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Cryptography for #MeToo
Abstract: Reporting sexual assault and harassment is
an important and difficult problem. Since late 2017, it
has received increased attention as the viral #MeToo
movement has brought about accusations against high-
profile individuals and a wider discussion around the
prevalence of sexual violence. Addressing occurrences of
sexual assault requires a system to record and process
accusations. It is natural to ask what security guaran-
tees are necessary and achievable in such a system. In
particular, we focus on detecting repeat offenders: only
when a set number of accusations are lodged against the
same party will the accusations be revealed to a legal
counselor. Previous solutions to this privacy-preserving
reporting problem, such as the Callisto Protocol of Ra-
jan et al., have focused on the confidentiality of accusers.
This paper proposes a stronger security model that en-
sures the confidentiality of the accuser and the accused
as well as the traceability of false accusations. We pro-
pose the WhoToo protocol to achieve this notion of secu-
rity using suitable cryptographic techniques. The proto-
col design emphasizes practicality, preferring fast opera-
tions that are implemented in existing software libraries.
We estimate that an implementation would be suitably
performant for real-world deployment.
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1 Introduction
All perpetrators of sexual assault should face conse-
quences. But recent events indicate that cases brought
against offenders are the most successful if a repeated
pattern of abuse can be exhibited. Furthermore, sur-
vivors are empowered by their peers: the knowledge that
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others will testify against the same perpetrator gives
them confidence to speak up. However, if all survivors
remain silent until they know they are not alone, these
accusations will seldom come to light. Similarly to the
Callisto Project [30], we propose a system to securely
match accusations against the same person. Any such
system must balance privacy and utility. Our protocol
keeps accusations completely private, at first. But when
enough people accuse the same person, the accusations
are revealed to the appropriate parties. Matching accu-
sations while keeping them hidden seems contradictory,
but using cryptographic tools, we can design protocols
that provide both privacy and functionality.

In this paper we present a protocol that enable sur-
vivors of abuse to submit an accusation to a special
database. The details of the accusations, including the
names of the accuser and the accused, will be hidden
until the system identifies that there is a quorum of com-
plaints against the same person. Here, quorum refers to
a number set by the system, e.g., 3. It is illustrative to
consider the physical analogy where the accuser sends
a sealed envelope with the name of the accused on the
outside and his or her own name on the inside. A trusted
party will read the name on the outside of the envelopes
and sort them into piles. Thus each pile will contain the
accusations against a single person. Once there are three
envelopes in a pile, the trusted party opens them, reads
the accuser names, and acts upon their accusations.

The protocol above places an enormous amount of
trust in the central party. Not only will it learn the
names of the accused, but it must be trusted not to
open the envelopes prematurely, learning the names of
the accusers. Cryptography allows us to emulate the
trusted central party described above while reducing the
trust that one has to place on those running the sys-
tem. We achieve this by utilizing various cryptographic
techniques, including group signatures, multiplicatively
homomorphic encryption, privacy-preserving set opera-
tions, and threshold cryptography. The protocol design
emphasizes practicality, preferring fast operations that
are implemented in existing software libraries. We es-
timate that an implementation of the protocol would
be suitably performant for real-world deployment. Con-
cretely, accusers should be be able to submit accusations
from a cell phone or personal computer, and the rest of
the rest of the system should run on a small number
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of reasonably-sized servers. Our cryptographic design
strives to guarantee the privacy of each accuser and as-
sure them that their voice will not be heard alone.

In addition to combining existing cryptographic
tools, we present new procedures that efficiently solve
the problem at hand. In particular, we present a ran-
domized algorithm to check if an element of a multiset
exceeds some multiplicity (Section 6.1) and an efficient
amortized protocol to perform zero test in private poly-
nomials (Section 6.2). We hope these generic compo-
nents can be re-used to solve other problems in thresh-
old cryptography.

1.1 Technical Overview

Our goal is to emulate the envelope, piles and trusted
party described above. We use encryption and group
signatures to emulate an envelope, a privacy-preserving
multiset and equality test to store the piles and detect
multiple accusations, and threshold cryptography and
private computations to create the trusted party. To
formalize our security requirements, we present an ideal
functionality in Appendix B.1. In summary, the follow-
ing pseudocode describes an ideal accusation.

Ideal.Accuse(Name)
1. Receive input Name from User
2. If User is not valid: halt
3. Accusers[Name]← Accusers[Name] ∪ {User}
4. If # Accusers[Name] < Quorum: halt
5. Contact each Useri ∈ Accusers[Name]

The group signature primitive allows us to emulate
Step 2 in the ideal accusation. The user will sign her
accusation, and to check if she is a valid user, the au-
thority will verify her signature. Group signatures guar-
antee privacy during verification: although the authority
will learn that some valid user signed the message, they
will not learn which. To emulate Step 5 of the function-
ality, the authority will recover the user identity from
the signature using the trace functionality. This sepa-
ration of verification and tracing is the key feature of
group signatures. We shall use the BBS group signature
scheme in our instantiation [10]. The BBS group signa-
ture scheme relies on a single trusted authority to dis-
tribute keys and perform traces. In order to use group
signatures with weaker trust assumptions, we build a
threshold BBS protocol, distributing the BBS authority
over n servers in a way that tolerates t corruptions.

To submit an accusation, an accuser encrypts the
name of the accused, signs it with her secret group sig-
nature key, and sends the accusation to the distributed
authority. In order to emulate Step 3 of the ideal accu-
sation, the distributed authority must be able to build a
privacy-preserving multiset of accused names using only
encryptions of the names. We build this data structure
by combining structural properties of polynomials with
the homomorphic property of the encryption scheme.
In addition to building the data structure, to emulate
Step 4 in the ideal functionality, the system must detect
when a quorum of accusations is reached. We present
a new quorum-finding algorithm based on polynomial-
based multiset operations [25].

Finally, once the quorum is reached and detected,
Step 5 requires identifying the set of accusers and reveal-
ing the identity of the accused. The distributed author-
ity will find this set via a computation utilizing equality
plaintext testing on ciphertexts. Once the set of accusers
is found, the authority will trace the group signatures
and decrypt the name of the accused. Our design will
permit arbitrary operations to occur after the quorum is
met: e.g. the information could be distributed between
the accusers or revealed to an external counselor.

The protocol can be easily extended to support ar-
bitrary attachments. These attachments are encrypted
along with the name of the accused and decrypted upon
reaching a quorum. They are intended to provide auxil-
iary information about the accusation, and this method
of storage provides confidentiality as will as time stamp-
ing. This extension could be important in practice, but
for simplicity of presentation, we omit it from our de-
scription of the protocol.

1.2 Prior Work

Cryptographic tools. We rely on techniques from
threshold cryptography [19, 20] including protocols for
sharing in the exponent and the one-time multiplica-
tion of secret shares. In a similar vein to our work in
Section 5, the authors of [7] use threshold cryptography
to build a distributed version of the BBS.Trace function-
ality. However, their work alone is not sufficient for our
uses. In particular, it assumes a trusted setup.

We base our new quorum detection protocol on the
polynomial set intersection protocols of [18, 25] aug-
mented to support distributed zero tests. Kissner and
Song [25] present element reduction in multisets; that
is, given one multiset, they build a new multiset where
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each item’s multiplicity is reduced by Quorum. Their
approach hinges on the observation that if (x − s)q | F
then the (q − 1)-th derivative F (q−1) must have a root
at s. They use this observation, combined with a careful
re-randomization of the polynomial, to perform private
element reduction. Our quorum operation protocol fol-
lows the spirit of their protocol, but is more efficient.

Media Men list. The first efforts to catalogue accu-
sations of sexual violence did so without cryptographic
guarantees. In one highly-publicized example, accusa-
tions were published on a collaborative spreadsheet [15].
On this spreadsheet, names of the accused were pub-
lic and accusers were anonymous. However, since the
project was hosted on the Google Drive platform, it may
have revealed identifying information to Google. This
project made it easy to bring an accusation into the
public eye; however, it failed to bring accusers together
and failed to adequately protect privacy.

Project Callisto. In a cryptographic setting, Project
Callisto, an organization that develops technology to
support survivors of sexual assault, implemented the
functionality we are interested in, albeit with weaker
security guarantees [30]. Their protocol uses an obliv-
ious pseudorandom function (OPRF) in order to hide
the names of the accused. In particular, their database
stores π ← H(f(Name)) where H is a hash function, f
is an OPRF with a fixed key, and Name is the name
of the accused. Oracle access to f(·) is provided to all
registered users via two key servers that use threshold
primitives. Despite the use of cryptographic primitives
to hide some data, their solution does not entirely pro-
tect the identities of the accuser or accused; we present
three attacks that can be executed by relatively weak
adversaries.

First, consider a single malicious accuser. Despite a
registration and authentication system, the Callisto so-
lution does not bind the accuser’s identity to their accu-
sation. The accuser identity R is simply encrypted and
submitted to the system. To make superfluous accusa-
tions, a malicious accuser can replace R with a random
string. By submitting such accusations, the adversary
can force the number of accusations against some ac-
cused party Name past the quorum. This prematurely
exposes the accusers and accused to the counselor. To
strengthen this attack, instead of using a random string
as R, the attacker can frame another real user R′ by
submitting the accusation under the identity of R′.

Second, consider the collaboration between a ma-
licious user and an honest-but-curious database server.
They will learn how many accusations against Name0

are in the system. First, the malicious user can authen-
ticate with the key server to acquire π0 ← H(f(Name0)).
Then as H, f are deterministic, the database server can
count the number of occurrences of π0 in the database
to learn the number of accusations against Name0.

Third, consider an honest-but-curious key server. It
learns when each accuser makes an accusation. This is a
simple consequence of the accuser authenticating to the
key server each time it needs to compute the OPRF.

Our protocol prevents each attack: we use the trace-
ability of group signatures to bind accuser identity to
the accusation, homomorphic encryption to protect the
names of the accused, and the anonymity of group signa-
tures to protect accuser identities, in particular against
framing attacks. We believe preventing these attacks
warrants the conceptual complexity and computational
cost we introduce.

Write-in Elections. The primary functionality of our
protocol is to match anonymous authenticated records
containing the same encrypted name. Thus, it can be
viewed as a secure election protocol for write-in candi-
dates. Although election protocols are well-studied in
cryptography, write-ins are less so, and in most election
protocols either write-ins are not allowed (e.g. [14]) or
write-in candidates are made public (e.g. [24]). This is
sufficient in balloted elections when write-ins are an ex-
ception to the norm. However, write-ins are always used
in nominations: each voter can nominate someone, and
persons who achieve at least some quorum of nomina-
tions are added to the ballot. A protocol such as ours,
combined with a verified mix-net to avoid revealing any-
thing corresponding to the order of the votes, would be
appropriate for conducting a secure write-in election.

