intrusions based on the same bi-
nary mechanism described in Section 5. In the former,
additional noise is added to all the nodes of the bi-
nary tree during setup to prevent the adversary from
getting the real node values at the time of intrusion.
This added noise protects against the intrusion but de-
grades the utility by a factor of 2. They then extend
this method to support multiple announced intrusions
by adding increasing amounts of noise and further de-
grading the utility. In particular, k intrusions reduce the
utility by O(

√
k + 1).

To handle this kind of collusion, it suffices to replace
all the counters in CPX with the pan-private counters
of [19]. To encrypt the database, we then use snapshot-
secure STE scheme with zero-leakage; that is, with leak-
age that reveals at most some public parameter (e.g.,
the security parameter or any parameter that is chosen
independently of the database). Note that this is simple
to achieve by padding the database and encrypting it
with a breach-resistant STE scheme [5].

Persistent and statistical adversary. This is a
stronger setting than above because achieving differen-
tial privacy requires us to hide whether an add or a
remove operation occurred. This is particularly difficult
to do against an adversary that holds the encrypted
database EDB because the size of EDB before and af-
ter an operation reveals which operation occured. This
essentially requires us to use an EDB with zero-leakage
updates. Another challenge is that many STE schemes

leak the sizes of query responses which could be cor-
related with the size of EDB. To handle this, we need
to use an STE scheme with zero-leakage queries. One
possible instantiation is to make use of ORAM simula-
tion [33] where all query responses in the database have
to be padded to be equal to the same length– a function
of some public parameter. This instantiation, however,
will induce a polylogarithmic multiplicative overhead on
both the query and update complexities.

Notice that when the persistent and statistical ad-
versaries collude, there is no need to encrypt the coun-
ters since the analyst holds the decryption key. In addi-
tion, since the server samples the noise for the counters,
it can easily infer the increments made. We can there-
fore use plaintext counters maintained in a simple reg-
ister (i.e., there is no need to use the binary tree mech-
anism of Chan et al.) and use the following approach
to maintain them. To increment the counters, the cura-
tor sends to the server an increment of +1/− 1/0 with
noise for each counter. Upon receiving the noisy incre-
ment, it adds it to the current value in the register. The
PRead protocol returns the current register value. We
note that this approach is similar to the second simple
counting mechanism of [19]. In fact, using a proof very
similar to that of Theorem 1.3 of [19], this approach can
be shown to be ε-differentially private and (α, δ)-useful,
where α = O

(√
λ
ε · log 1

δ

)
and ε, δ > 0. Note that this

approach meets Dwork et al.’s lower bound of
√
k on

utility for k intrusions [26], proving that this construc-
tion is almost tight.

8 Efficiency Estimates
In this Section, we estimate the efficiency of our con-
struction. To do this we conducted micro-benchmarks
of all the building blocks and then estimated the cost of
the various HPX operations. We now explain why our
methodology is sound. Recall that the update complex-
ity of HPX is

timeuDB(v) + n · timectr(λ),

and timectr(λ) = log λ · timeAHE. Since, the add complex-
ity of the private encrypted counter is independent of
the data and is fixed, the update complexity of HPX on
real data depends solely on the update complexity of the
database encryption scheme timeuDB (since we use the
database encryption scheme in a black-box way). Note
that this time depends on the specific instantiation used
and these running times have been well documented in

Encrypted Databases for Differential Privacy 185

the relevant works [5, 11, 17, 18]. The same argument
holds for encrypted queries and private queries.

Experimental setup. We consider the case where the
additively-homomorphic encryption scheme is instanti-
ated with Paillier [55]. We further assume the database
is a multi-map and is encrypted using DLS, the dual-
secure multi-map encryption scheme of Amjad, Kamara
and Moataz [5]. We used implementations of Paillier and
DLS from the Javaillier [1] and Clusion libraries [52],
respectively. Our test environment was a MacBook Pro
3.1 GHz Intel Core i7 with 16 GB of memory.

Micro-benchmarks. We instantiated Paillier with a
2048-bit key. Key generation, encryption, decryption
and addition took on average 446, 70, 18 and 0.08 ms,
respectively. Experiments in [5] reported that with a
multi-map MM holding 10 millions pairs, their multi-
map encryption scheme DLS took 10 minutes during
Setup, 1 microsecond during Get and 33 ms during Put.
We used Sturges’ formula on our dataset to determine
the bins, which resulted in 25 bins. We set λ = 232 ≈ 4.3
billion.

