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of Website Fingerprints with Deep Learning
Abstract: Recent advances in Deep Neural Network
(DNN) architectures have received a great deal of atten-
tion due to their ability to outperform state-of-the-art
machine learning techniques across a wide range of ap-
plication, as well as automating the feature engineering
process. In this paper, we broadly study the applica-
bility of deep learning to website fingerprinting. First,
we show that unsupervised DNNs can generate low-
dimensional informative features that improve the per-
formance of state-of-the-art website fingerprinting at-
tacks. Second, when used as classifiers, we show that
they can exceed performance of existing attacks across
a range of application scenarios, including fingerprinting
Tor website traces, fingerprinting search engine queries
over Tor, defeating fingerprinting defenses, and finger-
printing TLS-encrypted websites. Finally, we investigate
which site-level features of a website influence its finger-
printability by DNNs.
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1 Introduction
Website Fingerprinting (WF) refers to a network-level
traffic analysis attack in which the timing, direction,
and volume characteristics of encrypted traffic between
a web client and a proxy are used to identify the web-
sites visited by the user, or to attempt to differentiate
between visits tomonitored sites (which may be targeted
for censorship) and unmonitored ones. First introduced
by Hintz in 2002 [15], recent work has focused primarily
on the application of WF attacks to perhaps the most
widely-used anonymity network, Tor. In this context,
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1 Perceptron

the attacker monitors the traffic between a Tor client
and the guard relay, extracts features from this traffic,
and then attempts to classify this traffic based on these
features.

Security researchers have adopted a variety of ma-
chine learning algorithms for WF attacks on Tor. Wang
et al. [37] utilized k-Nearest Neighbors (k-NN) with a
new weight learning technique, Panchenko et al. [28]
proposed a scalable attack with Support Vector Ma-
chines (SVMs), and Hayes and Danezis [12] adapted
Random Forest classification (k-FP) to be resilient to
WF defenses and noise. 2 These classifiers have attained
high true positive rates (TPR) and low false positive
rates (FPR) at the cost of a great deal of human effort
in feature engineering and clever algorithm adaptations.
The primary contribution of each of these works was to
improve the performance of classifiers by introducing
new classifiers or discovering new feature sets.

Recently, Deep Neural Networks (DNNs) have
achieved impressive results in diverse research areas
such as image recognition [13, 22, 34]. Because DNNs
can use multiple layers to learn different levels of ab-
straction of input data [5] and can fit arbitrary functions
with little prior knowledge, they have the potential to
automate both types of contribution to the literature on
WF attacks.

There have been several efforts to apply DNN to
traffic analysis. Rimmer et al. [31] revisited WF with
deep learning algorithms using an immense dataset, and
Sirinam et al. [35] further evaluated DNN against re-
cent WF defenses. However, their work did not attempt
to isolate the benefits of automated feature engineer-
ing from classifier improvements, and they focused only
on the classification ability of deep learning for website
fingerprints. Even for the classification evaluation, their
experiments are primarily based on limited experimen-
tal scenarios such as the closed-world and open-world
binary classification settings, and using a single dataset.

In this paper, we further explore the applications
of DNNs to traffic analysis, including their use in fea-

2 In this paper, we refer specifically to these three prior studies
as state-of-the-art WF attacks in comparison to our work and
other concurrent studies applying deep learning classifiers
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ture extraction and selection, fingerprinting attacks, and
fingerprint prediction. We evaluate their performance
at these tasks across diverse experimental scenarios us-
ing different datasets, classification settings, and attack
and communication scenarios not covered in previous
work [31, 35].
Contributions. We summarize our key findings as fol-
lows:

Feature Engineering. To isolate the benefits of DNNs
as feature extractors versus classifiers, we investigate the
use of an autoencoder (AE), an unsupervised learning
technique, to extract low-dimensional representations of
a dataset, in combination with the classifiers used in
state-of-the-art WF attacks. We notice that when AE-
generated features are fed into state-of-the-art WF at-
tacks, classifiers become more powerful than when us-
ing hand-tailored feature sets from recent WF attacks
while requiring less computational cost. In particular,
even with feature vectors reduced to as few as 40 di-
mensions, classifier accuracy is still improved. This sug-
gests that AEs can be a powerful technique for feature
engineering in new traffic analysis attacks.

Varying Classification Tasks. We studied the suit-
ability of Multilayer Perceptrons (MLP) and Convo-
lutional Neural Networks (CNN) 3 as p-FP classifiers
(we use the names p-FP(M) for MLP and p-FP(C) for
CNN) in a wider range of settings than Rimmer et
al. [31] and Sirinam et al. [35]: in addition to identi-
fying top Alexa web sites in the closed-world and open-
world binary settings, we also study the performance of
these architectures in other WF tasks including open-
world multi-class classification, search query (keyword)
fingerprinting [26], Onion Service fingerprinting, TLS-
encrypted website fingerprinting, and WF against four
traffic padding schemes – BuFLO [10], Tamaraw [9],
WTF-PAD [18] and Walkie-Talkie [39].

We show that for all of these tasks, DNNs can
achieve equivalent or better results to those published in
the literature. In particular, p-FP(C) based on CNNs is
capable of identifying 100 monitored websites against
40,000 unmonitored websites with 94% true positive
rate and 0.009% false positive rate, using 30,000 traces
of monitored training data. We also show that BuFLO,
WTF-PAD, and Walkie-Talkie are less effective against

3 The MLP architecture features several layers of neurons, each
fully connected to the layer before it; a CNN convolves its in-
put with several local shared “filter” units, which are locally
“pooled” using a common function, before applying one or more
fully-connected layers; see Appendix A for further details

p-FP than previous classifiers, since we successfully con-
duct multiclass classification on 100 websites with 15%,
57%, and 49% accuracy, respectively.

Predicting Fingerprintability Say that a website w
is p-Fingerprintable by classifier c if open-world training
with w in the monitored set produces a classifier that
correctly identifies at least fraction p of instances of site
w. In light of the success of DNN-based classifiers, we
revisit the study of Overdorf et al. [27] to study the
influence on fingerprintability by these classifiers using
feature sets that only focus on elements in HTML docu-
ments, such as statistics about links and embedded web
content, which we call HTML features. To the best of
our knowledge, this is the first fingerprintability study
using DNNs and focusing only on website design-specific
features.

We find that several common features are influen-
tial for fingerprintability by both DNN and traditional
classifiers, and identify ranges for these features that are
common to less-fingerprintable sites. These results sug-
gest that website designers interested in helping users
avoid WF attacks (or onion service designers interested
in protecting the location of their servers) can use the
features we idenifty to predict the vulnerability of con-
tent pages and alter the HTML source code of those
pages accordingly.

Reproducibility We provide all source code and
datasets used in this paper on github. 4

2 Related Work
2.1 WF attacks
The importance of feature engineering for Tor WF with
cutting edge machine learning algorithms was first high-
lighted in 2011 by Panchenko et al. [29]. Their hand-
built features based on traffic volume and timing were
powerful enough to have high TPR in an open-world
scenario. Building on this, Wang and Goldberg [38] pro-
posed using Tor cell sequences as a new feature set and
used SVMs with edit-distance-based metrics to yield
classifiers with 95% TPR and 0.2% FPR. The k-NN clas-
sifiers with revised weight learning, proposed by Wang
et al. [37], enabled the attacker to achieve higher TPR
than prior WF attacks.

In 2016, Panchenko et al. [28] demonstrated more
scalable WF attacks with larger background datasets

4 https://github.com/seeunoh2/pFP
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than previous research. They described the CUMUL
classifier, using SVMs with a new feature set based on
cumulative traces, which obtained 96-97% TPR, higher
than k-NN classifiers [37]. Hayes and Danezis [12] con-
ducted a thorough analysis of new categorical features
and built k-FP classification models based on Random
Forests with Hamming distance. Their classifiers were
less susceptible to padding-based WF defenses such as
BuFLO [10] and Tamaraw [9].

Oh et al. [26] extended WF with a new feature set to
investigate Keyword Fingerprinting (KF) attacks, which
recover user-typed search engine queries over Tor. Their
svmRESP classifier used SVMs trained with their RESP
feature sets that focus only on the response traffic to
capture embedded web objects in search engine results.
They achieved 83% TPR and 8% FPR with svmRESP
when trying to classify 100 monitored queries against
10k unmonitored queries.

2.2 WF defenses
To defend against these ever-more powerful attacks, re-
searchers have devised methods to confuse the attacker’s
classifiers while aiming to keep bandwidth and latency
overheads reasonable. BuFLO [10] adds dummy pack-
ets to fill in timing gaps and further extends the trans-
mission to send packets of fixed length at fixed inter-
vals. Tamaraw [9] improves BuFLO to be a more ef-
ficient and effective defense by using different padding
intervals for incoming and outgoing packet directions
and sending outgoing packets at a lower rate, which re-
duces the overhead in the common case of infrequent
outgoing traffic. WTF-PAD [18] is a lighter-weight de-
fense that focuses on hiding large gaps between traffic
bursts by adding fake bursts. WTF-PAD significantly
decreases bandwidth overhead and latency compared to
BuFLO and Tamaraw while yielding good performance
against the k-NN attack. Walkie-Talkie [39] is an effi-
cient WF defense technique based on half-duplex com-
munication, which makes many packet sequences the
same, and burst molding, which adds fake cells to mold
burst sequences into identical supersequences.