Distributed encryption. Distributed encryption is a
primitive that allows the recipient, or combiner in the
literature, to decrypt a message if and only if it receives
ciphertexts from sufficiently many encryptors [22, 26]. It
is primarily studied in the context of revocable privacy,
but it is connected to our problem as well. Each accuser
acts as an encryptor, and an accusation serves the role of
an encryption share of the name of the accused. The dis-
tributed authority acts as the decryptor. Thus, our pro-
tocol implies a q-out-of-N distributed encryption with a
thresholdized combiner. This guarantee is weaker than
the standard notion of distributed encryption. Usually,
the combiner is a single malicious party, but our author-
ity is distributed and partially trusted. Viewed in this
light, our protocol trades trust for efficiency, achieving
fast amortized recombination at the cost of assuming at
most t-out-of-n recombination servers are corrupted.
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2 Overview
This section provides the motivation for and informal
description of each step of the WhoToo protocol. Recall
the basic structure of the system: accusers submit accu-
sations containing the name of the accused party. When
the number of distinct accusers providing a given name
reaches the quorum, the names of the accusers and the
accused are disclosed to a counselor that decides on the
appropriate subsequent actions to take. The security of
WhoToo ensures full anonymity of both the accuser and
the accused until this point.

Identifiers. The letters R and D are used, respectively,
for the identities of the accuser and accused. For ac-
cusers, the identifier R is a public key distributed during
registration. For the accused, the identifier D is simply a
name or other real-world identifying string. The accuser,
as a participant in multi-party protocols, is denoted by
U . There is no such distinction needed for the accused,
since it does not participate in any protocols.

Registration. Each user registers with a trusted reg-
istration authority. This authority checks the user’s
identity against some real-world credential (e.g. a
government-issued credential, a school or employee ID)
to confirm the user is eligible to participate in the sys-
tem. If these checks pass, the user is appended to the
list of valid users.

Each valid user is issued a public key R that is tied
to her identity as well as a private key α. To ensure that
keys are issued to the authorized parties and that secret
keys remain unknown to anyone but the authorized re-
cipient, the issuing authority is distributed among a set
of n servers refereed to as the Distributed Authority DA.
The DA is built using threshold cryptography, ensuring
that as long as at most t out of the n servers are cor-
rupted, all operations will be performed correctly and
no one will learn private values such as user signing keys
or accused/accuser identities. The DA is used through-
out the protocol to provide these guarantees.

Registration is needed to prevent malicious accusa-
tions from anonymous parties. Such accusations present
a real security threat: without registration, a malicious
user Bob can determine if anyone has lodged an accu-
sation against him. Assume the quorum is set to three.
Bob will accuse himself anonymously in two distinct ac-
cusations. If there was a previous accusation against
Bob, then after his attack, there will be three, reach-
ing the quorum. Bob will learn about this fact when he

(or his fake identity) is contacted as an accuser whose
accusation reached a quorum.

A variant of this attack is still possible in a system
with registration: Instead of lodging anonymous accusa-
tions, Bob can ask two registered friends to accuse him.
While registration does not fully prevent this attack, the
association of users to real-world identities should act
as a major deterrent against false accusations. Indeed,
the identities of Bob’s friends will be revealed during
the legal process initiated when an accusation reaches a
quorum, making these friends accountable, and possibly
punishable, for their fraudulent actions.

For these deterrents to be significant, it must be
hard to corrupt registered users or to register fake users.
This puts trust on those issuing credentials and regis-
tering users. These functions can also be distributed in
order to lower the trust on any single entity but such
decentralization is beyond the scope of this work. In-
stead, we model a trusted registration authority by a
simple list of valid users. While our simple abstraction
assumes this list is fixed, the solution easily supports
the dynamic case.

Lodging accusations. Say an accuser U with identifier
R wishes to accuse D. The accusation is an encoding of
R and D. The encoding must be hiding to guarantee
anonymity. But it also must have a special structure
so the DA can manipulate it appropriately. On top of
the encoded values, R provides signatures and proofs
of correctness, ensuring accountability and allowing the
system to discard malformed accusations.

Encryption achieves the necessary hiding property.
In particular, we use threshold public key encryption
where a single public key can be used for encryption,
but decryption requires the cooperation of t + 1 of the
DA servers. We also require a multiplicatively homo-
morphic encryption scheme where the product of two
encryptions is an encryption of the product of the un-
derlying plaintexts. This special structure allows some
efficient protocols on encrypted data.

The accuser must also prepare a sharing of D into n
shares, one share sent to each DA server. Secret sharing
provides privacy by sending only a part of the secret D
to each server. We choose a secret sharing scheme that
preserves the additive structure of shared values. This
allows some efficient protocols on shared values.

After preparing encryptions of R and D and shares
of D, the accuser signs the accusation with her private
key α. Specifically, we use group signatures which pro-
vide two operations: a verify procedure that ensures that
some valid private key was used for signing, and a trace
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procedure that recovers the public key R of the signer.
In our thresholdized group signature scheme, a set of at
least t+ 1 servers need to agree to trace the accusation
to R. They do so only upon reaching the quorum.

Finally, the accuser must provide cryptographic
proof, in the form of a string appended to the accusa-
tion, that she knows the values that she encrypted. This
prevents others from copying her accusation and submit-
ting it as their own. The proofs are zero-knowledge, that
is, they reveal nothing about the underlying values.

Aggregating accusations. First, the DA will discard
any malformed accusations, checking the proofs and sig-
natures described above are valid and the secret shares
they received are consistent with each other. Next, they
check that the accusation is not a duplicate, i.e. no pre-
vious accusation was prepared with the same R,D. To
perform this check, the DA servers make use of an equal-
ity test that checks if two ciphertexts encrypt the same
plaintext. This protocol can be implemented efficiently
and securely due to the homomorphic structure of the
ciphertexts.

After removing malformed and duplicate accusa-
tions, the DA servers proceed to detect quorums. They
use a special private multiset data structure S that
stores in a privacy-preserving way the identities of all
persons accused so far, each with a multiplicity equal to
the number of accusations against them. This is done in
two steps. First, the newly accused identity D is added
to the multiset S. Second, the DA checks whether the
multiplicity of D in S equals the quorum. Both of these
operations can be implemented efficiently by writing the
multiset as an encrypted polynomial FS : each root of the
polynomial corresponds to an element of the set, and the
multiplicity of the root is the multiplicity of the item.
Then, adding an element D corresponds to polynomial
multiplication, namely computing (x−D)FS . Checking
if the multiplicity meets a quorum q reduces to evaluat-
ing the (q−1)th derivative of FS at D. These operations
are implemented in Section 6 using a secret sharing of
D and an encryption of the polynomial coefficients.

If the test reveals that the quorum is met, it remains
to collect the list of accusers. This is done by once again
utilizing the equality test primitive. The DA performs a
scan of all accusations, and for each accusation against
the same party, it performs the group signature trace
operation to determine the identity of the accuser.

Finally, once the accusers and accused are identified,
control is transferred to a counselor for further process-
ing. This treatment changes according to the scenario in
which WhoToo would operate and is non-cryptographic

in nature, hence beyond the technical scope of this work.
See Section 4.2.

Security. Assume no more than t servers are corrupted.
Our solution achieves a very high standard of security,
reducing the observable information to the total num-
ber of accusations processed by the system. The formal
security is defined via an ideal model in Appendix B.
Here we state some resulting security properties.

For accusations that have not reached a quorum,
there is no leakage on identities, individual accusation
counts, or any other private information. A variety of
attacks such as copying part or all of an accusation, sub-
mitting an accusation anonymously, forging the identity
of the author of an accusation are all prevented. In com-
parison, none of three attacks against [30] state in Sec-
tion 1.2 are possible against WhoToo. Finally, while sub-
mission of fraudulent accusations cannot be prevented
by cryptography, our ability to trace false accusations
serves as a deterrent to the remaining attack.

3 Building Blocks
This section presents the notation and specification of
components used in the protocol. Constructions and
proofs are relegated to later sections.

General notation. Let [N ] = {1, . . . , N}.

Computational assumptions. Our protocol relies on
a variety of standard Diffie-Hellman type assumptions.
They are stated explicitly in Appendix A.1 and referred
to by name when needed.

Random oracle. Let H denote a hash function into Zp.
In some cases we utilize a hash function with a different
codomain Y ; in this case we write HY . We utilize the
hash function with different domains in different con-
texts; in each case, the number and type of arguments
should make the domain clear. Treat all hash functions
as random oracles for the purposes of security proofs.

Bilinear groups. Let G1,G2 be two cyclic groups of
prime order p with generators g1, g2 respectively. Let
φ : G2 → G1 be a computable isomorphism such that
φ(g2) = g1. Finally let e : G1 × G2 → GT be a bilinear
map such that e(g1, g2) 6= 1. We suggest a specific family
of groups to utilize in Appendix A.1.
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3.1 ElGamal Encryption

Encrypting group elements.
ElGamal.Setup. Choose h ∈R G1 \ {1} and x ∈R Zp. Let
g = h1/x. Output keys pkeg← (g, h) and skeg← x.
ElGamal.Enc(pkeg,m). Choose a ∈R Zp and output c←
(c1 = ga, c2 = ham).
ElGamal.Dec(skeg, c). On input c = (c1, c2) output c2/c

x
1 .

Assuming the Decisional Diffie-Hellman problem is
hard in G1, this scheme is semantically secure against
chosen-plaintext attacks [16]. Further, the scheme is
multiplicatively homomorphic in the sense that decryp-
tion is a group homomorphism when ciphertexts are con-
sidered as elements of G1 ×G1.

Extension to Strings. We can use ElGamal as a key-
encapsulation mechanism to encrypt longer strings effi-
ciently. Let (AuthEnc,AuthDec) be a symmetric key au-
thenticated encryption scheme with keyspace K. Define
a new encryption scheme with the same ElGamal keys.
ElGamal.EncString(pkeg,m). Choose a ∈R Zp and output
C ← (ga,AuthEnc(HK(ha),m)).
ElGamal.DecString(skeg, c). On input c = (c1, c2) output
AuthDec(HK(cx1), c2).

Assume AuthEnc is CCA-secure. Under the Strong
Diffie-Hellman Assumption, this scheme is CCA-secure
when HK is a random oracle [2].

Proof of Plaintext Knowledge. We will also need a
proof of plaintext knowledge to prevent attackers from
submitting encryptions of values that they do not know.
We give this proof explicitly in Appendix A.3. Assume
c is an ElGamal encryption of m with randomness a.
Then let ElGamal.Prove(c, a, ρ) be the non-interactive
zero-knowledge proof of knowledge proving knowledge
of m such that c = ElGamal.Enc(m) where the random
oracle challenge is derived from a given value ρ. Let
ElGamal.Verify be the verification procedure.

