
Proceedings on Privacy Enhancing Technologies ; 2019 (4):34–53

Jeremy Martin*, Douglas Alpuche, Kristina Bodeman, Lamont Brown, Ellis Fenske*, Lucas Foppe,
Travis Mayberry*, Erik Rye*, Brandon Sipes, and Sam Teplov

Handoff All Your Privacy – A Review of Apple’s
Bluetooth Low Energy Continuity Protocol
Abstract:We investigate Apple’s Bluetooth Low Energy
(BLE) Continuity protocol, designed to support interop-
erability and communication between iOS and macOS
devices, and show that the price for this seamless experi-
ence is leakage of identifying information and behavioral
data to passive adversaries. First, we reverse engineer
numerous Continuity protocol message types and iden-
tify data fields that are transmitted unencrypted. We
show that Continuity messages are broadcast over BLE
in response to actions such as locking and unlocking a
device’s screen, copying and pasting information, mak-
ing and accepting phone calls, and tapping the screen
while it is unlocked. Laboratory experiments reveal a
significant flaw in the most recent versions of macOS
that defeats BLE Media Access Control (MAC) address
randomization entirely by causing the public MAC ad-
dress to be broadcast. We demonstrate that the format
and content of Continuity messages can be used to fin-
gerprint the type and Operating System (OS) version
of a device, as well as behaviorally profile users. Finally,
we show that predictable sequence numbers in these
frames can allow an adversary to track Apple devices
across space and time, defeating existing anti-tracking
techniques such as MAC address randomization.

Keywords: BLE, Bluetooth, privacy, tracking

DOI 10.2478/popets-2019-0057
Received 2019-02-28; revised 2019-06-15; accepted 2019-06-16.

*Corresponding Author: Jeremy Martin: The MITRE
Corporation, E-mail: jbmartin@mitre.org
Douglas Alpuche: U.S. Naval Academy (USNA)
Kristina Bodeman: USNA
Lamont Brown: USNA
*Corresponding Author: Ellis Fenske: USNA, E-mail:
fenske@usna.edu
Lucas Foppe: USNA
*Corresponding Author: Travis Mayberry: USNA, E-
mail: mayberry@usna.edu
*Corresponding Author: Erik Rye: CMAND, E-mail:
rye@cmand.org
Brandon Sipes: USNA
Sam Teplov: USNA

1 Introduction
The ubiquity of wirelessly connected mobile devices in
the day-to-day lives of people globally has brought with
it unprecedented risk of privacy violation for modern
consumers. Mobile devices constantly transmit and re-
ceive information even while not in active use, and many
of the protocols driving this communication are not de-
signed with privacy in mind.

Tracking concerns and privacy leakages in 802.11
Wi-Fi are well-known and have been extensively stud-
ied over the last decade. Since Wi-Fi clients must ac-
tively probe for nearby access points to connect to, an
adversary can listen to these probes and use the de-
vice’s MAC address (which is included in probes) to
identify and track it as it moves from place to place.
This is not an academic threat: there are multimillion-
dollar companies [39, 60] whose business model relies
on using Wi-Fi tracking data for targeted marketing,
and they control large networks of Wi-Fi access points
that gather information on all nearby devices. Users are
largely unaware that these widely-deployed tracking ca-
pabilities exist and that their Wi-Fi devices might be
leaking sensitive data.

In response to this threat, device and OS manu-
facturers began to provide MAC address randomization
as a privacy enhancement. Rather than using the same
MAC address consistently, which enables correlation
over multiple observations, devices employing MAC ran-
domization instead choose random values, and change
them periodically. While the principle itself is sound,
many implementations of MAC address randomization
have proven ineffective in practice [47, 64]. Defeating
MAC address randomization is largely possible due not
to flaws in Wi-Fi itself, but because of extraneous in-
formation in higher-layer protocols. Many technologies
are not privacy-aware and leak information that can be
used to track users and devices, despite the MAC ad-
dress being effectively hidden through randomization.

Bluetooth, in both of its current protocol instantia-
tions, also uses MAC addresses as hardware identifiers.
BLE, which we examine exclusively in this study, has in-
cluded mechanisms for a device to generate and use ran-

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 35

dom MAC addresses, enhancing the potential privacy
benefit to clients by increasing the difficulty of track-
ing unique devices. Unfortunately, it also suffers from
the same problem as Wi-Fi: manufacturers and OSes
implement features built on top of BLE that leak sensi-
tive information which can be used to track users [35],
defeating the purpose of MAC randomization itself.

In this work we investigate one such technology –
Apple’s Continuity protocol. Continuity is designed to
support the seamless transfer and synchronization of
data between multiple iOS and macOS devices. We show
that in exchange for simplifying the user experience and
allowing synchronization between devices, the messages
that comprise Continuity constantly leak sensitive infor-
mation; not only identifiers that could be used to defeat
randomization and track devices wirelessly, but also be-
havioral information that reveals user device activity.

1.1 Contributions
– To the best of our knowledge, we are the first to re-

verse engineer Apple’s Continuity protocol. We de-
scribe the format, contents, and behavior of Conti-
nuity messages.

– We identify several recognizable messages that leak
behavioral data, including when a user locks or
unlocks their phone, when they are touching the
screen, when they visit certain apps or settings
pages, when they receive text messages or answer a
phone call, and even when they use the copy/paste
feature.

– We show that observing these messages allows an
adversary to accurately fingerprint the model type
and OS version of a device. We also present a novel
application of a known, hard-to-detect, active re-
connaissance technique that can further increase the
precision of these fingerprints.

– Finally, we demonstrate how the predictable se-
quence numbers sent with these messages can be
exploited to defeat anti-tracking technologies like
MAC address randomization and detect the exis-
tence of a device nearby even after not observing it
for several days.

2 Background and Related Work
2.1 Wireless Device Tracking and Privacy
Wireless layer-2 identifiers – in particular, MAC ad-
dresses – have a rich and lengthy history of being ex-
ploited for tracking mobile devices, and hence, their
owners. The broadcast nature of wireless communica-

tion, the tendency for software designers to program
devices to proactively advertise their availability and
seek out services, and the persistence and uniqueness of
global MAC addresses combine to form a serious threat
to user privacy: our mobile devices constantly broad-
casting trackable identifiers for all to hear without our
interaction.

In order to detect nearby wireless networks, 802.11
Wi-Fi clients broadcast a special type of wireless frame
known as a probe request. The purpose of these frames
is to solicit responses from local access points that
provide network connectivity. Contained in each frame
is the client’s source MAC address; this 48-bit value
uniquely identifies the client seeking network service
to access points that provide it. Unfortunately, this
also provides adversaries a unique identifier to track
users [20, 24, 30, 48, 50]. To address the privacy concerns
inherent in the use of the MAC address assigned by the
device manufacturer (a globally unique MAC address),
manufacturers have shifted to broadcasting ephemeral,
random MAC addresses while the device is in an un-
associated state; unfortunately, MAC address random-
ization in 802.11 can often be defeated [47, 64].

MAC addresses are used as layer-2 identifiers in
Bluetooth communication as well, and carry the same
privacy and tracking risks as Wi-Fi MAC addresses
[20, 38, 43, 65]. Similar to Wi-Fi, Bluetooth devices im-
plement MAC address randomization as a mechanism
to evade tracking and preserve user privacy. In fact,
randomized MAC addresses have been part of the BLE
standard since its introduction (known then as Blue-
tooth Smart) [4]. As we focus exclusively on BLE in
this work, we first discuss BLE MAC address structure
and randomization in greater detail.

2.2 Bluetooth (Classic vs. Low Energy)
The term Bluetooth is often used colloquially to re-
fer to two distinct, non-interoperable technologies. The
original Bluetooth standard is now referred to as Blue-
tooth “Classic” to recognize its chronological prece-
dence, or Bluetooth Basic Rate (BR)/Enhanced Data
Rate (EDR) in relation to the rate at which a device im-
plementing this protocol transmits data. BLE, formerly
known by the marketing name “Bluetooth Smart”, on
the other hand, is so named due to the lower power con-
sumption needs of devices implementing it compared to
Bluetooth BR/EDR. Despite their typical use in con-
necting peripheral devices at close range, both Blue-
tooth Classic and BLE are capable of transmitting up
to 100m in an open area. The current BLE version, 5.0,
is rated up to 400m [14].

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 36

Generally speaking, Bluetooth Classic is preferred
for applications in which a constant flow of data oc-
curs between the paired devices; for example, Bluetooth
headphones or speakers connected to a mobile phone
would almost certainly utilize Bluetooth Classic. BLE,
on the other hand, is typically used to send short mes-
sages advertising a device’s existence and some param-
eters related to the device; for instance, Tile [16] and
related devices use BLE for proximity sensing. In this
study, we are interested only in Apple’s BLE implemen-
tation, as it lends itself to device tracking, OS finger-
printing, and activity profiling.

While Bluetooth Classic and BLE operate in the
2.4 GHz unlicensed spectrum, each utilizes a different
number and size of channels. BLE uses 40 2 MHz chan-
nels; 37 of these are used to send and receive data,
while the remaining three are used to detect a device’s
presence by sending advertisement frames at regular in-
tervals [4]. With exception of our Generic Attributes
(GATT) queries in Section 4.3, we are concerned in
this work with messages continuously sent in the ad-
vertisement channels that are designed to be received
by nearby stations.

2.3 BLE Addressing and Randomization
Every Bluetooth interface is assigned a globally-unique,
public MAC address by the device manufacturer; Blue-
tooth MAC addresses are EUI-48 identifiers and are ob-
tained from the Institute of Electrical and Electronics
Engineers (IEEE) Registration Authority in the same
manner as 802.11 MAC addresses. In order to provide
users with a measure of privacy and prevent privacy
leakages [46] associated with revealing a public device
address, devices are also permitted to use random device
addresses, which are split into two categories – static
random addresses and private random addresses, the
latter of which is further divided into two subcategories.