Estimates. Based on the micro-benchmarks above, for
a multi-map holding 10 million pairs, we have the fol-
lowing estimates for the HPX operations:

– Setup takes timesetup
MM + n · timekeygen

AHE ≈ 10.19 mins.
– EAdd and ERemove take

timeput
MM + n · log λ · (timeadd

AHE + timeenc
AHE) ≈ 0.945 ms.

– EQuery takes timeget
MM = 1 microsecond.

– PQuery takes log λ · timeadd
AHE + timedec

AHE ≈ 21.172 ms.

9 Acknowledgement
This research received no specific grant from any fund-
ing agency in the public, commercial, or not-for-profit
sectors.

References
[1] Javallier. https://github.com/snipsco/paillier-libraries-

benchmarks/tree/master/java-javallier.
[2] J. Abowd. The challenge of scientific reproducibility and

privacy protection for statistical agencies., 15 September
2016. https://www2.census.gov/cac/sac/meetings/2016-
09/2016-abowd.pdf.

[3] G. Acs and C. Castelluccia. A case study: privacy preserving
release of spatio-temporal density in paris. In Proceedings of

the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 1679–1688. ACM,
2014.

[4] G. Acs, C. Castelluccia, and R. Chen. Differentially private
histogram publishing through lossy compression. In 2012
IEEE 12th International Conference on Data Mining, pages
1–10. IEEE, 2012.

[5] G. Amjad, S. Kamara, and T. Moataz. Breach-resistant
structured encryption. IACR Cryptology ePrint Archive,
2018:195, 2018.

[6] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and
C. Palamidessi. Geo-indistinguishability: Differential privacy
for location-based systems. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications
security, pages 901–914. ACM, 2013.

[7] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry,
and K. Talwar. Privacy, accuracy, and consistency too: a
holistic solution to contingency table release. In Proceedings
of the twenty-sixth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 273–282.
ACM, 2007.

[8] G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu,
A. Roth, and P.-Y. Strub. Higher-order approximate rela-
tional refinement types for mechanism design and differential
privacy. ACM SIGPLAN Notices, 50(1):55–68, 2015.

[9] A. Blum, K. Ligett, and A. Roth. A learning theory ap-
proach to noninteractive database privacy. Journal of the
ACM (JACM), 60(2):12, 2013.

[10] R. Bost. Sophos - forward secure searchable encryption. In
ACM Conference on Computer and Communications Secu-
rity (CCS ’16), 20016.

[11] R. Bost, B. Minaud, and O. Ohrimenko. Forward and back-
ward private searchable encryption from constrained cryp-
tographic primitives. In ACM Conference on Computer and
Communications Security (CCS ’17), 2017.

[12] J. A. Calandrino, A. Kilzer, A. Narayanan, E. W. Felten,
and V. Shmatikov. " you might also like:" privacy risks of
collaborative filtering. In Security and Privacy (SP), 2011
IEEE Symposium on, pages 231–246. IEEE, 2011.

[13] J. Cao, Q. Xiao, G. Ghinita, N. Li, E. Bertino, and K.-L.
Tan. Efficient and accurate strategies for differentially-
private sliding window queries. In Proceedings of the 16th
International Conference on Extending Database Technol-
ogy, pages 191–202. ACM, 2013.

[14] Y. Cao and M. Yoshikawa. Differentially private real-time
data release over infinite trajectory streams. In Mobile Data
Management (MDM), 2015 16th IEEE International Confer-
ence on, volume 2, pages 68–73. IEEE, 2015.

[15] Y. Cao and M. Yoshikawa. Differentially private real-time
data publishing over infinite trajectory streams. IEICE
TRANSACTIONS on Information and Systems, 99(1):163–
175, 2016.

[16] Y. Cao, M. Yoshikawa, Y. Xiao, and L. Xiong. Quantifying
differential privacy under temporal correlations. In Data En-
gineering (ICDE), 2017 IEEE 33rd International Conference
on, pages 821–832. IEEE, 2017.

