
Proceedings on Privacy Enhancing Technologies ; 2020 (1):5–25

Andreas Fischer*, Benny Fuhry, Florian Kerschbaum, and Eric Bodden

Computation on Encrypted Data using
Dataflow Authentication
Abstract: Encrypting data before sending it to the
cloud protects it against attackers, but requires the
cloud to compute on encrypted data. Trusted mod-
ules, such as SGX enclaves, promise to provide a se-
cure environment in which data can be decrypted and
then processed. However, vulnerabilities in the executed
program, which becomes part of the trusted code base
(TCB), give attackers ample opportunity to execute ar-
bitrary code inside the enclave. This code can modify
the dataflow of the program and leak secrets via SGX
side-channels. Since any larger code base is rife with
vulnerabilities, it is not a good idea to outsource entire
programs to SGX enclaves. A secure alternative relying
solely on cryptography would be fully homomorphic en-
cryption. However, due to its high computational com-
plexity it is unlikely to be adopted in the near future.
Researchers have made several proposals for transform-
ing programs to perform encrypted computations on less
powerful encryption schemes. Yet current approaches
do not support programs making control-flow decisions
based on encrypted data.
We introduce the concept of dataflow authentication
(DFAuth) to enable such programs. DFAuth prevents an
adversary from arbitrarily deviating from the dataflow
of a program. Our technique hence offers protections
against the side-channel attacks described above. We
implemented DFAuth using a novel authenticated ho-
momorphic encryption scheme, a Java bytecode-to-
bytecode compiler producing fully executable programs,
and an SGX enclave running a small and program-
independent TCB. We applied DFAuth to an existing
neural network that performs machine learning on sen-
sitive medical data. The transformation yields a neural
network with encrypted weights, which can be evaluated
on encrypted inputs in 0.86 s.

Keywords: Dataflow Authentication, Trusted Code
Base, Homomorphic Encryption, Authenticated En-
cryption, Secure Cloud Computing

DOI 10.2478/popets-2020-0002
Received 2019-05-31; revised 2019-09-15; accepted 2019-09-16.

*Corresponding Author: Andreas Fischer: SAP
Security Research, Karlsruhe, Germany, E-mail: an-
dreas.fischer02@sap.com

1 Introduction
Many critical computations are being outsourced to
the cloud. However, attackers might gain control of the
cloud servers and steal the data they hold. End-to-end
encryption is a viable security countermeasure, but re-
quires the cloud to compute on encrypted data.

Trusted modules, e.g. secure enclaves such as Intel
SGX [1–3], offer a potential solution to this problem. An
SGX enclave can very efficiently run an entire program
in encrypted memory, shielding it from the administra-
tor’s view. However, it already has been demonstrated
that software vulnerabilities give an attacker ample op-
portunity to execute arbitrary code in the enclave [4].
These attacks are called return-oriented programming
and piece together programs from code snippets pre-
ceding return statements in the actual program. They
can modify the control and data flow of the program
and leak any secret in the program to an observer in
the cloud via SGX side-channels [5–7]. Since the num-
ber of software vulnerabilities scales with the size of the
code base, it is advisable to keep the trusted code base
(TCB) as small as possible. Hence, it is not a good idea
to outsource entire programs to an SGX enclave. Our
approach significantly reduces the surface for such at-
tacks by providing a small, program-independent TCB.

Approaches obfuscating the control flow [8–11] can-
not prevent exploiting vulnerabilities in the Trusted
Module, but could be applied to the unprotected pro-
gram in our approach to strengthen it further. For exam-
ple, HOP [10] obfuscates programs by encrypting them
such that only a trusted processor can decrypt and run
them. However, HOP assumes that the program is free
of software vulnerabilities and runs the entire program
inside the Trusted Module. In contrast, in our approach
the Trusted Module is small and program-independent

Benny Fuhry: SAP Security Research, Karlsruhe, Germany,
E-mail: benny.fuhry@sap.com
Florian Kerschbaum: School of Computer Science, Univer-
sity of Waterloo, Canada, E-mail: fkerschbaum@uwaterloo.ca
Eric Bodden: Heinz Nixdorf Institute, University of Pader-
born, Germany: eric.bodden@upb.de

Computation on Encrypted Data using Dataflow Authentication 6

and application vulnerabilities are confined to the un-
trusted program computing on encrypted data.

Consider the following dataflow modification attack
that efficiently leaks a secret x in its entirety. We assume
an encrypted variable Enc(x) in the domain [0, N − 1]
is compared to N/2 − 1. The “then” branch is taken if
it is lower or equal; the “else” branch otherwise. This
can be observed, for example, by the branch shadowing
attack presented in [6]. The observation of this behavior
leaks whether x ≤ N/2−1. This becomes quite problem-
atic when assuming a strong, active adversary that can
modify the control and data flow. The adversary may
then create constants Enc(x̄) for x̄ ∈ {N/4, N/8, N/16,
. . . , 1} in the encrypted code, add those to the variable
Enc(x) and re-run the control-flow branch. This way, by
consecutively adding or subtracting the constants, the
adversary can conduct a binary search for the encrypted
value.

As a defence for this attack of modifying the
dataflow, we introduce the concept of dataflow authen-
tication (DFAuth). We instrument each control-flow de-
cision variable with a label (broadly speaking: a mes-
sage authentication code), such that only variables with
a pre-approved dataflow can be used in the decision.
Variables carry unique identifiers that are preserved and
checked during the encrypted operations. This prevents
an adversary from deviating from the dataflow in ways
that would allow attacks such as the one we mentioned
before. Note that a program may still have intentional
leaks introduced by the programmer. However, DFAuth
restricts the leakage of any program to these intended
leaks by the programmer which the programmer could
avoid, e.g., by using appropriate algorithms such as
data-oblivious ones. In essence, the technique restricts
the information flows to those that are equivalent to the
original program’s information flows.

Fully homomorphic encryption [12] would be an-
other alternative to compute on encrypted data without
the drawback of data-leaks. Due to its high computa-
tional complexity [13], however, researchers are seeking
efficient alternatives that offer similar security. Fortu-
nately, we know how to efficiently perform additively
and multiplicatively homomorphic operations on en-
crypted data. Furthermore, if we reveal the control flow
of a program (instead of computing a circuit), effi-
cient computation seems feasible. Note that any con-
trol flow decision on an encrypted variable is an inten-
tional leak by the programmer. Several proposals for
program transformation into such encrypted computa-
tions have been made. MrCrypt [14], JCrypt [15] and
AutoCrypt [16] each offer an increasing set of programs

Table 1. Comparison of DFAuth to the most relevant alternative
approaches computing on encrypted data. Note that AutoCrypt
only supports control flow decisions on input variables.

Approach Control Flow
Support

Low Over-
head

Program-
Independent TCB

FHE # #
SGX only #
AutoCrypt G#
DFAuth

that can be computed on encrypted data. To support
encrypted computation on all programs, however, one
needs to convert between different homomorphic en-
cryption schemes. These conversions are very small rou-
tines, such that we can scrutinize their code and imple-
ment them safely in a Trusted Module likely without any
software vulnerabilities.

In this way we combine the benefits of partially
homomorphic encryption with a small TCB and the
efficiency of unprotected program execution. Our re-
encryption modules are small and program-independent
and are run protected in the SGX enclave whereas the
program runs efficiently on homomorphic encrypted val-
ues in unprotected memory. We take care not to destroy
the benefits of outsourcing. The verification of labels is
constant time and does not depend on the homomor-
phic computation. To this end we introduce our own
authenticated homomorphic encryption scheme HASE.

For a summary of key properties provided by
DFAuth and a comparison to the most relevant alterna-
tive approaches computing on encrypted data, we refer
the reader to Table 1.

We implemented the program transformation in a
bytecode-to-bytecode compiler, such that the resulting
programs are executable. We evaluate DFAuth based on
two applications: a checkout (shopping cart) component
of a sales application and a neural network perform-
ing evaluations on sensitive medical data. The trans-
formed applications execute in 2.3 ms and 0.86 s, respec-
tively. This shows that DFAuth is practically deploy-
able, whilst also providing extensive security guaran-
tees.

In summary, our contributions are:
– We define the concept of dataflow authentication

and show its interference equivalence property in
a program dependency graph.

– We present a new authenticated homomorphic en-
cryption scheme HASE, which can be used for con-
stant time implementation of dataflow authentica-
tion.

Computation on Encrypted Data using Dataflow Authentication 7

– We implemented and evaluated a bytecode-to-
bytecode program transformation for computation
on encrypted data using dataflow authentication.

– We implemented and evaluated transformed pro-
grams, e.g., machine learning, using Intel SGX.

Structure of this Work
This paper is structured as follows. In the next section,
we provide our adversary model and various definitions
of our authenticated homomorphic encryption scheme
HASE. In Section 3, we introduce dataflow authenti-
cation DFAuth and the security it provides. Section 4
presents our HASE constructions and discusses their se-
curity. Details about our implementation in Java are
given in Section 5 and Section 6 shows the results of our
evaluation using this implementation. Section 7 presents
related work before Section 8 concludes our work.

2 Definitions
In order to understand the security of dataflow authen-
tication, we first define the overall adversary model con-
sidered, the algorithms that HASE offers and the secu-
rity it guarantees.

2.1 Adversary Model

We consider a scenario between a trusted client and an
untrusted cloud server, which has a Trusted (Hardware)
Module, e.g., an Intel SGX enclave. Figure 1 depicts the
process and its trust boundaries. The client wishes to ex-
ecute a program at the cloud server with sensitive input
data. Our security objective is to leak only the informa-
tion about the inputs to the cloud server that can be
inferred from the program’s executed control flow.

We distinguish two phases of this outsourced com-
putation: setup and runtime. First, the client chooses
the keys for the encryption of its inputs in our HASE
scheme (A). Then the client transforms the intended
program using a specialized HASE-enabled compiler (B)
and uploads it to the cloud. The server deploys some
parts of the program into the Trusted Module which
the client verifies by remote attestation (C). This con-
cludes the setup phase.