Additive encoding. We will encode a value s ∈ Zp
via an ElGamal encryption of the plaintext gs for fixed
public g. Let es ← ElGamal.Enc(gs). Considered as a
function of s this transforms the multiplicatively homo-
morphic ElGamal into an additively homomorphic en-
coding: indeed es1+s2 = es1 · es2 . Note that this encod-
ing is not efficiently invertible even with the knowledge
of the ElGamal decryption key. However, it is amenable
to zero tests: decrypting the encoding es yields gs, and
gs = id if and only if s = 0. The zero testing will be suf-
ficient for our needs in the following equality test and
the privacy-preserving polynomials.

Equality testing. Given the additively homomorphic
properties of the encoding there is a fast protocol to test
equality of plaintexts using only their encodings [23]. In
particular Equal(sk, e1, e2) will return True if e1 and e2
are encodings of the same message and with high prob-
ability will return False when they are not the same.
Further, in the threshold setting this protocol will re-
veal nothing else about the underlying messages. For
the specification of this protocol see Appendix A.2.

3.2 Threshold Operations

We decentralize several of the operations used by the
group signature authority using standard techniques
from the area of threshold cryptography. We rely on mul-
tiple operations on shared secrets that we define next
and for which we assume a broadcast channel between
the participants (the servers of the distributed author-
ity in our application). Below, we assume a group G of
prime order p with generators g, h. Except if said oth-
erwise, secrets and shares will be taken from Zp and
verification information from G.

Supported operations. In order to share x ∈ Zp, we
follow the basic outline of Shamir secret sharing. Take
the xi = P (i) for some polynomial P of degree t such
that P (0) = x. Our discrete log based schemes and appli-
cations generally allow to publish the values {gxi} and
gx for verification purposes. This allows for operations
analogous to standard Lagrange interpolation on shares
but computed in the exponent; e.g., we can compute
gx =

∏
(gxi)λi where λi are the appropriate Lagrange

coefficients.
Let t be the threshold parameter. In the following

we denote the shares of a (t, n) sharing of a secret x by
{xi}t,n. When we write {xi}t,n as an input or output
to a distributed protocol, this means that party Ci has
input or output xi.

SecShare.Reconstruct(x). Reconstruct a secret x

from its shares.
SecShare.Gen(g). A primitive which we use repeat-

edly in the set-up of the system is a distributed gener-
ation of a pair x, gx [20]. The protocol takes as input
a generator g of the group G. It results in each party
holding the share xi of {xi}t,n for a secret x uniformly
distributed over Zp and a public value gx.

SecShare.GenInv(g). We will also need a distributed
generation of a pair x, g1/x [19]. The protocol takes as
input the generator g of the group G. It results in each
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party holding the share xi of {xi}t,n for a random x and
the public value g1/x.

SecShare.Verify(s). Often, when shares of a given se-
cret are shared by a dealer, the receiving parties need
to verify that the shares they receive interpolate to a
unique secret (called a verifiable secret sharing (VSS)
protocol [13]). SecShare.Verify(s) implements such pro-
tocol for a secret s.

SecShare.Add(x, y). On input two shared secrets x
and y with shares {xi}t,n and {yi}t,n respectively, the
protocol outputs a sharing {zi}t,n of a secret z such
that z = x+y. For subtraction, define SecShare.Sub(x, y)
analogously.

SecShare.Mult(x, y). On input two shared secrets x
and y with shares {xi}t,n and {yi}t,n respectively, the
protocol outputs a sharing {zi}t,n of a secret z, such
that z = x · y [6, 21].

SecShare.Invert(x). On input a shared secret x, out-
put a sharing of x−1 [4].

SecShare.Exp(b, x). On input b ∈ G and a shared
secret x with shares {xi}t,n, generate shares {bi}t,n of
z = bx where bi = bxi . Given values gxi a party can
prove that bxi and gxi have the same exponent xi using
ZK proof of equality of discrete log.

Security. Assume a malicious adversary who can cor-
rupt t parties for n ≥ 2t + 1. We require correctness
and secrecy of the secret sharing scheme. Correctness
states that recombination does in fact recover the shared
value. Secrecy states that the information held by cor-
rupted parties reveals nothing about the shared value.
Further, we require that each SecShare.Operation is a se-
cure multi-party computation of the operation described
above. Equivalently, this means that the outputs are dis-
tributed correctly and the view of the parties during the
operation is simulatable from public outputs alone.

3.3 VSS and ElGamal

The previous section presented secret sharing operations
in the abstract: we made no stipulations on what values
were published for verification purposes. In this section,
we choose a concrete verification protocol and show how
it connects to the ElGamal-based additive encodings de-
fined in Section 3.1.

To motivate this move, consider both sharing and
additively encoding a value s. The shares {s} will be
generated via a secret sharing scheme. The encoding
es will be generated by encrypting gs with a multiplica-
tively homomorphic encryption scheme. To perform this

action in an untrusted environment requires a means to
verify the sharing and the encoding are consistent, i.e.

Dec(es) = SecShare.Exp(g, {s}).

For concreteness and efficiency, we will use the Peder-
sen verifiable secret sharing scheme [29] and the ElGa-
mal encryption scheme. A structural similarity between
the two schemes allows the holders of the shares to eas-
ily verify consistency if the sharing and encoding were
generated in a coordinated fashion.

Pedersen VSS. A Pedersen commitment to s is in the
form gshr for random r. The Pedersen verifiable secret
sharing scheme uses Pedersen commitments to facilitate
a verification procedure.

To generate a share of s, choose a random r. Then
generate shares of s and r as in Shamir secret sharing:
pick coefficients aj , bj for polynomials fs, fr of degree t
such that fs(0) = s, fr(0) = r. Evaluate the polynomials
to obtain si = fs(i) and ri = fr(i). Finally, commit to
the coefficients by vj = gajhbj . Publish the verification
values v = (v0, . . . , vt) and send the ith party the share
(si, ri). The pseudocode for this SecShare.GenPedersen(s)
procedure is given in Fig. 1. The verification protocol is
not given here, but is presented in full in [29].

Connection to the Additive Encoding. Recall that
an additive encoding of s is basically an ElGamal en-
cryption of gs. For v prepared as above we have

v0 = ga0hb0 = gshr.

Thus, if the public key for the ElGamal encryption is
(g, h) then

es = (gr, v0) = (gr, gshr)

is an ElGamal encryption of gs, i.e. the additive encod-
ing of s. The additional value e0 = gr is output by the
SecShare.ShareEncode(s) procedure in Fig. 1. The ran-
domness r is also an output, as it is required for the
ElGamal proof of plaintext knowledge.

To check the consistency of the encoding with the
sharing, the parties holding the shares will verify

es = (SecShare.Exp(g, {r}), v0).

This check will be called SecShare.CheckConsistent(ω, v, e0).

3.4 Exponentiation of Ciphertexts

Our privacy-preserving polynomial entails raising an el-
ement of the group to a shared secret value. This is in
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SecShare.GenPedersen(s)
1. r ∈R Zp
2. a0 ← s, b0 ← r

3. aj , bj ∈R Zp for j ∈ [t]
4. si ←

∑t
j=0 aji

j for i ∈ [n]
5. ri ←

∑t
j=0 bji

j for i ∈ [n]
6. vj ← gajhbj for j ∈ [0..t]
7. v ← (v0, . . . , vt)
8. ω ← ((s1, r1), . . . , (sn, rn))
9. Output ω, v

SecShare.ShareEncode(s)
1. Take r, v, ω as in SecShare.GenPedersen(s)
2. e0 ← gr

3. Output ω, v, e0, r

SecShare.CheckConsistent(ω, v, e0)
1. {s}, {r} ← ω

2. Return True iff e0 = SecShare.Exp(g, {r})

Fig. 1. Pedersen sharing and coordination with encoding

fact exactly the operation carried out by SecShare.Exp.
However, we also need this exponentiation operation to
be semantically secure, i.e. to preserve the secrecy of
the exponent and its shares. Thus, we need to extend
the SecShare.Exp to incorporate a re-randomization step.
As our privacy-preserving polynomials operate over en-
codings of values we will use the specifics of this in our
description of new function SecShare.ExpRR.

SecShare.ExpRR(e = (e0, e1), {s}). To exponentiate
the encoding corresponding to (e0, e1), each party will
pick a random encoding of 0 by choosing ri ∈R Zp
and defining (gri , hri). Then they will compute ei ←
(griesi0 , h

riesi1 ), publish ei, and prove knowledge of ri
and prove equality of discrete log as in SecShare.Exp.
Once the proofs are verified they proceed with the usual
exponentiation computing y =

∏
eλii for appropriate La-

grange coefficients λi and output y.
To show correctness, consider e0 = ga, e1 = hagm.

As
∑
λisi = s we have

y =
∏

eλii

=
∏

(gri(ga)si , hri(hagm)si)λi

= (gas+
∑

riλi , has+
∑

riλigms).

Thus conclude y is a random encoding of gms as desired.
Security follows as in SecShare.Exp. The fact that s is
hidden follows from the randomness of the ri and the
discrete log assumption.

3.5 BBS Group Signatures

From a high level, a BBS group signature is an encryp-
tion c of the user identity together with a “signature of
knowledge” σ of a valid user key. Together, these serve
to sign the message. To verify the signature, anyone can
check σ using the public key. To trace the identity of
the signer, the holder of the secret key decrypts c.

We present the full BBS specification in Ap-
pendix A.4. Below we highlight the elements that are
directly relevant to our use of BBS and its implementa-
tion as a distributed system as presented in Section 5.

The original presentation of BBS uses linear encryp-
tion rather than ElGamal which provides security under
weaker computational assumptions. However, since the
stronger assumptions needed to use ElGamal (described
in Section 8.1 of [10]) are now rather standard in many
pairing-friendly elliptic curve groups, we are comfort-
able using the weaker variant of the scheme. This vari-
ant comes with the benefit of faster operations, smaller
signatures, and a simpler explication. It is possible to
substitute the original linear encryption scheme in our
application if the weaker assumptions are desired.

BBS.Setup. Compute (pkeg, skeg) ←
ElGamal.Setup(). Sample a secret γ ∈R Zp and pub-
lish w = gγ2 for the zero-knowledge proof. The pub-
lic key is pk = (pkeg, g1, g2, w) and the secret key is
msk = (skeg, γ).

BBS.UserKeyIssue(msk). To issue a key to U , choose
α ∈R Zp and compute R← g

1/(α+γ)
1 . The identity asso-

ciated to U is R and her secret key is skU = (R,α).
BBS.Sign(pk, skU ,m). Compute c ←

ElGamal.Enc(pkeg, R) and the remaining values σ as
defined in Appendix A.4. Output (c, σ).

BBS.Verify(pk,m, c, σ). The signature verification
procedure is defined in Appendix A.4.