Static random addresses are, as their name implies,
random addresses that are long-lived; the Bluetooth
Core Specification mandates that these BLE MAC ad-
dresses remain unchanged after initialization [4]. Power
cycling a device may change its static random address,
but changing a device’s static address will cause any
devices that have previously connected to it to fail to
automatically connect to the previous static address.
Static random addresses are identifiable by having the
two highest order bits set to 1, at least one of the re-
maining 46 low-order bits set to 1, and at least one of
the lower 46 bits set to 0 (i.e., two set bits followed by 46
0s or 46 1s are not allowable static random addresses.)

Non-resolvable private random addresses provide
additional privacy compared to using a public MAC ad-
dress, as the random address is used in lieu of the pub-
lic, globally-unique MAC address of the device. Non-
resolvable random addresses are identifiable by the two
most significant bits being set to 0, and the remaining
46 lower order bits containing at least one 0 and one 1
bit [4]. Finally, as their name implies, non-resolvable pri-
vate addresses do not aid in authenticating two devices
to each other.

Resolvable private random addresses are the final
type of random address in Bluetooth, and are the type
used by Apple to provide MAC address privacy; as such,
this is the address type we consider in this work. Resolv-
able private addresses provide the ability for devices to
authenticate each other based on the use of a 128-bit
key, known as an Identity Resolving Key (IRK). When
a device is configured to use a resolvable private ad-
dress, it generates 22 pseudorandom bits (prand), and
uses its local IRK and prand as inputs into a one-way se-
curity function, the output of which is a 24-bit hash [4].
The resolvable private address is created by setting the
most significant bit to 0, second-most significant bit to
1, concatenated with the 22 bits of prand, followed by
the 24-bit hash result. The device then uses this resolv-
able private address as the source MAC address for a
set period of time. Oftentimes the period is 15 minutes,
as [4] recommends 15 minutes as the minimum time
interval between private random address changes. Re-
solvable private random addresses have the advantage
of allowing potential peers to determine if they already
know a device. If the potential peer has the IRK (ex-
changed during initial pairing) of the remote device it
wishes to connect to, it can determine whether an ad-
vertised random address belongs to that device or not
through the following process: the would-be peer com-
putes the 24-bit hash value given the prand value from
the resolvable private address, and the pre-shared IRK.
If the value computed locally matches the lower 24 bits
of the resolvable address, the peer’s identity has been
confirmed to be that associated with the IRK when key
exchange was initially done.

2.4 Related Work
Significant previous work exists related to tracking
mobile devices via 802.11 Wi-Fi MAC addresses [24,
30, 39, 50, 53, 55, 58], tracking via cellular identi-
fiers [40, 45, 49, 53–55, 61, 63] and attempting to cor-
relate randomized 802.11 MAC addresses to the same
physical device [47, 55, 64]. By contrast, our work fo-

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 37

cuses on the BLE technology, and specifically uses flaws
in Apple’s Continuity protocol (Section 2.5) to track de-
vices despite randomization of the Bluetooth hardware
identifier. More closely related to this study is previ-
ous work on tracking users via Bluetooth identifiers and
the discovery of privacy leakages in Bluetooth proto-
cols [22, 32, 35, 38, 42, 43, 65]. Of these studies, most
focus on Bluetooth Classic [38, 43, 65], whereas we study
Apple’s BLE Continuity protocol messages exclusively.
Fawaz et al. [35] develop a tool aimed at preventing pri-
vacy leakages in BLE devices by restricting who can dis-
cover, scan, and connect to BLE; to date, this tool has
not been widely adopted outside of a laboratory setting.
In [32], Das et al. examine the privacy leakages present
in wearable fitness tracking devices, as well as the abil-
ity to track these devices and therefore their owners.
Unlike [32], Apple devices implement BLE MAC ad-
dress randomization, which significantly increases the
difficulty of tracking them. Korolova and Sharma [42]
examine the feasibility of cross-application tracking in
Android and iOS devices: the ability for an application
to fingerprint applications running on nearby devices by
actively scanning those devices.

In our work, we do not rely on information gleaned
from external applications installed on our devices, but
rather we are able to track users based on OS-default
features alone. Like our study, Stute et al. examine a
proprietary protocol used by Apple to enhance interop-
erability between iOS and macOS devices. In [62], Stute
et al. reverse engineer Apple’s Apple Wireless Direct
Link (AWDL) protocol, an extension to 802.11 that en-
ables AirDrop and other Apple services. While AWDL
leverages BLE as a discovery mechanism, the authors
are interested in using the AWDL implementation for
tracking purposes, rather than BLE as in our work.

Contemporaneously and most closely related to our
work, Becker et al. [22] examine tracking devices us-
ing randomized BLE identifiers. While they examine
OSes we do not (Windows, Android), their Apple eval-
uation considers the BLE messages to be largely unin-
terpretable data; we exhaustively reverse-engineer the
Continuity protocol, revealing both the structure of the
messages as well as what actions are required to pro-
duce them. This affords us the ability to behaviorally
profile users, fingerprint major iOS version and device
type, and greatly enhances the potential to track users
despite the use of anonymized MAC addresses, as de-
tailed in Sections 4 and 5.

Finally, an expansive body of literature deals with
fingerprinting OS type and version remotely, often by
soliciting replies from targets via crafted ICMP and

TCP messages [23, 25, 28, 29, 33, 41, 44, 56, 57, 59], via
DHCP options and User-Agent strings [5], or in mobile
devices by examining properties of the radio transmis-
sion [36, 51], MAC and upper layer protocols [26, 34, 37],
or both [66]. Because the scope of our study is restricted
to Apple devices, our fingerprinting focus is on differ-
entiating between major release versions of Apple’s iOS
and macOS operating systems. Our fingerprinting capa-
bility is limited to within BLE transmission distance of
the target device, but requires no active transmissions
to elicit a reply from the target and is derived from
variations in the format of Apple’s Continuity messages
themselves.

2.5 Apple Continuity
Continuity is an umbrella term used by Apple to de-
scribe interoperability features between various devices
within its ecosystem; for example, the ability to copy
text on an iPhone and paste that same text on a Mac-
Book linked via the same iCloud account [2, 11]. Conti-
nuity was introduced in iOS 8 and OS X Yosemite, al-
though some features require more recent software ver-
sions [1]. Continuity features include:

– Handoff, which allows users to start tasks, such as
writing an email, and continue on another device.

– Universal Clipboard, which allows the copying
of data from one Apple device and pasting it on
another.

– iPhone Cellular Calls, giving users the ability to
make calls using their iPhone’s cellular connection
while on their Mac, iPad, or iPod.

– Instant Hotspot, which supports turning an
iPhone or iPad into a secure hotspot other Apple
devices may use without requiring a password.

– Auto Unlock, allowing users to unlock a Mac with
their Apple watch.

– Continuity Camera, which transfers photos taken
on an iPhone, iPad, or iPod touch to a Mac.

Continuity features are enabled by the transmission
of special BLE advertisement messages sent between
devices on the same iCloud account; as such, all
Continuity-enabled devices are BLE-capable. In this
work, we reverse-engineer the Apple-proprietary mes-
sage formats and describe the operation of those Con-
tinuity messages that enable our OS fingerprinting and
user tracking techniques in Section 4.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 38

3 Methodology
Our analysis was conducted using open-source soft-
ware and off-the-shelf commodity hardware. We per-
form tests against a wide range of iPhone, iPad, iPod,
airPod, and Apple Watch devices across major and
minor iOS versions. Additionally we experiment with
a sample of macOS laptops. Passive collection testing
was implemented using an Ubuntu environment and
an Ubertooth One USB receiver [17] with 2018-12-R1
firmware [19]. When utilizing the Ubertooth, we run the
ubertooth-btle software [18] to collect BLE advertise-
ment frames. While running ubertooth-btle, we set
the -q option with DLT_BLUETOOTH_LE_LL_WITH_PHDR
to ensure we can capture the Received Signal Strength
Indicator (RSSI) value for each frame. The stdout of
ubertooth-btle is piped directly to Wireshark where
we are able to conduct live analysis.

As our reverse engineering observations revealed the
frame format, message type, and data attributes of the
Apple Continuity protocol, we modifiedWireshark’s dis-
section logic in the packet-bthci_cmd.c file in order to
properly dissect Continuity messages.

In section 4.3, we describe a technique to elicit
model-granularity details from Apple devices, and dis-
cuss replaying two previously observed types of Conti-
nuity messages. To carry out these active techniques,
we utilize a Sena Technologies UD100 Bluetooth USB
adapter, along with the software gatttool and hcitool.
We use gatttool to query our devices’ GATT, and
hcitool to spoof arbitrary Continuity frames.

3.1 Ethical Considerations
Our collection methodology is entirely passive. At no
time did we attempt to decrypt any user data, alter
normal network behavior, or attempt to track any indi-
viduals not associated with our research team without
their prior knowledge. Additionally, in order to evalu-
ate the privacy flaws we present in this work, we con-
duct a variety of experiments on lab devices owned by
the authors and the authors’ institutions. These devices
were allowed to communicate with legitimate network
services. Given the nature of our data collection, we
consulted with our Institutional Review Board (IRB).

The primary concerns of the IRB centered on: i)
the information collected; and ii) whether the exper-
iment collects data “about whom” or “about what.”
Because we limit our analysis to BLE advertisement
frames we do not observe Personally Identifiable Infor-
mation (PII). Further, humans are incidental to our ex-

perimentation as our interest is in OS and hardware
profiling, device usage, and the analysis of the random-
ization of BLE device layer-2 MAC addresses, or “what.”

Finally, in consideration of beneficence and respect
for persons, our work presents no expectation of harm,
while the concomitant opportunity for network mea-
surement and security provides a societal benefit. Our
experiment was therefore determined by the IRB to not
be human subject research.

4 Analysis
This section is divided into three parts:
– Analysis of passively collected data to reverse engi-

neer the frame format and data attributes of Ap-
ple’s BLE Continuity framework. We show through
this effort, that Continuity features leak a signifi-
cant amount of data related to user behavior.