[17] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-
C. Rosu, and M. Steiner. Dynamic searchable encryption in
very-large databases: Data structures and implementation.
In NDSS, volume 14, pages 23–26. Citeseer, 2014.

https://github.com/snipsco/paillier-libraries-benchmarks/tree/master/java-javallier
https://github.com/snipsco/paillier-libraries-benchmarks/tree/master/java-javallier
https://www2.census.gov/cac/sac/meetings/2016-09/2016-abowd.pdf
https://www2.census.gov/cac/sac/meetings/2016-09/2016-abowd.pdf

Encrypted Databases for Differential Privacy 186

[18] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. Highly-scalable searchable symmetric encryption
with support for boolean queries. In Advances in Cryptology
- CRYPTO ’13. Springer, 2013.

[19] T.-H. H. Chan, E. Shi, and D. Song. Private and continual
release of statistics. ACM Transactions on Information and
System Security (TISSEC), 14(3):26, 2011.

[20] M. Chase and S. Kamara. Structured encryption and con-
trolled disclosure. In Advances in Cryptology - ASIACRYPT
’10, volume 6477 of Lecture Notes in Computer Science,
pages 577–594. Springer, 2010.

[21] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky.
Searchable symmetric encryption: improved definitions
and efficient constructions. Journal of Computer Security,
19(5):895–934, 2011.

[22] A. Differential Privacy Team. Learning with privacy at scale.
[23] I. Dinur and K. Nissim. Revealing information while pre-

serving privacy. In Proceedings of the twenty-second ACM
SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 202–210. ACM, 2003.

[24] C. Dwork. Differential privacy: A survey of results. In Inter-
national Conference on Theory and Applications of Models
of Computation, pages 1–19. Springer, 2008.

[25] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrat-
ing noise to sensitivity in private data analysis. In TCC,
volume 3876, pages 265–284. Springer, 2006.

[26] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Differ-
ential privacy under continual observation. In Proceedings of
the forty-second ACM symposium on Theory of computing,
pages 715–724. ACM, 2010.

[27] C. Dwork, M. Naor, T. Pitassi, G. N. Rothblum, and
S. Yekhanin. Pan-private streaming algorithms. In ICS,
pages 66–80, 2010.

[28] C. Dwork, A. Roth, et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theoretical
Computer Science, 9(3–4):211–407, 2014.

[29] C. Dwork and G. N. Rothblum. Concentrated differential
privacy. arXiv preprint arXiv:1603.01887, 2016.

[30] Ú. Erlingsson, V. Pihur, and A. Korolova. Rappor: Random-
ized aggregatable privacy-preserving ordinal response. In
Proceedings of the 2014 ACM SIGSAC conference on com-
puter and communications security, pages 1054–1067. ACM,
2014.

[31] G. Fanti, V. Pihur, and Ú. Erlingsson. Building a rappor
with the unknown: Privacy-preserving learning of associa-
tions and data dictionaries. Proceedings on Privacy Enhanc-
ing Technologies, 2016(3):41–61, 2016.

[32] E.-J. Goh. Secure indexes. Technical Report 2003/216,
IACR ePrint Cryptography Archive, 2003. See http://eprint.
iacr.org/2003/216.

[33] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. Journal of the ACM (JACM),
43(3):431–473, 1996.

[34] P. Grubbs, T. Ristenpart, and V. Shmatikov. Why your
encrypted database is not secure. In Proceedings of the
16th Workshop on Hot Topics in Operating Systems, pages
162–168. ACM, 2017.

[35] N. Johnson, J. P. Near, and D. Song. Towards practical
differential privacy for sql queries. Vertica, 1:1000.

[36] S. Kamara. Restructuring the NSA metadata program. In
Workshop on Applied Homomorphic Cryptography, Lecture
Notes in Computer Science. Springer, 2014.

[37] S. Kamara and T. Moataz. Sql on structurally-encrypted
databases. IACR Cryptology ePrint Archive, 2016:453, 2016.

[38] S. Kamara and T. Moataz. SQL on structurally-encrypted
databases. IACR Cryptology ePrint Archive, 2016:453, 2016.

[39] S. Kamara and T. Moataz. Boolean searchable symmetric
encryption with worst-case sub-linear complexity. In Ad-
vances in Cryptology - EUROCRYPT 2017 - 36th Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part III, pages 94–124, 2017.