BBS.Trace(msk,pk,m, c, σ). Verify the signature
and output ElGamal.Dec(skeg, c).

In the random oracle model, and under the DDH
and sDHk assumptions in G1, the BBS scheme is secure
per the definition given in [5]. In particular, the scheme
is correct, unforgeable, anonymous without knowing the
msk, and traceable given the msk.

In Section 5 we present thresholdized versions
of the above functions. In particular, we specify the
protocols DistBBS.Setup, DistBBS.UserKeyIssue, and
DistBBS.Trace as distributed protocols performed by the
distributed authority DA. The BBS.Sign and BBS.Verify
procedures do not change in the distributed setting; they
remain the regular single-party BBS operations.
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3.6 Privacy-Preserving Multisets

The following operations allow the distributed authority
to maintain a multiset of accuser names. These opera-
tions are performed in a distributed manner such that
no adversary learns anything about the content of the
set except what is obtained by the quorum operation.
Let {s} be a secret sharing of the input s, where each
party i receives the ith share as in Section 3.2. The im-
plementation of these operations are given in Section 6.
The interface is as follows:

Set.Init()→ S representing ∅.
Set.Add(S, s)→ S′ such that S′ representing S∪{s}.
Set.Quorum(S, s) → True iff the multiplicity of s in

S is at least q.

4 WhoToo Protocol
Following the outline in Section 2 and using the nota-
tion from Section 3 we specify the WhoToo protocol in
Section 4.1 and discuss deployment in Section 4.2.

Two operations used in the protocol are highly
context-specific and involve real-world information; thus
they are not specified formally. Investigate(D,S) denotes
the operation taken once the quorum has been reached,
where D is the name of the accused and S the set of
accusers. GetUsers denotes the process by which the list
of valid accusers is obtained. We re-visit the issue of
specifying Investigate and GetUsers from a less formal
standpoint in Section 4.2.

4.1 Protocol Description

We proceed to describe the protocol. We summarize it
in words below and algorithmically in Fig. 2.

Initialization. The WhoToo.Initialize protocol de-
scribes the steps taken by the DA to initialize crypto-
graphic primitives and distribute keys. First, the DA
obtains the user list. It initializes the threshold BBS
scheme by calling DistBBS.Setup as described in Sec-
tion 5. For each user U , the DA performs the distributed
BBS key generation protocol DistBBS.UserKeyIssue.
Thus each user receives the BBS keys (R, skU ). Further
the DA will associate each public key to the correspond-
ing user by setting IdentityMap[R] = U . Finally, the DA
initializes the sets relating to the accusations, i.e. an
empty privacy-preserving multiset as specified in Sec-
tion 6 and an empty list of accusations.

Lodging an accusation. The WhoToo.Accuse proto-
col breaks down the accusation process into a num-
ber of smaller steps. First, the user prepares an accu-
sation in the WhoToo.PrepareAcc function. The accu-
sation itself is n different messages acc1, . . . , accn. The
user sends acci to the ith server of the DA. In the sec-
ond step the DA verifies the accusation as detailed in
WhoToo.VerifyAcc, halting if it fails to verify. Otherwise,
WhoToo.Accuse continues to process the accusation by
storing it, i.e. the shared value s is used to update the
multiset representing the accusations. The final step is
to check for a quorum, using the distributed multiset
protocols of Section 6. If the quorum is reached, the
DA proceeds to the WhoToo.OpenAccusations protocol.

Note that the accusation preparation is non-
interactive with respect to the user: she need only pre-
pare her messages and send them to the DA servers.

Preparing an accusation. TheWhoToo.PrepareAcc(D)
function specifies how a user U with keys (R, skU ) builds
an accusation against D. Remember, the accusation has
n parts, one for each server.

The user starts by processing D in three different
ways. The first is a simple encryption cD of the string
D. This allows the DA to eventually recover D. We use
the ElGamal.EncString encryption scheme for simplicity.
The next two preparations are more involved, but are
required for the DA to perform privacy-preserving op-
erations on D.

The user will hash D, yielding a value s ∈ Zp. This
values should be thought of analogously to D; it will
stand in for D in algorithms that take place in the ex-
ponent of G1. This step is unnecessary if we take the
names of the accused to be elements of Zp to begin
with. However, in the more realistic setting where D

is a string of arbitrary length, using a hashed value is
required.

Next, the user will share and additively encode s
as described in Section 3.3. This generates values ω the
actual shares of s and r, v a vector of verification values,
e0 the first element of the encoding, and r itself. The
values ωi, v, and e0 must be sent to the ith server.

The remainder of the function serves to “package”
the message sent to server i. Call this message mi, con-
sisting of cD along with the values from the share and
encoding of s. The inner layer of packaging is the BBS
group signature given in Appendix A.4, yielding a sig-
nature cR||σ. The outer layer of packaging is the proofs
π0, π1 of plaintext knowledge for encryptions es, cD re-
spectively. These proofs contain the group signature as
auxiliary information, assuring that they will only vali-
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WhoToo.Initialize
1. ValidAccusers← GetUsers()
2. (pk,msk)← DistBBS.Setup()
3. IdentityMap← ∅
4. For each U ∈ ValidAccusers:

(a) R← DistBBS.UserKeyIssueU (msk)
over authenticated confidential channel

(b) IdentityMap[R]← U

5. S ← Set.Init()
6. Accusations← ∅

WhoToo.Accuse
U : 1. (acci)i∈[n] ←WhoToo.PrepareAcc(D)

2. Send acci to server i of the DA
over anonymous confidential channel

DAi:3. Halt if not WhoToo.VerifyAcc(acci)
4. S ← Set.Union(S, ω)
5. Accusations← Accusations∪{(cR, es, cD)}
6. If Set.Quorum(S, ω):

Run WhoToo.OpenAccusations(es, ω, cD)

WhoToo.OpenAccusations(es, ω, cD)
1. Accusers← ∅
2. s← SecShare.Reconstruct(ω)
3. D ← Null
4. For each (cR′ , es′ , cD′) ∈ Accusations:

If Equal(skeg, es, es′):
R′ ← ElGamal.DistDec(skeg, cR′)
U ← IdentityMap[R′]
Accusers← Accusers∪{U}
D′ ← ElGamal.DistDecString(skeg, c′D)
If H(D′) = s: D ← D′

5. If D = Null: halt
6. Run Investigate(D,Accusers)

WhoToo.PrepareAcc(D)
1. cD ← ElGamal.EncString(pkeg, D),

encrypted with randomness rD
2. s← H(D)
3. ω, v, e0, rD ← SecShare.ShareEncode(s)
4. es ← (e0, v0)
5. For each i ∈ [n]:

(a) mi ← cD||ωi||v||e0
(b) (cR, σ)← BBS.Sign(mi, skU )
(c) π0 ← ElGamal.Prove(es, rD, cR||σ)
(d) π1 ← ElGamal.Prove(cD, rD, cR||σ))
(e) acci ← (cR, cD, ωi, v, e0, σ, π0, π1)

6. Return (acci)i∈[n]

WhoToo.VerifyAcc(cR, cD, ωi, v, e0, σ, π0, π1)
1. es ← (e0, v0)
2. mi ← cD||ωi||v||e0
3. If any of the following fail, return False:

ElGamal.Verify(pkeg, π0, es, cR||σ)
ElGamal.VerifyString(pkeg, π1, cD, cR||σ)
BBS.Verify(pk,mi, cR, σ)
SecShare.Verify(ω, v)
SecShare.CheckConsistent(ω, v, e0)

4. For each (cR′ , es′ , cD′) ∈ Accusations:
If Equal(skeg, (cR, es), (cR′ , es′)):

Return False
5. Return True

Fig. 2. The #WhoToo protocol: Initialize, Accuse; and Accuse subroutines PrepareAcc, VerifyAcc, and OpenAccusations.

date when attached to this message. Details of the proof
system are given in Appendix A.3.

Finally the user assembles the accusation
(cR, cD, ωi, v, e0, σ, π0, π1) for server i.

Verifying an Accusation. The WhoToo.VerifyAcc pro-
cedure serves to remove malformed accusations. First,
the DA will re-assemble the encoding es and the mes-
sage mi from its inputs. This step is completely syntac-
tic; it is a re-labeling of input values in order to utilize
them more concisely in the remainder of the verification.

Next, each server of the DA verifies the proof
of plaintext knowledge by running ElGamal.Verify and
ElGamal.VerifyString, verifies the group signature by run-
ning BBS.Verify, and verifies the secret sharing by run-
ning SecShare.Verify. If all check pass, it proceeds.

Then the DA check to see if this accusation is a du-
plicate. To do so, it iterates through each prior accusa-
tion. It uses the Equal protocol detailed in Appendix A.2
to check if current and previous accusations were gener-
ated using the same values of R and s; this is equivalent
to checking if they were made by the same user against
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the same party. If the new accusation is not a duplicate
in this sense, the protocol returns successfully.

Opening Accusations. After a quorum occurs, the
WhoToo.OpenAccusations procedure is called. The DA
performs a linear scan to find all of the accusations
against D. It again utilizes Equal to check if s = s′

without decrypting these values. It also recovers the
string D by decrypting the value cD′ attached to each
matching accusation. However, since cD′ may not be an
encryption of the correct value, the servers check that
H(D′) = s as desired. The servers also decrypt the pub-
lic keys R′ of each matching party and uses them to
recover the users themselves. It uses all of this data to
run Investigate.

4.2 Operational Considerations

This section describes operational issues in deploying
WhoToo. We present each issue and give an example of
how it could be addressed in a specific context. In other
contexts, especially as the size of the system scales, these
issues require different solutions.

DA Servers. Servers consituting the distributed au-
thority should not be co-located and should have
separate administrations. This should ensure that
compromising one server does not make it easy to
compromise others. The servers can communicate
with eachother over private authenticated channels;
typically instantiated with TLS.

Key distribution channel. Each DA server needs a
private authenticated channel to each user; typically
instantiated with TLS.

Submission accusation channel. Users need an
anonymous channel to each DA server; can be
instantiated with Tor service [1].

User list. Choose implementation of GetUsers. The list
of users must be known to each server of the DA.

Names of accused. Our description assumes that ac-
cused parties have unique identifiers (e.g., a name,
email address, etc.). In practice, the same person
can be known by different identities. In this case, a
user should submit a separate accusation for every
identity by which the accused may be known (as
matching is done on the basis of such identities). A
more sophisticated “fuzzy matching” of names could
be accomplished by replacing the Equal predicate
(Appendix A.2) with a more complicated predicate;
instantiating this securely and efficiently is outside
the scope of this work.

Choice of action. Once a quorum is identified, the
WhoToo protocol begins the Investigate process us-
ing the name of accused and accusers. This proce-
dure is a place holder for the actions taken by a
counselor, legal team, etc., on the basis of this in-
formation; it represents steps that are outside the
scope of cryptography and of the WhoToo protocol.