2.3 Related Prior Work
In this section, we review three recent studies of WF
that are closely related to our work [27, 31, 35] and
discuss the differences between their work and ours.

2.3.1 Automated Website Fingerprinting
In their work on Automated Website Fingerprinting
(AWF), Rimmer et al. [31] investigated three DNN ar-

chitectures – LSTM, CNN, and Stacked Denoising Au-
toencoder (SDAE) – for WF from Tor network traces.
Our work differs from theirs in three aspects: we use a
different evaluation methodology, evaluate a wider vari-
ety of application scenarios, and investigate the utility
of autoencoding for feature extraction independently of
the use of DNNs for classification.

Although we do not conduct a systematic closed-
world study, we demonstrate the multinomial classifi-
cation ability of DNNs in an open-world evaluation. To
show the impact of the monitored dataset, we also evalu-
ate p-FP(M) and p-FP(C) using the AWF and Tor Hid-
den Service (HS) datasets. As opposed to their work,
our open-world evaluation follows the methodology of
most other recent work on WF [12, 17, 28, 35, 37], in
which the adversary trains WF models using both mon-
itored websites and unmonitored websites, allowing bet-
ter comparison across classifier models.
Application Scenarios. We explore a more diverse
set of WF tasks using deep learning, including finger-
printing search query traces over Tor [26], Tor traces
defended by recent WF defenses [9, 10, 18, 39], TLS-
encrypted (non-Tor) traces, and predicting the finger-
printability of websites (Section 6).
Autoencoder. Rimmer et al. use a Stacked Denoising
Autoencoder (DAE) architecture for feature extraction,
based on the DAE, which is a variant of AEs designed
to give better generalization. However, the AWF study
did not attempt to isolate the effectiveness of AEs for
feature extraction from the effectiveness of DNNs for
classification using these features. We address this gap
by investigating the use of AE-extracted feature vectors
as input to other classification algorithms. In Section 4,
we use the low-dimensional feature vectors extracted by
an AE to train three state-of-the-art machine learning
techniques – SVM, k-NN, and k-FP [12] – and compare
the effectiveness of the resulting classifiers with that of
CUMUL [28], k-NN [37], and k-FP [12] using their fea-
tures.

2.3.2 Deep Fingerprinting
Concurrently to our preliminary work, Sirinam et
al. [35] showed the importance of the details of the
CNN architecture by demonstrating that a more tai-
lored “Deep Fingerprinting” (DF) CNN can achieve very
high WF performance against Tor traces, even against
lightweight defenses such as WTF-PAD and Walkie-
Talkie. The CNN architecture they propose has supe-
rior performance to the architectures we evaluated for
defended Tor traces, but as with the AWF paper, the DF
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paper did not explore the same breadth of WF scenar-
ios as our work, nor did it examine the use of DNNs for
feature extraction independently of classification. More-
over, their open-world analysis focuses on binary rather
than multinomial classification.

In contrast, our experiments consider both binary
and multiclass classification; we also explore a more di-
verse set of DNN models, MLP, CNN, and AE, and eval-
uate them across diverse fingerprinting scenarios (i.e.,
search query and TLS-encrypted trace fingerprinting)
and datasets (i.e., the AWF and Tor HS datasets).

In addition, we explore different CNN architec-
tures based on 2-2D convolutional layers with Local Re-
sponse Normalization (LRN) while DF uses 8 1D con-
volutional layers with batch normalization. It has been
shown [20, 32] that LRN handles ReLU 5 neurons, which
have unbounded activations, and detects high frequency
features with large response properly.

2.3.3 Onionsite Fingerprintability
The “Onionsite Fingerprintability Study” (OFS) of
Overdorf et al. [27] used both network-level features
based on the onion sites’ network traces for state-of-
the-art WF attacks [12, 28, 37] and site-level features
based on HTML files and HTTP headers to determine
the best predictors for WF outcomes. Our study has key
differences in terms of features considered, methodology,
and fingerprintability scoring.
Features and methodology. Overdorf et al. studied
which of these network-level and site-level features were
the most important for WF prediction using the rela-
tive difference between inter- and intra-class variance
of network-level features and a random forest regressor,
respectively.

In contrast, we only use features based on Alexa
websites’ HTML source code, design-level features such
as the number of tags and characters in data fields.
These features are easy to gather and measure with-
out deploying the site as an onion service and have less
variation due to external factors (such as network con-
ditions), which makes the predictions easier to obtain
and more stable.

Our goal is to identify which design-level features
influence predictability by specific classifiers such as
MLPs, CNNs, or k-FP. Thus, our study is in a different
setting (open-world vs. closed-world), and it produces

5 Rectified Linear Units, a fast, non linear function giving x for
positive x and 0 for negative x

features that can be applied directly to a site’s HTML
source code before deployment.
Fingerprintability Scores. In order to study what
makes a website vulnerable to fingerprinting, we must
choose some way to assign a label or “fingerprintability
score” to a website. The OFS used the F1 score from an
ensemble classifier, combining the precision and recall
of three classifiers [12, 28, 37].

We use multiple classifiers – MLP, CNN, k-FP, and
SVM – independently and compute the score for each
of them. We use the accuracy of each classifier for a
website, calculated as the fraction of correctly identi-
fied instances for each website, as the fingerprintability
score; this is more appropriate to our goal of predicting
the influence of features on the performance of a single
classifier as opposed to the OFS goal of measuring the
influence of features on a broad range of classifiers.

3 p-FP Overview
In this section, we introduce our adversary model, DNN
architectures, metrics to evaluate the performance of
our classifiers, hyperparameter tuning to find the opti-
mal parameters to train DNN models, and the datasets
used to evaluate our DNN models.

3.1 Threat Model
As in all prior work on website fingerprinting over Tor,
we assume a network-level, passive adversary who is
only able to monitor network traces, sent and received
by users. In situations involving Tor traffic, the adver-
sary is only able to observe network traffic between the
client and a Tor entry guard, and does not control any
other relays or servers involved in the communication.

Our attacker is interested in two types of classifi-
cation problems. In binary classification the goal is to
determine whether a captured trace is from a small list
of monitored pages. In multiclass classification, the ad-
versary additionally predicts which of these monitored
pages was visited.

3.2 DNN Architectures
We discuss general background on DNN models in Ap-
pendix A, and details about the selection of the hyper-
parameters for our networks in Section 3.4.
Experiment setup. We used Tensorflow [1] with the
TFLearn [2] front end for the implementation of DNN
classifiers. We split the dataset into training, valida-
tion, and testing datasets with size ratios 54:6:40, which
led to better generalization of the trained models and
helped to avoid overfitting. To train our models, we built
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five models for each experiment and selected one model
yielding the best performance. We then evaluated this
model using 20 different iterations, where each iteration
consisted of randomly chosen background instances and
monitored samples, and each monitored website had the
same number of instances.

We used 32 cores and 256GB of memory for all clas-
sifiers and the longest job, which trained a CNN consist-
ing of two 2-D convolutional layers and two fully con-
nected layers, was finished within five days. With GPUs,
this running time would be considerably reduced.
MLP. The p-FP(M) model (Figure 6a of Appendix A)
consists of one input layer allowing a single vector, two
hidden fully connected layers, and one output layer with
softmax function. We used L2 regularizations for the
first two hidden layers and the dropout between those
layers to minimize the impact of overfitting. We chose
Stochastic Gradient Descent (SGD) as the optimizer
and used the categorical cross entropy for the loss func-
tion.
CNN. The p-FP(C) model (Figure 6b of Appendix A)
is comprised of an input layer accepting input data, two
convolutional layers with 128 filters, each followed by
a max pooling layer, followed by one hidden fully con-
nected layer and a softmax output layer.

For the input shape, rather than n by n matrix
(with original feature vector of size n2), we constructed
a 1 by n matrix, so that the vector of 2,500 features is
represented as a 1 x 2500 matrix, which is better suited
to WF. We also adjusted the format of filters, using 1 x
f rather than f x f filters, because network traffic traces
are time series rather than spatial data and we would
not expect to find useful patterns in multiple spatial di-
mensions. We applied L2 regularization for each layer
and the categorical cross entropy to compute the loss.
Between layers, we used LRN.
AE. An autoencoder (Figure 6c of Appendix A) con-
sists of an encoder and a decoder network, each consist-
ing of two fully connected layers. We varied the number
of units in the second hidden layer to get various fea-
ture dimensions to be evaluated with SVM, k-NN, and
k-FP classifiers. To extract AE-encoded features from
target traces, we saved a trained model and retrieved
weights of the second hidden layer to derive compressed
vectors of those inputs. We used the mean squared er-
ror to compute the loss. We used a ratio of 45:5:50 for
training, validation, and testing datasets, and extracted
AE features based on two testing datasets after two it-
erations.

