
Proceedings on Privacy Enhancing Technologies ; 2019 (4):292–310

Sanjit Bhat*, David Lu, Albert Kwon, and Srinivas Devadas

Var-CNN: A Data-Efficient Website
Fingerprinting Attack Based on Deep Learning
Abstract: In recent years, there have been several works
that use website fingerprinting techniques to enable a
local adversary to determine which website a Tor user
visits. While the current state-of-the-art attack, which
uses deep learning, outperforms prior art with medium
to large amounts of data, it attains marginal to no ac-
curacy improvements when both use small amounts of
training data. In this work, we propose Var-CNN, a web-
site fingerprinting attack that leverages deep learning
techniques along with novel insights specific to packet
sequence classification. In open-world settings with large
amounts of data, Var-CNN attains over 1% higher true
positive rate (TPR) than state-of-the-art attacks while
achieving 4× lower false positive rate (FPR). Var-CNN’s
improvements are especially notable in low-data scenar-
ios, where it reduces the FPR of prior art by 3.12% while
increasing the TPR by 13%. Overall, insights used to
develop Var-CNN can be applied to future deep learn-
ing based attacks, and substantially reduce the amount
of training data needed to perform a successful website
fingerprinting attack. This shortens the time needed for
data collection and lowers the likelihood of having data
staleness issues.

Keywords: website fingerprinting, deep learning,
anonymity

DOI 10.2478/popets-2019-0070
Received 2019-02-28; revised 2019-06-15; accepted 2019-06-16.

1 Introduction

Due to increases in mass surveillance and other at-
tacks on privacy, many Internet users have turned to
Tor [11] to protect their anonymity. Over the years, Tor
has grown to over 6,000 volunteer servers and 4 million
daily users [9]. Tor protects its users’ identities by rout-

*Corresponding Author: Sanjit Bhat: MIT PRIMES,
E-mail: sanjit.bhat@gmail.com
David Lu: MIT PRIMES, E-mail: davidboxboro@gmail.com
Albert Kwon: MIT, E-mail: kwonal@mit.edu
Srinivas Devadas: MIT, E-mail: devadas@mit.edu

ing each packet through a number of Tor servers. Each
server learns only the immediate hop before and after
itself, and as a result, no single server learns both the
identity of the user and the destination of the packet.

Unfortunately, Tor does not provide anonymity
against a powerful global adversary who can monitor
a significant portion of the traffic due to traffic analysis
attacks. In such attacks, the adversary monitors traffic
entering and leaving the Tor network. Then, she uses
traffic patterns such as packet sequences to correlate
packets across the two ends of the network and deter-
mine the identities of the two communicating parties.
Recently, a variant of the traffic analysis attack called
the website fingerprinting (WF) attack allows an adver-
sary who observes only the connection between the user
and the Tor network to identify which website the user
visits. To do so, the adversary first learns the traffic
patterns of certain websites, creating a unique digital
fingerprint for each site. Then, the adversary compares
these fingerprints to a user’s network traffic (typically
using machine learning algorithms) to determine which
website the user visits.

Most prior WF attacks [4, 6, 7, 16, 18, 19, 30, 32, 34,
35, 40, 43, 44] use manually extracted features to carry
out the attack. That is, the attacker carefully studies
different protocols such as HTTP and Tor, and manu-
ally determines features that could potentially identify
a website from a network trace (e.g., the total number
of packets and the total transmission time). While these
attacks achieved good accuracy in many settings, it re-
mains difficult to generalize the attacks across different
protocols or reason about their strengths, since the at-
tacker must manually specify the features.

Recently, deep learning neural networks have be-
come the state-of-the-art machine learning technique
in several different domains such as Computer Vision
and Natural Language Processing [28]. While they can
take in standard manually extracted features, one of
their main advantages is their ability to automatically
learn salient features just by analyzing input and out-
put pairs. This provides them the opportunity to dis-
cover more powerful features than previously known,
achieving higher accuracy. Current state-of-the-art WF
attacks [36, 38] indeed outperform prior manual feature

mailto:sanjit.bhat@gmail.com
mailto:davidboxboro@gmail.com
mailto:kwonal@mit.edu
mailto:devadas@mit.edu


Var-CNN 293

extraction attacks in settings with sufficient amounts of
data.

One significant drawback of deep learning, however,
is that it generally requires a large amount of training
data. As a result, deep learning WF attacks have strug-
gled to outperform traditional WF attacks in low-data
scenarios. The current best deep learning WF model
by Sirinam et al., for example, achieves similar results
as CUMUL, the state-of-the-art manual feature extrac-
tion attack, when both use small amounts of training
data [38]. Performance issues in low-data scenarios can
be a serious issue for WF attacks: since website traces
change quickly (i.e., in the span of a few hours to a few
days), the attacker must frequently update her database
of traces to match user traffic [24]. Consequently, the
adversary naturally needs to be stronger to collect the
larger amounts of traces required for deep learning based
attacks, which weakens the attack in practice.

1.1 Our Contributions

In this work, we focus on answering the following ques-
tion:

Can deep learning WF attacks achieve improved ac-
curacy over prior state-of-the-art WF attacks even with
small amounts of training data?

We answer this question affirmatively using our new
attack called Var-CNN, a semi-automated feature ex-
traction (i.e., benefitting from both manual feature ex-
traction and automated feature extraction) WF attack
based on deep learning. To the best of our knowledge,
Var-CNN is the first deep learning WF attack specifi-
cally tailored to network packet sequence classification.
Var-CNN’s base architecture uses ResNets [17], state-of-
the-art convolutional neural networks (CNNs) in Com-
puter Vision. Beyond the standard model architecture,
Var-CNN uses the following key insights about the na-
ture of packet sequences to achieve high performance:
1. Packet sequences have a fundamentally different

structure than images or other datasets tradition-
ally classified using CNNs. For instance, numerical
digits in the MNIST [29] dataset are composed of in-
dividual edges that can be detected by small feature
detectors. Packets, on the other hand, typically have
a more intertwined, global relationship (e.g., packets
at the beginning of a trace can cause a large ripple
effect throughout the whole trace). Unfortunately,
simply increasing the size of individual feature de-
tectors results in an unwieldy increase in the compu-
tational and memory overhead. Instead, we explore

the use of dilated causal convolutions, a variation
found in Audio Synthesis [42] and Computational
Biology [15] research, to exponentially increase fea-
ture detector size without increasing runtime (§4.3).

2. Unlike Computer Vision model inputs, which are
highly abstract, network packet sequences naturally
leak some cumulative statistical information such as
the total number of packets, total time, etc. Al-
though these manually extracted cumulative fea-
tures achieve poor standalone accuracy, we over-
come this problem by combining them with our
dilated ResNet during training rather than after.
This allows Var-CNN to be the first deep learning
WF attack that combines both manually extracted
and automatically extracted features to improve the
model’s overall performance (§4.4).

3. To the best of our knowledge, packet timing infor-
mation has only been used minimally in prior art
WF attacks. In contrast, the input generality and
power from ResNets and dilated causal convolu-
tions allow us to retain performance under a domain
change from direction information to packet timing
information, showing that timing leaks a significant
amount of information (§4.5). Moreover, we show
that combining the direction and timing informa-
tion of a packet sequence results in a more accurate
overall model (§4.6).

By incorporating the above three insights into Var-CNN,
we achieve substantial improvements over prior art in
both the open- and closed-world in every experimental
scenario tested. For instance, with 900 monitored sites
and 2500 monitored traces per site in our largest closed-
world, Var-CNN improves prior art accuracy from 96.5%
to 98.8%. In our largest open-world setting tested, Var-
CNN attains over a 1% better true positive rate (TPR)
than prior art while achieving a 4× lower false positive
rate (FPR).

In addition, Var-CNN has significant improvements
over prior art in settings with small amounts of train-
ing data, making the WF attack easier to carry out by
weaker attackers. For instance, with 100 traces for each
of 100 monitored sites in a low-data closed-world, Var-
CNN achieves 97.8% accuracy, whereas it would take
prior art 5× as much training data to achieve a compa-
rable accuracy of 98.1%. In a low-data open-world with
just 60 monitored traces and 6000 unmonitored training
traces, Var-CNN reduces prior-art FPR by 3.12% while
increasing TPR by 13%. In §6.2, we provide an intu-
itive explanation for why Var-CNN works well in these
settings. Moreover, although we used ResNets here as



Var-CNN 294

User

Adversary

Tor Network Websites

Fig. 1. The website fingerprinting threat model.

our baseline CNN architecture, many of our insights are
architecture-independent and thus can be applied to any
future deep learning-based attack.

2 Background and threat model

Tor [11] consists of decentralized volunteer servers that
relay their users’ packets without any delays or cover
traffic. While this has allowed Tor to scale to a large
number of users, this also enables adversaries monitor-
ing traffic entering and leaving the Tor network to po-
tentially deanonymize users. In particular, the website
fingerprinting (WF) threat model allows an adversary
to monitor just the connection between a user and the
network, as shown in Figure 1. The adversary is a pas-
sive observer, meaning she will not drop, modify, or in-
sert any packets. Examples of such adversaries include
routers, internet service providers, autonomous services,
and compromised Tor servers.