– Active attacks transmitting tailored BLE frames to
elicit responses from Apple devices revealing further
details regarding user information and behavior.

– A comprehensive evaluation of the effectiveness of
these attacks with respect to an adversary’s ability
to identify and track devices and users.

Since we analyze many different types of Continuity
messages, each with different flaws, we organize our find-
ings by calling attention specifically to the following cat-
egories, based on what information is leaked:

– OS fingerprinting
– Device fingerprinting
– Tracking
– User / Device Activity
– Device attributes

When a flaw is observed, we classify it into one or more
of these categories and describe how it can be exploited
by a potential adversary.

4.1 Passive Analysis Reverse Engineering
We evaluate Apple’s proprietary Continuity protocol by
inspecting BLE frames emitted from iOS and macOS
devices across Apple’s ecosystem and OS versions.

As described in Section 3, we collect BLE frames
passively using an Ubertooth with stdout piped to
Wireshark (using our custom dissector), allowing for
real-time dynamic analysis via a live capture display.
Apple Continuity frames are transmitted on all three
BLE advertisement channels; as such, our Ubertooth
collection setup requires monitoring only a single ad-
vertisement channel.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 39

0 7 8 15 16 23 24 31

Access Address - 0x8E89BED6

Packet Header
Advertising Address - xx:xx:xx:xx:xx:xx

Length / Type - 0x01 / Flags (Optional) Length

Type - 0xFF Company ID - 0x004C Apple Type

Apple Length Variable Length Apple Data Apple Type

Apple Length Variable Length Apple Data

Fig. 1. Apple BLE Frame Format with Hardcoded Field Values

4.1.1 BLE Advertisement Frame Prevalence

As a preliminary study, we first sought to understand
the prevalence of BLE in representative public locations.
Our goal was to understand what types of devices, OSes,
and ecosystems were employing BLE and whether pri-
vacy countermeasures such as MAC address random-
ization were frequently deployed. Table 1 depicts two
distinct measurements: the first is a multi-hour single
collection, while the second comprises several distinct
collections over two days. In both cases our results indi-
cate that only two major ecosystems are commonly ob-
served utilizing BLE MAC address randomization – Ap-
ple and Microsoft Windows devices. It should be noted
that the counts for Random MAC addresses are skewed,
and therefore should not be interpreted as the number
of distinct devices observed. This is a reflection of the in-
terval policy used by Apple and Microsoft, in which the
random BLE MAC address rotates every 15 minutes.

Table 1. Advertisement Frames

Test 1 Test 2

Count

Address Type Public 26 57
Random 726 1,518

Company ID†

Apple 692 1296
Microsoft 30 201
Garmin 2 9
Samsung 0 3
All Others 2 9

† Randomized Devices Only

Microsoft’s Connected Devices Platform (MS-CDP)
discovery protocol [52] provides a framework to allow
users to verify and authenticate devices and exchange
messages between devices. As the protocol is delineated

in a published specification we center our analysis on
reverse engineering Apple’s Continuity protocol. To re-
fine our analysis to focus solely on Apple BLE traffic,
we filter for BLE frames containing Apple’s Company
ID (0x004C) [15].

Device Fingerprinting
While the Company ID is required as per specifica-

tion [15], it allows for simple identification of BLE traffic
generated by Apple devices.

4.1.2 Configuration Settings - Disabling Continuity

An underlying condition for Continuity messages to be
sent is the user having their device associated with an
iCloud account to which at least two devices are reg-
istered; because users regularly neglect to remove old
Apple products from their iCloud account years after
discarding or retiring the device, this condition is rou-
tinely met even when the user may only actively use one
Apple device.

While they are enabled by default, Handoff mes-
sages described in Section 4.1.6 are unique in that they
can be explicitly turned off in the Settings Menu. Some
message types require a device with a cellular connec-
tion to be associated with the iCloud account in order
to be generated by the user, namely the WiFi Settings
and Instant Hotspot messages, outlined respectively in
Sections 4.1.7 and 4.1.8, which need a cellular-capable
device to act as a hotspot.

Activating Airplane Mode does not disable the
transmission of Continuity messages in either iOS 11
or 12, regardless of whether Airplane Mode is activated
from the Control Center or Settings Menu. Similarly,
disabling Bluetooth from the Control Center in iOS 11
or 12 does not discontinue the transmission of Continu-
ity messages [3]. We determined that the only way to
stop transmission of all Continuity messages is to dis-
able Bluetooth from the Settings Menu.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 40

Table 2. Most Commonly Observed Continuity Messages

iOS Version Vulnerability
Type Value 8 9 10 11 12 OS FP Device FP Tracking Activity Attributes

Watch Connection 11 N N N Y Y 7 X 7 7 7

Handoff 12 Y Y Y Y Y 7 7 X X X
Wi-Fi Settings 13 8.1+ Y Y Y Y 7 7 X X 7

Instant Hotspot 14 8.1+ Y Y Y Y 7 7 X X X
Wi-Fi Join Network 15 N N N Y Y 7 7 X X 7

Nearby 16 N N Y Y Y X 7 X X X

4.1.3 Overall Message Structure

After segregating all Apple traffic from our collection by
filtering for Apple’s Company ID, we observe that Ap-
ple’s Continuity frames adhere to a simple Type-Length-
Value (TLV) structure delineated in Figure 1. Of note,
multiple Continuity message types are often concate-
nated together in this TLV format, allowing them to be
passed in a single advertisement frame.

Device Fingerprinting
We observe that optional BLE advertisement flags

indicate a device category, allowing us to delineate Mac-
Books from mobile devices (iPhone, iPad, iPod, and
watches). Specifically, we investigate the following flags:
– Simultaneous LE and BR/EDR to Same Device Ca-

pable Host (H)
– Simultaneous LE and BR/EDR to Same Device Ca-

pable Controller (C)
– Peripheral device is LE only (LE)

Mobile devices were observed with flags H, C, and LE
set to 1,1,0, whereas MacBooks were set to 0,0,1. Air-
Pods lacked any flags and were thereby easily identifi-
able as the only device type with no flag attributes.

After adding the identified TLV structure, our
custom-defined Apple BLE fields, and associated at-
tributes to the packet-bthci_cmd.c Wireshark dissec-
tor, we proceed to reverse engineer the most commonly
observed Continuity messages. For each new message
type and attribute we update the dissector, recompile,
and reevaluate across multiple devices and OSes. Table 2
highlights the message types and corresponding values
we observed. Also annotated are the message type map-
pings to applicable iOS versions. The message types’
descriptive names were generated by our group in an
attempt to properly categorize the message.

4.1.4 Other

While iBeacon messages uniquely identify iBeacon
nodes, these devices, as their name implies are not
meant to be anonymous and we conduct no further anal-
ysis of the iBeacon message type.

Additionally, AirDrop and AirPlay messages were
observed, albeit infrequently and were not examined in
our study; [62] et al. provide a thorough investigation
of privacy leakages and tracking mechanisms enabled by
the AirDrop protocol. Though we did not make direct
use of any of these message types, we reverse engineered
enough of their format to allow us to detect and ignore
them in our study.

Device Fingerprinting
Lastly, we observed that AirPods transmit a unique

message type and were trivially identified via observa-
tion of these messages.

4.1.5 Watch Connection

An Apple Watch transmits message type 11 when the
watch has lost a Bluetooth connection with the paired
iPhone.

Device Fingerprinting
This message distinctly identifies Apple Watches as

they are solely transmitted from an Apple Watch.

4.1.6 Handoff

Handoff messages occur when a user interacts with a
Handoff-enabled application such as Mail, Maps, Sa-
fari, Calendar, Contacts, Pages, Numbers, Keynote, and
third-party applications such as Airbnb and Google
Chrome [8]. In addition to being triggered by user in-
teraction with Continuity-enabled applications, Handoff
messages are also observed when these applications are
opened or closed. Unlike other message types, Handoff
messages can be disabled explicitly through the settings
page, though they are enabled by default. Handoff mes-
sages are also only observed when tied to an iCloud
account that contains two or more Apple devices, as
Handoff cannot work with a lone device.

Having identified the user behaviors that gener-
ate Handoff messages, we focus on recovering privacy-
sensitive information with the message itself. Figure 2
depicts the Handoff frame, indicated by a Type field of
0x0C.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 41

0 7 8 15 16 23

Type - 0x0C Length Clipboard Status

Sequence Number

Data

Fig. 2. Handoff Message - Frame Format

Device Attributes
The Handoff message contains a one-byte field that

contains an indicator we call “clipboard status” indicat-
ing when a user has recently copied data to the Univer-
sal Clipboard and is now available to transfer to nearby
Apple devices. This behavior was observed across iOS
10, 11, and 12. A value of 0x08 indicates that data are
stored in the Universal Clipboard, and 0x00 if not.

Tracking
A two-byte sequence number follows the clipboard

status field. The sequence number increments only when
a new action occurs in a Handoff-enabled application,
the application is opened/closed, the phone is unlocked,
or the phone is rebooted. As such, the sequence number
increments monotonically, slowly, and at a rate propor-
tional to Handoff-enabled app use, allowing for long-
duration tracking. The remaining bytes in the frame
appear to be encrypted data and provide no specific de-
tails about the user’s activity that we could infer.

Importantly, sequence numbers are not affected by
MAC address randomization. We observe MAC address
changes that preserve the sequence number and en-
crypted Handoff data before and after the expiration of
the private_addr_int timer. This allows for the trivial
association of two randomMAC addresses, and, because
addresses change on a fixed 15 minute schedule, allows
a passive adversary to prepare for the next rotation 15
minutes hence. This behavior was consistently observed
across all iOS major and minor versions we tested, from
iOS 9 through 12.3. We describe this tracking vulnera-
bility in detail in Section 5.

User Activity
The sequence number also carries information about

private user behavior. Since it increases only in response
to user-generated events, it serves as a crude, real-time
measurement of user activity. Measuring the sequence
number of a device at two different times allows an ad-
versary to infer how much the phone was used during
that time period, leaking information about the activity
between measurements.