3.3 Metrics
Traditional metrics. For the open-world experiments,
we used the following metrics, adopted in prior WF
work [12, 26, 28].
– True positive rate (TPR): The proportion of posi-

tive samples that are predicted as positive.
– False positive rate (FPR): The proportion of nega-

tive samples that are mispredicted as positive.
– For both binary and multiclass classification, we

trained DNN models using distinct labels for each
monitored class plus one additional label for all un-
monitored traces. The difference between the set-
tings is whether we count the confusion between
monitored classes as a TP. In binary classification,
if a monitored trace is assigned any of the moni-
tored labels, it is counted as a TP, whereas in the
multiclass setting, a monitored trace is only consid-
ered a TP if the correct label is predicted. This is
consistent with previous WF attack evaluations in
the literature [12, 28, 35].

– Bayesian detection rate (BDR): Since reporting ac-
curacy without consideration of the base rate or a
prior may have led to bias in early attempts to eval-
uate WF attacks, we follow the suggestion of Juarez
et al. [17] and also report the BDR, computed as
P (M |V ) = P (V |M)P (M)

P (V |M)P (M)+P (V |U)P (U) , where V indi-
cates the event that a webpage is classified as mon-
itored, M is the event that the webpage actually
belongs to the monitored set, and U is the event
that the page belongs to the unmonitored set, i.e.
P (U) = 1−P (M). P (V |M) is approximated by TPR
and P (V |U) is estimated by FPR. We computed
BDR in the same way as prior work [12, 17].

– Within-monitored accuracy (WMacc): For KF ex-
periments, we used within-monitored accuracy as
proposed by Oh et al. [26] to measure the perfor-
mance of multiclass classifiers. This is computed by
the number of TPs divided by the total number of
monitored samples.

Confidence threshold. In our DNNs, the output layer
returns vectors with prediction probabilities for all la-
bels. Even though the label with the highest probability
is selected as a predicted label, if this probability is low,
this indicates the classifier has low confidence in its pre-
diction. To avoid using low-confidence predictions, if the
highest probability is less than a confidence threshold,
we regard this case as being classified as “others”. We
also varied this confidence threshold to study how this
factor affects the performance of DNNs. In Section 5, for
fair comparison to prior WF attacks [31, 35], we use the
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Receiver Operating Characteristic (ROC) curve, which
is a parametric curve that summarizes the tradeoff be-
tween TPR (y-axis) and FPR (x-axis) of a classifier as
the confidence threshold varies from 0 to 1.
Top-K analysis. The prediction probability vector re-
turned by the output layer enables us to consider other
meaningful labels if their probabilities are high enough
to be trustworthy even if they are not the highest. Such
labels are candidates for the top k list. We studied the
performance of these “top k” predictions as k varied
from 1 to 5, where if a correct monitored label appears
in the top k list, we count it as a TP.

Because of the possibility that the features of Top
Alexa websites have a common bias, we treat the ap-
pearance of the unmonitored label in the top k list more
importantly. In the open world experiments, if the neg-
ative (unmonitored) label is included in the top k list
and the actual label is positive (monitored), we always
treat this as a false negative (FN) even if the top k list
includes a true label. For example, if the top 3 list in-
cludes monitored sites M1 and M2 with probabilities
0.89 and 0.1, respectively, as well as the unmonitored
label U with probability 0.01, then even if the true la-
bel is M1, this outcome is coded as FN. We applied
top k analysis to evaluate KF attacks (Section 5.2) and
defended traffic analysis (Section 5.4).

3.4 Hyperparameter Tuning
Training DNNs requires selecting many different hyper-
parameters that can impact the quality of predictions.
We used the hyperopt library [6] to implement the Tree
of Parzen Estimators (TPE) [7], a form of Bayesian op-
timization, to automate the search for optimal hyper-
parameters. First, we described the search space, as
shown in Table 15 of Appendix B, and constructed
DNNs using the tflearn library [2]. Then, DNN mod-
els were trained and the prediction results were passed
to the optimizer, which selected parameter values for
the next iteration to minimize the prediction error. We
summarize the search space and chosen values for each
DNN model used in our experiments in Table 15.

3.5 Datasets
We detail how we collected our datasets and categorize
the network traffic traces for different experimental sce-
narios.
Data Collection. We used a modified version of Tor
browser crawler (TBC) [3] and Tor version 0.4.0.8 to
collect our datasets. Our modified version of TBC re-
set the Tor process after each website visit, but other-

wise used the default options. We discuss the reasons for
this modification and possible impacts on our results in
Appendix C. In addition, we used the page source op-
tion provided by Selenium and the Beautifulsoup library
to extract the HTML source code for each downloaded
page.
Website Tor traces (WTT). We collected the WTT
dataset with a time gap of one week between batches
(We named this dataset WTT-time). Each batch exe-
cuted one week after the previous batch. For the mon-
itored dataset, we collected 10 different batches where
each batch collects 100 traffic instances, HTML source
code, and screenshots of each of 100 websites. For the
unmonitored dataset, we harvested 10 batches, in which
each batch was comprised of 6,000 different Alexa web-
sites ranked between 200 and one million. The collection
of this dataset ran from August through December of
2018, which was long enough to capture the impact of
dynamic web objects in our collection.

Some instances resulted in abnormal HTML files
(for example, due to server errors or network condi-
tions). We noticed that these instances always had
HTML files less than 10KB in length, but since some
sites also had normal HTML files below this length, we
filtered out these failures by manually inspecting the
screenshot of any instance with a HTML file of size less
than 10KB.

After excluding instances with abnormal capture
files or HTML files and sampling uniformly at random
from the 10 batches comprising the remaining instances,
we ended up with 300 instances each for 100 websites
and one instance of each of 50,000 unmonitored web-
sites. Since we failed to extract HTML files for some
websites such as netflix since the Beautifulsoup library
could not parse their HTML document structure, our
final set of 100 monitored websites were selected from
the Alexa top 150 sites.

Since Tor encapsulates all data into cells of 512
bytes, we extracted Tor cell sequences from the set
{1,−1}, indicating that the client sent one cell or re-
ceived one cell, respectively, from each website trace.
We determined the optimal feature dimension using hy-
perparameter tuning, as described in Section 3.4.

To evaluate our models with other datasets, we also
used Wang dataset, provided by Wang et al. [37], the
“Tor HS dataset”, shared by Hayes and Danezis [12],
and the AWF dataset of Rimmer et al. [31].
Keyword Tor traces (KTT). For both monitored and
background traces, we used Google search query traffic
instances [26], which include 100 instances of each of
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100 top-ranked monitored keywords and 80,000 unmon-
itored keywords.
Website SSL (non Tor) traces (WST). To collect
TLS-encrypted traces, we build a normal Firefox web
browser crawler using Selenium’s web driver after re-
moving the Tor settings in TBC [3]. This set consists of
9,000 instances (90 instances each) of the Alexa top 100
websites for a monitored set and 9,000 Alexa websites
excluding monitored sites for an unmonitored set.

4 Feature Analysis
In this section, we demonstrate that DNNs can be used
to perform automated, unsupervised feature extraction
even for use with traditional classification algorithms.

4.1 Features with Autoencoder
An AE is a widely used unsupervised technique for
learning data representations and feature dimensional-
ity reduction, because an encoder network projects the
original feature vector into a lower-dimensional repre-
sentation. This feature compression can both discover
useful features and make classifiers more efficient be-
cause their training time often depends on the dimen-
sion of the input data. Previously, Nasr et al. [25] pro-
posed the use of linear projection algorithms from com-
pressed sensing to enable WF [37] and flow correla-
tion attacks [16] with reduced storage and computation
cost, at a slight loss in accuracy. In contrast, we use
a deep learning framework to do the dimension reduc-
tion, which has previously been shown to be an effective
methodology to learn structural data representations
more efficiently, compared to compressed sensing [24].

As shown in Figure 6c of Appendix A, we trained
an encoder and a decoder network and captured feature
vectors compressed by the second hidden (blue) layer
of the encoder network. We also varied the number of
units from 10-100 in this hidden layer to compress the
original features into various low-dimensional represen-
tations. We evaluated SVM, k-NN, and k-FP classifiers
with encoded features and reproduced state-of-the-art
WF attacks to compare their performance. This anal-
ysis shows that an AE can learn interesting structure
about the data while reducing its dimension.

We additionally tested a variational autoencoder
(VAE) [19, 30] and extracted encoded features as ex-
plained above; however, we failed to extract meaningful
traces. With VAE features, we achieved 2% TPR for
multiclass classification and 3% TPR for binary classi-
fication. While VAEs perform nicely for datasets where

Table 1. The best performance after 20 iterations (A(n): n AE
features, TRT: Training time, DC: Distance Computation time,
m: minutes). We empirically selected n yielding the best result.