The adversary is interested in identifying visitors of
a number of websites, which we call monitored websites;
we call all other websites unmonitored websites. The ad-
versary visits the websites on her own and creates a
database of traces, sequences of packets and their times-
tamps generated while visiting a website. From here on,
we refer to whether a packet was incoming or outgoing
as direction data and the time delay between two con-
secutive packets as time data. Once the database is cre-
ated, the adversary monitors and collects users’ traces
and uses the database to classify them as belonging to
either the monitored or unmonitored set of websites.

2.1 Attacker settings

We consider two different attacker settings, closed-world
and open-world.

Closed-world. In this setting, we assume that
users only visit a well-known set of monitored web-
sites. Here, the adversary trains on a number of traces
from these sites and aims to classify different traces
from the training set into one of the monitored web-
sites. We use accuracy to define the effectiveness of the
attacker, which is simply the proportion of monitored
traces correctly identified. Although the closed-world is
less realistic—it assumes the adversary knows every site
a user visits—it is a useful measure of a classifier’s abil-
ity to distinguish between websites.

Open-world. In the real world, users can visit web-
sites that the adversary does not know. Open-world set-
tings emulate this scenario by allowing users to visit
both monitored and unmonitored websites (i.e., websites
that the adversary does not deem sensitive). Just like in
the closed-world, the adversary trains on different traces
from those being tested on. In addition, the adversary
can bias her classifier by training on some number of
unmonitored sites. Though there is no overlap between
unmonitored training and testing sites, learning how to
distinguish one set of unmonitored sites often helps with
others, as we will see empirically in §5.2.4.

In the open-world setting, we use three metrics
to measure classification performance, two-class true
positive rate (Two-TPR), multi-class true positive rate
(Multi-TPR), and false positive rate (FPR). Two-TPR
is the proportion of monitored traces correctly classified
as any monitored site, and it applies to an adversary
who only cares about identifying users who visit the
monitored class in general. Multi-TPR is the ratio of
monitored traces correctly classified as a specific moni-
tored site. An adversary using this metric might assign
different penalties to different monitored sites. Finally,
FPR, the ratio of unmonitored traces incorrectly classi-
fied as a monitored site, measures the adversary’s level
of false identification.

2.2 Assumptions

Prior WF attacks and Var-CNN assume the follow-
ing [24]:
– Replicability. Given the uncertainty of real user

conditions, the WF attacker assumes her training
data will be representative of actual Tor traffic se-
quences.

– Applicability. The adversary assumes she can ap-
ply the WF attack effectively in practice.



Var-CNN 295

There are, however, several criticisms regarding these
assumptions. First, the replicability assumption may be
too strong for a few reasons:
1. Unless sites with dynamic content changes such as

AJAX or Javascript are adequately represented in
the training set, the adversary would believe a non-
static page is actually static.

2. Training on one Tor Browser version while a user
uses a different version could possibly result in dif-
ferent underlying protocols being used.

3. Varying latency in Tor connections causes different
inter-packet timings.

4. The types of websites the adversary trains on may
not match the types of websites real users visit. For
instance, the adversary might train her classifier on
Alexa’s most popular sites [1] whereas real Tor users
might visit more private sites.

Second, the applicability assumption faces the following
issues:
1. The adversary might not know when traffic from

one website starts or stops, or whether a user visits
multiple websites at the same time.

2. Noise traffic (e.g., from listening to music or down-
loading a file in the background) might confuse an
attacker.

While some work has been done in applicability such
as learning how to split traces and remove background
noise [45], there remain important problems in replica-
bility due to the privacy concerns of collecting realistic
datasets from actual Tor users. Our work does touch
upon the replicability concern of data freshness with dy-
namic websites, showing that deep learning attacks can
perform well with small amounts of training data. How-
ever, we acknowledge that, similar to most prior work
on WF attacks [6, 12, 16, 34, 35, 43, 44], there still ex-
ist replicability and applicability assumptions that could
make the WF attack less powerful in practice.

3 Related work

We now describe prior work in greater detail.

3.1 Manual feature extraction attacks

In the past, several WF attacks with manually extracted
features have been proposed, each directing attention to-

wards the susceptible components of the protocol stud-
ied [4, 6, 7, 12, 16, 18, 19, 30, 32, 34, 35, 40, 43, 44]. For
example, early work used weaknesses in HTTP 1.0 to
take advantage of distinct resource length leakage, such
as the size of images, scripts, and videos [7, 19, 40]. Sub-
sequent protocols hid resource lengths, so later attacks
focused instead on extracting information from packet
lengths leaked by HTTP 1.1, VPNs, and SSH tunnel-
ing [4, 18, 30, 32]. Since then, Tor and other anony-
mous networks that hide packet lengths have emerged.
Consequently, attacks in the last few years have fo-
cused on using a broad set of manually extracted fea-
tures [6, 12, 35, 44]. For example, Wang et al. used a
modified k-Nearest Neighbors (k-NN) classifier with a
weight adjustment system to effectively train on a wide
feature set [43], including packet lengths, packet or-
derings, packet concentrations, and bursts. Panchenko
et al. developed CUMUL, a Support Vector Machine
(SVM) that mainly relied on cumulative packet length
features [34]. Finally, Hayes et al. in their k-FP attack
used a slightly smaller feature set than Wang et al. and
fed it into a Random Forest classifier, an ensemble of
Decision Trees [16]. After training the Random Forest,
they fed the output into a vanilla k-NN classifier to con-
trol TPR and FPR. Currently, Panchenko et al.’s CU-
MUL [34] is the best performing manual feature extrac-
tion attack in vanilla WF settings, achieving 97.3% ac-
curacy in a small closed-world with a large number of
traces [38].

While manual feature extraction attacks work well
in some settings, they are fundamentally restricted by
their feature set. For instance, Hayes et al. pointed out
that since CUMUL primarily relies on packet ordering,
it suffers significant decreases in accuracy against sim-
ple defenses that perturb this information [16]. In ad-
dition, even though a broad feature set as in Hayes et
al.’s k-FP [16] and Wang et al.’s k-NN [43] mitigates in-
formation loss to a defense, these attacks are still only
as good as their feature set. For instance, while neither
could effectively use timing, our model achieves a non-
trivial increase in performance when incorporating tim-
ing. This exemplifies how difficult it can be for humans
to manually extract features.

3.2 Automated feature extraction attacks

Recently, a few authors have proposed work on auto-
mated feature extraction (AFE) WF attacks using deep
learning neural networks [3, 36]. Compared to tradi-
tional attacks, these attacks perform AFE over raw in-



Var-CNN 296

put sequences, removing the need for feature design.
In an earlier work, Abe and Goto [3] used a stacked-
denoising autoencoder (SDAE), a neural network that
tries to create a compressed version of its input, to per-
form AFE. Their model performed worse than Wang
et al.’s k-NN with manual features. Later, Rimmer et
al. [36] studied preliminary applications of SDAEs, re-
current neural networks (RNNs), and convolutional neu-
ral networks (CNNs) and showed that AFE models can
slightly outperform prior art when using large amounts
of training data.

The current state-of-the-art WF attack is Sirinam
et al.’s [38] Deep Fingerprinting (DF) attack, which
uses a CNN architecture similar to Simonyan et al.’s
VGG model [37]. DF showed improvements over prior
art in both closed- and open-world settings. However,
with small amounts of training data (i.e., less than 200
traces in a closed-world with 95 monitored sites), DF
achieved marginal to no improvements over prior art,
with both attacks at around 90% accuracy when using
50 traces [38]. Even so, to the best of our knowledge DF
is currently the strongest attack to date in all domains.
Thus, we note several key differences between Var-CNN
and DF:
– We employ several novel insights specific to packet

sequence classification including dilated causal con-
volutions, cumulative statistical information, and
timing data (§4).

– We show that Var-CNN outperforms DF in every
open- and closed-world setting tested, regardless of
the amount of data used (§5).

– Our model has noticeable improvements in settings
with small amounts of training data. This is signifi-
cant because of the following reasons:
1. Deep learning models typically do not work well

with smaller training sets.
2. Smaller training sets result in faster training

times.
3. Smaller training sets directly correspond to less

work for the adversary as she needs fewer re-
sources and less time to collect a database.

The last point in particular strengthens WF attacks
by allowing weaker adversaries to launch success-
ful WF attacks and by reducing the chance of data
staleness.

4 Var-CNN: Model variations on
CNN

We first give a short background on convolutional neural
networks and then present details of Var-CNN.

4.1 Convolutional neural networks

Convolutional neural networks are part of a class of ma-
chine learning techniques called deep learning. Unlike
traditional machine learning, deep learning has the ex-
pressive power to automatically extract features from
raw input data by using several hidden layers and non-
linear activation functions such as ReLUs [28]. In our ap-
plication, we use a convolutional neural network (CNN)
due to its hierarchical abstraction of features and reuse
of features through local connectivity. CNNs, which con-
sist of three basic types of layers, can express complex re-
lationships between locally-defined features to construct
more abstract features [27].