4.1.7 Wi-Fi Settings

Another Continuity message type, which we refer to as
“Wi-Fi Settings”, is transmitted when the user navi-
gates to the Wi-Fi Settings page in iOS or clicks on
the Wi-Fi and network status icon on the top of their
screen in macOS. While the settings page is open, an
Apple device will continuously transmit Wi-Fi Settings
frames, as depicted in Figure 3. This feature requires
that a device other than the one in use is registered to
the same iCloud account, and that the second device
has a cellular radio and is Instant Hotspot capable.

0 7 8 15

Type - 0x0D Length

iCloud ID

Fig. 3. Wi-Fi Settings Message - Frame Format

User Activity
This message indicates to an observer that the user

is currently on the Wi-Fi Settings page and is likely
configuring or about to connect to a Wi-Fi network.

Tracking
A four-byte data field representing an iCloud-

derived ID trivially links all other devices tied to the
same iCloud account. The derived ID is rotated on a
24 hour basis for all devices on the account where each
device remains synchronized with all other devices on
the same account; as the ID is ephemeral, however, it is
not trackable for more than 24 hours.

4.1.8 Instant Hotspot

Instant Hotspot is an Apple Continuity feature that al-
lows users to share cellular network connectivity among
iCloud-linked devices by creating a bridged Wi-Fi con-
nection. The Instant Hotspot feature allows Apple de-
vices to seamlessly identify and connect to these per-
sonal hotspot-enabled devices through the use of the
Instant Hotspot message. Devices configured to sup-
port Instant Hotspot will automatically begin transmit-
ting Instant Hotspot messages when another device on
the same iCloud account is nearby and is transmitting
Wi-Fi Settings messages containing the correct iCloud-
derived ID. The hotspot-enabled device continues to
broadcast Instant Hotspot messages as long as the other
device remains on the Wi-Fi Settings menu.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 42

Device Activity
This message is inherently descriptive of the device’s

ability to support acting as an Access Point (AP), and
assuming a connection is established, the device will be
recognizable in the 802.11 domain as an AP.

Client Instant Hotspot

Wi-Fi Settings
Page Wi-Fi Settings (0x0D)

Instant Hotspot (0x0E)

User Chooses
Hotspot Probe Request

Probe Response

Authentication Request

Fig. 4. Instant Hotspot Discovery and Connection Setup

Tracking
The Instant Hotspot connection process, described

in an abbreviated form in Figure 4, highlights several
tracking issues. First, upon attempting to connect to
an Instant Hotspot network, the client searches for the
Hotspot by sending directed and broadcast probe re-
quest frames. This is similar to the well-documented
probe request privacy flaw in which a user can be pro-
filed based on the Service Set IDentifier (SSID) of the
networks for which it actively searches [21, 31].

Upon receiving a probe request from a would-be
client, the Instant Hotspot device transmits probe re-
sponses and beacon frames using a deterministically-
generated, locally-administered MAC address rather
than its true, global public MAC address. The probe re-
sponses and beacons transmitted by the Instant Hotspot
device provide a second tracking mechanism through the
inclusion of a vendor-specific Information Element (IE)
that includes a reversible permutation of the Bluetooth
and Wi-Fi globally-unique MAC addresses as shown
in [47].

Finally, the client device transmits an 802.11 au-
thentication frame, in which the source address is the
global public MAC address of the device. Strangely, we
observe that probe request frames also use the global
public MAC address of the device; this is unusual be-
cause iOS devices generally randomize MAC addresses
in probe requests when in an un-associated state.

Device Attributes
The Instant Hotspot message reveals surprising de-

vice characteristics in plaintext as shown in Figure 5.
Specifically, the device’s battery life, cellular service
type (e.g. LTE, 3G, EV-DO), and cellular service qual-
ity (measured as a function of number of bars) are all
transmitted unencrypted.

0 7 8 15

Type - 0x0E Length

Data
Battery Life Data

Cell Service Cell Bars

Fig. 5. Instant Hotspot Message - Frame Format

Tracking
Lastly, due to the nature of how an Instant Hotspot

message is elicited we can trivially determine that the
initiator device (Wi-Fi Settings message transmitter)
and the Instant Hotspot device are associated to the
same iCloud account.

4.1.9 Wi-Fi Join Network

An additional Wi-Fi themed Continuity message type,
in which we annotate as “Wi-Fi Join Network”, is trans-
mitted when a user attempts to connect to an encrypted
network from the Wi-Fi Settings page. We call atten-
tion to the fact that this message is only sent when a
password is required; therefore, open and captive portal-
enabled networks will not generate Wi-Fi Join Network
messages.

User / Device Activity
We note that the observation of a Wi-Fi Join mes-

sage indicates the intent by a user to connect to an
encrypted network regardless of whether the proper cre-
dentials are entered.

Tracking
A similar tracking flaw to the one described in Sec-

tion 4.1.8 allows an adversary to link the BLE communi-
cation (Wi-Fi Join message) to the frames observed in
the 802.11 (Wi-Fi) domain. Specifically, as delineated
in Figure 6 the observer can compare the timestamps
of the Wi-Fi Join message to the authentication frames
collected at the same time. As the authentication frame
contains the global public MAC address [47], anonymiza-
tion is broken in both the Wi-Fi and BLE protocols.

Due to the state in which this message is sent in
the process (prior to authentication), we can retrieve
the client’s global public MAC address even when a user
attempts to authenticate with an invalid passcode.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 43

Client Access Point

Wi-Fi Settings
Page

Wi-Fi Settings (0x0D)

Wi-Fi Join (0x0F)Authentication Request

User Chooses
Network

Fig. 6. Wi-Fi Join – Authentication Frame Global MAC Exposed

Another glaring implementation flaw centers on a
three-byte SSID field in the Wi-Fi Join frame, depicted
in Figure 7. This field represents the first three bytes of a
SHA256 hash of an SSID the client device is attempting
to join. An adversary can pre-compute hashes of nearby
SSIDs, allowing for trivial correlation.

0 7 8 15

Type - 0x0F Length

Data
SHA256(SSID) >> 29bytes

Fig. 7. Wi-Fi Join Network Message - Frame Format

4.1.10 Nearby

Nearby messages, presumably intended to keep nearby
devices aware of the state of other devices in the
same iCloud ecosystem, are transmitted frequently by
Continuity-enabled Apple devices. As of iOS 12 and
macOS Mojave, Nearby messages never stop transmit-
ting, and are sent at a rate of over 200 frames per
minute. Because of the frequency and consistency with
which Nearby messages are transmitted and the user-
behavioral data contained in their payload, Nearby mes-
sages represent a serious privacy and tracking issue.

Support for Nearby messages began with release of
iOS 10. Observable changes in the frame format and
usage correspond with each iOS major version release
thereafter. In earlier implementations (iOS 10 and 11,
and macOS High Sierra) Nearby messages timeout af-
ter a period of inactivity, meaning that devices cease
to transmit Nearby messages when a device is left inac-
tive after approximately 30 seconds. As of iOS 12 and
macOS Mojave, devices continuously transmit Nearby
messages while BLE services are not disabled and the
device is on, and so long as the lid is not closed on a
macOS device.

0 7 8 15

Type - 0x10 Length
Location
Sharing

Action
Code

Variable Length Data

(iOS dependent)

Fig. 8. Nearby Message - Frame Format

User / Device Activity
The Nearby message contains a one-byte field, ref-

erenced in Figure 8, of which the least significant nibble
we designate the “Action Code” field, as it indicates the
action or state of the Apple device. The most significant
nibble, not observed in use prior to iOS 12.3, indicates if
the device has been configured to “Share My Location”
with family and friends. As of iOS 12.3 this field is set
to 1 when the user specifically selects this device as the
sharer of the locational data. Every iCloud account has
a single device selected as its location sharer, and this
field is set to 1 for this selected device, and 0 for all
other devices on the account. This behavior is observed
regardless of whether location services is on.

Our research highlighted in Table 3 describes seven
commonly observed Action Codes.

Table 3. Action Codes

Type Description

1 iOS recently updated
3 Locked Screen
7 Transition Phase

10 Locked Screen, Inform Apple Watch
11 Active User
13 Unknown
14 Phone Call or Facetime

Action Code 11 A user is actively interacting with
the associated device (iOS or macOS). This Action
Code will continue to be transmitted until a period
of ∼30 seconds of inactivity, upon which it will then
send Nearby messages with Action Code 7, and later
Action Code 3 as the screen becomes locked (iOS).

Action Code 3 An iOS device in a screen locked state,
indicating a lack of interaction between the user and
the device.

Action Code 10 Informs a paired Apple Watch that
the connected mobile device is in a locked screen
state. In this scenario the mobile device will send
only Action Code 10 messages vice the previously
mentioned Action Code 3, likely to indicate that
the phone will forward notifications to the watch
when the device is locked and that the watch should
display the notifications.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 44

Action Code 7 Observed after ∼30 seconds of user-
device (iOS or macOS) inactivity or when the device
transitions from a locked state to that of an active
state (caused by waking the device).

Action Code 14 Observed after the release of iOS
12.3 when transmitted from iOS devices in an active
phone call or Facetime session.

Action Code 13 Observed in the wild after the re-
lease of iOS 12.3, however we were unable to repro-
duce this message in our laboratory experiments.

Action Code 1 We observed this Action Code rarely.
In our experiments, we observed this Action Code
from iOS devices recently updated to a new iOS
version which have not been rebooted after the full
update. Additionally, we often observed these from
locked macOS devices, however we were unable to
definitively attribute an action to these messages.

Device Attributes
iOS 12 and macOS Mojave Nearby messages contain
additional data, highlighted in Table 4, in which the
state of the Wi-Fi radio can be inferred, namely whether
Wi-Fi is enabled or disabled. If the first byte of the data
field is 0x18 the Wi-Fi radio is off, whereas when the
value is 0x1C the Wi-Fi radio is on.