[40] S. Kamara, T. Moataz, and O. Ohrimenko. Structured
encryption and leakage suppression. In H. Shacham and
A. Boldyreva, editors, Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings,
Part I, volume 10991 of Lecture Notes in Computer Science,
pages 339–370. Springer, 2018.

[41] S. Kamara and C. Papamanthou. Parallel and dynamic
searchable symmetric encryption. In International Confer-
ence on Financial Cryptography and Data Security, pages
258–274. Springer, 2013.

[42] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic
searchable symmetric encryption. In Proceedings of the 2012
ACM conference on Computer and communications security,
pages 965–976. ACM, 2012.

[43] S. Kamara and L. Wei. Garbled circuits via structured en-
cryption. In Financial Cryptography Workshops, pages 177–
188, 2013.

[44] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhod-
nikova, and A. Smith. What can we learn privately? SIAM
Journal on Computing, 40(3):793–826, 2011.

[45] G. Kellaris, S. Papadopoulos, X. Xiao, and D. Papadias.
Differentially private event sequences over infinite streams.
Proceedings of the VLDB Endowment, 7(12):1155–1166,
2014.

[46] K. Lewi and D. Wu. Order-revealing encryption: New con-
structions, applications, and lower bounds. In ACM Confer-
ence on Computer and Communications Security (CCS ’16),
2016.

[47] H. Li, L. Xiong, and X. Jiang. Differentially private synthe-
sization of multi-dimensional data using copula functions. In
Advances in database technology: proceedings. International
Conference on Extending Database Technology, volume
2014, page 475. NIH Public Access, 2014.

[48] H. Li, L. Xiong, X. Jiang, and J. Liu. Differentially private
histogram publication for dynamic datasets: an adaptive
sampling approach. In Proceedings of the 24th ACM In-
ternational on Conference on Information and Knowledge
Management, pages 1001–1010. ACM, 2015.

[49] A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and
L. Vilhuber. Privacy: Theory meets practice on the map.
In Proceedings of the 2008 IEEE 24th International Confer-
ence on Data Engineering, pages 277–286. IEEE Computer
Society, 2008.

[50] F. McSherry and K. Talwar. Mechanism design via differ-
ential privacy. In Foundations of Computer Science, 2007.
FOCS’07. 48th Annual IEEE Symposium on, pages 94–103.

http://eprint.iacr.org/2003/216
http://eprint.iacr.org/2003/216

Encrypted Databases for Differential Privacy 187

IEEE, 2007.
[51] X. Meng, S. Kamara, K. Nissim, and G. Kollios. Grecs:

graph encryption for approximate shortest distance queries.
In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 504–517.
ACM, 2015.

[52] T. Moataz. Clusion. https://github.com/encryptedsystems/
Clusion.

[53] A. Narayanan and V. Shmatikov. Robust de-anonymization
of large sparse datasets. In Security and Privacy, 2008. SP
2008. IEEE Symposium on, pages 111–125. IEEE, 2008.

[54] M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic
searchable encryption via blind storage. In Security and
Privacy (SP), 2014 IEEE Symposium on, pages 639–654.
IEEE, 2014.

[55] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages
223–238. Springer, 1999.

[56] R. Poddar, T. Boelter, and R. A. Popa. Arx: A strongly
encrypted database system. IACR Cryptology ePrint Archive,
2016:591, 2016.

[57] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrish-
nan. Cryptdb: protecting confidentiality with encrypted
query processing. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, pages 85–100.
ACM, 2011.

[58] W. Qardaji, W. Yang, and N. Li. Understanding hierarchical
methods for differentially private histograms. Proceedings of
the VLDB Endowment, 6(14):1954–1965, 2013.

[59] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-
P. Hubaux. Quantifying location privacy. In Security and
privacy (sp), 2011 ieee symposium on, pages 247–262. IEEE,
2011.

[60] D. Song, D. Wagner, and A. Perrig. Practical techniques for
searching on encrypted data. In IEEE Symposium on Re-
search in Security and Privacy, pages 44–55. IEEE Computer
Society, 2000.

[61] H. A. Sturges. The choice of a class interval. Journal of the
american statistical association, 21(153):65–66, 1926.

[62] L. Sweeney. k-anonymity: A model for protecting pri-
vacy. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10(05):557–570, 2002.

[63] K. Tezapsidis. Uber releases open source project for dif-
ferential privacy, 13 July 2017. https://medium.com/
uber-security-privacy/differential-privacy-open-source-
7892c82c42b6.