Specifically, convolutional layers make use of input
translational invariance (i.e., a feature appearing in mul-
tiple places) to have locally-connected filters convolve
over the entire input and create feature maps. By de-
fault, each filter spans a small receptive field, which will
be further discussed in §4.3. Pooling layers combine ad-
jacent activations from feature maps and downsample
their input. Finally, fully-connected layers at the end of
the network do away with local connectivity to have ev-
ery neuron connected to every neuron in the prior layer.
In recent CNNs [17, 41], fully-connected layers have only
been used in the final softmax layer since they introduce
a large number of additional parameters. The softmax
layer, discussed in §4.7, represents a probability distri-
bution over the set of possible classes and gives the net-
work’s confidence in a certain prediction.

4.2 Var-CNN baseline architecture

Our baseline CNN architecture (Figure 2) is based
on the state-of-the-art CNN for Computer Vision,
ResNet [17]. ResNet comes in several different sizes, and
here, we use the smallest variant with just 18 layers to-
tal to minimize training costs. ResNet-18 has 4 separate
stages each consisting of 2 convolutional blocks. Each
block contains 2 convolutional layers with batch nor-
malization [22] and ReLU non-linearity in-between. In
addition, the key feature of ResNets that helps in the op-



Var-CNN 297

ResNet-18 Architecture

Input, 1x5000

1x7 conv, 64, 1, /2

Max pool, /2

1x3 conv, 64, 1

1x3 conv, 64, 2

1x3 conv, 64, 4

1x3 conv, 64, 8

1x3 conv, 128, 1, /2

1x3 conv, 128, 2

1x3 conv, 128, 4

1x3 conv, 128, 8

1x3 conv, 256, 1, /2

1x3 conv, 256, 2

1x3 conv, 256, 4

1x3 conv, 256, 8

1x3 conv, 512, 1, /2

1x3 conv, 512, 2

1x3 conv, 512, 4

1x3 conv, 512, 8

Global avg pool

+

+

+

+

+

+

+

+

Fig. 2. A graphical model of the Var-CNN baseline CNN architec-
ture, a ResNet-18, with dilated causal convolutions. The indices
in each convolutional layer signify the kernel size, the number of
filters, the dilation rate, and an optional /2 if that convolution
downsamples its input by using a stride size of 2 instead of 1.
Connections with a plus sign next to them indicate skip connec-
tions, which add the input of a block to its output. A dotted skip
connection indicates that the input is downsampled before be-
ing added so that its dimensionality matches that of the block’s
output.

timization of larger networks is a residual “skip” connec-
tion between the input and output of a block. The idea
here is that deeper networks can be hypothetically cre-
ated from shallower networks by simply making deeper
blocks copy previous blocks.

For instance, consider a regular block that trans-
forms its input out = F (x), where F (x) is a series of
convolution layers and nonlinearities. If the aforemen-
tioned identity mappings are optimal, then the block
will have to fit the identity function, something hard
to do for a sequence of nonlinear layers. On the other
hand, if we explicitly introduce the identity into each
block, out = F (x) + x, it is much easier for Stochastic
Gradient Descent to fit the nonlinear block to zero than

Input

Hidden Layer

Hidden Layer

Hidden Layer

Output

Fig. 3. A pictorial representation of regular causal convolutions
(figure replicated from Oord et al. [42]). Observe how the recep-
tive field size increases linearly with the number of layers.

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Fig. 4. A pictorial representation of dilated causal convolutions
(figure replicated from Oord et al. [42]). Each layer doubles the
dilation rate, starting from a dilation rate of 1, or normal causal
convolutions. This results in an exponential increase in receptive
field size compared to a linear increase with normal causal convo-
lutions (see Figure 3).

to the identity function [17]. Therefore, residual connec-
tions add the identity from each block to the output,
easing larger network optimization. This aids in higher-
level feature extraction and increases expressive power.

We train using the Adam optimizer, a variant of
stochastic gradient descent, to increase computational
efficiency and accelerate convergence [26]. By default,
our ResNet-18 takes in packet direction information as
input (i.e., 1’s and -1’s that represent packets going to
and away from the web server, respectively). In the fol-
lowing sections, we present our augmentations to the
baseline ResNet-18.

4.3 Dilated causal convolutions

With traditional convolutional operations, filters in each
layer convolve with their input volumes to produce fea-
ture maps. Specifically, in ResNet-18, each filter has a
small receptive field of size 3, meaning that it can only
operate on inputs that are at most two apart from each
other. Of course, higher-up layers operate on lower lay-
ers, compounding receptive field, but this still results in
each layer having a receptive field that only grows lin-
early with the number of layers, as shown in Figure 3.

While a linear increase may be sufficient in image
classification problems where the inputs typically con-



Var-CNN 298

tain smaller and more locally-defined features, packet
sequences often have a much more long-term and in-
tertwined structure. For instance, consider classifying a
human face. Typically, the classifier would first detect
smaller facial features such as eyes, mouth, and ears, and
combine these features at a higher level to detect a face.
The smaller features happen within local spatial regions
and can thus be detected with linear receptive field in-
creases. In contrast, when a user contacts a server to
download data, that might cause a cascading ripple ef-
fect wherein several hundred streams of packets are sent
before that one transmission is completed. This insight
about the long-term and temporally-related nature of
packet sequences motivates the following exploration of
dilated convolutions.

Strictly speaking, a larger increase in receptive field
size could be achieved through uniformly larger filters.
However, in practice this results in far more weight pa-
rameters and thus increases training time and memory.
RNNs such as Long Short-term Memory Networks [20]
have also traditionally provided support for temporal
data, but we found that the length of our packet se-
quence proved to be prohibitively long for current RNN
optimization techniques.1

Instead, we build long-term temporal understand-
ing into our CNN model by utilizing dilated convolu-
tions [42, 47], convolutions that skip inputs at a certain
dilation rate. Intuitively, instead of taking a fine-grain
view of a small input region, dilated convolutions allow
the network to take a coarse, wide view of the network,
as shown in Figure 4. Since the actual filter used in
dilated convolutions is still the same as in regular con-
volutions, the number of parameters and training cost
do not increase.

Our model doubles dilation rates in every convolu-
tional layer until hitting an upper-bound of dilation 8,
upon which it cycles back to dilation 1 (i.e., dilation
rates are {1, 2, 4, 8, 1, 2, 4, 8, . . . }). Instead of a linear
increase in receptive field size, this results in an expo-
nential increase, albeit for a small number of steps, as
shown in Figure 4. This technique has shown to be effec-
tive in Image Segmentation [47], Audio Synthesis [42],
and Computational Biology [15].

Finally, as did Oord et al. in their WaveNet
model [42], we also combine dilated convolutions with

1 We believe that the packet sequence is prohibitively long to
train on RNNs due to vanishing gradients, wherein the gradient
updates are essentially lost after backpropagating through such
a long sequence.

causal convolutions, which simply restrict every neuron
to only look at neurons from previous timesteps. This
helps Var-CNN better map the inherent temporal de-
pendencies of packet sequences. For instance, we found
that using dilated causal convolutions results in an in-
crease in accuracy from 94% to 96% in a closed-world
of 100 monitored sites and 90 monitored instances.

4.4 Cumulative statistical features

In addition to automatically extracting features from
the raw data with ResNet-18, we also provide seven ba-
sic cumulative features to the model. These features in-
clude the total number of packets, the total number of
incoming packets, the total number of outgoing packets,
the ratio of incoming to total packets, the ratio of out-
going to total packets, the total transmission time, and
the average number of seconds to send each packet.

Based on our experiments, a fully-connected layer
with cumulative features as input achieves only 35% ac-
curacy in a small closed-world (100 sites, 90 instances).
Due to the low accuracy, if we combined the meta-
data input and ResNet-18 post-training by averaging
their softmax outputs, it would reduce the overall accu-
racy (see Appendix A for further details). For example,
in a small closed-world, adding metadata post-training
results in an accuracy decrease in the dilated causal
ResNet-18 from 96% to 95%. Instead, we combine the
fully-connected metadata layer with the ResNet-18 dur-
ing training by concatenating their outputs, as shown in
Figure 5. Finally, after concatenation, the combined out-
put is sent through another fully-connected layer with
Dropout regularization [39] before going to the final
softmax output. Intuitively, this in-training ensemble
scheme allows for the ResNet-18 AFE model to auto-
matically learn how to supplement its strong predictions
with the weak predictions from cumulative manually ex-
tracted features. In practice, for a small closed-world,
this results in an accuracy increase from 96% to 97% for
the dilated causal ResNet-18. We note that while im-
provements seem marginal in this small closed-world set-
ting, they are amplified in more complex settings where
accuracies are lower (e.g., see §5.2.1).

Var-CNN is the first WF attack to supplement au-
tomatically extracted ResNet-18 features with cumula-
tive manually extracted features. Because of this, we
consider Var-CNN a semi-automated feature extraction
model.