Data Wang WTT-time
Metrics TPR FPR TPR FPR TRT DC
k-NN 90.2 10.3 91.7 26.6 7.3m -

A(80)+k-NN 97.9 2.1 93.7 14.9 1.1m -
k-FP 88 0.5 90.1 5.4 39m 82m

A(100)+k-FP 95.9 1.4 91.3 7.8 1.2m 32m
CUMUL 96.6 9.6 86.9 11.3 84m -

A(80)+SVM 97.6 1.5 91.4 7.8 87m -

Table 2. Performance of state-of-the-art machine learning algo-
rithms with AE features (dim: feature dimension).

dim 40 80 100
TPR FPR TPR FPR TPR FPR

k-NN 92±1 15±1 93±1 15±1 92±1 15±1
SVM 88±1 11±1 91±1 7±1 90±1 7±1
k-FP 90±1 8±1 91±2 7±1 91±1 7.8

the latent space is continuous, allowing random sam-
pling or interpolation to learn variations on data [23],
website traffic instances are less likely to have a reason-
able local density.

A DAE is another type of AE, adopted by Rim-
mer et al. [31] to prevent overfitting. By using stochas-
tically corrupted input such as adding noise to the in-
put, a DAE avoids learning the identity function. Since
we did not experience significant overfitting with an AE
and our generated features make the standard classi-
fiers more effective (Table 1), we leave evaluation using
a DAE as future work although we acknowledge that it
is another powerful method for feature engineering.

4.2 Feature Engineering with AEs
We revisited previous state-of-the-art WF attacks [12,
28, 37] and used features learned by an AE (AE fea-
tures) to train k-NN, SVM, and k-FP classifiers. The
feature engineering performed by the authors of these
works [12, 28], requires a considerable amount of hu-
man effort such as manually inspecting the traffic pat-
tern and experimentally deciding the optimal dimension
of feature vectors. Feature extraction based on AEs of-
fers the potential to automate this process. We used 90
instances of each of 100 monitored websites and 9,000
background websites in Wang dataset [37] and 300 in-
stances of 100 website traces and 20,000 unmonitored
instances in WTT-time dataset.

We used the classifier implementations of CU-
MUL [28] and k-FP [12] directly after removing the
feature extraction code. However, since Wang’s im-
plementation of k-NN [37] is suited to features based
on a Tor cell trace, we implemented k-NN using
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sklearn.neighbors with weight learning that computes
the inverse of the distance between neighbors to handle
AE features, which may not be in {−1, 0, 1}, in a better
manner. For k-FP, we tuned the number of estimators to
have the optimal number of trees finding that dimension
1,000 was best for features suggested by their work [12]
and dimension 100 was best for AE features. We used
both 1 and 3 for k.

To understand the effect of AE feature dimension on
the performance of classifiers, we varied the number of
units in the hidden layer, which encoded website traffic
vectors, from 10-100. We saved a trained AE model and
computed the compressed features on target data using
an encoder network by loading the trained model.

Since the dimension of encoded features was signif-
icantly lower than the length of the original input vec-
tor, this leads to dimensionality reduction while yield-
ing similar or better performance. As shown in Table 2,
we found that the dimension of hidden units of an AE
did not impact the performance of the machine learning
algorithms significantly. Furthermore, the degree of im-
provement is not proportional to the number of features
since with 100 features, k-NN classifiers yielded slightly
worse results than with 80 features.

In Table 1, we also reproduced the results of state-
of-the-art WF attacks [12, 28, 37] using WTT-time and
Wang datasets in the open-world setting. For the WTT-
time dataset, we alse report Training time (TRT), which
includes feature extraction time, along with TPR and
FPR to show the effect of dimensionality reduction on
the computational cost. Since computing all pairwise
hamming distances is the most expensive operation in k-
FP, we isolated this time in the table. For both datasets,
AE features outperformed all traditional WF features
with much lower computational cost.

For Wang dataset, we achieved lower FPR than k-
NN [37] and higher TPR than k-FP [12] while com-
pletely automating the feature engineering. 6 In com-
parison to CUMUL [28], we obtained similar results in
much shorter training time excluding the feature extrac-
tion (39 minutes vs. 4 hours).

For the WTT-time dataset, k-NN requires seven
minutes for feature extraction while training and testing
an AE takes only one minute to generate its features.

6 For Wang dataset, Panchenko et al. [28] reported 89.61% TPR
and 10.63% for k-NN and 96.64% TPR and 9.61% FPR for CU-
MUL (SVM), and Hayes and Danezis [12] presented 87% TPR
and 0.9% FPR for k-FP when using 4,500 unmonitored finger-
prints.

k-FP takes 36 minutes for feature extraction and 82
minutes for distance computation while k-FP with AE
features reaches similar performance with much lower
computational cost. With k increased from 1 to 3, k-FP
with 80 AE features yielded 83% TPR and 4% FPR.
Compared to CUMUL, since the feature dimension is
very similar, where we have 80 features for AE and 100
features for CUMUL, training cost is very similar. How-
ever, AE features achieved better performance with 91%
TPR and 7.8% FPR.

5 Traffic Analysis
In this section, we evaluate the applicability of DNNs
to various website fingerprinting attack goals.

5.1 Website Fingerprinting on Tor
First, we explore the effect of various experimental set-
tings on the accuracy of DNNs in WF attacks. Across all
experiments, we evaluated both p-FP(M) and p-FP(C)
classifiers in the open-world setting.
Unmonitored set. To show the effect of unmonitored
set size, we trained p-FP(M) and p-FP(C) classifiers
with the WTT-time dataset, where we have 300 traf-
fic instances of each of 100 monitored websites and one
traffic instance each of either 20,000 or 40,000 back-
ground websites.

Increasing the number of unmonitored website traf-
fic instances weakened the performance of both classi-
fiers but not significantly, since we measured 94% TPR
and 2% FPR for p-FP(C) multiclass classification even
against 40,000 background sites, giving BDRs ranging
from 97-98% (Table 4). Tables 3 and 4 show that p-FPs
are very successful at open-world WF attacks and in
particular, p-FP(C) achieved very low FPR in predict-
ing whether a trace was monitored or not.
Monitored set size. We also evaluated both p-FP(M)
and p-FP(C) when using 200 and 300 instances each of
100 monitored sites. While going from 20,000 monitored
instances to 30,000 monitored instances did not have a
noticeable effect on the results of p-FP(C), increasing
the size of the monitored set somewhat improves the
results of p-FP(M) as shown in Figures 1a and 1b.
Number of Training epochs. More epochs improve
the quality of classification for both models, as pre-
sented in Figure 1c and 1d. However, after 50 epochs,
both TPR and FPR started to decrease. Thus, we chose
50 epochs as the optimal number of epochs to train p-
FP(C) models.
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Table 3. WF with p-FP(M) with 30k monitored dataset and vary-
ing size of unmonitored sets (TPR(T), FPR(F), and BDR(B) (%),
and H=Tor HS). Note that all results are based on the confidence
threshold tuned to yield higher TPR.

.

Size Multiclass Binary
T F B T F B

20k 89±1 15±1 90±1 90±1 10±1 94±1
40k 87±1 5±1 90±1 88±1 7±1 93±1

30k(H) 94±2 3 70±1 96±1 0.06 97

Table 4. WF with p-FP(C) with 30k monitored dataset and varying
size of unmonitored sets (TPR(T), FPR(F), and BDR(B) (%),
and H=Tor HS) Note that all results are based on the confidence
threshold tuned to yield higher TPR

.

Size Multiclass Binary
T F B T F B

20k 95±1 1±1 97±1 95±1 0.007 98±1
40k 93.77 1±1 98±1 94±1 0.009 98±1

20k(H) 98.49 3.69 78±1 98.91 0.18 98.6
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Fig. 1. WF evaluation using 40k unmonitored set(a,b), and using 300 instances of each of 100 monitored sites (c,d).

Dataset. To explore the effect of different datasets on
the performance of p-FP classifiers, we also used the
open-world dataset collected by Rimmer et al. [31] to
construct binary classifiers. Following their evaluation,
we report results in Table 5 after optimizing the confi-
dence threshold for lowest FPR and highest TPR, re-
spectively. With 300 traces of 100 monitored websites
and 40,000 unmonitored traces, both classifiers achieved
very low FPR. This is because most misclassification
cases were confusions between monitored labels. How-
ever, reducing FPR also sacrifices TPR. We believe that
this gap can decrease with more training data. With the
Tor HS dataset 7 ((H) in Tables 3 and 4), both classifiers
performed more effectively with 94-98% TPR and 3-4%
FPR. These results suggest that p-FPs can achieve very
low open-world FPR regardless of the monitored set,
but some monitored sets will result in better TPR than
others.
Table 5. The performance of p-FP(M) and p-FP(C) using 30k
monitored and 40k unmonitored AWF dataset.