In the runtime phase, the client can execute – mul-
tiple times if it wishes – the program on inputs of its
choice. It encrypts the inputs using the information from

Client

Server (Untrusted)
Controlled by

Adversary

Trusted ModuleA. Generate Keys
B. Compile Program

C. Deploy Program
(Remote Attestation)

1. Encrypt Inputs 2. Send Ciphertexts

3. Execute Program

4. Send (Encrypted) Result

5. Verify Result

Fig. 1. System Overview

the compiled program and sends the ciphertexts to the
cloud server (1-2). The cloud server now executes the
program (3). We assume an active adversary control-
ling the cloud. The adversary can
– read the contents of all variables and the program

text (except in the Trusted Module).
– modify the contents of all variables and the program

(except in the Trusted Module).
– continuously observe and modify the control flow,

e.g., by breaking the program, executing instruc-
tions step-by-step and modifying the instruction
pointer (except in the Trusted Module).

– do all of this arbitrarily interleaved.

After the execution of the program the server returns an
encrypted result to the client (4). The client can then
verify the result of the computation (5).

We ensure the following security property: The
server has learnt nothing beyond the intended informa-
tion flow of the program to unclassified memory loca-
tions (interference equivalence).

Note that the remaining adversarial information
flow can be minimized or eliminated by using appropri-
ate algorithms such as data-oblivious ones or by combin-
ing DFAuth with control-flow obfuscation techniques.
For example, code containing conditional instructions
can be transformed into straight-line code [9] or both
branches of a conditional can be executed and the re-
sult combined using an oblivious store operation [11].

2.2 Notation

We denote an object whose members can be unambigu-
ously accessed individually as 〈. . .〉. We use the dot nota-
tion to access object members, for example O.A() refers
to an invocation of algorithm A on object O. We use :=
for deterministic variable assignments and = for com-

Computation on Encrypted Data using Dataflow Authentication 8

parisons. To indicate that an output of some algorithm
may not be deterministic we use ← instead of := in as-
signments. We write x←$X to sample x uniformly at
random from a set X. For m,n ∈ N,m < n we use [m,n]
to refer to the set of integers {m, . . . , n}. For a k-tuple
x = (x1, x2, . . . , xk) we refer to the projection of x onto
its i-th (i ∈ [1, k]) component as πi(x) := xi. Similarly,
for a set of k-tuples S we define πi(S) := {πi(x) : x ∈ S}.

We follow the established convention of writing the
group operation of an abstract group multiplicatively.
Consequently, exponentiation refers to a repetition of
the group operation. We may refer to a group (G, ·)
simply as G if the group operation is clear from the
context. Throughout the document λ denotes a secu-
rity parameter and 1λ refers to the unary encoding of
λ. The abbreviation PPT stands for probabilistic poly-
nomial time. A function f : N→ R+ is called negligible
in n if for every positive polynomial p there is an n0
such that for all n > n0 it holds that f(n) < 1/p(n). To
indicate that some algorithm A is given black-box ac-
cess to some function F we write AF . Each parameter
to F is either fixed to some variable or marked using ·
denoting that A may freely choose this parameter.

2.3 Game-Based Security

We provide security definitions as games (security ex-
periments) played between a PPT challenger and a PPT
adversary A [17]. The result of the game is 1 if A wins
the game (i.e., breaks security) and 0 otherwise. A’s
advantage is defined as the probability of A winning
the game minus the probability of trivially winning the
game (e.g., by guessing blindly). Security holds if no
adversary has non-negligible advantage. The proof is
achieved by reducing the winning of the game to some
problem that is assumed to be hard.

2.4 Homomorphic Authenticated
Symmetric Encryption (HASE)

In this section, we discuss the syntax, correctness and
security of a HASE scheme. For security we define con-
fidentiality in terms of indistinguishability and authen-
ticity in terms of unforgeability. Indistinguishability of
HASE schemes (HASE-IND-CPA) is defined as an adap-
tation of the commonly used IND-CPA security defini-
tion for symmetric encryption schemes [18]. Unforge-
ability of HASE schemes (HASE-UF-CPA) is based on
the common unforgeable encryption definition [18].

Gen1

sk

ek

Enc

i
m

cDer

l

Dec

or

Evalλ

Fig. 2. HASE Overview

Definition 1 (HASE Syntax). A HASE scheme is a
tuple of PPT algorithms 〈Gen,Enc,Eval,Der,Dec〉 such
that:
– The key-generation algorithm Gen takes the secu-

rity parameter 1λ as input and outputs a key pair
〈ek, sk〉 consisting of a public evaluation key ek and
a secret key sk. The evaluation key implicitly de-
fines a commutative plaintext group (M,⊕), a com-
mutative ciphertext group (C,⊗) and a commutative
label group (L, �).

– The encryption algorithm Enc takes a secret key sk,
a plaintext message m ∈ M and an identifier i ∈ I
as input and outputs a ciphertext c ∈ C.

– The evaluation algorithm Eval takes an evaluation
key ek and a set of ciphertexts C ⊆ C as input and
outputs a ciphertext ĉ ∈ C.

– The deterministic label derivation algorithm Der
takes a secret key sk and a set of identifiers I ⊆ I
as input and outputs a secret label l ∈ L.

– The deterministic decryption algorithm Dec takes a
secret key sk, a ciphertext c ∈ C and a secret label
l ∈ L as input and outputs a plaintext message m ∈
M or ⊥ on decryption error.

An overview of all operations involved in our HASE
scheme is provided in Figure 2.

Definition 2 (HASE Correctness). Let Π be a HASE
scheme consisting of five algorithms as described above.
Furthermore, let S := {(m, i) : m ∈ M, i ∈ I} be a set
of plaintexts with unique identifiers and let I := π2(S)
be the set of identifiers in S. We say that Π is correct if
for any honestly generated key pair 〈ek, sk〉 ← Π.Gen(1λ)
and any set of ciphertexts C := {c : c← Π.Enc(sk,m, i) :
(m, i) ∈ S} it holds that

Π.Dec(sk,Π.Eval(ek, C),Π.Der(sk, I)) =
⊕

(m,i)∈S

m

except with negligible probability over 〈ek, sk〉 output by
Π.Gen() and all c output by Π.Enc().

Computation on Encrypted Data using Dataflow Authentication 9

Definition 3 (HASE-IND-CPA). A HASE scheme Π
has indistinguishable encryptions under a chosen-
plaintext attack, or is CPA-secure, if for all PPT ad-
versaries A there is a negligible function negl(λ) such
that

AdvIND-CPA
A,Π (λ) :=

∣∣∣∣Pr
[
ExpHASEIND-CPA

A,Π (λ) = 1
]
− 1

2

∣∣∣∣
≤ negl(λ)

The experiment is defined as follows:

ExpHASEIND-CPA
A,Π (λ)

S := {}

〈ek, sk〉 ← Π.Gen(1λ)

〈m0,m1, i, st〉 ← AEsk (1λ, ek)

if i ∈ π2(S) then

return 0

else

b←$ {0, 1}

S := S ∪ {(mb, i)}

c← Π.Enc(sk,mb, i)

b′ ← AEsk (1λ, c, st)

return b = b′

Esk(m, i)

if i ∈ π2(S) then

return ⊥

else

S := S ∪ {(m, i)}

c← Π.Enc(sk,m, i)

return c

We incorporate the identifier parameter to the encryp-
tion algorithm by allowing the adversary to submit
an additional identifier argument to encryption oracle
queries. The oracle enforces uniqueness of the identi-
fier by keeping track of all queried plaintext-identifier
pairs. It rejects any encryption query involving a pre-
viously used identifier. Furthermore, the adversary is
allowed to pick the identifier used for the encryption of
the challenge plaintext mb.

Definition 4 (HASE-UF-CPA). A HASE scheme Π is
unforgeable under a chosen-plaintext attack, or just un-
forgeable, if for all PPT adversaries A there is a negli-
gible function negl(λ) such that

AdvUF-CPA
A,Π (λ) := Pr

[
ExpHASEUF-CPA

A,Π (λ) = 1
]

≤ negl(λ)

with the experiment defined as follows:

ExpHASEUF-CPA
A,Π (λ)

S := {}

〈ek, sk〉 ← Π.Gen(1λ)

〈c, I〉 ← AEsk (1λ, ek)

l := Π.Der(sk, I)

m := Π.Dec(sk, c, l)

m̃ :=
⊕

(m′,i)∈S,i∈I

m′

return m 6= ⊥ ∧m 6= m̃

Esk(m, i)

if i ∈ π2(S) then

return ⊥

else

S := S ∪ {(m, i)}

c← Π.Enc(sk,m, i)

return c

The adversary returns a ciphertext c and a set of iden-
tifiers I. The adversary is successful if and only if two
conditions are met. First, c has to successfully decrypt
under the label derived from I. Second, the resulting
plaintext m must be different from the plaintext m̃ re-
sulting from the application of the plaintext operation
to the set of plaintexts corresponding to I. Note that
by controlling I the adversary controls which elements
of S are used for the evaluation resulting in m̃.

3 Dataflow Authentication
(DFAuth)

We introduce dataflow authentication (DFAuth) using
an example. Consider the following excerpt from a Java
program:
1 a = b + c;
2 d = a * e;
3 if (d > 42)
4 f = 1;
5 else
6 f = 0;

First DFAuth performs a conversion to single static
assignment (SSA) form [19]: assign each variable at ex-
actly one code location; create atomic expressions; intro-
duce fresh variables if required. In the example, DFAuth
changes the program to the following:
1 a = b + c;
2 d = a * e;
3 d1 = d > 42;
4 if (d1)
5 f1 = 1;
6 else
7 f2 = 0;
8 f = phi(f1 ,f2);

As usual in SSA, phi is a specially interpreted merge
function that combines the values of both assignments
to f, here denoted by f1 and f2.

DFAuth then performs a type inference similar to
JCrypt [15] and AutoCrypt [16]. As a result of this infer-
ence, each variable and constant is assigned an encryp-
tion type of {add,mul, cmp}. At runtime, each constant

Computation on Encrypted Data using Dataflow Authentication 10

and variable value will be encrypted according to the
appropriate type. HASE implements multiplicative ho-
momorphic encryption mul and its operations directly,
while it implements additive homomorphic encryption
add using exponentiation. Comparisons cmp are imple-
mented in the Trusted Module. Our experiments show
that this is more efficient than performing the compar-
ison in the program space using conversion to search-
able or functional encryption. An attacker observing
user space will hence only see encrypted variables and
constants, but can observe the control flow. Actual data
values are hidden from the attacker.