Var-CNN 299

4.5 Inter-packet timing

To the best of our knowledge, low-level timing data (i.e.,
the timestep at which a packet was sent or a close deriva-
tive of it) has never been effectively used in prior art.
For instance, Bissias et al. [4] used inter-packet timings
in an early WF attack. However, compared to prior art
at the time using different features, their attack did not
perform as well [16]. More recently, Wang et al. [43]
used total transmission time as one of their features,
and Hayes et al. [16] did a feature importance study us-
ing inter-packet times. As shown by Hayes et al., how-
ever, these low-level time features ranked 40th–70th in
feature importance, making them essentially useless for
classification.

Rather than dismiss packet timing, we applied the
dilated ResNet-18 without metadata (§4.3) and ob-
served some interesting outcomes. Without changing
any parameters and only switching direction informa-
tion with inter-packet times, the ResNet-18 with packet
timing data achieved accuracy nearly comparable to
that of a ResNet-18 with direction data (96% to 93%,
respectively, in a closed-world with 100 sites and 90
instances). Moreover, by combining it with the basic
cumulative features described in §4.4, we were able to
achieve a 1% accuracy improvement from 93% to 94%
that is on par with what we observed for the direction
ResNet.

In contrast to prior work with manually extracted
timing features, the high accuracy of ResNet-18 with
timing data indicates that packet timing does leak a
significant amount of information. Apart from the sug-
gested privacy leakage, Var-CNN with timing data high-
lights one of the key benefits of AFE over manual feature
extraction: performance under domain shifts. Though
no prior features have been discovered to effectively use
timing data, the ResNet-18 is both general enough to
take in any sequence-like input and powerful enough
(with a strong ResNet architecture and our augmenta-
tions) to perform well with these inputs.

As we will see in §5.2.1, ResNet-18 with time data is
not as accurate as ResNet-18 with direction data. How-
ever, we describe a way to combine the two in §4.6 to
improve the performance of the final classifier.

4.6 Ensemble of timing and direction

In §4.4, we combined the ResNet-18 with cumulative
features in-training since the fully-connected layer with
cumulative features alone was far less accurate than

S1 = 0.5
S2 = 0.3
UM = 0.2

S1 = 0.3
S2 = 0.4
UM = 0.3

S1 = 0.7
S2 = 0.2
UM = 0.1

Avg TH
0.6 UM

Dir

Time

Metadata

Metadata

Fully-connected Layer + Batch Normalization + ReLU
Dilated causal ResNet-18

Dropout

Fig. 5. A graphical representation of our ensemble model with
just three output classes, 2 monitored sites and the unmonitored
(UM) class. Each of the direction and time models is trained
separately in conjunction with metadata inputs. Finally, the two
models’ softmax layers are averaged post-training. TH signifies a
minimum confidence threshold of a certain value over the aver-
aged softmax outputs. The internals of the dilated causal ResNet-
18 are shown in Figure 2.

the ResNet. In contrast, both the time and direction
ResNets with cumulative features are highly accurate
(as we will see in §5.2.1). Consequently, we found that
their accuracy actually dropped (from 97% for the di-
rection model to 95% for the direction and time model
in a small closed-world) when combining them during
training. This is most likely due to overfitting caused
by training on essentially 2× the number of parameters,
which makes the underlying optimization problem much
more difficult (see Appendix A for further details).

Instead, to effectively combine direction and timing,
we take the arithmetic mean of their softmax outputs af-
ter training each model separately. This has the advan-
tage of making each individual optimization procedure
no more parameter-intensive than the original, single-
model optimizations. We experimented with other aver-
aging schemes (see Appendix A for further details) and
found that even the optimal weighted average (i.e., the
highest performing average over the test set) always used
each model equally, plus or minus a small ε. Since a sim-
ple arithmetic mean is near-optimal, the final Var-CNN
model performs this over the outputs of the ResNet-18
direction and time models with cumulative features, as
shown in Figure 5. In §5.2.1, we provide empirical results
that show how the averaging scheme described here pro-
vides consistent improvements over the accuracy of each
individual model.



Var-CNN 300

4.7 Confidence threshold

As the final step of our attack, we apply a post-training
threshold on the softmax probability output of the net-
work (indicated by the “TH” block in Figure 5). If the
output class probability is less than this threshold, we
change the predicted class to the unmonitored class.
Intuitively, this can be explained as defining a certain
minimum bound on model certainty before classifying
a sample. If a model is not certain about its classifica-
tion as a monitored website, we assume that the testing
input was really an unmonitored website that only par-
tially matched a monitored site, and we classify it as
unmonitored.

The threshold constraint also allows for direct con-
trol over TPR and FPR trade-off. Prior manual fea-
ture extraction work achieved this using methods such
as classify-verify [24], using an additional classifier on
top of features outputted from a primary classifier [16],
and changing the number of nearest neighbors in k-
NN [16, 43]. However, in the case of using a differ-
ent model to perform final classification, this results in
increased computational time due to training multiple
models and decreased accuracy due to information loss
between the feature extractor and classifier. Additional
schemes such as classify-verify and adjusting the num-
ber of nearest neighbors require re-training to adjust
trade-offs.

In contrast, Var-CNN allows us to easily adjust
thresholds post-training. With a threshold of 0, this is
the equivalent of not applying any model constraint.
When the threshold is 1, we restrict the network to only
classify websites as monitored if it is 100% certain, de-
creasing the number of true positives and false positives.
We discuss empirical results for the TPR-FPR trade-off
in §5.2.2. We further note that since confidence thresh-
olds result from having a final discrete softmax proba-
bility output, both Rimmer et al.’s [36] and Sirinam et
al.’s [38] deep learning-based attacks have them.

5 Var-CNN evaluation

In this section, we describe our experimental setup and
evaluate Var-CNN.

5.1 Experimental setup

5.1.1 Dataset

Unfortunately, Sirinam et al.’s dataset was not available
at the time of writing. Instead, we evaluate our attack
on the Rimmer et al. dataset [36], which was publicly
available. However, since the public dataset does not
have enough information to extract inter-packet time
and metadata, we processed their unfiltered dataset,
which we obtained upon request.

This dataset has a total of 900 monitored sites each
with 2,500 traces. For open-world, there are a total of
500,000 additional unmonitored sites, each with only 1
trace. Both the monitored and unmonitored pages were
compiled from the Alexa list of most popular sites [1],
and with over 2.75 million total traces, it is one of the
largest and most up-to-date WF datasets in existence.

For each of our three different models, we feed in a
different set of features representing a given trace. The
direction ResNet-18 takes in a set of 1’s and -1’s that
represents the direction of each packet. The numbers
1 and -1 respectively denote outgoing packets (which
travel toward the web server) and incoming packets
(which travel toward the client). The time ResNet-18
takes in a sequence of floats that represent the time
delay between when a current packet and the previous
packet is sent. The metadata model takes in seven floats
(for the seven cumulative statistical features described
in §4.4). Since CNNs only take in a fixed-length input,
we pad and truncate each set of inputs to the direc-
tion and time models to the first 5,000 values. This is
consistent with prior work [36, 38] and strikes a balance
between the computational overhead of larger sequences
and the information loss of smaller sequences.

5.1.2 Training/Validation/Test Split

In all our experiments, we use the exact same train-
ing, validation, and test data for both Var-CNN and
DF [38]. Although manually extracted attacks used
cross-validation on smaller datasets [16, 34, 43], this
is computationally infeasible on our larger dataset. In-
stead, we follow the best practices of the deep learning
community and the practices of Sirinam et al. [38] and
split data into a training, validation, and test set. No
random data split favors any model because we use the
same split for both models.

In all our settings, we used a random 10% of all mon-
itored traces (i.e., 10% of the traces from each website)



Var-CNN 301

for testing and a random 5% of the remaining 90% of all
monitored traces (regardless of website) for validation.
While the number of unmonitored training and testing
sites differs with every setting, we use a random 5% of
all unmonitored training sites for validation. There is
no overlap between data used for training, validation,
and testing. In addition, note that we use the validation
set to time learning rate decays and stop model training
(see Appendix A.2 for further details).

5.1.3 Model Implementation

To implement Var-CNN, we use Keras [8] with the Ten-
sorFlow [2] backend. As Sirinam et al.’s code was not
available at the time of writing, we reimplemented their
model with their guidance in the same Keras and Ten-
sorflow environment they used [38]. Given that neural
networks train several times faster on GPUs due to data
parallelism, we run our experiments on NVIDIA GTX
1080Ti workstations at our organization with 11 GB of
GPU memory.

5.1.4 Hyperparameter Tuning

To determine hyperparameters for Var-CNN, we sys-
tematically go through each hyperparameter, sweeping
a certain range of values while keeping all other hy-
perparameters constant. After finding a well-performing
value, we fix it and then test other hyperparameters. As
mentioned in §4, we measure performance using accu-
racy on the test set for a small closed-world with 100
sites and 90 instances. After selecting hyperparameters
(e.g., architecture, regularization, and starting learning
rate) on this small closed-world, we fix them for all sub-
sequent open- and closed-world evaluations in §5.2. Our
main reason for selecting hyperparameters once using a
small dataset was to increase the speed of our research,
and we reported closed-world accuracies in §4 simply to
provide a metric for the performance differences of var-
ious Var-CNN architectural choices, not as a point of
comparison against other attacks.