Optimized for TPR Optimized for FPR
Metrics TPR FPR TPR FPR
p-FP(M) 80±1 2±1 68±2 0.0009
p-FP(C) 82±1 1±1 68±1 0.0008

Confidence threshold. The confidence threshold rep-
resents the reliability of decisions by classifiers. We ap-

7 Comprised of 90 instances each of 30 onion services and 30,000
background website traces

plied confidence thresholds ranging from 0 to 90% (0
corresponds to argmax) to the prediction probabilities
of our classifiers, and evaluated both classifiers using
both 20,000 and 30,000 monitored traces with 40,000
background traces. As expected, we found that increas-
ing the confidence threshold reduced the number of con-
fident TPs, which lowered TPR, and increased the num-
ber of TNs, which decreased FPR (Figure 1).
Network Architecture. As shown in Tables 3 and 4,
p-FP(C) performed much better across all sizes of back-
ground sets and both classification tasks. In particular,
p-FP(C) yields very low FPR in the WTT-time dataset.
More interestingly, p-FP(C) exhibits much better per-
formance for multinomial classification; the number of
TPs does not change significantly if we switch the clas-
sification task from binary to multiclass classification.
In other words, with p-FP(C), the number of confusions
between monitored classes decreases.
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Fig. 2. Comparison to SDAE and DF using 300 instances of
each of 100 websites and 40k unmonitored traces in WTT-time
dataset.
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Prior Work. We also trained and evaluated SDAE [31]
and DF [35] networks using the WTT-time dataset, to
compare their performance. Although Rimmer et al.
also evaluated WF using CNN and LSTM networks, we
only evaluated their SDAE architecture since it achieved
the best performance in open-world experiments in their
paper [31]. As shown in Figures 2a and 2b, DF outper-
formed SDAE and p-FP(C). p-FP(C) produced very low
FPRs (high precision) even for lower confidence thresh-
olds, with FPRs of 0.008% for p-FP(C) vs. 14.29% for
DF and 15.88% for SDAE. However, the TPR of p-
FP(C) was significantly lower compared to other at-
tacks, with a TPR of 74.84% for p-FP(C) vs. 97.59%
for DF and 86.75% for SDAE. This means that with
very high confidence thresholds – greater than 0.96 –
p-FP(C) predicts that more monitored samples are un-
monitored. With a much larger dataset, the degree of
drop in TPR would be reduced, however, we leave de-
tailed investigation of the tradeoff between network ar-
chitecture and required dataset size for future work.
Summary. p-FP classifiers have been shown to be ef-
fective for WF across the different experimental scenar-
ios; compared to related work, although p-FP shows less
stable performance than DF, it yields lower FPR across
different types of monitored dataset.

5.2 Search Query Fingerprinting on Tor
We study the more fine-grained classification ability
of DNNs by applying them to KF, which fingerprints
Google search query traces over the Tor network. We
used 100 instances of each of 100 monitored Google key-
words and 10,000 background keyword traffic instances
in the KTT dataset; we also used two feature sets, RESP
traces (defined below) and Tor cell traces.

Table 6. KF with p-FP(M), and p-FP(C) using RESP and cell
traces. ((b):binary classification, (m):multiclass classification)

Metrics RESP(C) RESP(M) Cell(M)
TPR(b) 86±1 88±1 59±2
FPR(b) 5 5±1 11±2
BDR(b) 95 95±1 85±2

WMacc(m) 22±1 27±1 22±1
BDR(m) 59±2 63±1 50±1

Features. RESP features are extracted from the “re-
sponse portion” of a Tor trace, defined as the largest
sequence of incoming packets, and in previous work, Oh
et al. [26] extracted the sequence of cumulative sizes of
TLS records from the response portion. In this work, we
ignored the cumulative setting because it gave us lower
accuracy.

Since Oh et al. [26] found that RESP-based features
improved the performance of KF attacks using SVMs,
we explored whether this is true with p-FPs. Compared
to Tor cell traces, Table 6 shows that RESP features
substantially enhanced the p-FP(M) classifiers’ perfor-
mance. Furthermore, with RESP features, we achieved
better performance (88% TPR and 5% FPR) than svm-
Resp [26] in binary classification since svmResp yielded
82.6% TPR and 8.1% FPR. RESP features rather than
cell traces help DNNs do better KF classification.

Table 7. p-FP(C) performance using sequence of TCP packet
sizes(TC) and TLS record sizes(TL) after being sorted by time
(1: Top1, 3: Top3, T:TPR(%), F:FPR(%)).

Binary Multi
TC(1) TL(1) TL(3) TC(1) TL(1) TL(3)

T 93±1 93±1 96±1 93±1 93±1 96±1
F 4±1 3 1 5±1 4±1 1

Top-K analysis. Compared to binary classification,
multinomial classification results using p-FP classifiers
were not as powerful, as shown in Table 6. To further
investigate the performance of multiclass classifiers, we
conducted top-k analysis. As shown in Figure 3, top
k analysis substantially improved the quality of multi-
class classification for both Tor cell and RESP features.
When using the top 5 analysis, MLP classifiers achieved
higher WMacc than svmRESP [26] (62% vs. 55%).
Confidence threshold and network. As expected, in-
creasing the confidence threshold deteriorates the per-
formance of both classifiers. p-FP(C) also exhibits larger
standard deviation with high confidence thresholds than
p-FP(M). One possible explanation for this is that since
there is much less distinction power between keyword
traces, fewer local patterns are learned by filters, mak-
ing CNNs a less ideal choice for this task. However, this
bottleneck can be improved with more training data,
which would make the prediction results more consis-
tent across different portions of the dataset.
Summary. As opposed to general WF, researcher-
selected RESP features enhance the performance of p-
FP classifiers for KF, and using top-k analysis, p-FP
classifiers provide better KF results than prior work [26].
However, there is still room for improvement in KF by
discovering different features or training other types of
networks, which we leave as future work.

5.3 WF with TLS Proxies
We evaluated both p-FP(M) and p-FP(C) classifiers for
WF attacks on TLS-encrypted traces using Firefox, to
simulate the use of a TLS proxy. We experimented with
several trace representations for this task.
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(a) Resp trace (b) Cell trace

Fig. 3. ROC of Top-K analysis on KF for multiclass classification

(a) p-FP(M) (b) p-FP(C)

Fig. 4. KF(RESP) with p-FP(M) and p-FP(C) by varying the confi-
dence threshold

Packet Direction. We extracted the sequence of TCP
packet directions from each trace, with entries of -1 for
incoming packets, and 1 for outgoing packets; traces
shorter than the minimum length were padded with 0
entries. This resulted in 82.9% TPR and 6.8% FPR for
binary classification and 82.6% TPR and 8.4% FPR for
multiclass classification using p-FP(C).
TCP packet sequence. We also evaluated a represen-
tation based on the size and direction of TCP packets,
sorted based on transmission time, resulting in the col-
umn labelled TCP in Table 7.
TLS record sequence. We also extracted the sequence
of TLS record sizes and directions and sorted it based
on the transmission time, resulting in the columns la-
beled TL in Table 7). As shown there, this represen-
tation achieved almost the same results as with TCP
packet-based features when differentiating between the
Alexa top 100 websites.
MLP vs CNN. We further evaluated p-FP(M) classi-
fiers using all representations discussed above, however,
they failed to yield better performance than p-FP(C).
Compared to Tor trace WF, p-FP(C) is a much bet-
ter model to fingerprint TLS-encrypted network traces
since CNNs produce stronger representations of the step
by step interactions in website downloads based on the
local input patterns in TLS-encrypted traffic.
Summary. Filters in p-FP(C) successfully learn pat-
terns related to the size of TCP packets and TLS
records. However, the performance of p-FP(C) for this
task was surprisingly lower than the results against Tor
traces due to the use of a smaller dataset. We leave
evaluation on larger datasets for future work.

5.4 WF on Tor with WF defenses
We evaluated p-FP classifiers against several recent WF
defenses: BuFLO [10], Tamaraw [9], WTF-PAD [18],
and Walkie-Talkie [39]. This study helps to understand
how automated feature learning by DNNs is impacted
by recent WF defenses. We used Wang dataset and the
WTT-time dataset consisting of 300 instances of each of

100 websites and applied each defense to those datasets
to generate defended network traces. We further evalu-
ated DF [35] on those defended traces for comparison.

Table 8. p-FP(M) and p-FP(C) performance against BuFLO(B)
and Tamaraw(T) (M: p-FP(M), C: p-FP(C), T: Top n accu-
racy, D: Defense, and all metrics are %) For bandwidth over-
head, BuFLO-Wang=217%, Tamaraw-Wang=181%, BuFLO-
WTT=179%, and Tamaraw-WTT=175%. Note that for unde-
fended WTT-time dataset, we measured 90% using p-FP(M),
91% using p-FP(C), and 96% using DF, and for undefended
Wang dataset, we got 86% using p-FP(M), 92% using p-FP(C),
and 96% using DF.