[64] Y. Xiao and L. Xiong. Protecting locations with differential
privacy under temporal correlations. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1298–1309. ACM, 2015.

[65] Y. Xiao, L. Xiong, L. Fan, and S. Goryczka. Dpcube: differ-
entially private histogram release through multidimensional
partitioning. arXiv preprint arXiv:1202.5358, 2012.

[66] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett.
Differentially private histogram publication. The VLDB
Journal - The International Journal on Very Large Data
Bases, 22(6):797–822, 2013.

[67] Y. Zhang, A. O’Neill, M. Sherr, and W. Zhou. Privacy-
preserving network provenance. Proc. VLDB Endow.,

10(11):1550–1561, Aug. 2017.

A Setting Up Counters
Dynamically

We provide a high level idea of how a private counter
can be set up dynamically at run time. Assume the new
counter ectrN needs to be set up between the tth and
t + 1th update operations. As a first step, the curator,
the server and the analyst execute ∆ctr.Setup to initialize
the new counter ectrN at the server. The curator then
queries EDB with ΣDB.Query to compute the count of
ectrN . Let r be the response.

Depending on how Query is implemented, r itself
can be the count for ectrN or it can be a set whose
cardinality is the count of ectrN . Here, assume that r is
the count. Since each update operation can increment a
counter at most by 1, we know that t ≥ r. The curator
then initializes ectrN by executing ∆ctr.EAdd a total of
r times with value 1, and ∆ctr.EAdd a total of t−r times
with value 0.

We note that this dynamic setup process is differ-
ent than the standard one but that it only affects the
leakage provided to a persistent adversary. For exam-
ple, the server now learns the exact count r of ectrN
as well as the “query” associated with the new counter.
However, the new scheme remains breach-resistant since
the snapshot adversary only learns that a new counter
has been setup. Moreover, it is also differentially private
against the analyst since the steps taken to initialize the
counter in the middle are equivalent to the steps that
would have been taken, had the counter been set up in
the beginning.

B Correctness and security
definition of STE

Security. The standard notion of security for STE
guarantees that: (1) an encrypted structure reveals no
information about its underlying structure beyond the
setup leakage LS; (2) that the query protocol reveals no
information about the structure and the queries beyond
the query leakage LQ; and that (3) the add/remove pro-
tocols reveal no information about the structure and

https://github.com/encryptedsystems/Clusion
https://github.com/encryptedsystems/Clusion
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6

Encrypted Databases for Differential Privacy 188

the updates u+/u− beyond the add/remove leakages
LA/LR.

If this holds for non-adaptively chosen operations
then the scheme is said to be non-adaptively secure. If,
on the other hand, the operations can be chosen adap-
tively, the scheme is said to be adaptively-secure.

Definition B.1 (Adaptive security of interactive STE).
Let Σ = (Setup,Query,Add,Remove) be an interactive
dynamic STE scheme and consider the following prob-
abilistic experiments where A is a stateful adversary, S
is a stateful simulator, LS, LQ, LAand LR are leakage
profiles and z ∈ {0, 1}∗:
RealΣ,A(k): given z the adversary A outputs a struc-

ture DS and receives EDS from the challenger, where
(st,K,EDS) ← Setup(1k,DS). The adversary then
adaptively chooses a polynomial number of opera-
tions op1, . . . , opm such that opi is either a query
qi or an update u+

i or u−i . For all i ∈ [m], if
opi = qi, the adversary and the challenger ex-
ecute the protocol Query, and the challenger re-
ceives an updated state st′ and a response r while
the adversary receives nothing, where (st′, r;⊥) ←
Query(st,K, qi; EDS). If, opi = u+

i , the adversary
and the challenger execute the protocol Add, and
the challenger receives an updated state st′, while
the adversary receives an updated encrypted struc-
ture EDS′, where (st′; EDS′) ← Add(st,K, u+

i ; EDS).
If, on the other hand, opi = u−i , the adversary and
the challenger execute the protocol Remove, and the
challenger receives an updated state st′, while the
adversary receives an updated encrypted structure
EDS′, where (st′; EDS′) ← Remove(st,K, u−i ; EDS).
Finally, A outputs a bit b that is output by the ex-
periment.