Table 4. Nearby Message (iOS) – Data Field

Feature iOS Version
10 11 12

Length (bytes) 1 4 4
Byte 1 0x00 0x10 0x18 || 0x1C

Byte 2-4 - Data Data

†: 0x18 (Wi-Fi Off), 0x1C (Wi-Fi On)

OS Fingerprinting
The variable nature of the Nearby message data

field allows for OS version fingerprinting. Specifically,
the length of the frame and the value of the first byte
distinctly reveal the iOS major version. As such we can
infer a device’s iOS major version as either iOS 10, 11,
or 12 with 100% accuracy. Similarly, we can identify ma-
cOS as Mojave or pre-Mojave OS versions, however we
must first evaluate the BLE flags as described in sec-
tion 4.1.3 in order to separate iOS from macOS devices.

Tracking
Similar to the privacy flaw discussed in Sec-

tion 4.1.6, the Nearby data field does not immediately
change when the MAC address is periodically rotated,
allowing for trivial tracking of a device across MAC ad-
dress changes. This is further compounded with the be-
havior observed in iOS 12 and macOS Mojave where
Nearby messages are continuously transmitted.

4.2 macOS BLE MAC Randomization
Breaks Itself

For macOS devices running High Sierra and Mojave,
we observed that Nearby messages change when Hand-
off messages are being sent concurrently. Normally, all
Apple Continuity messages utilize the current resolvable
private random address. This remains true with macOS
under circumstances where only Nearby messages are
being transmitted by the macOS device. However, when
a Handoff message or Wi-Fi Settings message is sent,
the Nearby messages switch to the global public MAC
address. The observed Handoff or Wi-Fi Settings mes-
sages continue to use the properly randomized address.
Nearby messages are transmitted with global MAC ad-
dress continuously while these other messages are being
sent, then revert back to the randomized address.

In practice, this means active use of Safari or Google
Chrome on a Handoff-enabled device will generate a
constant flow of Nearby messages with the global MAC
address. Furthermore, the data fields of both normal
and these Handoff-concurrent Nearby messages match,
allowing for trivial correlation of the current randomized
address to the device’s real MAC address. This passive
observation technique entirely circumvents BLE MAC
randomization for any macOS device so long as the de-
vice has another device associated to its iCloud account,
Handoff has not been disabled, and any Handoff-enabled
application is in use.

This macOS implementation flaw correlates the cur-
rent random MAC address, public MAC address, and
current Handoff sequence number, all of which are useful
for tracking a device. Further, knowledge of the public
Bluetooth MAC provides an adversary with the abil-
ity to detect its presence in any setting by initiating
a connection attempt without needing sequence num-
bers at all. Finally, the Bluetooth MAC is often offset
±1 from the Wi-Fi MAC address [27, 45], enabling a
passive adversary to obtain an 802.11 identifier through
BLE collection.

4.3 Device Stimulation & Active Analysis
A feature unique to BLE is GATT [6], a framework to
discover, read, and write information to and from BLE
devices. Each BLE device that supports GATT has a
GATT profile; GATT profiles define the type of services
that a device provides. Within each service are well-
defined characteristics, and each characteristic may con-
tain several fields and values that describe that charac-
teristic. For example, “Blood Pressure” is a GATT ser-
vice that describes blood pressure and other data related
to blood pressure readings from a monitor [7]; within the

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 45

blood pressure service are the “blood pressure measure-
ment” and “intermediate cuff” characteristics that de-
scribe a blood pressure reading, and cuff pressure value
during a blood pressure reading, respectively. Each of
these characteristics has a number of fields with associ-
ated values, such as “timestamp” and “heart rate” that
provide further information to a remote device querying
them. Services and characteristics are uniquely identi-
fied by Universally Unique IDentifiers (UUIDs), in order
to standardize their meaning across a myriad of manu-
facturers.

Device Fingerprinting
While not a vulnerability in its own right, we dis-

covered that Apple devices support GATT queries and
provide detailed model information when it is requested.
All Apple products we tested (iPhone, iPad, Apple
Watch, and MacBook) supported the “Device Infor-
mation” service (UUID 0x180A), and responded to its
“Model Number String” characteristic (UUID 0x2A24)
with Apple’s identifier string that uniquely identifies
the device model [10, 12]. For example, an iPhone 7 we
tested returned the identifier “iPhone9,1”, and a mid-
2015 15-inch MacBook Pro with Retina display returned
“MacBookPro11,4.” We also note that while an adver-
sary must actively transmit data in order to retrieve
the “Model Number String” GATT characteristic, she
may do so using a random source MAC address, and
the user of the device is unaware that they have re-
ceived a GATT query, as no prompt appears asking
them to approve the data transmission. Because of this,
it is exceptionally difficult to detect and prevent an ad-
versary from querying an Apple device model without
disabling Bluetooth entirely. Although using the “De-
vice Information” service to obtain the device model
is itself not novel (indeed, this is its purpose), in Sec-
tion 5, we show that this knowledge assists in tracking
individual devices. Devices that respond with a different
“Model Number String” than our tracking target can be
excluded from the pool of potential new identities after
a change in random MAC address.

The remainder of our active attacks focus on two
complimentary types of Apple Continuity messages –
Wi-Fi Settings and Instant Hotspot. Wi-Fi Settings
messages are generated when a user navigates to the
Wi-Fi Settings page of their iOS device, or when a user
clicks on the Wi-Fi and network status icon on the top
of their screen on macOS. These messages trigger In-
stant Hotspot messages in response from devices linked
to the same iCloud account that can act as a hotspot,
and leads to the device appearing in the user’s list of
available networks when viewed from a MacBook.

Device Attributes
In order to enumerate the possible values and mean-

ing for the cellular field in the Instant Hotspot message
described in Section 4, we spoof previously-captured In-
stant Hotspot messages from laboratory iPhones in re-
sponse to Wi-Fi Settings messages from a MacBook Pro
on the same iCloud account. By enumerating the possi-
ble values for the 1-byte cellular service field and observ-
ing the type of service displayed for our spoofed device
in the laptop’s available networks list, we were able to
exhaustively classify each value without having a device
actually receiving that type of service (e.g., LTE, 3G,
EV-DO, etc.) We note that the source MAC address
in our spoofed messages must be a resolvable private
random address that the MacBook can resolve, for this
reason, we choose to replay the source MAC observed.

Tracking
We demonstrate that spoofing Wi-Fi Settings mes-

sages provides a tangible benefit for an attacker. Be-
cause a device on the same iCloud account that can pro-
vide Instant Hotspot service will respond without user
intervention when it receives a correct Wi-Fi Settings
message from a laptop, we are able to replay previously-
captured Wi-Fi Settings messages hours later. As with
Instant Hotspot message spoofing, the source MAC ad-
dress must be one that can be resolved by the iPhone
or iPad that can provide the hotspot service, and we
note that the iCloud ID field in the message changes
daily at a fixed time per iCloud account. As such, these
messages may be replayed for a maximum of 24 hours.

Tracking
Finally, we measure the effect of incoming SMS mes-

sages and phone calls on devices running in order to de-
termine whether an adversary with knowledge of their
target’s phone number could stimulate their device in
order to discover whether it is in close proximity.

All of the iOS versions we tested began sending
Handoff messages when a phone call was accepted, or
the Messages application was opened in response to an
SMS message. iOS 9 did not send Nearby messages, as
Nearby messages are not a feature of any iOS earlier
than 10. In addition to sending Handoff messages when
a user takes an incoming call or opens the Messages app
in response to an SMS message, iOS 10 and 11 also send
Active User Nearby messages in addition to the Handoff
messages that were sent in iOS 9.

Concerningly, the latest iOS version, iOS 12, proved
the most useful for targeted tracking of users because
it required no interaction on behalf of the user in order
to determine whether a phone call was incoming or a
text had been received. Because iOS 12 devices transmit

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 46

Nearby messages constantly, an attacker merely needs to
observe a change in the Nearby message Action Codes.
Pre-iOS 12.3, a change from the locked state (Nearby
Action Code 3) to the transition state (Nearby Action
Code 7), indicated an incoming call or text, as the screen
is illuminated when a call or text is received. An adver-
sary with the ability to send a text message or initiate
a call to a device can trivially identify the device if it is
in close proximity, defeating the private, random MAC
address and allowing for the type of user tracking we
outline in Section 5. Finally, the version of iOS at time
of publication, 12.3, makes detecting an incoming phone
or Facetime call even more trivial by introducing Nearby
Action Code 14; a device transmitting this Action Code
is in an active call.

5 Evaluation
Next we evaluate how effectively the above flaws, in con-
cert, can be used by an adversary to track a device.

5.1 User Tracking
As described above, BLE devices periodically rotate
their MAC address in order to prevent tracking. Ide-
ally, the MAC address is regularly set to a fresh random
value and potential adversaries eavesdropping on a de-
vice at different times and/or locations will not be able
to correlate these observations and confidently identify
them as belonging to the same device. In our tests we
find that Apple devices rotate the addresses every 15
minutes, as recommended by the BLE specification [4].
However, the data leakage described above can be used,
in many cases, to defeat randomization and track a de-
vice even through MAC address changes.

The main flaw which allows this is the fact that
Handoff messages are sent out regularly and with mono-
tonically increasing sequence numbers. The first impli-
cation of this is if an adversary is present at the time
that a MAC address is changed to a new random value,
this transition is identifiable because the sequence num-
ber and data fields of Handoff messages do not change
even when the MAC address does. We have observed
that after a MAC address change the sequence num-
ber stays constant until a new Handoff-related action is
performed by the user before continuing to increment.

Similarly, the four-byte data field in iOS 11 and
12 Nearby messages, rather than immediately rotating
when the MAC address changes, remains constant for
one to two frames after the MAC address change. As an-
notated in Section 4.1.10, Nearby messages never stop
transmitting in iOS 12 or macOS Mojave, making this
information leak a more powerful tracking method.

5.1.1 Longer Time Frames
Over longer time scales, it is very likely that an adver-
sary will not be present to observe every MAC address
change, and will eventually lose track of the MAC ad-
dress of a particular device. Due to the slow monotonic
increase of the sequence number and the relatively large
sequence number space it is possible to track devices by
using the sequence number itself as an identifier.