Case study. Deploy WhoToo within a single educa-
tional institution. At this scale, it is easy to identify
and communicate with any member of the institution.
Keys can be delivered to students via sealed envelopes
placed in student mailboxes. The anonymous channel
can be a number of mailboxes placed in common ar-
eas. Student governing boards, school services, and ex-
ternal advocacy groups will maintain servers comprising
the DA. The school administration will provide a list of
enrolled students. In order to accuse parties inside the
school, the official school email addresses will serve as
accused identities. Rules on how to process accusations
that reached a quorum can be integrated into existing
school judicial processes.

5 Distributed BBS
In order to provide privacy for the accusers until a suf-
ficient number have accused the same party, we substi-
tute the secret key generations by a distributed process.
Though a fully threshold BBS does not appear in the
literature, we can describe it as a straight-forward com-
position of existing threshold primitives. For the speci-
fication of each primitive see Section 3.2. Our threshold
decryption algorithm is identical to that of [7]; however,
our setup protocol is new.

As promised in Section 3.5, we trans-
form DistBBS.Setup, DistBBS.UserKeyIssue, and
DistBBS.Trace into distributed protocols performed by
the DA. The algorithms are first described in words,
and then specified algorithmically in Fig. 3.

DistBBS.Setup(g1, g2): To set up the scheme, the
parties first generate an ElGamal keypair. They share
the private key x and publish the public key (g, h) where
h = gx. Next they generate a BBS keypair. They share
the private key γ and publish the public key w = gγ2 .

DistBBS.UserKeyIssueU (γ): To issue a key to a user
U , the parties share the private key α and derive the
public key R = g

1/(α+γ)
1 in the clear. Each server sends

its share α to the user U . The user recombines the shares
to obtain α.
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ElGamal.DistDec: To decrypt an ElGamal encryp-
tion (c1, c2) where c1 = gr and c2 = mhs, the parties
use the shared key x to obtain d = cx1 = grx = hr. They
divide c2 by d to obtain the message.

Note the ElGamal.DistDec protocol also serves as the
distributed BBS trace functionality. To trace the signa-
ture (cR, σ) the parties simply decrypt cR.

ElGamal.DistDecString: To decrypt an ElGamal
string encryption (c1, c2) where c1 = gr and c2 =
AuthEnc(H(d),m), the parties obtain d as before and
perform AuthDec with key H(d) to obtain the message.

We claim that the security of the threshold opera-
tions immediately gives the security of the distributed
BBS scheme in the sense discussed in Section 3.5.

Lemma 5.1. Fix any implementation of SecShare.Gen,
SecShare.Mult, SecShare.GenInv, SecShare.Sub, and
SecShare.Exp, and fix an adversary the secret sharing
primitives are secure against. Then, making the same as-
sumptions required for the security of the BBS group sig-
nature, the distributed signature scheme is secure, that
is, correct, fully anonymous, and fully traceable.

Proof. Fix a coalition of DA servers comprising an
adversary against which the secret sharing primi-
tives are secure, along with a set of corrupted
users C. First observe that the distribution of out-
puts from DistBBS.Setup, DistBBS.UserKeyIssue, and
DistBBS.Trace are indistinguishable from the outputs
of BBS.Setup, BBS.UserKeyIssue, and BBS.Trace respec-
tively, run on the same inputs. This follows from the
correctness property of the secret sharing scheme and
associated operations. Further we argue that the view
of the adversary can be simulated from the public pa-
rameters of the BBS system and the values revealed to
the corrupted users: namely g1, g2, g, h, w, the set of all
public keys {RU}, and the set of private keys {αU}U∈C .
This follows from the secrecy property of the secret shar-
ing scheme.

This suffices to translate any attack against the dis-
tributed system into an attack on the original BBS sys-
tem. Replace the distributed protocols by the original
protocols and the true adversary by a simulated one.
This translated adversary has output indistinguishable
from the output of the true adversary. Further, this ad-
versary will be a valid adversary against the original
BBS scheme, as it consists only of users that see only
public parameters and their own private keys.

DistBBS.Setup()
1. g ∈R G1
2. ({xi}t,n, h = gx)← SecShare.Gen(g)
3. pkeg← (g, h)
4. ({γi}t,n, w = gγ2 )← SecShare.Gen(g2)
5. Publish pk← (pkeg, w)

DistBBS.UserKeyIssueU ({γi}t,n)
1. ({γ′i}t,n, R)← SecShare.GenInv(g1)
2. {αi}t,n ← SecShare.Sub(γ′, γ)
3. Party DAi sends to U its share αi
4. U interpolates the value α from the αi

ElGamal.DistDec(c1, c2, {xi}t,n)
1. {di}t,n ← SecShare.Exp(c1, x)
2. Recover d from the {di}t,n
3. Output m← c2/d

ElGamal.DistDecString(c1, c2, {xi}t,n)
1. {di}t,n ← SecShare.Exp(c1, x)
2. Recover d from the {di}t,n
3. Output m← AuthDec(H(d), c2)

Fig. 3. Distributed BBS and ElGamal Operations

6 Private Multiset Operations
First, we introduce a polynomial representation of mul-
tisets, specifying multiset operations in terms of poly-
nomial operations. Then, we provide privacy-preserving
polynomials using our additive encoding and show how
to carry out the needed computations under encryption.
The construction follows the basic construction of [25],
but our quorum operation and distributed evaluation
are new.

6.1 Multisets via Polynomials

Represent a finite multiset S of elements from Fp by

F =
∏
si∈S

(x− si).

In this language, the empty set corresponds to the iden-
tity polynomial. Adding an element s corresponds to
the multiplication of F by (x−s). Performing a quorum
test, i.e. determining if s appears q times in the set S,
corresponds to checking if (x − s)q divides F . We pro-
pose an alternate test: check if the (q − 1)th-derivative
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of F evaluated at s is zero. It is this test that we shall
implement privately.

Note that the quorum test is complete, but not
sound: as a concrete example consider the multiset
S = {1, 1, 2}. This set is encoded by the polynomial

F (x) = (x− 1)2(x− 2).

To check for quorums of size 2, take the first derivative:

F (1)(x) = (x− 1)(3x− 5).

The derivative is 0 at x = 1 because 1 has multiplicity 2
in S. However, it is also 0 at x = 5/3 yet this value has
multiplicity 0 in S.

Instead of failing on some fixed inputs, we will ran-
domize the test to succeed with high probability on ev-
ery input. The randomized version of the test will sam-
ple R a random polynomial of degree q − 1, and then
take the derivative of RF . We will show that for any
input, this randomized test has soundness 1− 1/p.

Lemma 6.1. PolySet.Quorum has perfect correctness.

Proof. By construction s occurs q times in Set(F ) if and
only if (x− s)q | F . Writing F = (x− s)qG, the correct-
ness of PolySet.Quorum follows using the product rule
for (q − 1)th derivatives:

(R(x− s)qG)(q−1)[s]

=
q−1∑
k=0

(
q − 1
k

)
(RG)(q−1−k)[s]((x− s)q)(k)[s].

Observe that ((x− s)q)(k)[s] = 0 for k < q.

Lemma 6.2. If R is uniformly random in Fq−1
p [x] then

v =
(
R(k)[s]

)q−1
k=0 is uniformly random in Fqp.

Proof. From a calculus lens: the value of v suffices to
give the degree q Taylor expansion of R at s; then since
R is a degree q polynomial this expansion is exact. Thus
there is a bijection from choices of R to choices of v.

A linear algebra argument gives this bijection explic-
itly: the coefficients of R and the derivatives evaluated
at s are related by the matrix below. It is invertible since
the determinant is (q − 1)!(q − 2)! . . . 1.

(q−1)! 0 . . . 0 0
(q−1)!s (q−2)! . . . 0 0
...

...
. . .

...
...

(q−1)sq−2 (q−2)sq−3 . . . 1 0
sq−1 sq−2 . . . s 1




Rq−1
Rq−2
...
R1
R0

 =


R(q−1)[s]
R(q−2)[s]
...
R(1)[s]
R[s]



Lemma 6.3. Fix any F ∈ Fp[x] and s ∈ Fp.
Let R ∈R F(q−1)

p [x] and define G = RF . Then either
1. (x− s)q | F or
2. G(q−1)[s] = 0 with probability 1/p.

Proof. Again invoke the product rule. Observe s is a root
of G(q−1) if and only if

0 =
q−1∑
k=0

((
q − 1
k

)
F (k)[s]

)
R(q−1−k)[s].

Now apply Lemma 6.2 to the case where the
{F (k)[s]}q−1

k=0 are not all zero; this immediately gives
that G(q−1)[s] ∈R Fp giving property 2. Otherwise,
F (k)[s] = 0 for all k ∈ {0, . . . , q − 1}, so s is a root of F
with degree n+ 1 giving property 1.

Lemmas 6.1 and 6.3 give that PolySet.Quorum has per-
fect completeness and soundness 1 − 1/p. However, we
need stronger guarantees to use this algorithm in a set-
ting where both the elements of the multiset and the
location to perform the quorum test are chosen adver-
sarially. This will again follow from the lemma. We write
this guarantee in the following security game:

Lemma 6.4. For any adversary A define

ε(A) = Pr[A→ (F, s) :PolySet.Quorum(F, s) = 0]

If (x− s)q - F then ε(A) ≤ 1/p.

Proof. R was chosen uniformly, independently of the
choice of F and s. By Lemma 6.3, for all F and s, we
have (RF )(q−1)[s] = 0 with probability 1/p.

6.2 Privacy-preserving Polynomials

As the polynomial in our application represents the mul-
tiset of accused parties, we need to keep the polynomial
secret. We will do this by representing the polynomial as
encodings of its coefficients. Furthermore, we will show
how to both extend the polynomial when a new element
is added to the multiset and how to compute the deriva-
tive and its evaluation at a given point.

The encoding of a polynomial F =
∑d
i=0 Fix

i will
be set to the encoding of each of its coefficient. Recall
that the encoding of an element s denoted es is the ElGa-
mal encryption of gs. Thus, the encoding of F , denoted
eF is defined to be {eF0 , . . . , eFd}.
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Inputs let F,G ∈ Fdp[x], R ∈ Fqp[x], s ∈ Fp, n ∈ N

PrivatePoly.Subtract(eF , eG)
1. For i ∈ [0, . . . , d]:

eHi ← eFi(eGi)−1

2. Output (eH0 , . . . , eHd)

PrivatePoly.Differentiate(eF , n)
1. For i ∈ [n, . . . , d]:

(a) c← i!/(i− n)!.
(b) eHi−n ← ecFi

2. Output (eH0 , . . . , eHd−n)

PrivatePoly.Multiply(eF , R)
1. eG ← (eg0 , . . . , eg0) with d+ q terms.
2. For i, j ∈ [d]:

eGi+j ← eGi+j (eGi)Rj
3. Output CG.