For further details on the specific parameters we
used and for additional information on model design
choices that worked and did not work, see Appendix A.
Note that our parameter search was by no means ex-
tensive, especially for the ResNet-18 with packet timing
data. It is entirely possible that different Var-CNN con-
figurations perform differently on direction data versus
time data, but we made a simplifying assumption to

102 103

Monitored Traces

84

86

88

90

92

94

96

98

100

Ac
cu

ra
cy

Var-CNN Direction
Var-CNN Time
Var-CNN Ensemble

Fig. 6. Closed-world accuracies of Var-CNN direction, Var-CNN
time, and Var-CNN ensemble. Experiments are run with 100 mon-
itored sites and a varying number of traces per site. Accuracies
are in % and the x-axis is logarithmically scaled.

use the same configuration. In addition, this showcases
Var-CNN’s input generality and high performance under
domain changes.

5.2 Experimental results

In this section, we discuss our various experiments and
their implications.

5.2.1 Comparison of Var-CNN variants

We first compare the three different configurations of
Var-CNN: direction, time, and ensemble.

Figure 6 shows accuracies for these three configura-
tions as we change the number of monitored traces in
a closed-world setting. First, we observe that while the
time model always gets less accuracy than the direction
model, both are still highly comparable. For instance,
with 1000 traces, the accuracy difference is only 0.9%,
meaning both models are highly accurate. While prior
art was unable to effectively use low-level timing data
(§4.5), we show that AFE can take advantage of this in-
formation. Var-CNN effectively classifies websites solely
based on timing data without any major modifications.

Second, the ensemble model combining direction
and time always has higher accuracy than either of its
constituents. While this may seem obvious at first—
two models must always be better than one—it suggests
that the two models seem to complement each other’s
predictions. If both were highly confident on the exact
same predictions, then the ensemble created by averag-
ing their outputs would not improve. Instead, it appears
that there are some situations where one model is more
confident than the other, and vice-versa. These situa-



Var-CNN 302

0.0 0.5 1.0 1.5 2.0 2.5 3.0
FPR

94

95

96

97

98

M
ul
ti-
TP

R

DF
Var-CNN

Fig. 7. The TPR and FPR trade-off for an open-world setting
with 100 monitored sites, 1,500 monitored traces, 150,000 un-
monitored training sites, and 100,000 unmonitored testing sites.
Multi-TPR and FPR are in % and the upper left corner is the
best. Data points farther up and to the right use lower confidence
thresholds.

tions average out such that the ensemble model produces
better overall predictions than either of its constituents.

5.2.2 TPR-FPR trade-off

As discussed in §4.7, Var-CNN allows TPR-FPR trade-
off by changing the confidence threshold post-training.
Using a higher confidence threshold, the attacker can
lower FPR by assuming that traces predicted as a mon-
itored site with low confidence are actually false pos-
itives. This greedy scheme naturally causes true neg-
atives, i.e., monitored traces classified as unmonitored
due to their relative dissimilarity to other monitored
traces. A similar technique can also be applied to DF,
and in Figure 7, we plot this trade-off for both attacks
in our largest open-world setting tested.

As can be seen, both TPR and FPR decrease as the
confidence threshold increases and the graph goes to the
bottom left. For instance, with a threshold of 0.5, Var-
CNN has a 98.01% Multi-TPR and a 0.36% FPR. As the
threshold increases to 0.9, Var-CNN’s TPR goes down
to 93.68% but its FPR also goes down to 0.10%. With
100,000 unmonitored testing sites, this is a reduction of
260 false positives to only 100 false positives compared
to the initial 360 false positives.

Another interesting trend is the difference between
Var-CNN and DF FPR for the same Multi-TPR. When
both attacks use a threshold of 0, for nearly the same
TPR, DF has an FPR of 3.28%, which is over 7× that
of Var-CNN at 0.45%. In addition, this difference gets
larger for increasing Multi-TPR, indicating that Var-
CNN has significant FPR benefits when the attacker
needs to maximize TPR.

102 103

Monitored Traces

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

DF
Var-CNN

Fig. 8. Var-CNN and DF closed-world accuracy as a function of
the number of monitored traces for each of 100 monitored sites.
Results are in % and the x-axis is logarithmically scaled.

100 200 300 400 500 600 700 800 900
Monitored Sites

96.5

97.0

97.5

98.0

98.5

99.0

99.5

Ac
cu

ra
cy

DF
Var-CNN

Fig. 9. Var-CNN and DF closed-world accuracies for larger set-
tings with 2500 monitored traces and a varying number of moni-
tored sites. Results are in %.

5.2.3 Closed-world performance

We now consider closed-world experiments with varying
amounts of training data. Figure 8 shows Var-CNN and
Deep Fingerprinting accuracy as the number of traces
increases for each of 100 monitored sites. First, observe
Var-CNN’s high accuracy even in settings with relatively
small numbers of traces. For instance, with 100 traces,
Var-CNN achieves 97.8% accuracy while DF achieves
93.6% accuracy. It would take 5× as much training data
(i.e., 500 traces) for DF to achieve a comparable accu-
racy of 98.1%.

In general, this accuracy difference does not stay
stagnant over time. Rather, Var-CNN’s accuracy im-
provements tend to increase as the number of traces de-
creases. For example, at 2000 traces, our largest amount
tested, there is a 0.39% accuracy gap. This increases to
0.8% with 500 traces, 2.1% with 200 traces, 4.2% with
100 traces, 6.8% with 50 traces, and 11.75% with 40
traces.

As shown in Figure 9, Var-CNN also has large accu-
racy increases in closed-world settings with many sites
and a large number of traces per site. For instance, with
just 100 sites and 2500 traces, both attacks achieve near



Var-CNN 303

comparable accuracy with a difference of 0.3%. How-
ever, as the number of monitored sites increases with no
additional traces, the gap between Var-CNN and DF ac-
curacy also increases to 0.6% with 200 sites (99.5% com-
pared to 98.9%), 1.8% with 500 sites (99.2% compared
to 97.4%), and 2.3% with 900 sites (98.8% compared
to 96.5%). §6.2 provides a unifying explanation for the
increasing accuracy gap phenomenon in both low-data
and high-data scenarios.

5.2.4 Open-world performance

We now evaluate Var-CNN and DF in the open-world
setting. Here, both the number of monitored traces per
monitored site and the number of unmonitored train-
ing sites affect TPR and FPR. Generally, more moni-
tored traces leads to a better knowledge of the moni-
tored class and a higher TPR, while more unmonitored
training sites biases the attack model towards correctly
separating monitored from unmonitored, reducing FPR.
Of course, these trends are not exact, as strictly increas-
ing the number of unmonitored training sites also intro-
duces noise in monitored classification, slightly reducing
TPR.

We assume that the adversary can collect enough
of both types of traces to balance out possible negating
effects. Specifically, we quantify the attacker’s data col-
lection capabilities by using a varying number of mon-
itored traces and unmonitored training sites in a 1:100
ratio. We now study how Var-CNN and DF perform
under an adversary with varying data collection capa-
bilities. For all our experiments, we picked confidence
thresholds such that both attacks had a good balance of
TPR and FPR and used these across all data settings.

In large open-worlds where the attacker must sep-
arate perhaps billions of unmonitored sites from moni-
tored, false positives are often the limiting factor [34].
For example, with a million unmonitored traces, an FPR
of even 0.1% results in 1,000 false positives. Observe in
Figures 10a, 10b, and 10c that for both Var-CNN and
DF, Two-TPR increases, Multi-TPR increases, and FPR
decreases as the adversary’s data collection capabilities
increase. Assuming the probability of an unmonitored
site falsely classified as a monitored site stays the same
for an arbitrarily sized open-world, an adversary can
thus reduce false positives and increase true positives
by scaling the amount of training data. Furthermore,
Var-CNN performs better than DF in these high-data
settings (i.e., settings with a large number of traces per
trial), with over 4× lower FPR (1.47% to 0.36%), over

1% better Two-TPR (96.45% to 98.07%), and over 1%
better Multi-TPR (96.39% to 98.01%).

While Var-CNN outperforms DF in high-data set-
tings, its accuracy improvements are especially use-
ful as the amount of training data decreases. In Fig-
ures 10a, 10b, and 10c, we observe that the gap between
Var-CNN and DF generally tends to increase as the
amount of data decreases. For instance, the Multi-TPR
gap is 2.22% with 1000 traces, 7.13% with 80 traces,
and 13% with 60 traces. At these same scales, the FPR
gap is 1.11%, 2.21%, and 3.12%, respectively, and the
Two-TPR gap is 2.13%, 6.62%, and 11.34%, respectively.
This indicates that an attacker with fewer capabilities
for collecting large amounts of training data has a better
probability of both fingerprinting a user while not falsely
identifying them with Var-CNN. §6.2 relates this phe-
nomenon to those observed in the closed-world setting
and provides a possible unifying explanation.

5.2.5 Comparison against other attacks in the
presence of WF defenses

While DF outperformed prior art on Sirinam et al.’s
dataset [38], these attacks have never been simultane-
ously tested on the Rimmer dataset [36]. In this experi-
ment, we evaluate Var-CNN and DF against prior art in
settings with and without WF defenses. Note that here
we exclude k-NN [43] from our evaluation since it has
been shown by several researchers to be less accurate
than both k-FP and CUMUL [16, 34, 36, 38].