Combinations of multiple operations, however, re-
quire additional work. Every time a variable is en-
crypted in one encryption type (e.g., additive), but
is later used in a different one (e.g., multiplicative),
DFAuth must insert a conversion. The resulting pro-
gram in our running example looks as follows:

Listing 1. Example as executed on the server
1 a = b + c;
2 a1 = convertToMul (a, "a1 ");
3 d = a1 * e;
4 d1 = convertToCmpGT42 (d, "d1 ");
5 if (d1)
6 f1 = 1;
7 else
8 f2 = 0;
9 f = phi(f1 ,f2);

The first conversion is necessary because the vari-
able a must be converted from additive to multiplicative
homomorphic encryption. The resulting re-encrypted
value is stored in a1. For security reasons, the decryp-
tion performed by the conversion routine must be sensi-
tive to the variable identifier it is assigned to. A unique
label must be introduced to make the decryption rou-
tine aware of the code location. DFAuth can use the
left-hand-side variable’s identifier ("a1" in this exam-
ple), because it introduced unique names during SSA
conversion. Using this variable identifier, the conver-
sion routine can retrieve the corresponding label of the
HASE encryption stored in the memory protected by
the Trusted Module.

Any branch condition is also treated as a conver-
sion that leaks the result of the condition check. In the
example, DFAuth introduces the variable d1 to reflect
this result:
4 d1 = convertToCmpGT42 (d, "d1 ");

To simplify the exposition, we assume that our com-
piler inlines this comparison into a special routine
convertToCmpGT42. In the general case, a binary com-
parison on two variables x and y would result in a call
to a routine convertToCmp(x,y,"z"). We show the full

algorithm in Listing 4 in Section 5 which is generic for
all comparisons and in case of comparison to a constant
looks this constant up in an internal table protected
by the Trusted Module. We need to protect constants
in comparisons, since if they were part of the program
text, they could be modified by the adversary.

As mentioned before, the security challenge of such
conversions to cmp is that they leak information about
the encrypted variables, and particularly that active ad-
versaries that can modify the control and data flow can
exploit those leaks to restore the variables’ plaintext.
In this paper, we thus propose to restrict the dataflow
using DFAuth. This allows such conversions in a se-
cure way by enforcing that encrypted variables can be
decrypted only along the program’s original dataflow.
The approach comprises two steps. First, happening at
compile time, for each conversion DFAuth pre-computes
the Der algorithm (cf. Definition 1) on the operations in
the code. In the conversion convertToMul(a, "a1") (at
line 2 in our example), DFAuth computes the label

l2 = Der(sk, {"b", "c"})

and in the conversion at line 4

l4 = Der(sk, {"a1", "e"})

Here the second argument to Der is the multi-set of
variable identifiers involved in the unique computation
preceding the conversion. We use a multi-set and not
a vector, because all our encrypted operations are com-
mutative. The compiler computes labels for all variables
and constants in the program.

At runtime the computed labels as well as the se-
cret key sk are kept secret from the attacker, which is
why both are securely transferred to, and stored in, the
Trusted Module during the setup phase. The Trusted
Module registers the secret labels under the respective
identifier, for example, associating label l4 with identi-
fier "d1".

All conversion routines run within the Trusted Mod-
ule. They retrieve a secret label for an identifier with the
help of a labelLookup(id) function. In particular, when
the program runs and a conversion routine is invoked,
the Trusted Module looks up and uses the required la-
bels for decryption. In the example at line 4, the call to
convertToCmpGT42 internally invokes the decryption op-
eration Dec(sk, d, l4) using secret label l4 retrieved
for variable identifier "d1":
1 convertToCmpGT42 (d, "d1") {
2 l4 = labelLookup ("d1 ");
3 x = Dec(sk , d, l4);
4 if (x == fail)

Computation on Encrypted Data using Dataflow Authentication 11

5 stop;
6 return (x > 42);
7 }

Note that in this scheme, the Trusted Module re-
turns the result of the comparison in the clear. In this
case, however, leaking the branch decision is secure, as
HASE guarantees that any active attack that would
yield the adversary a significant advantage will be re-
liably detected.

Let us assume an attacker that attempts to modify
the program’s data or control flow to leak information
about the encrypted plaintexts, for instance, using a
binary search as described in the introduction. The at-
tacker is not restricted to the compiled instructions in
the program, and can also try to “guess” the result of
cryptographic operations as the adversary in experiment
ExpHASEIND-CPA

A,Π . This modification to binary search
can only succeed if the decryption operations Dec in
convertToCmpGT42 (or other conversion routines) suc-
ceed. The adversary can minimize the Dec operations,
e.g., by not introducing new calls to conversion routines,
but given the scheme defined above, any attempt to al-
ter the dataflow on encrypted variables will cause Dec
to fail: Assume that an attacker inserts code in List-
ing 1 to search for the secret value d (resulting code
shown in Listing 2). We only use this code to illustrate
potential attacks and ignore the fact that the attacker
would need access to the encrypted constants (2^i) and
needs to guess the result of the homomorphic addition
operation on the ciphertexts. However, given these ca-
pabilities, the attacker could try to observe the control
flow – simulated by our statement leak(f) – which then
would in turn leak the value of d.

Listing 2. Example modified by the attacker
1 a = b + c;
2 a1 = convertToMul (a, "a1 ");
3 g1 = a1 * e; // changed
4 for(i = n..1) { // inserted
5 g = phi(g1 , g3); // inserted
6 d = g + 2^i; // inserted
7 d1 = convertToCmpGT42 (d, "d1 ");
8 if (d1) {
9 f1 = 1;

10 g2 = g3 - 2^i; // inserted
11 } else
12 f2 = 0;
13 g3 = phi(g, g2); // inserted
14 f = phi(f1 ,f2);
15 leak(f); // inserted
16 }

This code will only execute if each variable decryption
succeeds, but decryption for instance of d1 will succeed
only if it was encrypted with the same label l4 that
was associated with d1 at load time. Since the Trusted
Module keeps the labels and the key sk secret, the at-
tacker cannot possibly forge the required label at run-

time. Moreover, in the attacker-modified program, the
encryption must fail due to the altered data dependen-
cies: in the example, the input d to convertToCmpGT42
has now been derived from g3 and i instead of a1 and e,
which leads to a non-matching label for d. In result, the
decryption in the conversion routine convertToCmpGt42
will fail and stop program execution before any unin-
tended leakage can occur.

General Security Argument.
The way in which we derive labels from dataflow rela-
tionships enforces a notion of interference equivalence.
A program P is said to be non-interferent [20], if applied
to two different memory configurations M1,M2 that are
equal w.r.t. their low, i.e. unclassified (unencrypted),
memory locations,M1 =L M2 for short, then also the re-
sulting memory locations after program execution must
show such low-equivalency: P (M1) =L P (M2). Non-
interference holds if and only if there is no information
flow from high, i.e. classified (encrypted), values to low
memory locations. While this is a semantic property,
previous research has shown that one can decide non-
interference also through a structural analysis of pro-
grams, through so-called Program Dependency Graphs
(PDGs) that capture the program’s control and data
flow [21]. In this view, a program is non-interferent if
the PDG is free of paths from high to low memory lo-
cations.

In the setting considered in this paper one must
assume that the executed program before encryption al-
ready shows interference for some memory locations,
e.g., because the program is, in fact, intended to de-
classify some limited information (notably control flow
information). LetM ↓ C denote a projection of memory
configuration M onto all (classified) memory locations
C that are not declassified that way. Then even in the
setting here it holds for any program P and any memory
configurations M1,M2 that P (M1 ↓ C) =L P (M2 ↓ C).

The main point of the construction proposed in this
paper is that any program that an attacker can produce,
and that would lead to the same computation of labels
(and hence decryptable data) as the original program,
cannot produce any more information flows than the
original program. Let us denote by tr a program trans-
formation conducted by the attacker, e.g., the transfor-
mation explained above, which inserted a binary search.
Then the property we would like to obtain is that:

∀M1,M2, tr : P (M1 ↓ C) =L P (M2 ↓ C)
→ (tr(P))(M1 ↓ C) =L (tr(P))(M2 ↓ C)

Computation on Encrypted Data using Dataflow Authentication 12

In other words: disregarding the explicitly declassified
information within C, the transformed program does
not leak any additional information, i.e., the adversary
cannot learn any additional information about the en-
crypted data. Let us assume for a moment that the
above equation did not hold. If that were true then
there would exist a transformation tr that would cause
the transformed program tr(P) to compute values in at
least one low memory location despite low-equivalent in-
puts. But this is impossible, as any such transformation
would necessarily have to insert additional PDG-edges,
destroying at least one label computation, and hence
invalidating our HASE-UF-CPA security proof.

Result Verification.
Note that the client can verify the result of the com-
putation using a simple check on the variable’s label –
just as the conversion routine does. The result is just
another variable, which albeit not being converted, can
be checked for correct dataflow computation. That way,
a client can ensure that it receives a valid output of the
program.

4 HASE Constructions
In this section, we provide two constructions of HASE
schemes: one homomorphic with respect to multiplica-
tion and another with respect to addition, on integers.
We define the assumptions and show the security of our
schemes under these assumptions. Security reductions
are deferred to Appendix A.

Our first construction is based on the renowned
public-key encryption scheme of Elgamal [22]. We do
not make use of the public-key property of the scheme,
but extend ciphertexts with a third group element work-
ing as a homomorphic authenticator.

Construction 1 (Multiplicative HASE). Let G be a
group generation algorithm (cf. Definition 6). Define a
HASE scheme using the following PPT algorithms:

Gen: on input 1λ obtain 〈G, q, g〉 ← G(1λ). For a
pseudorandom function family H : K × I → G choose
k←$K. Choose a, x, y←$ Zq and compute h := gx, j :=
gy. The evaluation key is G, the secret key is 〈G, q, g,
a, x, y, h, j, k〉. The plaintext group is (M,⊕) := (G, ·)
where · is the group operation in G. The ciphertext group
is (G3,⊗) where we define ⊗ to denote the component-
wise application of · in G. The label space is (G, ·).