M C DF
WTT Wang WTT Wang WTT

T B T B T B T B T B T
1 9 15 16 16±1 17 13 15 7 15 11
2 14 23 19 29±1 22 21±1 24 12 22 18

After hyperparameter tuning, we built the optimal
CNN architecture using one convolutional layer, fol-
lowed by two fully-connected layers, to fingerprint de-
fended traces. Note that it is a different architecture
than used in Sections 5.1 5.2, and 5.3.
BuFLO/Tamaraw. Due to padding, traffic instances
captured under WF defenses result in longer cell traces:
for p-FP(M) classifiers and Wang dataset, we used
20,164- and 15,129-dimensional feature vectors for Bu-
FLO and Tamaraw, respectively; for CNN classifiers and
Wang dataset, we used 30,000- and 25,000-dimensional
feature vectors. For the WTT-time dataset, we always
use 10,000-dimensional features in p-FP and 5,000-
dimensional features in DF. In Table 8, we show the
performance of classifiers using Wang and WTT-time
datasets in the closed-world setting, following the anal-
ysis of Hayes and Danezis [12].

For Wang dataset, as shown in Table 8, p-FP and
DF classifiers performed much better than other WF
attacks against Tamaraw [12]. This demonstrates that
padding-based defenses are not able to completely de-
feat WF using deep learning, which enables more sophis-
ticated and automated feature analysis. All three clas-
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Table 9. Top-1 accuracy of p-FP(C) for varying parameters in
BuFLO (minimum padding time τ , interpacket interval ρ) and
Tamaraw (padding length multiple) using Wang dataset. Note
that BO is bandwidth overhead and all numbers are %.

(a) BuFLO

min. padding time τ (s)
ρ (s) BO 10 50 100
0.02 434 15.59 10.53 5.62
0.03 290 18.58 12.15 6.02
0.04 217 20.16 11.98 5.37

(b) Tamaraw

padL BO Acc
100 181 15.66
1000 248 5.61
1500 284 3.14

sifiers performed slightly worse than k-FP [12] against
BuFLO, while still significantly outperforming random
guessing. In particular, despite padding at a constant
rate, both defenses still expose some information about
statistics such as the total size of TCP packets, which
is learned by DNN models and results in increased ac-
curacy (16-29%) especially against Tamaraw. For both
Wang and the WTT-time datasets, Top-1 analysis of
p-FP(C) shows slightly better performance than DF.

We also varied the parameters used in BuFLO and
Tamaraw to study their impact on the classifiers. For
BuFLO, we varied minimum padding time (τ) and
packet interval (ρ) of dummy packets in Table 9a, and
for Tamaraw, we explored different padding multiples
(L), with fixed outgoing and incoming padding intervals
of 0.04 and 0.012, as shown in Table 9b. As expected,
longer padding length and padding time decrease the
accuracy, however, even with 100 seconds padding time
in BuFLO and padding multiple 1500 in Tamaraw, the
accuracy of p-FP(C) still exceeds random guessing.

Table 10. The performance of p-FP(C) classifiers against WTF-
PAD. For Top k analysis, we chose the confidence threshold yield-
ing optimal accuracy (Bandwidth overhead=37.7%).

DF p-FP(C)
Topk Undef Def Undef Def
Top1 96±1 93 91 57±1
Top2 97±1 95 94 62±1

WTF-PAD.We evaluated p-FP(C) against WTF-PAD
using the defended WTT-time dataset after applying
WTF-PAD with normal fits [18]. Although we followed
the configuration that yielded the lowest accuracy in
that work, this distribution might not be the ideal set-
ting for our dataset since the overhead was lower than

in the original work. We leave further investigation of
the impact of these settings to future work. Accord-
ing to Sirinam et al. [35], DF achieved accuracy around
91% against WTF-PAD; Table 10 shows consistent re-
sults with the defended WTT-time dataset as well. DF
yielded 93% accuracy while p-FP(C) achieved 57% ac-
curacy. The quality of prediction by both DF and p-
FP(C) is much higher than against BuFLO and Tama-
raw since WTF-PAD exposes the original sizes of most
bursts and these remaining traffic patterns are learned
by the CNN’s filters.

Table 11. The performance of p-FP classifiers against Walkie-
Talkie. For Top (T) k analysis, we chose the confidence threshold
leading optimal accuracy. Note that Undef means traces, col-
lected without the defense and Def indicates traces, collected
under the defense (Bandwidth overhead=24.8%).

DF p-FP(M) p-FP(C)
Topk Undef Def Undef Def Undef Def
T1 86 45±1 81±1 49±1 82±1 48±1
T2 93 66±1 89±1 56±1 83±1 56±1

Walkie-Talkie. Using the dataset provided by Wang
and Goldberg [39], we trained and tested p-FP and DF
against Walkie-Talkie. Table 11 shows that even though
Walkie-Talkie reduced the accuracy of the DF and p-FP
classifiers, both classifiers outperform previously known
attacks [39]. More surprisingly, both classifiers can reach
accuracy of nearly 50% with confidence threshold 0.5.
Compared to DF, although p-FP achieved lower accu-
racy than DF for undefended traces, p-FP had slightly
higher Top-1 accuracy against Walkie-Talkie (49% vs.
45%).

Combined with the WTF-PAD results, these experi-
ments show that defenses based only on concealing burst
patterns do not sufficiently mitigate against DNN-based
WF attacks, and more research is needed to design light-
weight defenses for these attacks.
Summary. p-FP classifiers perform more effectively
against light-weight defenses than against padding-
based defended traces. Compared to DF, p-FP classifiers
show comparable or slightly better performance against
BuFLO, Tamaraw, and Walkie-Talkie while DF is still
the most successful attack against WTF-PAD.

6 Fingerprintability Analysis
As noted previously, websites exhibit varying levels of
fingerprintability; since DNN models are particularly
powerful fingerprinting tools, we revisit the question of
what features influence fingerprintability by these clas-
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sifiers. Although Overdorf et al. [27] previously found
that the fingerprintability of website traffic instances is
primarily affected by the size of websites, our analysis
focuses on discovering website design features that im-
pact open-world fingerprintability by DNNs. This anal-
ysis may also lead to lighter-weight WF defenses based
on safer website design principles.

6.1 Dataset and HTML Features
To construct a dataset for FP prediction, we down-
loaded 29,000 HTML document files from 100 websites
ranked in the Alexa top 150, and then extracted the
following HTML features from these files:
Links and domains. First, we fetched all links and
extracted features based on the number of links and
domains in a site’s HTML DOM. In particular, due to
popular usage of Content Delivery Networks (CDNs)
and cloud platforms, websites contain many links to re-
sources hosted by these services. In order to show the
impact of these links, we extracted the number of links
to third party websites. This feature helps understand
whether or not downloading web objects (or content)
from different web servers makes the network-level traf-
fic pattern more identifiable than when all downloads
occur from a single web server.
Tag paths. We also extracted features about each site’s
tag paths as a measure of the site’s design complexity.
We built the tag paths for a site by scanning a site’s
DOM and iteratively adding a tag to the current path
if it was nested. For example, for a document consisting
of tags <html><body><a></a><b></b></body>
</html>, there are 4 tag paths, <html> (depth=1),
<html><body> (depth=2), <html><body><a>
(depth=3), and <html><body><b> (depth=3). Based
on this computation, we extracted numerical features
including the number of tags in each tag path, the fre-
quency of increase or decrease in the size of tag paths,
and the depth of tag paths. Including these features cap-
tures the complexity of HTML document structure and
allows us to investigate its impact on the fingerprint-
ability of the website.
Tags and other elements. The size of an HTML DOM
as well as the website can be estimated based on fea-
tures computed from the number of tags, attributes, and
comments, and the number of characters and words in
data and style attributes. We extracted these features
to validate the relationship between the size of a site’s
HTML DOM and the fingerprintability of the website.
Embedded files. Different types of files are embedded
in an HTML DOM and the network traffic associated

with fetching those resources may influence the web-
site’s vulnerability against WF attacks. Based on the
finding that all image and video contents are nested in
an img tag, we computed the number and the proportion
of image and video files and furthermore, we identified
specific file extensions to obtain counts and proportions
(e.g., jpg, gif, ico, html, etc.). Since these features im-
pact the size of websites, this analysis contributes to a
more detailed understanding of the impact of website
size on the fingerprintability.

In all, we extracted 62 total features (list in Ap-
pendix D), named HTML features, from the DOM of
each site and we normalized the data by computing the
rank for each feature by looking at each column in the
matrix. For example, if we had 3 instances, [[3,19,10],
[7,10,201], [17,7,25]], we converted those features into
the rank information, [[1,3,1], [2,2,3], [3,1,2]] and used
these vectors as the inputs to classifiers to determine
whether a website is fingerprintable. Note that we used
the ratio 50:50 for training and testing set and did such
partitioning before we compute the rank for each fea-
ture in both sets. For instance, after constructing train-
ing and testing data, we replaced each non-normalized
feature with its rank in the training or testing set, re-
spectively.