First, we assess our original assumption that DF is
the current state-of-the-art WF attack. The first row in
Table 1 shows Multi-TPR and FPR for all attacks in a
medium-sized open-world with noWF defense. Since DF
has a higher Multi-TPR and lower FPR than all prior
art, it is still the current state-of-the-art attack, even on
the Rimmer dataset [36]. As noted by Sirinam et al. [38],
it also performs comparably or slightly better than all
prior art in WF defenses settings against Tamaraw and
WTF-PAD.

Having shown DF to be the best prior-art attack in
settings with and without WF defenses, we now assess
Var-CNN’s performance relative to DF. In the unde-
fended scenario, Var-CNN (with a confidence threshold
of 0.5) attains similar Multi-TPR to DF (with a confi-
dence threshold of 0.7), 89.2% compared to 88.4%. How-
ever, it has a nearly 8× lower FPR, going from 8.6%
to 1.1%. Thus, compared to Var-CNN, DF would in-
correctly classify several more unmonitored websites as
being monitored, thereby falsely identifying users.



Var-CNN 304

Table 1. Open-world Multi-TPR and FPR for Var-CNN evaluated against three other state-of-the-art attacks. Evaluations are done
in both natural settings (None) and WF defense settings against a constant-flow WF defense (Tamaraw) and a WF defense based on
adaptive padding (WTF-PAD). We use 100 monitored sites, 100 monitored traces, 90000 unmonitored training sites, and 10000 un-
monitored testing sites for this evaluation and simulate the attacks and defenses with the original code from each author. Note that
Var-CNN gets higher Multi-TPR and lower FPR than any other attack, even in settings with WF defenses. Furthermore, note that
Multi-TPR and FPR for Tamaraw is zero across nearly all attacks since the strong defense causes all attacks to classify every trace as
unmonitored. The only exception is with k-FP, which we further explain in §5.2.5.

Defenses Overhead Var-CNN DF [38] k-FP [16] CUMUL [34]
Bandwidth Latency Multi-TPR FPR Multi-TPR FPR Multi-TPR FPR Multi-TPR FPR

None 0% 0% 89.2% 1.1% 88.4% 8.6% 70.4% 9.1% 85.6% 10.2%
Tamaraw [5] 63% 51% 0.0% 0.0% 0.0% 0.0% 4.1% 54.3% 0.0% 0.0%

WTF-PAD [25] 27% 0% 88.8% 0.7% 86.2% 5.4% 71.1% 9.5% 78.1% 12.6%

In the WF defense setting against Tamaraw and
WTF-PAD, Var-CNN still retains significant improve-
ments over DF and the rest of the prior-art. For exam-
ple, with a Multi-TPR comparable to that of DF (88.8%
compared to 86.2%, respectively), Var-CNN achieves a
nearly 8× reduction in FPR from 5.4% to 0.7%. Against
other attacks such as k-FP and CUMUL, Var-CNN
has even greater improvements in both Multi-TPR and
FPR.

Finally, we note that after trying several configu-
rations of Tamaraw, we were unable to get a configu-
ration that yielded non-zero Multi-TPR and FPR for
all attacks. While k-FP did manage to get a 4% Multi-
TPR against Tamaraw, the resulting FPR of 54.3% is
too high to make reliable predictions. Indeed, it appears
that our Tamaraw configurations were so strong that
they caused most attacks to classify every instance as
being unmonitored, resulting in 0% TPR and 0% FPR.
In contrast, WTF-PAD (at least under the configuration
we tested) sacrifices too much security for low overheads.
As noted by Sirinam et al. [38], it fails to protect against
attacks like Var-CNN and DF, which achieve relatively
high TPR and relatively low FPR.

6 Discussion

In this section, we discuss pertinent aspects of Var-CNN.

6.1 A note on runtimes

Note that with some experimental settings, both DF
and Var-CNN could possibly achieve better accuracies
if allowed to train for longer. However, this adds yet
another parameter the attacker must optimize for and
introduces additional training time overheads. We there-

fore made a simplifying assumption here to use the same
stopping scheme for each model across all experiments
(see Appendix A for more details).

One of the weaknesses of Var-CNN is that it takes
a longer time on average to train than DF due to the
more complex underlying model (ResNet-18), additional
fully-connected layer for basic cumulative features, and
time model. For example, for a closed-world with 100
monitored sites and 100 traces per site, it took approx-
imately 25 minutes to train Var-CNN using one GPU
while it took around 4 minutes to train DF. These run-
times scale roughly proportionally with the amount of
training data used.

While Var-CNN does cause increased runtimes, we
believe they are offset by its much improved perfor-
mance in all settings tested. For example, for DF to
reach a comparable accuracy to Var-CNN in a closed-
world with 100 sites and 100 traces, it would need ap-
proximately 5× the number of traces (§5.2.3). Moreover,
we can parallelize the training procedure to decrease
runtimes. Since Var-CNN direction and Var-CNN time
are independent models ensembled after training, they
can be trained separately on two GPUs. In addition, re-
cent work in Deep Learning research has shown that
models can be massively parallelized by using larger
batch sizes, special learning rate schemes, and more
GPUs. A prime example of this is Goyal et al. [14], who
trained a ResNet-50 on a very large image classification
dataset in just one hour. Previously, it would have taken
several days to train on a single GPU.

6.2 Why does Var-CNN work in low-data
settings?

As noted in §5.2.3 and §5.2.4, Var-CNN’s accuracy im-
provements over DF increase in the following scenarios:



Var-CNN 305

1. A fixed number of monitored sites and a decreasing
number of monitored traces in the closed-world.

2. A fixed number of monitored traces and an increas-
ing number of monitored sites in the closed-world.

3. A decreasing number of monitored traces and un-
monitored training sites in the open-world.

In this section, we provide a possible general explanation
for these trends and relate them to the model techniques
used in Var-CNN.

For the following discussion, consider neural net-
work optimization as finding a good hypothesis (i.e.,
one that achieves low training and generalization errors)
among the overall hypothesis space. All of the above
settings make the hypothesis space more vast and am-
biguous to traverse. For instance, decreasing the num-
ber of monitored traces and unmonitored train sites
(i.e., reducing the training data available to the clas-
sifier) provides less information for the optimizer to find
a good hypothesis with low generalization error. On the
other hand, increasing the number of monitored sites as
in the second scenario expands the overall size of the
hypothesis space with no additional optimization help
from more monitored traces. As the hypothesis space
changes, a modern convolutional neural network with
enough weight parameters would still likely achieve good
training accuracy, as shown by Zhang et al. [48]. How-
ever, as the optimization landscape is more vast and
ambiguous to traverse, it would have an increasingly dif-
ficult time finding hypotheses that don’t overfit to the
training data (i.e., that have low generalization error).

In contrast, one of the key benefits of ensembles, as
noted by seminal work [10], is statistical. When the hy-
pothesis space becomes unclear as with the above sce-
narios, ensembles help filter out bad hypotheses that
overfit to the training data, making the overall model
have better generalization capabilities. Given that Var-
CNN is composed of two types of ensembles, one with
an in-training combination of a dilated causal ResNet-
18 and cumulative features and the other with a post-
training ensemble of direction and timing models, we
suspect that these ensembles enable Var-CNN to per-
form especially well when the optimization landscape
gets more complex to navigate. Empirically, this was
also observed in §5.2.1, where the gap between the en-
semble model and the best performing constituent in-
creases as the number of monitored traces decreases.

7 Future work

Although Var-CNN outperforms prior WF attacks in
every setting tested, especially with small amounts of
training data, there are still many directions where it
could improve. In this section, we discuss limitations of
our work and possible avenues for future work.

More powerful baseline models. Since deep
learning is a rapidly accelerating field [28], applications
of new model architecture breakthroughs could lead to
better results. For instance, here, we used the ResNet
architecture as our baseline CNN since it is currently
the most widely used state-of-the-art Image Classifica-
tion CNN. There are other Image Classification models
such as larger variants of ResNets or DenseNets [21] that
could give better results. In our preliminary tests with
these architectures, however, we did not see significant-
enough accuracy improvements to justify their increased
computational costs.

In addition, recent work on Synthetic Gradients [23]
could lead to RNNs with the ability to train on much
longer inputs (e.g., the packet sequences used in this
work). Since RNNs were specifically made for tempo-
ral sequences, this model might understand long-term
packet interactions better than dilated causal convolu-
tions.

Regardless of the architecture choice, we would like
to note that nearly all of the packet sequence classi-
fication insights used in this paper are architecture-
independent and can thus be applied to most future
deep learning attacks. For instance, dilated causal con-
volutions work with any CNN architecture and ensem-
bles with cumulative features and timing data work with
nearly all neural network models.

Data augmentation. A common technique in
Computer Vision research is to artificially expand
the training data size by using data augmentation—
cropping, rotating, flipping, shifting, and rescaling the
image. This technique works in Computer Vision be-
cause the artificial data is often similar-enough to real-
world data that it is useful to the model. Similar tech-
niques for packet sequences, such as shifting them a ran-
dom number of packets one way or the other, could be
used to achieve even better low-data performance.