PrivatePoly.MultiplyLinear(eF , {s})
1. eG ← (eg0 , eF0 , . . . , eFd)
2. For i ∈ [1, d]:

eHi ← SecShare.ExpRR(eFi , s)
3. Output PrivatePoly.Subtract(eG, eH)

PrivatePoly.ZeroTest(eF , {s})
1. {r1} ← SecShare.Gen()
2. {t} ← SecShare.Invert({r1}).
3. For i ∈ [2, . . . , t]:

{ri} ← SecShare.Mult({ri−1}, {r1})
4. Output R← ({t}, {r1}, . . . , {rt})
5. {x} ← SecShare.Mult({t}, {s})
6. x← SecShare.Reconstruct({x})
7. cy ← eF0 .
8. For i ∈ [1, . . . , t]:

(a) {si} ← xi{ri}
(b) cyi ← SecShare.ExpRR(eFi , {si})
(c) cy ← cycyi

9. Output True iff ElGamal.DistDec(y) = g0

Fig. 4. Operations on encoded polynomials.

Operations on encoded polynomials. In order to
execute the set operations using encoded polynomials,
we first need to implement a number of primitive op-
erations. We describe the supported operations below.
All operations are given in pseudo-code in Fig. 4. The
design will be aided by the fact that the encoding is
additive. In particular we implement the following.

PrivatePoly.Subract(eF , eG): output eH such that
H = F −G.

PrivatePoly.Differentiate(eF , n): output eH such that
H = F (n), i.e. the nth derivative of F .

PrivatePoly.Multiply(eF , R): output eH such that
H = FR. In this case the polynomial R is in the clear,
i.e. its coefficients are known to all parties.

We need two more operations that are a bit more
complicated to compute because they entail multipli-
cation of an encoding of a coefficient, i.e. ey, by a se-
cret value s. To achieve this multiplication, we assume
that s has been secret shared among the parties and
we raise the group element to the shared power using
SecShare.ExpRR (Section 3.2). These combined opera-
tions will be utilized to compute a multiplication and
will enable our remaining two operations.

Before proceeding we clarify a point about our nota-
tion. Our encoding of y is in fact two group elements, i.e.
ey = (e0, e1), and we slightly abuse notation by calling
SecShare.ExpRR(ey, {s}) where it is intended to mean:

(SecShare.ExpRR(e0, {s}),SecShare.ExpRR(e1, {s})).

PrivatePoly.MultiplyLinear(eF , s): output eH such
that H = (x − s)F . We first use the above secret expo-
nentiation procedure to compute the coefficients of sF .
Then shifting the coefficients of F gives an encryption
of xF and subtracting gives xF − sF = (x− s)F .

PrivatePoly.ZeroTest(eF , {s}): output True iff F [s] =
0. This protocol will compute an encoding of F [s] =∑d
i=0 Fis

i. Again the above procedure suffices: given
sharings of si for each 1 ≤ i ≤ d, it is easy to com-
pute eF [s] = Πdi=0(eFi)s

i . It remains to generate these
sharings of the si.

The parties first generate sharings of a random value
r and all its powers up to some constant ` ≥ d, say
r, r2, ...., r`. This is done by starting with a sharing of
r and multiplying it repeatedly to create the ` sharings.
Then they compute the inverse of r using [4] yielding a
sharing of the value r−1.

Now given the sharing of the evaluation point s we
proceed as follows. Multiply the sharing of s with the
sharing of r−1 and reconstruct this value in the clear,
exposing x = s/r. Computing in the clear each party
can compute x2, . . . , x`. Taking xi and multiplying it by
the sharing of ri obtain a sharing of xiri = (s/r)iri = si.

Lines 1 through 4 of ZeroTest, in which the value
R is derived, constitute a pre-processing step. Note this
step is independent of F and s. Thus it can be run in
advance. By running Ω(d) copies of the pre-processing
step in parallel, we note that the algorithm has amor-
tized constant round complexity.
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Application to Multisets. Given these operations on
polynomials, we define Set.Init, Set.Add, Set.Quorum by
taking the multi-set operations defined using polynomi-
als and replacing each polynomial operation with the
privacy-preserving variant defined in this section. This
is shown explicitly in Fig. 5.

Set.Init: 1. Output eg0

Set.Add(eF , {s}):
1. Output PrivatePoly.MultiplyLinear(eF , {s})

Set.Quorum(eF , {s}):
1. For i ∈ [q]:

{Ri}, eRi ← SecShare.Gen()
2. eR ← (eR0 , . . . , eRq−1)
3. eG ← PrivatePoly.Multiply(eF , eR)
4. eH ← PrivatePoly.Differentiate(eG, q − 1)
5. Output PrivatePoly.ZeroTest(eH , {s})

Fig. 5. Privacy-preserving multiset operations.

Lemma 6.5. Let A be an attacker controlling at most
t servers of the DA and assume that the encoding
of s is secure as defined in Section 3.1. Then the
above encoding of a polynomial representing the mul-
tiset S and the Set.Add operation on the encoded
polynomial hide the elements of the set (revealing
only the size of the set). Furthermore, the correctness
of Set.Add,PrivatePoly.Differentiate,PrivatePoly.ZeroTest
correlates to the equivalent operations carried out in the
clear on the set as defined in Section 6.1.

7 Efficiency
We provide some general runtime properties of the Who-
Too protocol. These properties suggest the protocol
could be implemented efficiently. Throughout our anal-
ysis, let N be the total number of accusations in the
system, n the number of servers in the DA, and q the
quorum. We will consider all group operations as con-
stant time. The choice of group is an important factor in
runtime, as many exponentiations and multiplications
are performed. The cost of the pairing operation is less
significant, as only one pairing is performed per accusa-
tion. Further, note that all threshold operations take a
constant number of rounds and a run time that scales

polynomially with the threshold. Again, the exact per-
formance characteristics of the threshold operations is
an important factor in the performance of the system.

User. The protocol is designed for users with very lim-
ited resources. To create an accusation, the user will
perform O(n) secret sharings, BBS signatures, and El-
Gamal operations, each of which consists of a small
constant number of exponentiations and multiplications.
They perform no pairings. Further note that the proto-
col is non-interactive: after the user submits an accusa-
tion, they can go off-line. Online presence for a given
user is only needed for and during the submission of an
accusation by that user.

Server. In order to validate an accusation, each server
performs a constant number of group operations. This
includes a single pairing used to verify the BBS signa-
ture. In order to check for duplicates, the equality test-
ing protocol must be run N times. Each run requires a
constant number of group operations and rounds of com-
munication; by running the equality checks in parallel,
this yields a constant number of rounds of communica-
tion. The servers must also run the set add and quorum
operations which for a quorum of q require O(qN) group
operations and amortized constant rounds of commu-
nication. Note that accusations can be submitted con-
currently by different users but the processing by the
servers needs to be sequential as the addition of ele-
ments to the set of identities is done one by one.

We do not have measurements of concrete runtime. A
proof-of-concept implementation would provide further
evidence that the protocol is feasible in practice. Thus
such an implementation would be valuable future work.

Acknowledgments.
We thank the reviewers of PETS 2019, particularly
the amazing work by our shepherd Wouter Lueks.
The WhoToo name for our protocol was suggested by
Sharon Rabin-Margaliot. This research received no spe-
cific grant from any funding agency in the public, com-
mercial, or not-for-profit sectors.



Cryptography for #MeToo 424

References
[1] Tor project, www.torproject.org
[2] Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-

Hellman assumptions and an analysis of DHIES. In: Nac-
cache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–
158. Springer, Heidelberg (Apr 2001)

[3] Aranha, D.: Pairings are not dead, just resting. In: Work-
shop on Elliptic Curve Cryptography (2017)

[4] Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant
computing in constant number of rounds of interaction. In:
Rudnicki, P. (ed.) 8th ACM PODC. pp. 201–209. ACM
(Aug 1989)

[5] Bellare, M., Micciancio, D., Warinschi, B.: Foundations of
group signatures: Formal definitions, simplified requirements,
and a construction based on general assumptions. In: Biham,
E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (May 2003)

[6] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness
theorems for non-cryptographic fault-tolerant distributed
computation (extended abstract). In: 20th ACM STOC. pp.
1–10. ACM Press (May 1988)

[7] Blömer, J., Juhnke, J., Löken, N.: Short group signatures
with distributed traceability. In: Kotsireas, I.S., Rump, S.M.,
Yap, C.K. (eds.) MACIS. pp. 166–180. Springer, Cham
(2016)

[8] Boneh, D.: personal communications (March 2019), see
https://cryptobook.us/

[9] Boneh, D., Boyen, X.: Short signatures without ran-
dom oracles. In: Cachin, C., Camenisch, J. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidel-
berg (May 2004)

[10] Boneh, D., Boyen, X., Shacham, H.: Short group signatures.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
41–55. Springer, Heidelberg (Aug 2004)

[11] Bowe, S.: Bls12-381: New zk-snark elliptic curve construc-
tion (October 2018), https://z.cash/blog/new-snark-curve

[12] Canetti, R.: Universally composable security: A new
paradigm for cryptographic protocols. In: 42nd FOCS. pp.
136–145. IEEE Computer Society Press (Oct 2001)

[13] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable
secret sharing and achieving simultaneity in the presence
of faults (extended abstract). In: 26th FOCS. pp. 383–395.
IEEE Computer Society Press (Oct 1985)

[14] Cohen, J.D., Fischer, M.J.: A robust and verifiable crypto-
graphically secure election scheme (extended abstract). In:
26th FOCS. pp. 372–382. IEEE Computer Society Press
(Oct 1985)

[15] Donegan, M.: I started the media men list. The Cut (Jan
2018), https://www.thecut.com/2018/01/moira-donegan-i-
started-the-media-men-list.html

[16] ElGamal, T.: A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions on
Information Theory 31, 469–472 (1985)

[17] Fiat, A., Shamir, A.: How to prove yourself: Practical solu-
tions to identification and signature problems. In: Odlyzko,
A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194.
Springer, Heidelberg (Aug 1987)

[18] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private
matching and set intersection. In: Cachin, C., Camenisch,
J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19.
Springer, Heidelberg (May 2004)

[19] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust
threshold DSS signatures. In: Maurer, U.M. (ed.) EURO-
CRYPT’96. LNCS, vol. 1070, pp. 354–371. Springer, Heidel-
berg (May 1996)

[20] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure
distributed key generation for discrete-log based cryptosys-
tems. Journal of Cryptology 20(1), 51–83 (Jan 2007)