To illustrate and quantify the effectiveness of this
tracking capability we performed four sets of mea-
surements that demonstrate the predictability of se-
quence numbers and the likelihood that a device can be
uniquely identified in a public place by their sequence
number. First, we measured how the sequence numbers
for devices owned by members of our research team in-
crease over time during regular daily use. Second, we
measured the distribution of sequence numbers in public
places. Third, we estimated the probability of a second
device coincidentally having a sequence number close
to the target, representing a false positive for a track-
ing adversary. Finally, we moved a device belonging to a
member of our research team through a variety of public
places over time and capture BLE signals, attempting
to identify this targeted user’s device.

Sequence Number Trajectories. Since sequence
numbers increment when specific user actions are taken
on the device (use of a Handoff-enabled app, device set-
ting manipulation, SMS/call activity) we hypothesized
the rate at which sequence numbers increase is stable
and predictable based on the usage patterns of indi-
vidual users. This would mean the sequence numbers
of devices may be predicted with high accuracy even
when devices are not under observation, and devices
that leave an adversary’s collection region may be re-
identified when returning to collection proximity.

Five members of our research team (four students,
one faculty) used their iPhones normally over a period
of one week including the weekend and recorded their
sequence numbers as close to hourly as possible. We
present our results in Figure 9, displaying the trajecto-
ries as well as |u|, the size of the projected window of
sequence numbers for that user over time, as described
below for accuracy estimates. We expect sequence num-
bers to increase more quickly with the use of Handoff-
enabled apps on the device. In addition, we left a device
on but unused for the duration of the experiment and
observed that its sequence number did not increment.

Given the predictable per-user slope of the observed
sequence numbers, we believe that over a period of a
few days to a week the sequence number of a particular
device can be predicted with a high degree of accuracy.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 47

0 2 4 6 8 10

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

User 1

Time (days)

S
e
q
 N

u
m

b
e
r

R^2: 1

Slope: 532.99

|u|: 295

0 2 4 6 8 10

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

User 2

Time (days)

S
e
q
 N

u
m

b
e
r

R^2: 0.99

Slope: 583.82

|u|: 421

0 2 4 6 8 10

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

User 3

Time (days)

S
e
q
 N

u
m

b
e
r

R^2: 0.98

Slope: 350.18

|u|: 524

0 2 4 6 8 10

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

User 4

Time (days)

S
e
q
 N

u
m

b
e
r

R^2: 0.98

Slope: 628.1

|u|: 546

0 2 4 6 8 10

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

User 5

Time (days)

S
e
q
 N

u
m

b
e
r

R^2: 0.99

Slope: 274.03

|u|: 120

0 2 4 6 8 10

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

User Measurements

Time (days)

S
e
q
 N

u
m

b
e
r

Slope (avg): 473.824

|u| (joint): 812.92

Fig. 9. Regressions of our collected data on sequence numbers. |u| is calculated with 90% prediction intervals

We note that while we have evidence to suggest this
predictability occurs in certain cases (among members
of our research team in a given week), we only conjecture
that this is the case more generally.

Sequence Number Distributions. Additionally,
we took passive captures of sequence numbers in the
wild at four distinct public locations. We hypothesize
that sequence numbers are uniformly distributed in the
space [0, 65535] since, while sequence numbers begin at
zero, they increase consistently through regular use. We
passively collected BLE signals and removed redundant
measurements by ignoring multiple Handoff messages
from the same MAC address. Our results are presented
in Appendix A.

Estimates. In order to provide estimates on the ac-
curacy of this tracking method we use our measurement
data and data from external sources wherever possible.
In cases where the data is unavailable we make conser-
vative independence assumptions, noting that in general
more precise measurements of the distributions required
for these estimations will result in more accurate track-
ing capabilities than we outline here.

We estimate collision probabilities under our differ-
ent attack models against iPhones. Our passive recon-
naissance outlined in Section 4.1 allow an adversary to
bin devices by OS version, while the active attacks from
Section 4.3 allow the adversary to determine the gran-
ular hardware submodel of a device as well.

We use statistics from Mixpanel [13] to estimate the
proportion of Apple devices of each type in the wild as
of February 25, 2019 and statistics from Apple [9] as of
February 24, 2019 to estimate the proportion of devices
with each iOS installed. We note that iPhone 7 is the
most common hardware model and in order to estimate
the proportional size of the largest bin we assume:
– That the distributions of iOS version number and

iPhone hardware model are independent. Given
this, we select the most prevalent iOS version, ver-
sion 12.

– That iPhone 7 devices are split evenly between
the two hardware sub-models (iPhone9,3 vs iPhone
9,1) [10]

For an estimate of the adversary’s accuracy in re-
identifying a device, we consider two cases: targeted,
where an adversary takes measurements of a specific
device and wishes to track it over time, and untargeted,
where an adversary does not have data but attempts to
determine if a device is a previously observed device or
a new one. The adversary must calculate a window of
plausible sequence numbers associated with a previously
observed device to determine whether a new measure-
ment is the previous device or a new one, and the ad-
versary may incorporate knowledge about the expected
use patterns of its target to determine this window. In
the targeted case, where an adversary has made many
measurements of a specific user over time we estimate
as the size of the window u = 421 the median size of

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 48

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

iPhones Observed

P
ro

b
.
C

o
rr

e
c
t
R

e
−

Id
e
n
ti
fi
c
a
ti
o
n

Targeted, no binning

Untargeted, no binning

Targeted, passive binning

Untargeted, passive binning

Targeted, active binning

Untargeted, active binning

Fig. 10. Re-identification accuracy under different attack scenarios

the largest 90%-prediction interval size from our five
experiments, and in the untargeted case, where an ad-
versary assumes the device increment rate sits between
our largest and smallest observed rates we take the more
conservative convex closure of all 90% prediction inter-
vals, [umin, umax] which gives u = 813.

In this setting we can calculate the probability that
a target device will be the only one in a given location
with a sequence number in the target window as(

1− u

65536

)n

where n is the number of devices that are identically
configured to the target (i.e., look the same according
to all of our binning techniques).

We calculate the likelihood that a user is correctly
re-identified (i.e., that an in-bin sequence number colli-
sion does not occur) under each possible attack scenario
in Figure 10.

Sequence Number Collisions. We performed
eight short measurements in public locations, presented
in Figure 11, to verify the viability of our tracking meth-
ods in a real-world scenario. Each measurement was in
a different location in the same city, lasting up to 40
minutes each. User 1 from our trajectory experiments
took their iPhone 6S with a known sequence number and
moved to each location and another researcher captured
nearby Handoff traffic, with a third applying methods
described in Section 4.3 in an attempt to identify the
hardware models of devices in close proximity. In the
last three experiments, a different user was targeted who
had an iPhone 6. Nearly every device we observed in the

wild was running iOS 12 so we do not include software
binning in our results. We note that our experimental
setup was not able to accurately identify hardware mod-
els for most devices in the first five experiments, so we
ignore hardware profiles for these measurements and
consider them a test of tracking without binning. For
measurements six, seven, and eight we made significant
improvements to our collection software and identified
the hardware model of 81%, 70%, and 75% of devices re-
spectively. The devices with hardware profiles that are
unknown or that match the target device we take as col-
lisions, and we note that in total 90 of 465 total devices
were successfully binned by hardware, and of these 90,
four were in the same bin as the target device.

Unlike our estimates, these measurements include
devices of all types (watches, notebooks, etc) while in
the estimates above our unit of measure is observed
number of iPhones. These experiments test the targeted
setting, so we use as our window the median size from
our trajectory experiments |u| = 421.

We conclude, from our estimates and measure-
ments:
– Active adversaries can reliably re-identify even the

most common devices over time in public places
without any long-term targeted data collection.

– Passive adversaries can reliably re-identify devices
that are less common, by targeting specific users
over time, or when the number of observed devices
is low.

– Negative results about the presence of a given device
are highly accurate, even for passive adversaries.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 49

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

Sequence Number Collisions

Measurement Location

S
e
q
u
e
n
c
e
 N

u
m

b
e
r

1 2 3 4 5 6 7 8

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●
●

●
●

●

●●

●

●●

●
●

●

●
●

●

●

●

●

●●
●●

●
●
●

●●
●

●

●

●●

●

●
●
●●
●
●
●●

●
●●

●
●

●
●●

●

●●●

●
●

●

●

●●

●
●●
●
●
●

●

●

●
●

●

●

●●

●●

●
●●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●●

●

●

●●

●

●

●

●●
●●●●
●●●●
●
●●
●●●●
●
●
●●
●

●●
●●
●●●
●

●
●

●

●
●●●

●
●
●●

●

●●●●●
●

●

●●
●●

●
●
●

●

●
●

●
●●

●
●
●

●
●

●
●

●●

●●
●
●

●

●●
●

●●●

●●

●

●●
●

●
●●

●
●
●

●●

●●

●

●

●

●

●

●
●●
●

●

●
●

●

●

●
●

●

●

●●●

●

●●●●
●●●●●●
●●
●●

●●
●●●
●●●
●●●●●●

●●●●
●

●●
●●●●●
●
●●
●
●●
●●
●●●

●●
●

●

●●

●●

●
●●

●●
●●

●
●
●
●
●●
●●●●
●
●

●●

●●●
●

●
●●

●

●●●
●●
●●

●●●
●

●

●●●●
●

●
●●●●●
●

●●
●

●●

●●

●●●●●
●

●●●

●●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●●

●

●
●

●

●●●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●●
●

●

●●

●●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

Closest: 985
Collisions: 0
Devices: 37

●●

Closest: 266
Collisions: 0
Devices: 61

●●

Closest: 78
Collisions: 1
Devices: 96

●●

Closest: 787
Collisions: 0
Devices: 149

●●

Closest: 1284
Collisions: 0
Devices: 25

●●

Closest: 1242
Collisions: 0
Devices: 32

●●

Closest: 1389
Collisions: 0
Devices: 41

●●

Closest: 3713
Collisions: 0
Devices: 24

●

●

●

Eliminated

Potential Collision

Target

No binning Binning

Fig. 11. Collision Measurements

5.2 Behavioral Data
We note the sequence number is a measurement of user
interactions with the device that is persistent over time
and regularly broadcast over BLE. Similarly, Nearby
Action Codes explicitly broadcast information on how
a device is being used in the moment. This means BLE
traffic from Apple devices provides multiple sources of
private behavioral data. In particular, this allows ad-
versaries to make statistical inferences about the quan-
tity of Handoff device interactions that have occurred
between measurements. Behavioral statistics of this na-
ture present an area for interesting future work, though
we recommend mitigation strategies to Apple for future
software versions changes so that this information can
no longer be collected.