IdealΣ,A,S(k): given z the adversary A generates a
structure DS which it sends to the challenger. Given
z and leakage LS(DS) from the challenger, the sim-
ulator S returns an encrypted structure EDS to A.
The adversary then adaptively chooses a polyno-
mial number of operations op1, . . . , opm such that
opi is either a query qi or an update u+

i or u−i .
For all i ∈ [m], if opi = qi, the simulator re-
ceives the query leakage LQ(DS, qi) and executes
Query(LQ(DS, qi); EDS) with the adversary. The ad-
versary receives nothing as output. If, opi = u+

i ,
the adversary the simulator receives the add leak-
age LA(DS, u+

i) and executes Add(LA(DS, u+
i); EDS)

with the adversary. The adversary receives an up-
dated structure EDS′ as output. If, on the other
hand, opi = u−i , the adversary the simulator re-

ceives the remove leakage LR(DS, u−i) and executes
Remove(LR(DS, u−i); EDS) with the adversary. The
adversary receives an updated structure EDS′ as out-
put. Finally, A outputs a bit b that is output by the
experiment.

We say that Σ is adaptively (LS,LQ,LA,LR)-secure if
there exists a ppt simulator S such that for all ppt
adversaries A, for all z ∈ {0, 1}∗,∣∣Pr

[
RealΣ,A(k) = 1

]
− Pr

[
IdealΣ,A,S(k) = 1

]∣∣ ≤ negl(k).

Correctness. We say that a dynamic STE scheme Σ
is correct if for all k ∈ N, for all poly(k)-size structures
DS0, for all (K, st0,EDS0) output by Setup(1k,DS0), for
all sequences of m = poly(k) operations op1, . . . , opm
such that opi ∈ {qi, ui}, for all i ∈ [m], if opi = qi,
Query(sti−1,K, qi; EDSi−1) returns, with all but negli-
gible probability, a response ri equal to the result of
querying DSi−1 with qi; where sti−1 is the output of
the Add, Remove or Query protocols, while EDSi−1 and
DSi result from applying all update operations in the
sequence (op1, · · · , opi−1) to EDS0 and to DS0, respec-
tively.

C CPX Proofs

C.1 Proof of Theorem 5.1

Theorem 5.1. For each t ∈ [λ], CPX is (α, δ)-useful,
where α = O(1

ε · (log λ)
√

log λ · log 1
δ), and ε, δ > 0.

Proof. The proof is similar to the proof of utility of
Chan et al.’s counter [19]. The main difference is the sen-
sitivity of the “sum” function. Chan et al. consider Add
operands from {0, 1} whereas we consider Add operands
from {−1, 0, 1}. Because of this the senstivity of our
“sum” function is 2 as opposed to 1. In turn, this affects
the differential privacy by a multiplicative factor of 2
but this can be factor traded-off for utility by scaling
the Laplacian noise appropriately. Note that this factor
is subsumed above in the asymptotic notation.

D HPX Proofs

D.1 Proof of Theorem 6.4

Recall that in our construction, every update operation
of the curator induces an EAdd operation on all the
counters. The operand however differs from counter to

Encrypted Databases for Differential Privacy 189

counter. For example, a successful ERemove of operand o
by the curator leads to a −1 being added to all counters
in Map1(o), while 0 to the rest of the counters. Simi-
larly, a successful EAdd of operand o leads to a 1 being
added to all counters in Map1(o), while 0 to the rest of
the counters. Therefore, the operation that is induced
on the counters is always EAdd but the operands come
from {−1, 0, 1}. We therefore slightly abuse the nota-
tion and say that a curator’s update operation induces
an operation in {−1, 0, 1} on the counters.

Before introducing our lemma and our main
theorem, we set up some notations. Let σ =(
(op1, o1), . . . , (opλ, oλ)

)
be an update operation se-

quence, where opi ∈ {EAdd,ERemove} and oi ∈ U. For
all i ∈ [n], we define a new mapping Mapi2 that, in-
tuitively, creates the operation sequences in {−1, 0, 1}λ

for the ith counter. We call these sequences the counter
mapped sequences. Formally, for each j ∈ [λ], we have,

Mapi2[σj] =

1 if opj = EAdd and j ∈ Map1(oj)

−1 if opj = ERemove and j ∈ Map1(oj)

0 otherwise.