[21] Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and
fact-track multiparty computations with applications to
threshold cryptography. In: Coan, B.A., Afek, Y. (eds.) 17th
ACM PODC. pp. 101–111. ACM (Jun / Jul 1998)

[22] Hoepman, J.H., Galindo, D.: Non-interactive distributed en-
cryption: A new primitive for revocable privacy. In: Proceed-
ings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society. pp. 81–92. WPES ’11, ACM, New York,
NY, USA (2011), http://doi.acm.org/10.1145/2046556.
2046567

[23] Jakobsson, M., Juels, A.: Mix and match: Secure func-
tion evaluation via ciphertexts. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 162–177. Springer,
Heidelberg (Dec 2000)

[24] Kiayias, A., Yung, M.: The vector-ballot e-voting approach.
In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 72–89.
Springer, Heidelberg (Feb 2004)

[25] Kissner, L., Song, D.X.: Privacy-preserving set operations.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
241–257. Springer, Heidelberg (Aug 2005)

[26] Lueks, W., Hoepman, J.H., Kursawe, K.: Forward-secure
distributed encryption. In: De Cristofaro, E., Murdoch,
S.J. (eds.) Privacy Enhancing Technologies. pp. 123–142.
Springer International Publishing, Cham (2014)

[27] Maurer, U.M.: Unifying zero-knowledge proofs of knowledge.
In: Preneel, B. (ed.) AFRICACRYPT 09. LNCS, vol. 5580,
pp. 272–286. Springer, Heidelberg (Jun 2009)

[28] Menezes, A., Sarkar, P., Singh, S.: Challenges with assessing
the impact of nfs advances on the security of pairing-based
cryptography. In: Mycrypt (2016)

[29] Pedersen, T.P.: Non-interactive and information-theoretic
secure verifiable secret sharing. In: Feigenbaum, J. (ed.)
CRYPTO’91. LNCS, vol. 576, pp. 129–140. Springer, Heidel-
berg (Aug 1992)

[30] Rajan, A., Qin, L., Archer, D.W., Boneh, D., Lepoint, T.,
Varia, M.: Callisto: A cryptographic approach to detecting
serial perpetrators of sexual misconduct. In: Proceedings
of the 1st ACM SIGCAS Conference on Computing and
Sustainable Societies. pp. 49:1–49:4. COMPASS ’18, ACM,
New York, NY, USA (2018)

[31] Schnorr, C.P.: Efficient signature generation by smart cards.
Journal of Cryptology 4(3), 161–174 (1991)

www.torproject.org
https://z.cash/blog/new-snark-curve
http://doi.acm.org/10.1145/2046556.2046567
http://doi.acm.org/10.1145/2046556.2046567


Cryptography for #MeToo 425

A Appendix

A.1 Computational assumptions

Decisional Diffie-Hellman (DDH). Define

D0 := (g, h, ga, ha), D1 := (g, h, ga, η)

for a ∈R Zp and g, h, η ∈R G1. The DDH assumption
states that no polynomial time algorithm can distin-
guish the two distributions with non-negligible advan-
tage. This assumption, when made of the group G1 with
an appropriate pairing e : G1 × G2 → GT is known as
the external Diffie-Hellman assumption (XDH).

Strong computational Diffie-Hellman (sCDH).
Define

DDHg,h := {(ga, ha) : a ∈ Zp}.

For any oracle algorithm A(·) define

εSCLDH(A) := Pr
[
ADDHg,h(g, h, ga) = ha

]
for a ∈R Zp, g, h ∈R G1. The sCDH assumption states
that εSCLHD(A) is negligible for any polynomial time
oracle algorithm. This captures the idea that comput-
ing ha given ga is hard, even with an oracle for the
decisional variant. This assumption was first made by
Abdalla, Bellare, and Rogaway, and is unrelated to the
similarly named assumption in the paragraph below [2].

k-strong Diffie-Hellman (sDHk). Fix some k ∈ Z.
For any algorithm A, define

εSDH(A) := Pr
[
∃x :A

(
g1, g2, g

γ
2 , . . . , g

γk

2

)
=
(
g

1
γ+x
1 , x

)]
for g2 ∈R G2 (with g1 ← ψ(g2)), γ ∈ Z∗p. The sDHk
assumption states that εSDH(A) is negligible for any
polynomial time algorithm. This assumption is used by
Boneh and Boyen in their short signature scheme, where
they prove it holds in generic groups [9].

Concrete choice of curves. We propose the pairing-
friendly family of curves BLS12 to instantiate our bi-
linear group. The XDH assumptions are believed to
hold for this group. Concretely, a choice of prime p of
bit-length 384 is recommended for 128-bit security [28].
Such curves are efficient to implement at a variety of se-
curity levels, as demonstrated by the use of BLS12-381
by Zcash [11]. Specific runtimes of operations in various
BLS12 curves using the RELIC software library have
been computed [3].

The BLS12 curves are not known to have an effi-
ciently computable isomorphism φ : G2 → G1. How-
ever, our protocol uses such an isomorphism to select
g1 = φ(g2). Without the isomorphism, the servers can
choose g1 in G1, g2 in G2 independently and proceed as
usual. Because the proof of correctness does not use φ,
correctness of the scheme is unaffected by this change.
The security of the modified scheme follows from slightly
stronger assumptions. Concretely, we augment the DDH
and k-strong DH assumptions to accept oracle adver-
saries. We assume the adversary has a negligible ad-
vantage even when the oracle is instantiated with the
(unique) isomorphism φ : G2 → G1 such that g1 = φ(g2).
These stronger assumptions are conjectured to hold in
the BLS-type groups [8].

A.2 Equality Testing

Once we have established that there are more than q

accusations for a given s = H(D) we need to find the
other accusation against s. Recall that the accusations
are encoded and as we want to preserve the privacy of
the accusation we need to carry out this computation
over the encodings. This must be done without leaking
any other information about the accused. Given that
the encoding scheme is additively homomorphic, a naïve
method would be to divide the two ciphers, decrypt the
quotient, and check if the result is 1. This would indicate
that the two original messages were identical. However,
if they were not the same, this procedure would reveal
the encoding of the difference of the two messages. Thus,
we need to add a randomization step; this amounts to
raising the quotient to a random power before decryp-
tion.

The description above works for arbitrary encoding
schemes. For concreteness and simplicity, we present the
Equal protocol using the encoding which we have chosen
which is based on ElGamal encryption in Fig. 6. Assume
g, h are the ElGamal public key, and that the servers
hold a distributed private key as in Section 5. Further-
more, they hold e1, e2 that are encodings of s1, s2. The
following protocol is from [23]. The proof of knowledge
is instantiated in the language of [27] and uses the Fiat-
Shamir heuristic [17] for non-interactivity. We provide
the details of Equal(sk, e1, e2) in our distributed setting
in Fig. 6.
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Equal(sk, e1, e2)
1. Output True if MsgRand(e1e

−1
2 ) = 1

2. False otherwise.

MsgRand(c = (c1, c2))
1. Each server chooses ri ∈R Zp and publishes

ai = (cri1 , c
ri
2 ), and πi ← Provec1,c2(ai, ri).

2. Each server runs, for each i:
If Verifyc1,c2(πi, ai) rejects: ai ← (1, 1).

3. c′ ← (
∏n
i=1 a

i
1,
∏n
i=1 a

i
2).

4. Output m′ ← ElGamal.DistDec(c′).

Provec1,c2(a = (a1, a2), r)
1. k ∈R Zp
2. bi ← cki
3. α← H(a1, a2, b1, b2, c1, c2)
4. β ← αk + r

5. Output π ← (β, b1, b2)

Verifyc1,c2(πi, ai)
1. (β, b1, b2)← πi
2. α← H(a1, a2, b1, b2, c1, c2)
3. Accept iff cβi = aib

α
i

Fig. 6. Equality testing using message randomization; from [23]

We start by defining a randomization functionality
MsgRand as follows:

MsgRand(e) =

{
1 if e = 1
er ∈R G otherwise.

Now if we define our equality testing to return True if
MsgRand(e1e

−1
2 ) returns 1 and False otherwise we will

have our desired equality testing, i.e. it will always out-
put True when its inputs are the same and with prob-
ability 1 − 1/p it will output False if the encodings are
of different messages. Further, it leaks no additional in-
formation. The following claim adapted from [23] gives
the security of the MsgRand.

Claim A.1. MsgRand is a secure multi-party computa-
tion of F when the threshold for secret sharing is met.

A.3 Proof of plaintext knowledge

We specify the zero-knowledge proof of plaintext knowl-
edge for the ElGamal encryption functions ElGamal.Enc
and ElGamal.Dec from Section 3.1. Given a ciphertext
c = (c1, c2), the proof of knowledge of m such that c
is the encryption of m reduces to proving knowledge of
logg(c1). The standard proof of knowledge is known
as Schnorr’s protocol [31]. We make this proof non-
interactive by applying the Fiat-Shamir heuristic [17]
into the usually scheme, incorporating a value ρ into
the hash input in Step 2. This serves to authenticate
the proof: given c,m, ρ and π ← PPK(c, a, b, ρ) it is hard
to find ρ′ 6= ρ and π′ such that VerifyPPK(π′, c, ρ′) ac-
cepts. The non-interactive proof is specified in Fig. 7.

Parameters: g, h, c = (ga, ham)

PPK(c, a, ρ)
1. r ∈R Zp
2. t← gr

3. z ← H(c, t, ρ)
4. s← r + za

5. Output π ← (t, s)

VerifyPPK(π, c, ρ)
1. z ← H(c, t, ρ)
2. Accept iff gs = tcz1

Fig. 7. ElGamal proofs of plaintext knowledge.

A.4 BBS signature specification

Here we give the full specification of the BBS.Sign and
BBS.Verify procedures of the BBS signature scheme,
adapted for use with ElGamal encryption. The nota-
tion is slightly changed from the original in order to
make the role of the encryption of A clear. After fix-
ing u, v, g2, w, c1, c2 define the homomorphism φ : Z5

p →
G1 ×GT ×G1 given by φ : (t1, t2, t3) 7→ T = (T1, T2, T3)
where

T1 = ut1 , T2 = ct21 u
−t3 ,

T3 = e(c2, g2)t2e(v, w)−t1e(v, g2)−t3 .

Given this definition of φ the BBS.Sign and
BBS.Verify operations given in Fig. 8, together with
ElGamal decryption to trace identities, constitute the
BBS group signature scheme.
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Public key: ((u, v), g1, g2, w)

BBS.Sign(skU ,m)
1. (A,α)← skU
2. a ∈R Zp
3. cA ← (ua, vaA)
4. r ∈R Z3

p

5. R← φ(r)
6. z ← H(m, cA, R)
7. t← z(a, α, aα)
8. s← r + t

9. σ ← (z, s)
10. Output (cA, σ)

BBS.Verify(m, cA, σ)
1. (c1, c2)← cA
2. (z, s)← σ

3. S ← φ(s)
4. T ← (cz1, 1, (e(g1, g2)/e(c2, w))z)
5. R̃← S/T

6. Accept iff z = H(m, cA, R̃)

Fig. 8. BBS Sign and Verify Procedures

B Security
We informally outline a security proof for the WhoToo
protocol defined in previous sections assuming the secu-
rity of of its component blocks in a composable security
model. To make this outline into a formal proof, one
would frame the ideal functionalities and simulation ar-
guments below in the UC model [12] or similar.