6 Remediation
In this section, we recap the flaws we discovered and dis-
cuss how they could be addressed. In most cases, there
is nothing that a user can do to protect themselves.
The fixes have to be addressed by Apple at the kernel
or firmware level. We believe the most straightforward
solution to most of these flaws is to either remove the
plaintext information that is being leaked, if it is not
necessary, or encrypt it with the shared encryption key
used across all devices on the same iCloud account. We
have notified Apple of our findings and hope to work
with them to address the issues we have identified.

macOS Global MAC Address
We believe that this behavior is an unintended bug re-
sulting in a serious tracking vulnerability. As such it
should be easily correctable and we recommend Apple
release an updated patch correcting the behavior.
MAC randomization
In general, the frequency with which MAC addresses
are rotated (every 15 minutes) is a substantial flaw. If
an adversary is within range of the device when it ro-
tates, even fixing all of the flaws we have discussed so
far, it is not usually difficult to link two subsequent ran-
domized MAC addresses. This is because the rotation
event is so infrequent that an adversary can observe
that one MAC address stops transmitting at precisely
the same time that another one starts and deduce that
they are actually the same device. Even worse, since it
always happens every 15 minutes, it can be predicted
like clockwork. The ideal solution would be for every
frame to have a new randomized MAC, but if that is too
burdensome then devices should at least have a shorter
period of rotation, and that rotation should be done
stochastically instead of on a fixed timer.
GATT commands
An adversary can use GATT to query BLE-enabled Ap-
ple devices for their exact model even when their MAC
address is being randomized. To reduce identifiability
of devices, iOS could respond to this query with a less
specific identifier (i.e., just “Apple” or “iOS”), or not
respond to it at all since it is optional.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 50

Nearby messages
The Nearby messages are responsible for the most
consistent behavioral leakage. Since there is an Ac-
tion Code for when the device locks, when the device
unlocks, when the user interacts with the device and
another one that constantly broadcasts while the screen
is on, a passive adversary can always tell whether the
device is:
– Locked
– Unlocked and being actively used
– Unlocked but not being actively used
– Currently in a phone or Facetime call
Encrypting the Action Codes would effectively stop
someone from learning this behavior since the Nearby
messages (at least in iOS 12 and macOS Mojave) are
sent constantly at a regular interval. If the Code is hid-
den then all that could be seen is a regular transmission
of a message with no link to specific behavior.
Handoff messages
The main vulnerability we have discovered in Handoff
messages is the presence of a monotonically increasing
two-byte sequence number which allows an adversary to
defeat MAC address randomization and track a device
over a long period of time. However, there appears to
be no need for a sequence number in these frames at
all. Handoff messages are sent over the BLE advertising
channel, meaning that these messages are not part of
an established communication link between devices. If a
message is missed, there is no mechanism for a receiving
device to ask for it to be repeated anyway. The sequence
numbers should be removed.

We also found that the clipboard status was leaked
in the clear. This message should be encrypted. Addi-
tionally, the data field in each Handoff message (which
we believe is encrypted) stays constant when a device’s
MAC address rotates, allowing an adversary to link two
subsequent MAC addresses. Therefore, this encryption
should be refreshed whenever the MAC address changes.
Wi-Fi Settings and Instant Hotspot
When a user opens the Wi-Fi settings page on an ide-
vice, a Wi-Fi Settings frame is sent. Nearby devices that
are capable of Instant Hotspot respond with an Instant
Hotspot frame containng information such as battery
life of the device, how many bars of cell service it has,
and what type of cellular network it is connected to. The
Wi-Fi Settings frame also contains a cleartext iCloud
ID, shared amongst all devices on the same iCloud ac-
count. This not only leaks information about the state
of the phone, but may also allow an adversary to link
different devices to the same owner.

The information about the device (battery life, etc.)
should be encrypted. Similarly, there is no reason to use
a static identifier that facilitates tracking and linking
of devices. The identifier could also be encrypted with
fresh randomness so that it does not appear the same
in two different Wi-Fi Settings frames.

iOS devices also transmit a message when joining a
network which includes a hash of the SSID that they are
joining. Again, this hash should incorporate the shared
encryption key so that it is cannot be easily reversed by
an adversary.

7 Conclusion
In this work we present several flaws in Apple’s Conti-
nuity protocols which leak device and behavioral data
to nearby listeners. Individually, each flaw leaks a small
amount of information, but in aggregate they can be
used to identify and track devices over long periods
of time, despite significant efforts in other parts of the
BLE protocol to prevent this scenario (MAC random-
ization). Device designers use short range wireless com-
munications protocols like BLE to generate a fluid user
experience across many devices, a very attractive prod-
uct feature given the proliferation of connected mobile
devices. However, securely deploying these technologies
presents difficult privacy challenges. Not only do these
short-range transmissions inherently leak location in-
formation, it seems the most practical uses for these
communications are real-time activity updates which
are themselves user data. Finally, the short range na-
ture of these technologies means that signals on two
independent channels can often be identified as coming
from the same device, meaning that privacy vulnera-
bilities in one wireless domain could entirely trivialize
well-implemented safeguards in another as we have pre-
sented here.

Acknowledgment
We would like to thank the Apple privacy team who
provided prompt feedback and guidance. Views and con-
clusions are those of the authors and should not be in-
terpreted as representing the official policies or position
of the U.S. Government. The author’s affiliation with
The MITRE Corporation is provided for identification
purposes only, and is not intended to convey or imply
MITRE’s concurrence with, or support for, the posi-
tions, opinions or viewpoints expressed by the author.
The authors additionally thank Dane Brown, Caroline
Sears, Peter Ryan, and Robert Beverly for technical as-
sistance and feedback.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 51

References
[1] Apple Continuity Requirements.

https://support.apple.com/en-us/HT204689, . Ac-
cessed: 2019-02-24.

[2] Apple Continuity Support. https://support.apple.com/en-
us/HT204681, . Accessed: 2019-02-24.

[3] Use Bluetooth and Wi-Fi in Control Center with iOS 11
and Later. https://support.apple.com/en-us/HT208086, .
Accessed: 2019-02-24.

[4] Bluetooth Core Specification.
https://www.bluetooth.com/specifications/bluetooth-
core-specification. Accessed: 2019-02-11.

[5] Fingerbank. https://fingerbank.org. Accessed: 2019-06-04.
[6] GATT Overview.

https://www.bluetooth.com/specifications/gatt/generic-
attributes-overview, . Accessed: 2019-02-21.

[7] GATT Specifications.
https://www.bluetooth.com/specifications/gatt, .
Accessed: 2019-02-21.

[8] Handoff Apps. https://support.apple.com/en-us/HT209455.
Accessed: 2019-02-24.

[9] App store stats. https://developer.apple.com/support/app-
store/. Accessed: 2019-02-24.

[10] The iPhone Wiki: Models.
https://www.theiphonewiki.com/wiki/Models. Accessed:
2019-02-21.

[11] Apple macOS Continuity.
https://www.apple.com/macos/continuity/. Accessed:
2019-02-24.

[12] Apple: Identify Your MacBook Pro Model.
https://support.apple.com/en-us/HT201300. Accessed:
2019-02-21.

[13] Mixpanel Device Statistics. https://mixpanel.com/trends/
report/iphone_models. Accessed: 2019-02-27.

[14] Things You Should Know About Bluetooth Range.
https://blog.nordicsemi.com/getconnected/things-you-
should-know-about-bluetooth-range. Accessed: 2019-02-28.

[15] Bluetooth company identifier list.
https://www.bluetooth.com/specifications/assigned-
numbers/company-identifiers. Accessed: 2019-02-24.

[16] tile. https://www.thetileapp.com/en-us/. Accessed: 2019-
02-18.

[17] Ubertooth One.
https://github.com/greatscottgadgets/ubertooth/wiki/
Ubertooth-One, . Accessed: 2019-05-01.

[18] ubertooth-btle.
https://github.com/greatscottgadgets/ubertooth/blob/master/
host/README.btle.md, . Accessed: 2019-05-01.

[19] Ubertooth 2018-12-R1 Release Notes.
https://github.com/greatscottgadgets/libbtbb/releases/
tag/2018-12-R1, . Accessed: 2019-05-01.

[20] N. Abedi, A. Bhaskar, and E. Chung. Bluetooth and Wi-Fi
MAC Address Based Crowd Data Collection and Monitoring:
Benefits, Challenges and Enhancement. 2013.

[21] M. V. Barbera, A. Epasto, A. Mei, V. C. Perta, and
J. Stefa. Signals from the Crowd: Uncovering Social Re-
lationships through Smartphone Probes. In Proceedings of
the 2013 conference on Internet measurement conference,

pages 265–276. ACM, 2013.
[22] J. K. Becker, D. Li, and D. Starobinski. Tracking

Anonymized Bluetooth Devices. Proceedings on Privacy
Enhancing Technologies, 1:17.

[23] R. Beverly. A Robust Classifier for Passive TCP/IP Finger-
printing. In International Workshop on Passive and Active
Network Measurement, pages 158–167. Springer, 2004.