Enc: on input a secret key sk = 〈G, q, g, a, x, y, h, j,
k〉, a message m ∈ G and an identifier i ∈ I. Choose
r←$ Zq and obtain the label l = H(k, i). Compute u :=
gr, v := hr ·m and w := jr ·ma · l. Output the ciphertext
〈u, v, w〉.

Eval: on input an evaluation key G and a set of ci-
phertexts C ⊆ C compute the ciphertext c :=

⊗
c′∈C c

′

and output c.
Der: on input a secret key 〈G, q, g, a, x, y, h, j, k〉 and

a set of identifiers I ⊆ I compute the label l :=∏
i∈I H(k, i) and output l. Note that here Π denotes the

repeated application of the group operation · in G.
Dec: on input a secret key 〈G, q, g, a, x, y, h, j, k〉, a

ciphertext c = 〈u, v, w〉 and a secret label l ∈ G. First
compute m := u−x · v, then t := uy ·ma · l. If t equals w
output m, otherwise output ⊥.

It is well known that the Elgamal encryption scheme
is homomorphic with regard to the group operation in
G. As can be easily seen, this property is inherited by
our construction. For the original Elgamal scheme, G is
most commonly instantiated either as Gq, the q-order
subgroup of quadratic residues of Z∗p for some prime
p = 2q+1 (with q also prime), or as an elliptic curve over
some q-order finite field. In the latter case, the group
operation is elliptic curve point addition and the ability
to perform point addition in a homomorphism serves no
useful purpose in our context. Instantiating G as Gq on
the other hand enables homomorphic multiplication on
the integers.

Our second construction supports homomorphic in-
teger addition and is obtained by applying a technique
proposed by Hu et al. [23] to Construction 1. The basic
idea is to consider plaintexts to be element of Zq in-
stead of G and to encrypt a given plaintext m by first
raising the generator g to the power of m and then en-
crypting the resulting group element in the usual way.
In detail, this means computing ciphertexts of the form
〈gr, hrgm〉 rather than 〈gr, hrm〉. To see that the result-
ing scheme is homomorphic with regard to addition on
Zq, consider what happens when the group operation is
applied component-wise to two ciphertexts:

〈gr1 · gr2 , hr1gm1 · hr2gm2〉 =
〈
gr1+r2 , hr1+r2 · gm1+m2

〉
Unfortunately, decryption now involves computing dis-
crete logarithms with respect to base g, which must be
difficult for sufficiently large exponents in order for the
DDH problem (cf. Definition 6) to be hard relative to G.
Hu et al. keep exponents small enough for discrete log-
arithm algorithms to terminate within reasonable time
despite their exponential asymptotic runtime. They do

Computation on Encrypted Data using Dataflow Authentication 13

so by unambiguously decomposing plaintexts m into
t smaller plaintexts me (e ∈ [1, t]) via means of the
Chinese remainder theorem (CRT) and then encrypt-
ing each me separately. Although doing so increases the
ciphertext size roughly by a factor of t in comparison to
Construction 1, this drawback can be compensated by
instantiating G as an elliptic curve group since the ho-
momorphic operation is on Zq rather than G. At a com-
parable security level, group elements of elliptic curves
can be represented using a fraction of bits [24].

We now provide the full details of our Additive
HASE construction. Note how the authenticator only
requires constant (i.e., independent of t) ciphertext
space and can be verified without discrete logarithm
computation. Although we consider instantiating G as
an elliptic curve group, we keep writing the group op-
eration multiplicatively.

Construction 2 (Additive HASE). Let G be a group
generation algorithm as before. Define a HASE scheme
using the following PPT algorithms and the Eval algo-
rithm from Construction 1:

Gen: on input 1λ obtain 〈G, q, g〉 ← G(1λ). For
a pseudorandom function family H : K × I → Zq
choose k←$K. Choose {d1, . . . , dt} ⊂ Z+ such that
d :=

∏t
e=1 de < q and ∀e 6= j : gcd(de, dj) = 1. Define

D := 〈d1, . . . , dt, d〉. Choose a, x, y←$ Zq and compute
h := gx, j := gy. The evaluation key is G, the secret
key is 〈G, q, g, a, x, y, h, j, k,D〉. The plaintext group is
(M,⊕) := (Zd,+). The ciphertext group is (G2(t+1),⊗)
where ⊗ denotes the component-wise application of · in
G. The label space is (G, ·).

Enc: on input a secret key sk = 〈G, q, g, a, x, y, h, j,
k,D〉, a message m ∈ Zd and an identifier i ∈ I. Obtain
the label l := H(k, i). For e := 1, . . . , t:
– Compute me := m mod de.
– Choose re←$ Zq
– Compute ue := gre

– Compute ve := hre · gme

Choose r←$ Zq. Compute s := gr and w := jr · gma · l.
Output the ciphertext 〈u1, v1, . . . , ut, vt, s, w〉.

Der: on input a secret key 〈G, q, g, a, x, y, h, j, k,D〉
and a set of identifiers I ⊆ I compute the label l :=∏
i∈I g

H(k,i) and output l.
Dec: on input a secret key 〈G, q, g, a, x, y, h, j, k,

D〉, a ciphertext 〈u1, v1, . . . , ut, vt, s, w〉 and a secret la-
bel l ∈ G. Parse D = 〈d1, . . . , dt, d〉. First compute
me := logg(veue−x) for e = 1, . . . , t, then recover m :=∑t
e=1me

d
de

(
d
de

−1 mod de
)

mod d. If sy · gma · l = w

then output m, else output ⊥. Note that logg denotes
the discrete logarithm with respect to base g.

Definition 5 (Pseudorandom Function). Let X and Y
be two finite sets and denote the set of all functions
from X to Y as F . We say that an efficiently computable
keyed function F : K×X → Y with keyspace K is a pseu-
dorandom function (PRF), if for all PPT algorithms A
there is a negligible function negl(λ) such that:∣∣∣Pr

[
AF (k,·)(1λ) = 1

]
− Pr

[
Af(·)(1λ) = 1

]∣∣∣ ≤ negl(λ)

where the first probability is taken over k←$K and the
second probability is taken over f ←$F .

Definition 6 (DDH Problem [18]). Let G be a PPT al-
gorithm taking 1λ as input and outputting 〈G, q, g〉 where
G is a description of a cyclic group, q is the order of G
and g is a generator of G. We say that the Decisional
Diffie-Hellman (DDH) problem is hard relative to G if
for all PPT algorithms A there is a negligible function
negl(λ) such that:∣∣∣Pr

[
A(G, q, g, gα, gβ , gγ) = 1

]
−

Pr
[
A(G, q, g, gα, gβ , gαβ) = 1

] ∣∣∣ ≤ negl(λ)

where in each case the probabilities are taken over the
experiment in which G(1λ) outputs 〈G, q, g〉, and then
α, β, γ←$ Zq.

Theorem 1 (Multiplicative HASE-IND-CPA). Let Π
be Construction 1. If the DDH problem is hard relative
to G and H is a PRF as described in Π.Gen, then Π is
CPA-secure.

Theorem 2 (Multiplicative HASE-UF-CPA). Let Π
be Construction 1. If H is a PRF as described in Π.Gen,
then Π is unforgeable.

Theorem 3 (Additive HASE-IND-CPA). Let Π be
Construction 2. If the DDH problem is hard relative to
G and H is a PRF as described in Π.Gen, then Π is
CPA-secure.

Theorem 4 (Additive HASE-UF-CPA). Let Π be
Construction 2. If H is a PRF as described in Π.Gen,
then Π is unforgeable.

Computation on Encrypted Data using Dataflow Authentication 14

5 Implementation
In this section, we present details of an implementation
used in our experiments. Recall from Section 2.1 that
we consider a scenario between a trusted client and an
untrusted cloud server (which has a Trusted Module)
and we distinguish two phases of the outsourced com-
putation: setup and runtime.

5.1 Setup Phase

The setup phase is divided into two parts, compilation
and deployment. An overview is provided in Figure 3.

Compilation.
First, the client translates any Java bytecode program
to a bytecode program running on encrypted data. To
start, the client generates a set of cryptographic HASE
keys. It then uses our Bytecode-to-Bytecode Compiler to
transform an application (in the form of Java bytecode)
using the Generated Keys (1). Our compiler is based on
Soot, a framework for analyzing and transforming Java
applications [25].

Our implementation uses a crypto library to en-
crypt program constants and choose variable labels (2-
3). The crypto library contains implementations of all
required cryptographic algorithms, including our own
from Section 4. It implements the PRF used for the
authentication labels as HMAC-SHA256 [26]. For the
group operations in Multiplicative HASE we use MPIR
[27] for large integer arithmetic. Additive HASE oper-
ates on the elliptic curve group provided by libsodium
[28]. The Gen method of Additive HASE has as parame-
ters the number of ciphertext components and the num-
ber of bits per component. From these, it determinis-
tically derives a set of t primes. The Additive HASE
Dec method computes the discrete logarithms using ex-
haustive search with a fixed set of precomputed values.

Our compiler converts floating-point plaintexts to
a fixed-point representation by an application-defined
scaling factor. It also transforms the calculations to
integer values, whereby the scaling factors are con-
sidered when appropriate. To ensure the efficiency of
Additive HASE decryption, the compiler can insert
Trusted Module invocations into the program that de-
crypt and re-encrypt Additive HASE ciphertexts. These
re-encryptions result in modulo reductions in the ex-
ponents (cf. Construction 2), thus preventing excessive

exponent growth and ensuring an efficient decryption.
The frequency of these invocations can also be defined
by the application. We demonstrate the efficacy of these
re-encryptions in Appendix B. Finally, the compiler per-
forms the transformation described in Section 3 and out-
puts a Main Class containing the program start code,
multiple App Classes containing the remaining code and
Conversion Data (e.g., labels and comparison data) (4).