Also, for every i ∈ [n], we define another mapping
Mapi3, that captures whether the jth operation in the
update operation sequence is successful or not. We call
these sequences the operation mapped sequences. For-
mally,

Mapi3
[
Mapi2[σj]

]
=

 Mapi2[σj] if oj succeeds

0 otherwise.

We abuse the notation and we set

Mapi2[σ] =
(
Mapi2[σj])j∈[λ]

and similarly

Mapi3
[
Mapi2[σ]

]
=
(

Mapi3
[
Mapi2[σj]

])
j∈[λ]

.

In the following, we show that any update operation
sequences that differ in at most one operation, lead to
two operation mapped sequences that differ in at most
two operations.

We first start by showing that any two counter
mapped sequences that differ in at most one operation,
lead to two operation mapped sequences that differ in at
most two operations. Note that this result only applies
to set-like failures.

Lemma D.1. Let σ, σ′ be any neighboring update op-
eration sequences such that for all i ∈ [n],

∣∣∣∣Mapi2[σ] −
Mapi2[σ′]

∣∣∣∣ ≤ 1, then we have∣∣∣∣∣∣∣∣Mapi3
[
Mapi2[σ]

]
−Mapi3

[
Mapi2[σ′]

]∣∣∣∣∣∣∣∣ ≤ 2

Proof. For simplicity assume that all operations (opi, oi)
in the update operation sequence σ that map to the ith
counter operate on the same operand. Formally, for all
i, j ∈ [λ], if Map1(oi) ∩ Map1(oj) 6= ⊥, then oi = oj . 4

We assume the same thing for σ′ as well.
We now do the rest of the proof for counter i. Let

µ = Mapi2[σ], µ′ = Mapi2[σ′], µ̃ = Mapi3(µ) and µ̃′ =
Mapi3(µ′), for any i ∈ [n]. We also denote by DB0 and
DB′0 the underlying plaintext database before applying
the sequence of operations in σ and σ′, respectively.

Let t ≤ λ be the position at which the two sequences
µ and µ′ differ at. Then µ̃j = µ̃′j , for all j < t. This
simply holds by definition of the operation mapped se-
quences. Note that this also implies that the databases,
after the t first operations, contain the same items and
we write DBt−1 = DB′t−1. So in order to proof the lemma
we need to show that in the remaining positions, i.e., for
all j ∈ {t, · · · , λ}, µ̃ and µ̃′ differ at most at two places.
That is, our proof reduces to a counting problem where
we need to count the number of indices in {t, · · · , λ}
where µ̃ and µ̃′ differ.

Consider the tth operation µt and µ′t. There are
three possiblities where µt and µ′t are different: (1) µt =
1, µ′t = −1, (2) µt = 0, µ′t = −1, or (3) µt = 1, µ′t = 0.
The other three cases are symmetrical and we ignore
them without any loss of generality. We now try to in-
fer what the tth operand ot and o′t respectively must be
in σ and σ′ in these three cases. In (1), ot = o′t because
otherwise either Map2[σt] 6= i or Map2[σ′t] 6= i leading to
either µt = 0 or µ′t = 0. Let us define o = ot = o′t. In
(2), let o = o′t, while in (3) let o = ot.

Let us now consider case (1) again (when µt =
1, µ′t = −1) with o defined as above and count the
number of indices in {t, · · · , λ} where µ̃ and µ̃′ differ.
The other two cases can be proven on similar lines.
Recall that DBt−1 = DB′t−1, therefore there are two
cases at this point : (a) o /∈ DBt−1,DB′t−1; and (b)
o ∈ DBt−1,DB′t−1. Again these cases are symmetrical,
so we just describe case (a) in the following.

4 Note that the general case where operations may have differ-
ent operands can be reduced to the same operand case detailed
above. To see why, we can simply map different operands to
different sub-sequences in such a way that every sub-sequence
operates on the same operand. Note that there will be only one
sub-sequence that have different operations in this case.

Encrypted Databases for Differential Privacy 190

Since o /∈ DBt−1 and µt = 1 =⇒ opt = EAdd, the
operation must be successful. Therefore µ̃t = 1 and the
database changes to DBt such that o ∈ DBt. However,
since v /∈ DB′t−1 and µ′t = −1 =⇒ ERemove, the opera-
tion fails. Therefore, µ̃′t = 0 and the database becomes
DB′t such that v /∈ DB′t.