[24] B. Bonné, A. Barzan, P. Quax, and W. Lamotte. WiFiPi:
Involuntary Tracking of Visitors at Mass Events. In World
of Wireless, Mobile and Multimedia Networks (WoWMoM),
2013 IEEE 14th International Symposium and Workshops on
a, pages 1–6. IEEE, 2013.

[25] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang,
D. Song, and A. Blum. FiG: Automatic Fingerprint Genera-
tion. 2007.

[26] J. Cache. Fingerprinting 802.11 Implementations via Sta-
tistical Analysis of the Duration Field. Uninformed. org, 5,
2006.

[27] J. Cache, V. Liu, and J. Wright. Hacking exposed wire-
less: wireless security secrets & solutions. Number Sirsi)
i9780072262582. McGraw-Hill, 2007.

[28] Y.-C. Chen, Y. Liao, M. Baldi, S.-J. Lee, and L. Qiu. OS
Fingerprinting and Tethering Detection in Mobile Networks.
In Proceedings of the 2014 Conference on Internet Measure-
ment Conference, pages 173–180. ACM, 2014.

[29] M. Cristea and B. Groza. Fingerprinting smartphones re-
motely via ICMP timestamps. IEEE Communications Let-
ters, 17(6):1081–1083, 2013.

[30] M. Cunche. I Know Your MAC Address: Targeted Tracking
of Individual Using Wi-Fi. Journal of Computer Virology and
Hacking Techniques, 2014.

[31] M. Cunche, M. A. Kaafar, and R. Boreli. I Know Who You
Will Meet This Evening! Linking Wireless Devices Using Wi-
Fi Probe Requests. In 2012 IEEE International Symposium
on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM), pages 1–9. IEEE, 2012.

[32] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapa-
tra. Uncovering Privacy Leakage in BLE Network Traffic
of Wearable Fitness Trackers. In Proceedings of the 17th
International Workshop on Mobile Computing Systems and
Applications, pages 99–104. ACM, 2016.

[33] L. C. C. Desmond, C. C. Yuan, T. C. Pheng, and R. S. Lee.
Identifying Unique Devices Through Wireless Fingerprinting.
In Proceedings of the first ACM conference on Wireless
network security, pages 46–55, 2008.

[34] J. P. Ellch. Fingerprinting 802.11 Devices. Technical report,
Naval Postgraduate School, Monterey, CA, 2006.

[35] K. Fawaz, K.-H. Kim, and K. G. Shin. Protecting Privacy
of BLE Device Users. In 25th USENIX Security Symposium
USENIX Security 16), pages 1205–1221, 2016.

[36] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Rand-
wyk, and D. Sicker. Passive Data Link Layer 802.11 Wireless
Device Driver Fingerprinting. In USENIX Security Sympo-
sium, volume 3, pages 16–89, 2006.

[37] D. Gentry and A. Pennarun. Passive Taxonomy of WiFi
Clients Using MLME Frame Contents. arXiv preprint
arXiv:1608.01725, 2016.

[38] M. Haase, M. Handy, et al. BlueTrack–Imperceptible Track-
ing of Bluetooth Devices. In Ubicomp Poster Proceedings,
2004.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 52

[39] D. Holger. How ’Free’ Wi-Fi Hotspots Can Track Your
Location Even When You Aren’t Connected, Nov 2018. URL
https://www.pcworld.com/article/3315197/privacy/free-wi-
fi-hotspots-can-track-your-location-even-when-you-arent-
connected.html.

[40] B. Hong, S. Bae, and Y. Kim. GUTI Reallocation Demys-
tified: Cellular Location Tracking with Changing Temporary
Identifier. In Symposium on Network and Distributed Sys-
tem Security (NDSS). ISOC, 2018.

[41] T. Kohno, A. Broido, and K. C. Claffy. Remote Physical
Device Fingerprinting. IEEE Transactions on Dependable
and Secure Computing, 2(2):93–108, 2005.

[42] A. Korolova and V. Sharma. Cross-App Tracking via Nearby
Bluetooth Low Energy Devices. In Proceedings of the Eighth
ACM Conference on Data and Application Security and
Privacy, pages 43–52. ACM, 2018.

[43] T. Liebig and A. U. K. Wagoum. Modelling Microscopic
Pedestrian Mobility using Bluetooth. In ICAART (2), pages
270–275, 2012.

[44] G. F. Lyon. Nmap Network Scanning: The Official Nmap
Project Guide to Network Discovery and Security Scanning.
Insecure, 2009.

[45] J. Martin, D. Rhame, R. Beverly, and J. McEachen. Cor-
relating GSM and 802.11 Hardware Identifiers. In IEEE
Military Communications Conference, 2013.

[46] J. Martin, E. Rye, and R. Beverly. Decomposition of MAC
Address Structure for Granular Device Inference. In Proceed-
ings of the 32nd Annual Conference on Computer Security
Applications, pages 78–88. ACM, 2016.

[47] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown,
C. Riggins, E. C. Rye, and D. Brown. A Study of MAC Ad-
dress Randomization in Mobile Devices and When it Fails.
Proceedings on Privacy Enhancing Technologies, pages 365–
383, 2017.

[48] C. Matte. Wi-Fi Tracking: Fingerprinting Attacks and
Counter-Measures. PhD thesis, Université de Lyon, 2017.

[49] S. F. Mjølsnes and R. F. Olimid. Easy 4G/LTE IMSI catch-
ers for Non-Programmers. In International Conference on
Mathematical Methods, Models, and Architectures for Com-
puter Network Security, pages 235–246. Springer, 2017.

[50] A. Musa and J. Eriksson. Tracking Unmodified Smartphones
using Wi-Fi Monitors. In Proceedings of the 10th ACM
conference on embedded network sensor systems, pages
281–294. ACM, 2012.

[51] C. Neumann, O. Heen, and S. Onno. An Empirical Study
of Passive 802.11 Device Fingerprinting. In 2012 32nd In-
ternational Conference on Distributed Computing Systems
Workshops, pages 593–602. IEEE, 2012.

[52] Openspecs-Windows. [ms-cdp]: Connected devices platform
protocol version 3. URL https://docs.microsoft.com/en-
us/openspecs/windows_protocols/ms-cdp.

[53] P. O’Hanlon, R. Borgaonkar, and L. Hirschi. Mobile Sub-
scriber WiFi Privacy. In Security and Privacy Workshops
(SPW), 2017 IEEE, pages 169–178. IEEE, 2017.

[54] C. Paget. Practical Cellphone Spying. Def Con, 18, 2010.
[55] R. Rajavelsamy, D. Das, and M. Choudhary. Privacy protec-

tion and mitigation of unauthorized tracking in 3GPP-WiFi
interworking networks. In Wireless Communications and
Networking Conference (WCNC), 2018 IEEE, pages 1–6.
IEEE, 2018.

[56] D. W. Richardson, S. D. Gribble, and T. Kohno. The Limits
of Automatic OS Fingerprint Generation. In Proceedings of
the 3rd ACM workshop on Artificial intelligence and secu-
rity, pages 24–34. ACM, 2010.

[57] E. C. Rye and R. Beverly. Sundials in the Shade: An
Internet-Wide Perspective on ICMP Timestamps. In In-
ternational Conference on Passive and Active Network Mea-
surement, pages 82–98. Springer, 2019.

[58] P. Sapiezynski, A. Stopczynski, R. Gatej, and S. Lehmann.
Tracking Human Mobility using wifi Signals. PloS one, 10
(7):e0130824, 2015.

[59] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov.
Hershel: Single-packet OS Fingerprinting. In ACM SIGMET-
RICS Performance Evaluation Review, volume 42, pages
195–206. ACM, 2014.

[60] A. Soltani. Privacy Trade-Offs in Retail Track-
ing. Tech@ FTC. URL https://wwwi.ftc.gov/news-
events/blogs/techftc/2015/04/privacy-trade-offs-retai, 2015.

[61] D. Strobel. IMSI catcher. Chair for Communication Security,
Ruhr-Universität Bochum, 14, 2007.

[62] M. Stute, S. Narain, A. Mariotto, A. Heinrich, D. Kre-
itschmann, G. Noubir, and M. Hollick. A Billion Open
Interfaces for Eve and Mallory: MitM, DoS, and Tracking
Attacks on iOS and macOS Through Apple Wireless Direct
Link. In USENIX Annual Technical Conference, 2019.

[63] F. Van Den Broek, R. Verdult, and J. de Ruiter. Defeating
IMSI Catchers. In Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security,
pages 340–351. ACM, 2015.

[64] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and
F. Piessens. Why MAC Address Randomization is not
Enough: An Analysis of Wi-Fi Network Discovery Mecha-
nisms. In Proceedings of the 11th ACM on Asia Conference
on Computer and Communications Security, pages 413–424.
ACM, 2016.

[65] M. Versichele, T. Neutens, M. Delafontaine, and N. Van de
Weghe. The Use of Bluetooth for Analysing Spatiotemporal
Dynamics of Human Movement at Mass Events: A Case
Study of the Ghent Festivities. Applied Geography, 32(2):
208–220, 2012.

[66] Q. Xu, R. Zheng, W. Saad, and Z. Han. Device Finger-
printing in Wireless Networks: Challenges and Opportunities.
IEEE Communications Surveys & Tutorials, 18(1):94–104,
2015.

Handoff All Your Privacy – A Review of Apple’s Bluetooth Low Energy Continuity Protocol 53

A Histograms of sequence
numbers captured in public
locations

Location 1

Sequence Numbers

F
re

q
u
e
n
c
ie

s

0 10000 20000 30000 40000 50000 60000

0
2

4
6

8

Location 2

Sequence Numbers

F
re

q
u
e
n
c
ie

s

0 10000 20000 30000 40000 50000 60000

0
2

4
6

8
1
0

Location 3

Sequence Numbers

F
re

q
u
e
n
c
ie

s

0 10000 20000 30000 40000 50000 60000

0
1

2
3

4
5

Location 4

Sequence Numbers

F
re

q
u
e
n
c
ie

s

0 10000 20000 30000 40000 50000 60000

0
5

1
0

1
5

2
0