User-sourced datasets. As described in §2.2,
there are two main types of assumptions, replicability
and applicability. Both of these assumptions could be
tested in a real-world user trial study. Here, an adversary
would draft a number of real-world Tor users and moni-
tor their packet sequences, sites visited (including back-



Var-CNN 306

ground traffic), and metadata settings (Tor versions, cir-
cuit latencies, etc.). This would enable them to know
how strong the WF assumptions are in the real-world.

Adversarial machine learning. Regular WF de-
fenses such as recent work by Lu et al. [31] and Wang et
al. [46] degrade accuracy by blocking information leak-
age from sources such as inter-packet timing, packet se-
quence length, and burst patterns. However, more pre-
cise WF defenses could exist within the context of adver-
sarial attacks on machine learning models [13]. Assum-
ing the WF defender has some knowledge of the WF
attacker model, she might be able to craft specialized
perturbations to reduce the model’s classification abil-
ity while introducing less overhead than more traditional
WF defenses.

One challenging problem here is defining a useful
constraint for adversarial attacks. Most work in adver-
sarial machine learning has focused on image classifica-
tion, where `p norms constrain the total amount of pixel-
level perturbation allowed for an image. With packet se-
quences, however, it is much harder to change individual
inputs as they must obey temporal orderings. For exam-
ple, an outgoing packet cannot be changed to incoming
if that information is necessary in the future. The same
argument applies to changing the timestamp of a packet.
Thus, creating a specialized constraint for the set of all
allowable perturbations will most likely be the focus of
future work.

Finally, as with all attack-defense paradigms, while
adversarial machine learning WF defenses might be able
to initially defeat WF attacks, new WF attacks could
be trained to become robust against these defenses. For
instance, recent work by Mądry et al. has shown that by
viewing adversarial machine learning within the context
of convex optimization, one can train a model that is
robust to adversarial input [33]. This would allow for
a WF attack to be resistant to adversarial WF defense
perturbations.

Code release. To support future work, we have
made our code, including our re-implementation of DF,
publicly available at https://github.com/sanjit-bhat/
Var-CNN. Please refer to Rimmer et al.’s paper [36] for
instructions on downloading their dataset.

8 Conclusion

In this work, we present Var-CNN, a novel website
fingerprinting attack that combines a strong baseline
ResNet CNN model with several powerful insights for

packet sequence classification: dilated causal convolu-
tions, automatically extracted direction and timing fea-
tures, and manually extracted cumulative features. In
open-world settings with large amounts of data, Var-
CNN achieves over 1% better TPR and 4× lower FPR
than prior-art. In addition, Var-CNN’s improvements
are especially relevant in low-data scenarios, where deep
learning models typically suffer. Here, it reduces prior-
art FPR by 3.12% while increasing TPR by 13%.

Overall, Var-CNN’s model insights, which can be
applied to most future neural network models, allow it
to need less training data than prior art. This lowers
the likelihood of data staleness performance issues and
allows a weaker attacker with fewer data collection re-
sources to successfully perform a powerful WF attack.

9 Acknowledgements

This work was done as part of the MIT PRIMES pro-
gram while Sanjit Bhat and David Lu were students at
Acton-Boxborough Regional High School. The authors
were partially supported by National Science Founda-
tion grant No. 1813087. The authors would like to thank
Dimitris Tsipras and the Mądry Lab at MIT for provid-
ing some of the compute resources used to run these
experiments.

References
[1] The Top 500 Sites on the Web. https://www.alexa.com/

topsites, 2017.
[2] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Gregory S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Józefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul A. Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems. arXiv preprint
arXiv:1603.04467, 2015.

[3] Kota Abe and Shigeki Goto. Fingerprinting Attack on Tor
Anonymity using Deep Learning. In Proceedings of the Asia-
Pacific Advanced Network Research Workshop, volume 42,
pages 15–20, 2016.

https://github.com/sanjit-bhat/Var-CNN
https://github.com/sanjit-bhat/Var-CNN
https://www.alexa.com/topsites
https://www.alexa.com/topsites


Var-CNN 307

[4] George D. Bissias, Marc Liberatore, David Jensen, and
Brian N. Levine. Privacy Vulnerabilities in Encrypted HTTP
Streams. Privacy Enhancing Technologies, pages 1–11, 2006.

[5] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson,
and Ian Goldberg. A Systematic Approach to Developing
and Evaluating Website Fingerprinting Defenses. In Proceed-
ings of the ACM Conference on Computer and Communica-
tions Security, pages 227–238, 2014.

[6] Xiang Cai, Xin C. Zhang, Brijesh Joshi, and Rob Johnson.
Touching from a Distance: Website Fingerprinting Attacks
and Defenses. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 605–616,
2012.

[7] Heyning Cheng and Ron Avnur. Traffic Analysis of SSL
Encrypted Web Browsing. https://pdfs.semanticscholar.org/
1a98/7c4fe65fa347a863dece665955ee7e01791b.pdf, 1998.

[8] François Chollet et al. Keras. https://keras.io, 2015.
[9] Tor Developers. Tor metrics portal.

https://metrics.torproject.org, 2018.
[10] Thomas G. Dietterich. Ensemble Methods in Machine Learn-

ing. In Proceedings of the International Workshop on Multi-
ple Classifier Systems, 2000.

[11] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
The Second-Generation Onion Router. In Proceedings of the
13th USENIX Security Symposium, pages 303–320, 2004.

[12] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-Boo, I Still See You: Why Ef-
ficient Traffic Analysis Countermeasures Fail. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 332–
346, 2012.

[13] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. In Proceed-
ings of the International Conference on Learning Representa-
tions, 2015.

[14] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, Large Mini-
batch SGD: Training ImageNet in 1 Hour. arXiv preprint
arXiv:1706.02677, 2017.

[15] Ankit Gupta and Alexander M. Rush. Dilated Convolutions
for Modeling Long-Distance Genomic Dependencies. In Pro-
ceedings of the 34th International Conference on Machine
Learning, Workshop on Computational Biology, 2017.

[16] Jamie Hayes and George Danezis. k-fingerprinting: A Robust
Scalable Website Fingerprinting Technique. In Proceedings
of the 25th USENIX Security Symposium, pages 1187–1203,
2016.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. arXiv
preprint arXiv:1512.03385, 2015.

[18] Dominik Herrmann, Rolf Wendolsky, and Hannes Feder-
rath. Website Fingerprinting: Attacking Popular Privacy
Enhancing Technologies with the Multinomial Naïve-Bayes
Classifier. In Proceedings of the ACM Workshop on Cloud
Computing Security, pages 31–42, 2009.

[19] Andrew Hintz. Fingerprinting Websites Using Traffic Analy-
sis. Privacy Enhancing Technologies, pages 171–178, 2003.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term
Memory. Neural Computation, 9(8):1735–1780, 1997.

[21] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017.

[22] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the 32nd International
Conference on Machine Learning, 2015.

[23] Max Jaderberg, Wojciech M. Czarnecki, Simon Osin-
dero, Oriol Vinyals, Alex Graves, David Silver, and Koray
Kavukcuoglu. Decoupled Neural Interfaces using Synthetic
Gradients. In Proceedings of the 34th International Confer-
ence on Machine Learning, 2017.

[24] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and
Rachel Greenstadt. A Critical Evaluation of Website Finger-
printing Attacks. In Proceedings of the ACM Conference on
Computer and Communications Security, 2014.

[25] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and
Matthew Wright. Toward an Efficient Website Fingerprinting
Defense. In Proceedings of the European Symposium on
Research in Computer Security, pages 27–46, 2016.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In Proceedings of the 3rd Interna-
tional Conference on Learning Representations, 2015.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
ImageNet Classification with Deep Convolutional Neural
Networks. In Proceedings of the Conference on Neural Infor-
mation Processing Systems, pages 1097–1105, 2012.

[28] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep
Learning. Nature, 521:436–444, 2015.

[29] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-Based Learning Applied to Document
Recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[30] Marc Liberatore and Brian N. Levine. Inferring the Source
of Encrypted HTTP Connections. In Proceedings of the
13th ACM Conference on Computer and Communications
Security, pages 255–263, 2006.

[31] David Lu, Sanjit Bhat, Albert Kwon, and Srinivas Devadas.
DynaFlow: An Efficient Website Fingerprinting Defense
Based on Dynamically-Adjusting Flows. In Proceedings of
the ACM Workshop on Privacy in the Electronic Society,
2018.

[32] Liming Lu, Ee-Chien Chang, and Mun C. Chan. Website
Fingerprinting and Identification Using Ordered Feature Se-
quences. In Proceedings of the European Symposium on
Research in Computer Security, pages 199–214, 2010.

[33] Aleksander Mądry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards Deep Learning
Models Resistant to Adversarial Attacks. In Proceedings of
the International Conference on Learning Representations,
2018.

[34] Andriy Panchenko, Fabian Lanze, Aandreas Zinnen, and
Martin Henze. Website Fingerprinting at Internet Scale. In
Proceedings of the 16th Network and Distributed System
Security Symposium, 2016.