Deployment.
Second, the client deploys the app classes at the cloud
server and securely loads the generated cryptographic
keys and conversion data into the Trusted Module. We
implemented the Trusted Module using an Intel SGX
enclave. SGX is well suited for our implementation, be-
cause it provides remote attestation, secure data stor-
age and isolated program execution. It is available in
Intel Core processors beginning at the Skylake gener-
ation and in some Intel Xeon processors, for example
the Kaby Lake generation. Using the remote attesta-
tion feature of SGX the client prepares the enclave (re-
fer to [1] for details). This feature allows to verify the
correct creation of an enclave in a remote system and
– in our case – the correct setup of the crypto library.
Additionally, SGX’s remote attestation provides means
to establish a secure channel between an external party
and an enclave, over which we transfer the sensitive con-
version data to the untrusted cloud server. We empha-
size that cryptographic keys and conversion data is pro-
tected from access by any software except the enclave
by SGX’s hardware protection.

5.2 Runtime Phase

To run the program, the client executes the main class
which triggers the remote program execution at the
cloud server (see Figure 4). The main class encrypts
the Program Input (for this run of the program) with
the generated keys (for the entire setup of the program)
using the crypto library (1-4). The main class passes
the Encrypted Input to the app classes on the cloud
server (5). The app classes operate on encrypted data
and do not have any additional protection. They invoke
the DFAuth Wrapper for operations on homomorphic
ciphertexts and re-encryption or comparison requests
(6). The wrapper hides the specific homomorphic en-
cryption schemes and Trusted Module implementation
details from the app classes. It forwards re-encryption
and comparison requests to the Trusted Module and

Computation on Encrypted Data using Dataflow Authentication 15

Applica�on

Generated Keys

Bytecode-to-bytecode
Compiler

Crypto Library
App Class

Conversion Data

Main Class

Client

1

1
2 3

4

4

4

Fig. 3. Application Transformation during setup phase. See Section 5.1 for a full description.

Client

App Class DFAuth Wrapper

Server

Crypto LibraryConversion Data

Trusted ModuleInput

Crypto Library

Main Class

Encrypted Input

1

1

2 3

4

Generated Keys
5 6

9

10
78

Generated Keys

Fig. 4. Application Execution during Runtime Phase. See Section 5.2 for a full description.

passes the answers back to the application (7-9). Once
the app classes have finished their computation, they
send an encrypted result (including an authentication
label) back to the client (10). The client verifies the au-
thentication label to the one computed by our compiler.

The task of the Trusted Module during runtime is
to receive re-encryption and comparison requests, de-
termine whether they are legitimate and answer them if
they are. It bundles cryptographic keys, authentication
labels and required parts of the crypto library inside a
trusted area, shielding it from unauthorized access. The
DFAuth wrapper enables to potentially select different
Trusted Modules based on the client’s requirements and
their availability at the cloud server. Besides Intel SGX
enclaves, one can implement a Trusted Module using a
hypervisor or calling back to the client for sensitive op-
erations. However, alternative implementations would
involve making slightly different trust assumptions.

SGX’s secure random number generator provides
the randomness required during encryption. A restric-
tion of the current generation of Intel SGX is the limited
size of its isolated memory. It only provides about 96 MB
for code and data and thus enforces an upper bound on
the number of precomputed discrete logarithm values
used to speedup Additive HASE. The available memory
can be used optimally with a careful selection of CRT
parameters.

Re-encryption and comparison requests have to be
implemented inside the Trusted Module. We display the
conversion routines (implemented in an SGX enclave
in our case) for conversion to multiplicative homomor-
phic encryption and comparison in Listings 3 and 4. The
conversion routine to additively homomorphic encryp-

tion is similar to the one for multiplicative encryption
in Listing 3 with the roles of the encryption schemes
switched. The comparison of two encrypted values is
similar to the comparison of one to a constant in List-
ing 4. Similar to the call labelLookup, which retrieves
labels from conversion data stored inside the Trusted
Module, idLookup and paramLookup retrieve identifiers
for encryption and parameters for comparison from the
conversion data.

Listing 3. Conversion to multiplicative HE
1 convertToMul (x, "x") {
2 label = labelLookup ("x");
3 y = Dec(K, x, label);
4 if (y == fail)
5 stop;
6 id = idLookup ("x");
7 return Enc(K, y, id);
8 }

Listing 4. Conversion to comparison
1 convertToCmp (x, y, "x") {
2 label = labelLookup ("x");
3 x1 = Dec(K, x, label);
4 if (x1 == fail)
5 stop;
6 if (y == null) {
7 param = paramLookup ("x");
8 switch (param.type) {
9 case EQ:

10 return (x1 == param.const);
11 case GT:
12 return (x1 > param.const);
13 case GTE:
14 ...
15 } else {
16 label = labelLookup ("y");
17 y1 = Dec(K, y, label);
18 if (y1 == fail)
19 stop;
20 ...
21 }
22 }

Computation on Encrypted Data using Dataflow Authentication 16

6 Evaluation
In this section, we present the evaluation results col-
lected in two experiments. In our first experiment, we
apply DFAuth to the checkout (shopping cart) compo-
nent of a Secure Sales Application, which we developed
ourselves. In our second experiment, we use DFAuth to
transform an existing neural network program enabling
Secure Neural Networks in the Cloud.

All experiments were performed on an Intel Core i7-
6700 CPU with 64 GB RAM running Windows 10. For
the evaluation, we aimed for a security level equivalent
to 80 bits of symmetric encryption security. We used the
1536-bit MODP Group from RFC3526 [29] as the un-
derlying group in Multiplicative HASE. The libsodium
[28] elliptic curve group used by Additive HASE even
provides a security level of 128 bits [30].

6.1 Secure Sales Application

In this experiment we consider the checkout component
of a secure sales application running on an untrusted
server. When a client checks out a shopping cart, the
server is tasked with summing up the encrypted prices
of all items in the cart. Additionally, discounts need to
be applied when the sum exceeds certain thresholds. We
aim to protect the rebate structure of the client, i.e. the
thresholds when discounts are applied and the percent-
age of the discount. This is important in outsourced
sales applications, because an attacker, e.g. a co-residing
competitor, could try to infer the rebate structure in or-
der to gain an unfair advantage in the market.

The purpose of this experiment is twofold. First,
this experiment serves as a performance test for the im-
plementation of our HASE constructions. Second, this
experiment serves as an example of the larger class of
non-linear functions. While the secrets in this illustra-
tive example can be inferred fairly easily, with growing
number of parameters inference gets harder. Note that
the constants in almost any computation can be inferred
by repetitive queries. It is a question of costs whether
it is economically worthwhile to do it. Also note that
in a business to business sales application, almost each
customer has its own confidential rebate structure.

The transformed program performs control flow de-
cisions comparing the sum of encrypted inputs to the en-
crypted thresholds of the rebate structure. To a control
flow observer each such decision reveals a small amount
of information about the relationship between inputs

and threshold constants. After observing the result of
sufficiently many such decisions, an attacker may be ca-
pable of inferring the confidential threshold values. Note
that the attacker does not learn addition information
about the output and most importantly the discounts
granted. If all leakage is to be prevented, the techniques
described in Section 2.1 can be applied additionally.

Experimental Setup.
We implemented this checkout component and applied
DFAuth to it. If the sum exceeds the value of $250,
our implementation grants a discount of 5%. If the sum
exceeds the value of $500, we grant a total discount of
10%.

In order to evaluate the performance of the orig-
inal (plaintext) and the DFAuth variant of the pro-
gram, we built shopping carts of sizes {1, 10, . . . , 100}.
Prices were taken uniformly at random from the inter-
val [0.01, 1000.00]. For each cart a plaintext and an en-
crypted variant is stored at the untrusted server.

For each of the two program variants, the total
runtime of code executing at the untrusted server was
measured. This time includes reading the corresponding
cart data from disk, summing up the prices of all cart
items and granting discounts where applicable. For the
DFAuth variant, we also collected the number of oper-
ations performed on encrypted data inside and outside
of the Trusted Module, as well as the time spent invok-
ing and inside the Trusted Module. Our measurements
do not include the setup phase, because it is only a
one-time overhead that amortizes over multiple runs.
We also do not include network latency in our measure-
ments, since the difference in communication between a
program running on plaintext and a program running
on encrypted data is very small.

Evaluation Results.
There are three cases for the control flow in the secure
sales application:
1. The sum of all item prices neither reaches the first

threshold nor the second threshold. In this case,
the sum of the prices is compared to two different
threshold constants.

2. The sum of all prices reaches the larger threshold.
In this case, the sum is compared to one threshold
constant and needs to be converted to Multiplicative
HASE before being multiplied with the respective
discount constant.

Computation on Encrypted Data using Dataflow Authentication 17

1 10 20 30 40 50 60 70 80 90 100
0

1

2

3

#Aggregated Values

]s
m[e

mitnuR latoT

Plaintext Trusted Module Other

Fig. 5. Mean runtime [ms] of the original (left) and DFAuth
(right) variants of the shopping cart program as a function of
the cart size for Case 3. We do not show the 95% confidence in-
terval, because even the largest value is only ± 0.003 ms, which
would not be visible in the graph.

3. The sum of all prices reaches the lower threshold,
but not the larger threshold. In this case, the sum is
compared to two threshold constants and needs to
be converted to Multiplicative HASE before being
multiplied with the respective discount constant.

Figure 5 presents the average runtime of 100 runs of the
experiment described above for Case 3. We can see that
even for large-sized carts, containing 100 items, DFAuth
only increases the program runtime by a factor of 11.5 on
average. Assuming a round-trip latency of 33 ms, which
can be considered realistic according to [31], the total
round-trip time (consisting of round-trip latency and
program runtime) increases only by a factor of 1.08 on
average. Most importantly, the absolute runtime values
are sufficiently low for practical deployment of online
computation. From Figure 5 we can also see that a sig-
nificant portion of the total runtime is spent inside (or
invoking) the Trusted Module. On the one hand, this
shows that a more efficient Trusted Module implementa-
tion would significantly decrease the total runtime of the
application. On the other hand, it suggests that we exe-
cute more instructions inside the Trusted Module than
outside, contradicting our basic idea of a reduced ex-
ecution inside the Trusted Module. However, Table 2,
which reports the number of operations performed on
encrypted data inside and outside of the Trusted Mod-
ule, shows that this is not the case. Even for a shopping
cart containing only 10 items, there are 9 to 10 untrusted
HASE operations, but only 1 to 3 trusted operations.
While the number of trusted operations is independent
of the cart size, the number of untrusted operations is
approximately linear in the cart size, i.e., an even larger

Table 2. Number of untrusted (HASE) and trusted (SGX) opera-
tions in the Secure Sales Application experiment for shopping cart
size 10. [Notation: Case 1/2/3]

Operation Type # Ops

Homomorphic Addition HASE 9/9/9
Homomorphic Multiplication HASE 0/1/1
Total HASE 9/10/10

Additive to Multiplicative Conversion SGX 0/1/1
Comparison to Constant SGX 2/1/2
Total SGX 2/2/3

cart would further increase the fraction of untrusted op-
erations. We refer to Appendix B for a demonstration
of Additive HASE’s scalability.