6.2 Predicting Fingerprintability
We evaluated the how the ability of DNNs to fingerprint
a website was influenced by our new task-specific feature
set based on a site’s HTML DOM.
Fingerprintability score. Fingerprintability is a mea-
surement of the vulnerability of a website to fingerprint-
ing over Tor. In this paper, our goal is to predict, from
its HTML features, whether the Tor network trace of a
website w will be fingerprintable by the classifier c. To
measure the fingerprintability, we compute the accuracy
of each website w by training and testing the classi-
fier c using 300 instances each of the 100 top-ranked
Alexa web sites, and a single instance each of 20,000
and 40,000 background websites. We used 10 iterations,
where each iteration randomly selects training and test-
ing data with the ratio 60:40. Then, based on the WF
results of c, we computed the fraction of instances of
each site labelled as True Positives as the fingerprint-
ability of the site.

For choices of c, we used k-FP [12], p-FP(M) and
p-FP(C), using the same Tor network trace features for
all classifiers. If we choose p-FP(C) as c for WF, we de-
rive the FP score by training and testing p-FP(C). If we
choose others, we computed the score using that clas-
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Table 12. Top 15 HTML features based on the Gini importance
when using p-FP(M). (c) means common top features, which also
appear in p-FP(C) top features (Table 13).

.
Rank Top 15 Features
1 total number of avi files in HTML DOM
2 (c)proportion of ico files in HTML DOM
3 (c)total number of ico files in HTML DOM
4 proportion of image tags over all tag paths
5 (c)total number of links from same domain
6 (c)min depth of tag paths
7 (c)total number of min depth in tag paths
8 (c)std of number of unique tags per a path
9 proportion of html files in HTML DOM
10 median of number of unique tags per a path
11 total number of unique domains in links
12 total number of domains in links
13 proportion of js files in HTML DOM
14 total number of mp3 files in HTML DOM
15 (c)total number of links

sifier. Thus, we evaluated each classifier independently
to show how its fingerprintability was influenced by our
features.
Predicting Fingerprintability After we calculated the
score for each w, we labelled the 62-dimensional HTML
feature vector for each visit to w, discussed in Sec-
tion 6.1, with either 1 or 0, depending on whether the
corresponding website’s accuracy was greater than a
threshold value tfp (in other words, whether the website
is at least tfp-fingerprintable) or not, respectively. For
instance, when the threshold is 30%, the websites whose
accuracy is greater than 30% were labeled more finger-
printable and those with an accuracy less than 30% were
labeled less fingerprintable.

Finally, we attempted to train both MLP and CNN
classifiers to predict tfp-fingerprintability given the nor-
malized HTML features of a site. We used a 50 : 50 ra-
tio to build training and testing HTML datasets, which
were randomly sampled every epoch for 50 epochs. Un-
fortunately, the success of DNN classifiers led to an
imbalanced number of instances for each class (finger-
printable and not fingerprintable). Across different FP
thresholds, the level of imbalance varies but was always
present to some degree; even with threshold 90% only
2,030 out of 14,500 training examples were labelled “less
fingerprintable.” Furthermore, we closely looked at two
groups of HTML feature vectors whose fingerprintabil-
ity score was less than 90% (less) and greater than 90%
(more). Most feature vectors in the less group had ac-
curacy around 80% and the webpage design features in
both groups did not have much statistical difference. As

Table 13. Top 15 HTML features based on gini index when us-
ing PFP(C). Note that (c) means common top features, which
appear in PFP(M)’s top 15 features (Table 12).

Rank Top 15 Features
1 (c)total number of links
2 total number of characters in attribute
3 (c)total number of ico files in HTML DOM
4 toal number of css files in HTML DOM
5 portion of jpg files in HTML DOM
6 (c)proportion of ico files in HTML DOM
7 (c)min depth of tag paths
8 (c)total number of links from same domain
9 total number of max depth in tag paths
10 total number of image tags in HTML DOM
11 total number of positive direction in tag paths
12 total number of js files in HTML DOM
13 (c)std of number of unique tags per a path
14 sum of number of unique tags per a path
15 (c)total number of min depth in tag paths

F-Index 1 2 11 19 25 47
≥98% 52258 45999 2137 1450 1450 580
≤35% 489427 439476 725 870 870 1749

Table 14. Most Informative features(F) appearing in both p-
FP(M) and p-FP(C), and average value of each feature for more
fingerprintable (accuracy ≥ 98%), and less fingerprintable (ac-
curacy ≤ 35%) websites. Refer to Section D of the Appendix for
the description of each feature index in columns.

a result, we were not able to train a classifier to make
useful predictions with this data set.

(a) p-FP(M) (b) p-FP(C)

Fig. 5. The feature importance of the fingerprintability prediction
for p-FP(M) and p-FP(C) with the FP threshold (tfp) 70, 80,
and 90%.

Informative features. Instead, to gain insight into
how more- and less-fingerprintable websites differed in
their HTML features, we computed the Gini impor-
tance of each HTML feature for each website’s tfp-
fingerprintability score. Gini importance [8], also called
Mean Decrease in Impurity, is widely used as a feature
importance measurement. For each feature, the impor-
tance score is computed as the sum over the number
of splits across all trees in an ensemble that includes
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that feature. The improvement in each split criterion at
each split is the importance score and it is accumulated
over all trees for each variable. To investigate which of
our design-level features was most informative, we used
Random Forests using the scikit-learn library with im-
portance score derived by the total decrease in node
impurity, averaged over all trees in the ensemble. Fig-
ure 5 shows that many of the same important features
appeared in common across different accuracy thresh-
olds. To summarize those informative HTML features,
we computed the sum of the scores for each feature and
selected the top 15 features for predicting fingerprint-
ability by p-FP(M) in Table 12 and p-FP(C) in Table 13.

There are several top features that appear in
predicting fingerprintability by both p-FP(M) and p-
FP(C). For each of these features, we accumulated these
feature values and averaged them for two groups of
sites, one with accuracy less than 35%, and the other
with accuracy greater than 98%. The total number of
links (feature 1), total number of third-party links and
links pointing to webpages within the same domain were
the most important features. As shown in Table 14,
these features indicate that less fingerprintable websites
carry more embedded web objects and involve traffic
relayed to third party websites, which renders the re-
sulting download traffic pattern less distinguishable. In
addition, the structure of the webpage, which is repre-
sented by tags and tag paths (features 11, 19, and 25), is
also among the most informative features for both clas-
sifiers. More fingerprintable websites have more com-
plicated webpage design structure than less fingerprint-
able ones. All of these top common features highly in-
fluence fingerprintability across different FP thresholds
and classifiers, as shown in Figure 5. These results pro-
vide a more detailed view of fingerprintability than the
observation by Overdorf et al. [27] that smaller websites
are harder to fingerprint.
WF defenses. The ability to predict fingerprintability
based on document features suggests a new approach to
defense for privacy-aware developers. Based on the most
informative features for FP prediction, we can guide
developers in designing websites more resistant against
traffic analysis by suggesting “safe” ranges for these fea-
tures. This could prevent the website from leaking the
web browsing activity of vulnerable users, or help onion
services to better conceal their location.

7 Conclusion
We extensively explored the effectiveness of DNNs in
three different applications: automated feature engi-
neering, fingerprinting attacks, and fingerprintability
prediction. As a feature extractor, lower dimensional
representations learned by an AE, made state-of-the-
art WF attacks more effective as well as efficient. For
fingerprinting attacks, DNNs performed well across var-
ious traffic datasets and different fingerprinting tasks,
as well as against recent WF defenses. Lastly, we have
shown that several features of a website’s HTML-level
design influence its fingerprintability by DNN models,
leaving the possibility for future work on WF defense
using HTML features.
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Appendix
A Deep Neural Network
In this section, we briefly discuss Multilayer Perceptron
(MLP), Convolutional Neural Network (CNN), which
are methods for supervised learning, and Autoencoder
(AE), which is an unsupervised learning method.
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(a) Multilayer perceptron (b) Convolutional neural network. (c) Autoencoder
Fig. 6. Our architectures on 3 DNN models.
Table 15. DNN Hyperparameter tuning using HyperOpt (W: WF, WH: WF with TorHS, K: KF, T:TLS-encrypted traces, Full: Fully-
connected layer, Conv: Convolutional layer, and O: Others) .