[35] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website Fingerprinting in Onion Routing
Based Anonymization Networks. In Proceedings of the ACM

https://pdfs.semanticscholar.org/1a98/7c4fe65fa347a863dece665955ee7e01791b.pdf
https://pdfs.semanticscholar.org/1a98/7c4fe65fa347a863dece665955ee7e01791b.pdf
https://keras.io


308

Workshop on Privacy in the Electronic Society, pages 103–
114, 2011.

[36] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom V.
Goethem, and Wouter Joosen. Automated Feature Extrac-
tion for Website Fingerprinting through Deep Learning. In
Proceedings of the Network and Distributed System Security
Symposium, 2018.

[37] Karen Simonyan and Andrew Zisserman. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. arXiv
preprint arXiv:1409.1556, 2014.

[38] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew
Wright. Deep Fingerprinting: Undermining Website Fin-
gerprinting Defenses with Deep Learning. In Proceedings
of the ACM Conference on Computer and Communications
Security, 2018.

[39] Nitish Srivastava, Geoffrey H. Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A Simple
Way to Prevent Neural Networks from Overfitting. Journal
of Machine Learning Research, 15:1929–1958, 2014.

[40] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell,
Venkata N. Padmanabhan, and Lili Qiu. Statistical Identifi-
cation of Encrypted Web Browsing Traffic. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 19–30,
2002.

[41] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and
Alex Alemi. Inception-v4, Inception-ResNet and the Im-
pact of Residual Connections on Learning. arXiv preprint
arXiv:1602.07261, 2016.

[42] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen
Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner,
Andrew Senior, and Koray Kavukcuoglu. WaveNet: A Gener-
ative Model for Raw Audio. arXiv preprint arXiv:1609.03499,
2016.

[43] Tao Wang, Xiang Cai, Rob Johnson, and Ian Goldberg.
Effective Attacks and Provable Defenses for Website Fin-
gerprinting. In Proceedings of the 23rd USENIX Security
Symposium, pages 143–157, 2014.

[44] Tao Wang and Ian Goldberg. Improved Website Finger-
printing on Tor. In Proceedings of the ACM Workshop on
Privacy in the Electronic Society, 2013.

[45] Tao Wang and Ian Goldberg. On Realistically Attacking
Tor with Website Fingerprinting. In Proceedings on Privacy
Enhancing Technologies, pages 21–36, 2016.

[46] Tao Wang and Ian Goldberg. Walkie-Talkie: An Efficient
Defense Against Passive Website Fingerprinting Attacks.
In Proceedings of the USENIX Security Symposium, pages
1375–1390, 2017.

[47] Fisher Yu and Vladlen Koltun. Multi-Scale Context Ag-
gregation By Dilated Convolutions. In Proceedings of the
International Conference on Learning Representations, 2016.

[48] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding Deep Learning
Requires Rethinking Generalization. In Proceedings of the
International Conference on Learning Representations, 2017.

Appendices
A Var-CNN model design

To come up with the final Var-CNN model, we per-
formed several different experiments testing various as-
pects of the model design. Here, we mention a few im-
portant results. For full parameter choices, please refer
to our code.

A.1 Ensemble schemes

One of our main problems was deciding how to most
effectively combine the direction, time, and metadata
models. First, note that each model yielded varying
standalone performance. For instance, in a closed-world
with 100 sites and 90 monitored traces, both the di-
rection and time models achieved above 90% accuracy
while the metadata model consistently got 35% accu-
racy. If we just averaged all three models post-training,
this caused an accuracy decrease since the metadata
model was significantly worse than the other two. This
finding led us to use metadata during training rather
than after. In our tests, we noticed that adding meta-
data to both the direction and time ResNets acted as
a stabilizer, reducing stochasticity and improving final
accuracy. Intuitively, the overall model learned when to
use the automatically extracted ResNet features over the
manually extracted cumulative features, and vice-versa,
balancing each source of information.

Now that we knew to combine the ResNet with the
cumulative features in-training, one remaining question
was how to combine the direction and timing informa-
tion. In early experiments, we tried to use in-training
weight-sharing techniques. While this certainly did not
double the number of model parameters, it resulted in
an accuracy drop compared to the individual direction
and timing models. This was likely due to the dissim-
ilarity between direction and timing inputs (e.g., on a
meta-level, the former is sampled from a discrete distri-
bution while the latter from a continuous distribution).
As a result, features learned from direction inputs were
markedly different from those learned from timing in-
puts, and the shared model struggled to find a set of
shared weights.

Unfortunately, the alternative to weight sharing—
an in-training combination of two separate direction
and timing models—often led to reduced accuracy as
the fundamental optimization problem got much harder



309

with twice the number of parameters. Instead, we en-
sembled these models post-training by combining their
softmax outputs. In our experiments, we compared var-
ious schemes for combining, such as using the validation
set to find a weighted average and doing simple averag-
ing, against a simple sweep to find the optimal weight.
In most cases, our results indicated that the first method
was overfitting the validation set, whereas a simple aver-
age usually achieved near-optimal accuracy. Therefore,
for the final Var-CNN model we performed a simple av-
erage over the softmax outputs of the direction and time
models trained jointly with metadata, as shown in Fig-
ure 5.

A.2 Learning rate decay and early stopping

Rather than having a fixed learning rate drop-off scheme
with a fixed number of epochs, we found it much more
effective to decide these based on validation set perfor-
mance. Specifically, we started training with a learn-
ing rate of 0.001, the default value for the Adam op-
timizer [26], and allowed the network to train for 5
epochs without improving validation accuracy before we
reduced learning rate by a factor of

√
0.1 (i.e., new_lr =√

0.1∗ old_lr). The minimum possible learning rate was
0.00001, and we stopped training after not improving
validation accuracy for 10 epochs, twice the number used
for learning rate decay. We saved the best performing
model on the validation set and reloaded this model to
perform final classification on the test set.

Two parameters we experimented with here were the
initial learning rate and the base patience used for learn-
ing rate decay. From our experiments, reducing learning
rate from the default resulted in higher local minima in
the loss landscape, while increasing learning rate did not
improve model accuracy. Increasing base patience some-
times allowed for slightly better accuracy, but it also
significantly increased the average number of epochs for
training. With a base patience of 5, both the direction
and time models used between 30–50 epochs across all
experimental settings.

A.3 Dropout and `2 decay

With both the direction and time models, training accu-
racy reached around 99.99% by the end of training, in-
dicating that the model may have overfit to the training
data. To curb this, we tried various mechanisms, such
as introducing Dropout [39] and `2 decay to the ResNet

model and the final fully-connected layer after concate-
nating the ResNet and metadata models. We observed
that `2 decay did not manage to reduce overfitting on
the ResNet. However, using a Dropout rate of 0.5 on
the final fully-connected layer did reduce overfitting to
some extent, decreasing the generalization error.



310

102 103

Monitored Traces

70

75

80

85

90

95

Tw
o-

TP
R

DF
Var-CNN

(a)

102 103

Monitored Traces

70

75

80

85

90

95

M
ul

ti-
TP

R

DF
Var-CNN

(b)

104 105

Unmonitored Training Sites

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

FP
R

DF
Var-CNN

(c)

Fig. 10. Var-CNN and DF’s (a) Two-TPR, (b) Multi-TPR, and
(c) FPR as a function of the attacker’s data collection capabili-
ties. Here, we use 100 monitored sites and 100,000 unmonitored
testing sites. For each setting, we use monitored traces and un-
monitored training sites in a 1:100 ratio. We choose a confidence
threshold of 0.5 for Var-CNN and 0.8 for DF. Results are in %
and the x-axis is logarithmically scaled.


	Var-CNN: A Data-Efficient Website Fingerprinting Attack Based on Deep Learning
	1 Introduction
	1.1 Our Contributions

	2 Background and threat model
	2.1 Attacker settings
	2.2 Assumptions

	3 Related work
	3.1 Manual feature extraction attacks
	3.2 Automated feature extraction attacks

	4 Var-CNN: Model variations on CNN
	4.1 Convolutional neural networks
	4.2 Var-CNN baseline architecture
	4.3 Dilated causal convolutions
	4.4 Cumulative statistical features
	4.5 Inter-packet timing
	4.6 Ensemble of timing and direction
	4.7 Confidence threshold

	5 Var-CNN evaluation
	5.1 Experimental setup
	5.1.1 Dataset
	5.1.2 Training/Validation/Test Split
	5.1.3 Model Implementation
	5.1.4 Hyperparameter Tuning

	5.2 Experimental results
	5.2.1 Comparison of Var-CNN variants
	5.2.2 TPR-FPR trade-off
	5.2.3 Closed-world performance
	5.2.4 Open-world performance
	5.2.5 Comparison against other attacks in the presence of WF defenses


	6 Discussion
	6.1 A note on runtimes
	6.2 Why does Var-CNN work in low-data settings?

	7 Future work
	8 Conclusion
	9 Acknowledgements
	A Var-CNN model design
	A.1 Ensemble schemes
	A.2 Learning rate decay and early stopping
	A.3 Dropout and 2 decay