6.2 Secure Neural Networks in the Cloud

In this experiment we consider the use case of evaluat-
ing neural networks in the cloud. Due to their compu-
tational complexity, it is desirable to outsource neural
network computations to powerful computing resources
located at a cloud service provider.

We aim to protect the network model and the in-
stance classified, i.e., the weights of the connections and
the inputs and outputs of the neurons. The weights do
not change between classifications and often represent
intellectual property of the client. Also, the privacy of a
user classified by the network is at risk, since his classi-
fication may be revealed. DFAuth overcomes these con-
cerns by encrypting the weights in the network and the
client’s input and performing only encrypted calcula-
tions. Also, since the transformed program does not
perform any control flow decisions based on network
weights or client input, the attacker cannot learn sensi-
tive data by observing the control flow. Note that even
the classification result does not leak, since the result
returned is the output values for each of the classifica-
tion neurons, i.e. a chance of classification y, e.g., breast
cancer in our subsequent example, of x%.

Experimental Setup.
We apply our transformation to the BrestCancerSample
[sic] neural network provided by Neuroph [32], a frame-
work for neural networks. Given a set of features ex-
tracted from an image of a breast tumour, the network
predicts whether the tumour is malignant or benign. As
such, it operates on highly sensitive medical data.

Computation on Encrypted Data using Dataflow Authentication 18

The properties of the network (e.g., layer and neu-
ron configuration) are encoded programmatically in the
Main Class of this network. This class also reads the
data set associated with the network and divides it into
a 70% training set and a 30% test set. The training set
is used to learn the network, the test set is used to eval-
uate whether the network delivers correct predictions.

We start by applying our DFAuth mechanism to
the Main Class of the network and the classes of the
framework (App Classes). Result of the transformation
is a new Main Class and a set of App Classes oper-
ating on ciphertexts rather than floating-point double
values. Floating-point numbers are converted to fixed-
point numbers by scaling by a factor of 106. We use the
facilities provided by Neuroph to serialize the trained
network weights into a double array and encrypt each
weight using HASE. The encrypted weights and the net-
work configuration form the encrypted neural network.
We use Neuroph to write the encrypted neural network
to disk just like the original one operating on plaintext.

For both the plaintext and encrypted neural
network we test different network evaluation sizes
({1, 10, 20, . . . , 100}) and perform 20 runs each. For ev-
ery run, a new random segmentation of training and
test data is performed and the network is trained again.
Inputs are sampled uniformly at random (without re-
placement) from the test data set. Again, we measure
the total runtime of code executing at the untrusted
server, the time spent invoking and inside the Trusted
Module and the number of operations performed on en-
crypted data inside and outside of the Trusted Module.
The total runtime includes reading the network configu-
ration (i.e., layers and neuron), loading the weights and
executing the evaluation.

Evaluation Results.
We present the evaluation results of the encrypted neu-
ral network in Figure 6. The total runtime of one net-
work evaluation is only 0.86 s, whereby 0.84 s (98%) are
spend in the Trusted Module (SGX) and 0.02 s (2%)
outside of the Trusted Module. Even for 100 evaluations
the run completes in 85.96 s on average. In this case, the
processing time in the Trusted Module is 84.39 s (98%)
and 1.56 s (2%) outside. The relative runtime of an eval-
uation (total runtime / number of network evaluations)
is 860 ms with a 95% confidence interval of +− 0.42 ms.
This waiting time of less than one second should be
acceptable for a user, and demonstrates the practical
deployment of neural network evaluation on encrypted

0

20

40

60

80

100

1 10 20 30 40 50 60 70 80 90 100

]s[e
mitnuR latoT

#evalua�on

Trusted Module Other

Fig. 6. Mean runtime [s] of the DFAuth variant of the breast
cancer neural network experiment as a function of the number
of evaluations. We do not show the 95% confidence interval,
because even the largest value is only ± 0.02 s, which would not
be visible in the graph. For the same reason, we do not include
the plaintext measurements.

Table 3. Number of untrusted (HASE) and trusted (SGX) opera-
tions for a single evaluation of the neural network.

Operation Type # Ops

Homomorphic Addition HASE 548
Homomorphic Multiplication HASE 548
Total HASE 1096

Additive to Multiplicative Conversion SGX 36
Multiplicative to Additive Conversion SGX 548
Comparison to Constant SGX 36
Total SGX 620

data. Compared to one plaintext network evaluation,
the runtime increased by a factor of about 677.

As in the previous experiment, a large portion of
the total runtime is spend inside the Trusted Module.
Table 3 reports the number of untrusted operations and
number of Trusted Module operations. For a single neu-
ral network evaluation, 1096 untrusted operations and
620 trusted operations on encrypted data are performed.
This means that 64% of all operations can be performed
without the Trusted Module.

Comparison to Alternative Solutions.
Recently, implementations of machine learning on en-
crypted data have been presented for somewhat homo-
morphic encryption [33] and Intel SGX [34]. Compared
to the implementation on somewhat homomorphic en-
cryption our approach offers the following advantages:
First, our approach has a latency of 0.86 seconds com-
pared to 570 seconds for somewhat homomorphic en-
cryption. The implementation in [33] exploits the inher-

Computation on Encrypted Data using Dataflow Authentication 19

ent parallelism of somewhat homomorphic encryption
to achieve a high throughput. However, when evaluat-
ing only one sample on the neural network the latency
is large. Our approach is capable of evaluating only a
single sample with low latency as well. Second, our ap-
proach scales to different machine learning techniques
with minimal developer effort. Whereas the algorithms
in [33] were developed for a specific type of neural net-
work, our implementation on encrypted data was de-
rived from an existing implementation of neural net-
works on plaintext data by compilation. This also im-
plies that the error introduced by [33] due to computa-
tion on integers does not apply in our case. However, we
have not evaluated this aspect of accuracy in compari-
son to [33]. Finally, our approach is capable of outsourc-
ing a neural network evaluation whereas the approach
in [33] is a two-party protocol, i.e., the weights of the
neural network are known to the server. Our approach
encrypts the weights of the neural network and hence
a client can outsource the computation of neural net-
work. Note that our approach includes the functionality
of evaluating on plaintext weights as well and hence of-
fers the larger functionality.

Although their runtime overhead is smaller than
ours, our approach offers the following advantage com-
pared to the implementation on SGX [34]: In our ap-
proach the code in the SGX enclave is independent of
the functionality, e.g., machine learning. The implemen-
tation in [34] provides a new, specific algorithm for
each additional machine learning function, i.e., neural
networks, decision trees, etc. Each implementation has
been specifically optimized to avoid side channels on
SGX and hopefully scrutinized for software vulnerabili-
ties. The same development effort has been applied once
to our conversion routines and crypto library running
in the Trusted Module. However, when adding a new
functionality our approach only requires compiling the
source program and not applying the same effort again
on the new implementation.

7 Related Work
Our work is related to obfuscation techniques and
trusted hardware, (homomorphic) authenticated en-
cryption and computation over encrypted data – includ-
ing but not limited to homomorphic encryption.

Obfuscation Techniques and Trusted Hardware.
Approaches straightening or obfuscating the control
flow can be combined with DFAuth on the unpro-
tected program part and are hence mostly orthogonal to
our work. Molnar et al. [9] eliminate control-flow side-
channels by transforming code containing conditional
instructions into straight-line code employing mask-
ing. GhostRider [8] enables privacy-preserving compu-
tation in the cloud assuming a remote trusted proces-
sor. It defends against memory side channels by obfus-
cating programs such that their memory access pat-
tern is independent of control flow instructions. How-
ever, as a hardware-software co-design, GhostRider re-
quires a special co-processor. In contrast, our approach
works on commodity SGX-enabled CPUs and provides a
program-independent TCB inside the secure hardware.

Raccoon [11] extends these protections to the
broader class of side-channels carrying information over
discrete bits. Essentially, Raccoon executes both paths
of a conditional branch and later combines the real and
the decoy path using an oblivious store operation. HOP
[10] obfuscates programs by encrypting them such that
only a trusted processor can decrypt and run them.
By incorporating encryption routines into the program,
HOP can be extended to also protect program input
and output. However, HOP assumes the program is free
of software vulnerabilities and runs the entire program
inside the trusted hardware. In contrast, in DFAuth
vulnerabilities are confined to the untrusted program
and the code inside the Trusted Module is program-
independent.

(Homomorphic) Authenticated Encryption.
Authenticated Encryption (AE) is an encryption mode
that provides confidentiality as well as authenticity (un-
forgeability). An AE can be obtained by composing an
IND-CPA secure encryption scheme with a signature or
message authentication code (MAC) [35]. Hence, one
can obtain a homomorphic AE by combining a homo-
morphic encryption scheme with a homomorphic MAC.
However, since the best known homomorphic MACs [36]
are not yet fully homomorphic a different construction
is required. Joo and Yun provide the first fully homo-
morphic AE [37]. However, their decryption algorithm is
as complex as the evaluation on ciphertexts undermin-
ing the advantages of an encrypted program, i.e., one
could do the entire computation in the Trusted Module.
In parallel work, Barbosa et al. develop labeled homo-
morphic encryption [38] which, however, has not been
applied to Trusted Modules.