DNN MLP AE CNN
HyperParam Choice Space Choice Space Choice Space

input dim W WH K 0∼ 10k 5000 0∼ 5000 T O 700∼ 50005000 2500 10k 1600 5000
optimizer SGD SGD,Adam Adam SGD,Adam SGD SGD,Adam,RMSProp

learning rate 0.03 0.001∼0.1 0.001 0.001∼0.1 0.05 0.001∼0.1
epoch ≤50 10∼1000 10 10∼1000 40∼100 10∼1000
batch ≤50 10∼100 256 10∼300 ≤30 28∼128

number of Full 4 2∼7 4 2∼7 2 2∼7
number of Conv - - - - 2 1∼4
hidden units 1000∼ 3000 500∼10000 200∼ 300 10∼5000 200∼ 300 500∼10000
dropout 0.3∼0.5 0.2∼0.9 - - 0.8 0.2∼0.9
activation tanh tanh, relu, sigmoid relu tanh, relu tanh tanh, leaky-relu, elu

number of filters - - - - 128 4∼200
filter size - - - - 12 2∼16
kernel size - - - - 10 2∼50

Multilayer Perceptron. An MLP [11, 33], shown in
Figure 6a, is a basic neural network, a sort of feed for-
ward network, and also is known as a backpropagation
algorithm. It consists of an input layer, one or more
fully-connected hidden layers and an output layer. Thus,
MLP always has at least 3 layers. In fully-connected lay-
ers, all nodes have full connections to all activations in
previous layer. Activation functions are computed by a
matrix multiplication, followed by a bias offset.

MLP has two procedures, forward propagation,
which initializes weights and forwards pass through mul-
tiple layers to produce the output, and back propagation,
which calculates errors of the output layer, and then
updates weights layer by layer. A single pass through is
called an epoch and consists of multiple batches.

We applied the softmax function to the output layer,
which is the generalization of the binary Logistic Re-
gression to multiclass setting. It takes the vector of ar-
bitrary real values and a vector of values in [0,1], where
the sum is 1. This real-valued score is a normalized class
probability. Since we used a cross entropy to compute
the loss, we analyze it as an unnormalized log prob-
ability for each class and apply a cross entropy loss,
E=−

∑nClass
i tilog(yi), where i is a class index, nClass

is the total number of classes, ti is a target probabil-
ity, and yi is an output probability. The total loss is
computed by the mean of E over all training samples.
Convolutional Neural Network. A CNN [21], shown
in Figure 6b, consists of one or more convolutional lay-
ers, followed by one or more fully connected layers. The
forward propagation runs three series of operations, con-
volution, pooling, and classification. The convolution op-
eration extracts features from the input by learning fea-
tures using small squares of input, which are called fil-
ters or kernels. That is, we slide filters across the width
and height of the input and calculate dot products be-
tween entries of the filter and the input to generate a
2D feature map. Sliding different filters over the same
feature generates different feature maps and CNN can
learn meaningful pattern through this procedure.

Pooling reduces the dimension of the feature maps
and thus, the amount of parameters and computation in
the network. Max pooling layer operates on selecting the
max element from the feature map for resizing spatially.
Then, high level features learned by convolutional and
pooling layers are fed into MLP for the classification.
For the back propagation, it keeps track of the index
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of max activation so that routing the gradient becomes
simpler than general backward pass.
Autoencoder. An AE [4], shown in Figure 6c, is an un-
supervised neural network, which consists of two neural
networks, an encoder, which learns lower-dimensional
data abstractions, and a decoder, which recovers the
original data. It aims to predict the input by using less
number of hidden neurons than input nodes to learn
as much information as it can learn to hidden neurons.
More specifically, since the number of hidden nodes at
each hidden layer is less than the dimension of the orig-
inal input vector, the network is forced to learn a com-
pressed representation of the input data and then recon-
struct the input. Through these procedures, the network
can discover interesting structure of the data.

One advantage with an AE is that at the end of
training, we can have weights that lead to the hidden
layer (blue layer in Figure 6c), we can train using certain
inputs. Furthermore, when we meet other data later,
we can reduce its dimensionality using those weights
without retraining.

Thus, it provides benefits to reduce the feature di-
mensionality for data visualization and reducing the
noise in the data. Hidden units in an encoder keep as
much information as it can while denoising the data.
Moreover, we can elaborate feature extraction using en-
coded data through the cost function since we have a lot
of choice on the cost function and can adjust the weight
for each class and sample. We can use this power to
reflect certain phenomenons in the dataset, eventually
leading to a more efficient and meaningful data repre-
sentation. In Section 4.2, we focus on the functionality
of dimensionality reduction [14] and use an MLP for
an encoder and a decoder, while varying the number of
hidden units in a hidden layer of an encoder.

To construct a more generative model, Variational
AE (VAE) was introduced by Kingma and Welling [19]
and Rezende et al. [30]. Instead of memorizing a fuzzy
data structure, it generates latent vectors following a
Gaussian distribution by forcing a constraint to an en-
coder. Subsequently, to compute the loss of a VAE, two
types of losses must be considered, the error between
the input and reconstructed data, and the loss between
latent variables and a unit Gaussian, reflected by KL
divergence. Training VAE is tricky due to the trade off
between these two different losses. Improvement in the
generalization also promotes the quality of data recon-
struction by a decoder.
Avoid overfitting. DNN usually struggles with over-
fitting, which means that the network memorized the
training samples and hence, the error in testing dataset

is large even though the training loss is tiny. To over-
come this issue, dropout [36] and regularization are
widely used. The dropout temporarily removes units in
layers based on the probability of each unit to be re-
tained. Regularization is also known as weight decay,
which means that it penalizes large weights based on
constraints on their squared values (L2) or absolute val-
ues (L1). We applied these techniques to both MLP and
CNN architectures in Section 3.2.

B Hyperparameter Tuning
We report all choices of hyperparameters used in the
experiments throughout the paper in Table 15

C Impact of Data Collection
We modified TBC to reset the Tor process after each
visit, due to the possible misuse of entry guards in the
default setting of TBC. To assess the potential impact of
this change, which eventually resulted in higher variance
across each network traffic instance due to the growing
time gap between collections, we also collected some
data without this modification. When using a small
scale dataset, comprised of 4,500 monitored and 10,000
unmonitored traces, this did not significantly change the
performance of p-FP(M), as shown in Figure 7. How-
ever, as we increase the size of the training dataset up to
30,000 monitored traces and 20,000 unmonitored traces,
this setting worsens the performance of DNN classifiers,
giving a 5% drop in TPR using p-FP(M) and a 2% drop
using p-FP(C).

D HTML Features
We list 62 feature (TPath: Tag Path, #: number).
– 1. total # of links
– 2. total # of links from same domain
– 3. total # of third party links
– 4. total # of domains in links
– 5. total # of unique domains in links
– 6. total # of TPaths
– 7. total # of unique TPaths
– 8. sum of # of unique tags per a path
– 9. median of # of unique tags per a path
– 10. mean of # of unique tags per a path
– 11. std of # of unique tags per a path
– 12. total # of change of TPath direction (if depth

increases, positive, otherwise, negative)
– 13. total # of non change of TPath direction
– 14. total # of positive direction in TPaths
– 15. total # of negative direction in TPaths
– 16. total sum of tag depths
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(b) TBC new setting
Fig. 7. MLP performance according to different dataset collection (TBC: Tor Browser Crawler).

– 17. std of tag depths
– 18. total # of max depth in TPaths
– 19. total # of min depth in TPaths
– 20. total # of median depth in TPaths
– 21. total # of rounded mean depth in TPaths
– 22. total # of 30% percentile of depth in TPaths
– 23. total # of 70% percentile of depth in TPaths
– 24. max depth of TPaths
– 25. min depth of TPaths
– 26. median depth in TPaths
– 27. rounded mean depth in TPaths
– 28. 30% percentile of depth in TPaths
– 29. 70% percentile of depth in TPaths
– 30. total # of tags
– 31. total # of unique tags
– 32. total # of comments
– 33. total # of attributes
– 34. total # of unique attributes
– 35. total # of characters
– 36. total # of characters in script tag
– 37. total # of characters in style attribute
– 38. total # of characters in attribute
– 39. total # of characters in data including those in

script and style attributes
– 40. total # of characters in data attribute
– 41. total # of words in data including those in script

and style attributes
– 42. total # of words in data attribute
– 43. total # of image tags in HTML DOM
– 44. proportion of image tags over all TPaths
– 45. total # of png files in HTML DOM
– 46.proportion of png files in HTML DOM
– 47. total # of ico files in HTML DOM
– 48. proportion of ico files in HTML DOM
– 49. total # of jpg files in HTML DOM
– 50. proportion of jpg files in HTML DOM
– 51. total # of gif files in HTML DOM

– 52. proportion of gif files in HTML DOM
– 53. total # of bmp files in HTML DOM
– 54. proportion of bmp files in HTML DOM
– 55. total # of html files in HTML DOM
– 56. proportion of html files in HTML DOM
– 57. total # of css files in HTML DOM
– 58. proportion of css files in HTML DOM
– 59. total # of js files in HTML DOM
– 60. proportion of js files in HTML DOM
– 61. total # of mp3 files in HTML DOM
– 62. total # of avi files in HTML DOM
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