B.1 Ideal functionality

The ideal functionality FWhoToo in Fig. 9, when executed
by a trusted party, can be seen as a formalization of
the envelope scheme presented in the introduction and
as a basis for defining the required security from the
WhoToo protocol. That is, one is to show that any real-
world adversary against the WhoToo protocol can be
simulated by the ideal adversary acting against FWhoToo.

Note that Investigate takes as input the name of the
accusers and accused in the clear, hence we can think of
these values as given to the ideal adversary. This means
that the simulation needs to simulate the view of the
adversary given these “leaked” values.

Ideal.Initialize
1. ValidAccusers← GetUsers()
2. Accusers← ∅

Ideal.Accuse
1. Receive input D from a user U
2. If U 6∈ ValidAccusers: halt
3. Accusers[D]← Accusers[D] ∪ {U}
4. If # Accusers[D] ≥ q:

(a) Run Investigate(D,Accusers[D])

Fig. 9. Ideal functionality FWhoToo

B.2 Threat model

Terminology. Let “servers” refer to the parties that
constitute the distributed authority. Let “user” refer to
any party which receives a key during initialization or
sends a (correctly or incorrectly formed) accusation to
the distributed authority.

Network model. Stipulate that DistBBS.UserKeyIssue
occurs over an authenticated and confidential channel.
This assures that the servers send keys to the right users
and no one else observes them. It also assures that users
know they are receiving keys from the intended servers.
Similarly, stipulate that accusations are submitted over
anonymous and confidential channels to the respective
servers. Anonymity assures no information is leaked due
to metadata; i.e. the adversary will not know who sent
a message simply by observing communication over the
network. Confidentiality assures that each server sees
only its share of the secrets shared in accusation.

User and server corruption. Assume the adversary
can control any subset of corrupted users and up to t
servers in the distributed authority. Consider a static
model where the corrupted parties are chosen before
initialization of the system and fixed throughout.

Excluded attacks. There are attacks inherent to any
reporting system as ours that cannot be prevented by
cryptographic means or made part of the formal security
model, e.g., the submission of false accusations by ma-
licious users in order to influence the accusation count
against someone. Our solution, that allows binding accu-
sations to real-world identities, facilitates accountability
and disincentivizes such behavior hence limiting poten-
tial abuses of the system. See Section 2.
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B.3 Security arguments

We sketch our security argument for the WhoToo proto-
col assuming the security of several of its components.
Assume composable notions of security (and correspond-
ing ideal functionalities) for the distributed BBS signa-
tures, the privacy-preserving set operations from Sec-
tion 6, the Equal functionality of Appendix A.2, and for
threshold ElGamal encryption, including its related sub-
routines and extractable proofs of plaintext knowledge.

Theorem B.1. Let A be an attacker controlling at
most t servers of the DA and any number of corrupted
users, and assume composable security notions for the
above components. Then, the interaction between A and
the WhoToo protocol can be simulated in the ideal model
given (D,Accusers[D]) as output by Investigate.

We sketch the proof. Fix a real attacker A0 against the
WhoToo protocol. Our argument proceeds in steps. In
each step we take an attacker Ai in some game and
change its behavior to define Ai+1 in another game. We
argue that the final attacker is in fact against the ideal
game. Arguing the view of Ai is simulatable given the
view of Ai+1 concludes the proof. The steps are:

1. Model subprotocols with trusted party.
2. Replace corrupted users with leaked BBS keys.
3. Begin induction on accusations.
4. Remove accusations that fail verification.
5. Remove accusations with mismatched encodings.
6. Simulate honest accusations.
7. Simulate dishonest accusations.
8. Replace leaked BBS keys with corrupted users.

We give details of each step.

1. Let WhoToo? be an augmentation of WhoToo pro-
tocol, replacing any SecShare.Operation, Set.Operation,
and Equal calls with their corresponding ideal opera-
tions, executed by a trusted third party. If A can dis-
tinguish WhoToo from FWhoToo but cannot distinguish
WhoToo? from FWhoToo, then it can distinguish WhoToo
from WhoToo?. This contradicts the security of the sub-
protocols. We have thus reduced to security against A1,
an adversary against the WhoToo? game.

2. Let U1, . . . , UN be the users corrupted by A. By the
privacy guarantees of the DistBBS.UserKeyIssue proto-
col, even if some Ui does not follow the protocol, his view
after completing the key issuing protocol is simulatable
from the key (Ri, αi) alone. Thus, A1 can be simulated
by A2, where A2 is an adversary where U1, . . . , UN fol-

low the DistBBS.UserKeyIssue protocol properly obtain-
ing (Ri, αi) but submit no accusations. Then, a single
malicious party A2 is given inputs {(Ri, αi)}i∈[N ] and
proceeds to interact with the system by submitting ac-
cusations acci1 , . . . , accim .

3. From here on, we will show that, assuming all prior
accusations are simulatable in the ideal model, the next
accusation is. This is again an appeal to composability.

4. Say acc is ill-formed if WhoToo.VerifyAcc(acc) →
False. We say that an ill-formed accusation is of
type I if it fails one of the initial verification checks
of ElGamal.Verify, ElGamal.VerifyString, BBS.Verify,
SecShare.Verify, and SecShare.CheckConsistent. By in-
specting WhoToo.Accuse, it is clear that any such ac-
cusation does not change the state of the system.
Since ElGamal.Verify, ElGamal.VerifyString, BBS.Verify
and SecShare.Verify can be executed using only public
parameters, they reveal nothing. Further by the idealiza-
tion of the secret sharing scheme in Step 1 we know that
SecShare.CheckConsistent reveals nothing as well. Thus,
if any of these tests fail, the adversary can achieve the
same view by running these tests locally instead of sub-
mitting a type I accusation.

The remaining case of ill-formed accusations, to
which we refer to as type II, is when the operation
Equal(skeg, (cR, es), (cR′ , es′)) outputs True. In the ideal
execution of Equal, the adversary learns the single bit
b = 1 ⇐⇒ (R, gs) = (R′, gs′). Let acc′ be the one that
contains the pair (R′, gs′). We have two cases:

Case 1 : acc′ is an accusation submitted by the adver-
sary. Since ElGamal.Verify passed, we know with all
but negligible probability the PPK was valid. Sim-
ilarly, we know that the BBS signature serves as
a proof of knowledge of R. From this we conclude
that either (a) the adversary generated acc′ hence
the values (R′, gs′) can be extracted, or (b) that
cR′ , es′ were copied from a previous accusation acc′′

submitted by some user in which case b = 1 if and
only if acc′ = acc′′. In both cases, the adversary’s
action can be simulated.

Case 2 : acc′ was submitted by some other user. By
the inductive hypothesis we know that either: (a)
the adversary knows nothing about (R′, s′) or (b)
the quorum for s was reached. In the former case, it
is infeasible for the attacker to produce the required
BBS signature. In the latter, FWhoToo reveals R′, D′.
In either case the actions are simulatable.
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Thus we have reduced to an attacker A4 which submits
no invalid accusations.

5. Let acc be a valid encoding. Put

s = SecShare.Reconstruct(ω),
D = HElGamal.StringDecrypt(cD).

We say acc has matched accused encodings when s =
H(D). Otherwise, say it has mismatched accused encod-
ings. We argue any adversary that submits accusations
with mismatched accused encodings can be simulated
by an adversary with matched ones. Fix a mismatched
accusation. Two cases:

Case 1: the adversary called H with input x to ob-
tain s = H(D′). Since acc is mismatched, note that
D′ 6= D. Since the value cD is never used until
WhoToo.OpenAccusations, observe that acc will be
treated exactly as an accusation against D′ until
accusations are opened. Two further cases:
Case 1a: no accusation with s′ = s is matched.

Thus WhoToo.OpenAccusations will halt and
never call Investigate. Since honest parties never
generate mismatched accusations, we see that
all of the accusations were generated by the ad-
versary. The adversary could obtain the same
view by submitting none of the accusations.

Case 1b: some accusation with s′ = s is matched.
In this case, WhoToo.OpenAccusations will per-
form exactly as if all the accusations were
matched. Thus the adversary could obtain the
same view by submitting all matched accusa-
tions with cD = ElGamal.EncString(D′).

Case 2: the adversary never made a call to H that re-
turned s. With overwhelming probability, s 6= H(D)
for all D corresponding to the identities accused by
honest accusers. Thus, if the adversary instead sam-
pled a random D′ and replaced all mismatched ac-
cusations containing a sharing of s with matched
accusations containing a sharing of s′ = H(D′), the
resulting view would be indistinguishable.

Thus we have reduced to an attacker A5 which only
submits accusations with matched accused encodings.

6. Let acc be an accusation made by an honest user:
a tuple (cR, es, cD, π0, π1, σ, si). We know honestly gen-
erated accusations are processed identically in the real
and ideal models by correctness of the set operations.
Further, we know that the ideal set operations reveal
nothing about the elements of the set (Lemma 6.5). It
remains to show that the accusation itself is simulatable.

By the security of ElGamal encryption, we know the en-
coding of s and encryption of D are indistinguishable
from encryptions of random values. By the security of
secret sharing we know that the view of the adversary’s
shares is simulatable and so is the pair (cR, σ) by the
anonymity property of group signatures,

7. Let acc be an accusation made by the dishonest party.
Since by now, we have excluded accusations that fail
verification, we know acc is valid and its group signature
verifies. By the traceability property of group signatures,
we have that ElGamal.DistDec(skeg, cR)→ R where R is
the public key of some corrupted user. Further, since π1
is a PPK for es, and we know that es was not copied
from a previous accusation (we excluded this with type
II ill-formed accusations), we can extract gs. Further,
by the validity of the sharing of s, the adversary in fact
knows s. Similarly, extracting the PPK for cD yields
a string D. Since we excluded mismatched accusations,
we know that s = H(D). Thus, in the ideal world, the
adversary can submit the pair (R,D) to the authority.

8. The last step is to reverse the transformation made in
Step 2. This is simple: each corrupted user can send his
keys to the adversary, and the adversary can forward
accusations through any corrupted user. Let A8 have
this behavior.

Conclusion. Conclude that the view of A8 interacting
with FWhoToo is indistinguishable from the view of A
acting against the real-world WhoToo protocol.
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