Computation on Encrypted Data using Dataflow Authentication 20

Boneh et al. [39] introduced linearly homomorphic
signatures and MACs to support the efficiency gain
by network coding. However, their signatures were still
deterministic, hence not achieving IND-CPA security.
Catalano et al. [40] integrated MACs into efficient, lin-
early homomorphic Paillier encryption [41] and used
identifiers to support public verifiability. However, their
scheme also has linear verification time undermining the
advantages of a small Trusted Module.

In our HASE construction we aimed for using iden-
tifiers and not plaintext values to enable dataflow au-
thentication. Furthermore, we split verification into a
pre-computed derivation phase and a verification phase.
Hence, we can achieve constant time verification.

Aggregate MACs [42] provide support for aggrega-
tion of MACs from distinct keys. However, our current
dataflow authentication considers one client and secret
key.

Computation over Encrypted Data.
Since fully homomorphic encryption [12] entails rather
high computational overhead [13] researchers have re-
sorted to partially encrypting computations. MrCrypt
[14] infers feasible encryption schemes using type in-
ference. In addition to homomorphic encryption, Mr-
Crypt makes use of randomized and deterministic order-
preserving encryption. However, the set of feasible pro-
grams is limited and the authors only evaluate it on
shallow MapReduce program snippets. Even, in this
case several test cases cannot be executed. JCrypt [15]
improved the type inference algorithm to a larger set
of programs. However, still no conversions between en-
cryption schemes were performed. AutoCrypt [16] used
these conversions, however, realized their security im-
plications. The authors hence disallowed any conversion
from homomorphic encryption to searchable encryption.
This restriction prevents any program from running that
modifies its input and then performs a control flow de-
cision. Such programs include the arithmetic computa-
tions we performed in our evaluation.

Next to programs written in imperative languages
(e.g. Java) programs in declarative languages (e.g. SQL)
are amenable to encrypted computation. In these lan-
guages, the programmer does not specify the control
flow decisions, but they may be optimized by the in-
terpreter or compiler. Hence any resulting data is ad-
missible and weaker encryption schemes must be used.
Hacigümüs et al. used deterministic encryption to im-
plement a large subset of SQL [43]. Popa et al. used

also randomized and order-preserving encryption in an
adjustable manner [44].

Verifiable computation [45] can be used by a client
to check whether a server performed a computation as
intended – even on encrypted data. However, this does
not prevent the attacks by malicious adversaries consid-
ered in this paper. It only proves that the server per-
formed one correct computation, but not that it did not
perform any others.

Functional encryption [46] is a more powerful com-
putation on encrypted data than homomorphic encryp-
tion. It not only can compute any function, but also
reveal the result of the computation and not only its
ciphertext. However, generic constructions [47] are even
slower than homomorphic encryption. Searchable en-
cryption [48] is a special case of functional encryption
for comparisons. It could be used to implement com-
parisons in dataflow authentication. However, since the
actual comparison time is so insignificant compared to
the cryptographic operations, it is more efficient to im-
plement comparison in the Trusted Module as well.

8 Conclusions
We introduce the concept of dataflow authentication
(DFAuth) which prevents an active adversary from de-
viating from the dataflow in an outsourced program.
This in turn allows safe use of re-encryptions between
homomorphic and leaking encryption schemes in order
to allow a larger class of programs to run on encrypted
data where only the executed control flow is leaked to
the adversary. Our implementation of DFAuth uses a
novel authenticated, homomorphic encryption scheme
and Trusted Modules in an SGX enclave. Compared to
an implementation solely on fully homomorphic encryp-
tion we offer better and actually practical performance
and compared to an implementation solely on Intel’s
SGX we offer a much smaller trusted code base inde-
pendent of the protected application. We underpin these
results by an implementation of a bytecode-to-bytecode
compiler that translates Java programs into Java pro-
grams operating on encrypted data using DFAuth.

9 Acknowledgements
This work was in part supported by the German Federal
Ministry for Economic Affairs and Energy during the
TRADE EVs project.

Computation on Encrypted Data using Dataflow Authentication 21

References
[1] Ittai Anati, Shay Gueron, Simon P. Johnson, and Vincent R.

Scarlata. Innovative Technology for CPU Based Attestation
and Sealing. In Workshop on Hardware and Architectural
Support for Security and Privacy, HASP, 2013.

[2] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay
Phegade, and Juan Del Cuvillo. Using Innovative Instruc-
tions to Create Trustworthy Software Solutions. In Work-
shop on Hardware and Architectural Support for Security
and Privacy, HASP, 2013.

[3] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V.
Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R.
Savagaonkar. Innovative Instructions and Software Model
for Isolated Execution. In Workshop on Hardware and Archi-
tectural Support for Security and Privacy, HASP, 2013.

[4] Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak,
Yeseul Choi, Chongho Choi, Taesoo Kim, Marcus Peinado,
and Brent Byunghoon Kang. Hacking in darkness: Return-
oriented programming against secure enclaves. In Proceed-
ings of the 26th USENIX Security Symposium, USENIX
Security, 2017.

[5] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Soft-
ware grand exposure: SGX cache attacks are practical. In
Proceedings of the 11th USENIX Workshop on Offensive
Technologies, WOOT, 2017.

[6] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-grained
control flow inside SGX enclaves with branch shadowing.
In Proceedings of the 26th USENIX Security Symposium,
USENIX Security, 2017.

[7] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine
Maurice, and Stefan Mangard. Malware guard extension:
Using sgx to conceal cache attacks. In Proceedings of the
14th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, DIMVA, 2017.

[8] Chang Liu, Austin Harris, Martin Maas, Michael W. Hicks,
Mohit Tiwari, and Elaine Shi. Ghostrider: A hardware-
software system for memory trace oblivious computation. In
Proceedings of the 20th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS, 2015.

[9] David Molnar, Matt Piotrowski, David Schultz, and
David A. Wagner. The program counter security model:
Automatic detection and removal of control-flow side chan-
nel attacks. In Information Security and Cryptology - ICISC
2005, 8th International Conference, Seoul, Korea, December
1-2, 2005, Revised Selected Papers, ICISC, 2005.

[10] Kartik Nayak, Christopher W. Fletcher, Ling Ren, Nishanth
Chandran, Satya V. Lokam, Elaine Shi, and Vipal Goyal.
HOP: hardware makes obfuscation practical. In 24th An-
nual Network and Distributed System Security Symposium,
NDSS, 2017.

[11] Ashay Rane, Calvin Lin, and Mohit Tiwari. Raccoon: Closing
digital side-channels through obfuscated execution. In Pro-
ceedings of the 24th USENIX Security Symposium, USENIX
Security, 2015.

[12] Craig Gentry. Fully homomorphic encryption using ideal
lattices. In Proceedings of the Symposium on Theory of
Computing, STOC, 2009.

[13] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomor-
phic evaluation of the AES circuit. In Proceedings of the
32nd International Conference on Advances in Cryptology,
CRYPTO, 2012.

[14] Sai Tetali, Mohsen Lesani, Rupak Majumdar, and Todd
Millstein. Mrcrypt: Static analysis for secure cloud computa-
tions. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages &
Applications, OOPSLA, 2013.

[15] Yao Dong, Ana Milanova, and Julian Dolby. Jcrypt: Towards
computation over encrypted data. In Proceedings of the
13th International Conference on Principles and Practices of
Programming on the Java Platform, PPPJ, 2016.

[16] Shruti Tople, Shweta Shinde, Zhaofeng Chen, and Prateek
Saxena. Autocrypt: Enabling homomorphic computation on
servers to protect sensitive web content. In Proceedings of
the ACM International Conference on Computer & Commu-
nications Security, CCS, 2013.

[17] Mihir Bellare and Phillip Rogaway. Code-based game-playing
proofs and the security of triple encryption. In Proceedings
of the 25th International Conference on Advances in Cryp-
tology, EUROCRYPT, 2006.

[18] Jonathan Katz and Yehuda Lindell. Introduction to Modern
Cryptography, Second Edition. Chapman & Hall/CRC, 2nd
edition, 2014.

[19] Bowen Alpern, Mark N Wegman, and F Kenneth Zadeck.
Detecting equality of variables in programs. In Proceedings
of the 15th ACM Symposium on Principles of Programming
Languages, POPL, 1988.

[20] Geoffrey Smith. Principles of secure information flow
analysis. In Mihai Christodorescu, Somesh Jha, Douglas
Maughan, Dawn Song, and Cliff Wang, editors, Malware
Detection, volume 27 of Advances in Information Security,
pages 291–307. Springer, 2007.

[21] Daniel Wasserrab, Denis Lohner, and Gregor Snelting. On
pdg-based noninterference and its modular proof. In Pro-
ceedings of the 2009 Workshop on Programming Languages
and Analysis for Security, PLAS, 2009.

[22] Taher Elgamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE Transactions on
Information Theory, 31(4), 1985.

[23] Yin Hu, William Martin, and Berk Sunar. Enhanced flexibil-
ity for homomorphic encryption schemes via crt. In Proceed-
ings (Industrial Track) of the 10th International Conference
on Applied Cryptography and Network Security, ACNS,
2012.

[24] Nigel Smart. Algorithms, key size and parameters report,
2014.

[25] Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hen-
dren. The soot framework for java program analysis: a
retrospective. In Cetus Users and Compiler Infastructure
Workshop, CETUS, 2011.

[26] D. Eastlake 3rd and T. Hansen. US Secure Hash Algorithms
(SHA and HMAC-SHA). RFC 4634 (Informational), 2006.

[27] Mpir: Multiple precision integers and rationals. http://mpir.
org.

http://mpir.org
http://mpir.org

Computation on Encrypted Data using Dataflow Authentication 22

[28] The sodium crypto library (libsodium). https://download.
libsodium.org/doc/.

[29] T. Kivinen and M. Kojo. More modular exponential (modp)
diffie-hellman groups for internet key exchange (ike). RFC
3526 (Proposed Standard), 2003.

[30] Daniel J. Bernstein. Curve25519: New diffie-hellman speed
records. In Public Key Cryptography - PKC 2006, 9th Inter-
national Conference on Theory and Practice of Public-Key
Cryptography, New York, NY, USA, April 24-26, 2006, Pro-
ceedings.

[31] At&t gloabl ip network - network averages. http://
ipnetwork.bgtmo.ip.att.net/pws/averages.html.