We now show that after applying the next operation
µt+1 to DBt and µ′t+1 to DB′t, either DBt+1 = DB′t+1
and µ̃t+1 6= µ̃′t+1 (thereby producing the second dif-
fering index); or DBt+1 = DBt and DB′t+1 = DB′t but
µ̃t+1 = µ̃′t+1 (at which point the argument can be re-
peated until the next instance at which the operation
mapping differs). Once the databases become the same,
they remain similar for the remaining operations as all
the operations in µ and µ′ are the same. Hence no more
different indices are produced. In particular, consider
µt+1 and µ′t+1 and all the possible values it can take:

1. µt+1 = µ′t+1 = 1. Since o ∈ DBt, the operation µt+1
fails. Therefore, µ̃t+1 = 0 and the database does not
change making DBt+1 = DBt such that o ∈ DBt+1.
However, since o /∈ DB′t and µ′t+1 = 1, the operation is
successful. Therefore µ̃′t = 1 and the database changes
to DB′t+1 such that o ∈ DB′t. Notice that DBt+1 =
DB′t+1.

2. µt+1 = µ′t+1 = −1. This is similar to the above. In the
end, o /∈ DBt+1,DB′t+1 and DBt+1 = DB′t+1.

3. µt+1 = µ′t+1 = 0. Since both µt+1 and µ′t+1 are 0, the
databases do not change but µ̃t+1 = µ̃′t+1.

This ends our proof.

While the previous lemma assumes the counter mapped
sequences to be neighbors, we show that the lemma even
holds when we assume only the update operation se-
quences to be neighbors.

Lemma D.2. Given any two update operation se-
quences σ and σ′ such that ||σ − σ′|| ≤ 1, and for any
i ∈ [n], we have∣∣∣∣∣∣∣∣Mapi3

[
Mapi2[σ]

]
−Mapi3

[
Mapi2[σ′]

]∣∣∣∣∣∣∣∣ ≤ 2

Proof. Given two neighboring update operation se-
quences σ and σ′, it is clear that the resulting counter
mapped sequences, for any i ∈ [n], will differ in at most 1
position (and that position will be same as the position
at which σ and σ′ differ). This is because one update
operation can map to one and only one operation in the
counter mapped sequences. Therefore, we have that for

any i ∈ [n], ∣∣∣∣Mapi2(σ)−Mapi2(σ′)
∣∣∣∣ ≤ 1.

Based on the result of Lemma D.1, we can then conclude
our proof.

Since an update u ∈ U can be mapped to |Map1(u)|
counters, the overall privacy is degraded by a multi-
plicative maxu∈U |Map1(u)| factor.

Given the results of the lemma above, we now state
our main theorem.
Theorem 6.4. If ∆ctr is ε-differentially-private, then
HPX is 2ε ·maxu∈U(|Map1(u)|)-differentially private as
per Definition 4.7.

Proof. In HPX, every counter is implemented using ∆ctr
which is an ε-differentially private counter on neigh-
boring sequences in {−1, 0, 1}λ. However, if the se-
quences are not 1-distance (neighbors) apart but k-
distance apart, ∆ctr provides kε-differentially private
counters. We already showed in Lemma D.2 that neigh-
boring update operation sequences indeuce operation
sequences on individual counters that are 2-distance
apart. However, an update can map to multiple coun-
ters. In particular, an update u ∈ U can map to
|Map1(u)| counters, implying that we can have a maxi-
mum of maxu∈U(|Map1(u)| sequences that are 2-distance
apart. Leveraging the union bound we therefore prove
our theorem.

	Encrypted Databases for Differential Privacy
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 Structured Encryption

	4 Private Structured Encryption
	4.1 Correctness and Utility
	4.2 Security and Privacy

	5 CPX: A Private Encrypted Counter
	5.1 Efficiency and Utility
	5.2 Security

	6 HPX: An Encrypted Database for Private Histograms Queries
	6.1 Efficiency and Utility
	6.2 Security

	7 Handling Collusions
	8 Efficiency Estimates
	9 Acknowledgement
	A Setting Up Counters Dynamically
	B Correctness and security definition of STE
	C CPX Proofs
	C.1 Proof of Theorem 5.1

	D HPX Proofs
	D.1 Proof of Theorem 6.4