[32] Neuroph – java neural network framework. http://neuroph.
sourceforge.net.

[33] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E.
Lauter, Michael Naehrig, and John Wernsing. Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In Proceedings of the 33rd In-
ternational Conference on Machine Learning, ICML, 2016.

[34] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious multi-party machine learning on trusted
processors. In Proceedings of the 25th USENIX Security
Symposium, USENIX Security, 2016.

[35] Mihir Bellare and Chanathip Namprempre. Authenticated
encryption: Relations among notions and analysis of the
generic composition paradigm. Journal of Cryptology, 21(4),
2008.

[36] Rosario Gennaro and Daniel Wichs. Fully homomorphic mes-
sage authenticators. In Proceedings of the 19th International
Conference on the Advances in Cryptology, ASIACRYPT,
2013.

[37] Chihong Joo and Aaram Yun. Homomorphic authenticated
encryption secure against chosen-ciphertext attack. In Pro-
ceedings of the 20th International Conference on the Ad-
vances in Cryptology, ASIACRYPT, 2014.

[38] Manuel Barbosa, Dario Catalano, and Dario Fiore. Labeled
homomorphic encryption - scalable and privacy-preserving
processing of outsourced data. In Proceedings of the 22nd
European Symposium on Research in Computer Security,
ESORICS, 2017.

[39] Dan Boneh, David Freeman, Jonathan Katz, and Brent
Waters. Signing a linear subspace: Signature schemes for
network coding. In Proceedings of the 12th International
Workshop on Public Key Cryptography, PKC, 2009.

[40] Dario Catalano, Antonio Marcedone, and Orazio Puglisi.
Authenticating computation on groups: New homomorphic
primitives and applications. In Proceedings of the 20th
International Conference on the Advances in Cryptology,
ASIACRYPT, 2014.

[41] Pascal Paillier. Public-key cryptosystems based on compos-
ite degree residuosity classes. In Proceedings of the 17th
International Conference on Theory and Application of Cryp-
tographic Techniques, EUROCRYPT, 1999.

[42] Jonathan Katz and Yehuda Lindell. Aggregate message
authentication codes. In Proceedings of the Cryptographers’
Track of the RSA Conference, CT-RSA, 2008.

[43] Hakan Hacigümüş, Bala Iyer, Chen Li, and Sharad Mehro-
tra. Executing sql over encrypted data in the database-
service-provider model. In Proceedings of the ACM Inter-

national Conference on Management of Data, SIGMOD,
2002.

[44] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zel-
dovich, and Hari Balakrishnan. Cryptdb: protecting confi-
dentiality with encrypted query processing. In Proceedings of
the 23rd ACM Symposium on Operating Systems Principles,
SOSP, 2011.

[45] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-
interactive verifiable computing: Outsourcing computation to
untrusted workers. In Proceedings of the 30th International
Conference on Advances in Cryptology, CRYPTO, 2011.

[46] Dan Boneh, Amit Sahai, and Brent Waters. Functional
encryption: Definitions and challenges. In Proceedings of the
8th Theory of Cryptography Conference, TCC, 2011.

[47] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa,
Vinod Vaikuntanathan, and Nickolai Zeldovich. Reusable
garbled circuits and succinct functional encryption. In
Proceedings of the Symposium on Theory of Computing,
STOC, 2013.

[48] Dawn Xiaoding Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Proceedings of
the 2000 Symposium on Security and Privacy, S&P, 2000.

A Postponed Security Reductions
We perform security reductions using a sequence of
games. The first game is the original security experi-
ment provided by the security definition. Each subse-
quent game is equal to the previous game except for
some small well-defined change for which we argue that
it does only negligibly influence adversarial advantage.
The last game then has a special and easy to verify
property, e.g., the adversary has no advantage over a
blind guess. Only negligible change in advantage be-
tween subsequent games implies only negligible change
in advantage between the first and the last game, which
concludes the reduction.

A.1 Proof of Theorem 1
(HASE-IND-CPA)

Proof. Let Π,G, H be as described and let A be a PPT
adversary. We use a sequence of games to show that A’s
advantage AdvIND-CPA

A,Π (λ) is negligible in λ. For Game
n we use Sn to denote the event that b = b′. The final
game and the encryption oracle used in all games are
given in Figure 7.

https://download.libsodium.org/doc/
https://download.libsodium.org/doc/
http://ipnetwork.bgtmo.ip.att.net/pws/averages.html
http://ipnetwork.bgtmo.ip.att.net/pws/averages.html
http://neuroph.sourceforge.net
http://neuroph.sourceforge.net

Computation on Encrypted Data using Dataflow Authentication 23

Game 0.
This is the original experiment from Definition 3 ex-
cept that instead of relying on Π the challenger per-
forms the exact same computations on its own. Clearly,
AdvIND-CPA
A,Π (λ) = |Pr[S0]− 1

2 |.

Game 1 (Indistinguishability-Based Transition).
Instead of deriving the label used in the third compo-
nent of the challenge ciphertext using the pseudorandom
function H : K × I → G for some random k←$K, we
make use of a random function f ←$F from the set of
functions F = {F : I → G}.

We construct a polynomial time algorithm B dis-
tinguishing between a PRF (for a random key) and a
random function using A as a black box. If B’s ora-
cle is a pseudorandom function, then the view of A
is distributed as in Game 0 and we have Pr[S0] =
Pr
[
BA,H(k,·)(1λ) = 1

]
for some k←$K. If B’s oracle is a

random function, then the view of A is distributed as in
Game 1 and thus we have Pr[S1] = Pr

[
BA,f(·)(1λ) = 1

]
for some f ←$F . Under the assumption that H is a
PRF, |Pr[S0]− Pr[S1] | is negligible.

Game 2 (Conceptual Transition).
Because f is only evaluated on a single input i and f is
a random function, the result is a random element of G.
Thus, instead of computing l := f(i), we can compute
l := gs for a random exponent s←$ Zq. Since this is only
a conceptual change, we have Pr[S1] = Pr[S2].

Game 3 (Indistinguishability-Based Transition).
In the challenge ciphertext we replace hr = gxr with a
random group element gz generated by raising g to the
power of a random z←$ Zq.

We construct a polynomial time distinguishing al-
gorithm D solving the DDH problem that interpolates
between Game 2 and Game 3. If D receives a real triple
(gα, gβ , gαβ) for α, β←$ Zq, then A operates on a chal-
lenge ciphertext constructed as in Game 2 and thus we
have

Pr[S2] = Pr
[
DA(G, q, g, gα, gβ , gαβ) = 1

]
.

If D receives a random triple (gα, gβ , gγ) for
α, β, γ←$ Zq, then A operates on a challenge ciphertext
constructed as in Game 3 and thus we have

Pr[S3] = Pr
[
DA(G, q, g, gα, gβ , gγ) = 1

]
.

Game3
IND-CPA
A (λ)

S := {}

〈G, q, g〉 ← G(1λ)

a, x, y ←$ Zq , k←$K

h := gx, j := gy

ek := G

sk := 〈G, q, g, a, x, y, h, j, k〉

〈m0,m1, i, st〉 ← AEsk (1λ, ek)

if i ∈ π2(S) then

return 0

else

b←$ {0, 1}

S := S ∪ {(mb, i)}

r, s , z ←$ Zq , l := gs

c :=
〈
gr, gz ·mb, jr ·mba · l

〉
b′ ← AEsk (1λ, c, st)

return b = b′

Esk(m, i)

parse sk = 〈G, q, g, a, x, y, h, j, k〉

if i ∈ π2(S) then

return ⊥

else

S := S ∪ {(m, i)}

r←$ Zq , l := H(k, i)

c := 〈gr, hr ·m, jr ·ma · l〉

return c

Fig. 7. Final security experiment used in HASE-IND-CPA proof.
Changes compared to the first experiment are highlighted.

In both cases D receives 〈G, q, g〉 output by G(1λ). Under
the assumption that the DDH problem is hard relative
to G, |Pr[S2]− Pr[S3] | is negligible.

Conclusion.
In the last game, the first component of the challenge ci-
phertext is trivially independent of the challenge plain-
text as well as the challenge identifier. In the second
component, gz acts like a one-time pad and completely
hides mb. Similarly, l = gs acts like a one-time pad
in the third component. Because the challenge cipher-
text does not contain any information about mb or i,
we conclude that Pr[S3] = 1

2 . Overall we have that
AdvIND-CPA
A,Π (λ) = negl(λ).

Computation on Encrypted Data using Dataflow Authentication 24

A.2 Proof of Theorem 2 (HASE-UF-CPA)

Proof. Let Π,G, H be as described and let A be a PPT
adversary. We use a sequence of games to show that A’s
advantage AdvUF-CPA

A,Π (λ) is negligible in λ. For Game n
we use Sn to denote the event that the adversary wins
the game. The final game is illustrated in Figure 8.

Game 0.
This is the original experiment from Definition 4 ex-
cept that instead of relying on Π the challenger per-
forms the exact same computations on its own. Clearly,
AdvUF-CPA
A,Π (λ) = |Pr[S0] |.

Game 1 (Conceptual Transition).
We eliminate the conditional statement by comparing t
and w in the return statement.

Game 2 (Indistinguishability-Based Transition).
We replace the pseudorandom function H(k, ·) with a
function f(·) chosen at random. Under the assumption
that H is a PRF, we have that |Pr[S1] − Pr[S2] | is
negligible as in the previous security reduction in The-
orem 1.

Conclusion.
We show that Pr[S2] = negl(λ). Let X be the event that
∀i ∈ I : ∃(m, i) ∈ S, i.e., all identifiers have been used
in encryption oracle queries.

In case event X does not happen, the challenger
evaluates function f on at least one new argument. By
the definition of f , the result is a random value in the
image of f . This random group element acts as a one-
time pad and makes l look random. Subsequently, t is
also random from the point of view of the adversary. To
win the experiment, A has to fulfill t = w. Because t is
random, A cannot guess the correct w with probability
better than 1

q . Thus, we have

Pr[S2 ∧ ¬X] = 1
q
· Pr[¬X] . (1)

Recall that q is the order of G (of which w is an element)
and both are output by the group generation algorithm
G(1λ). Also note that ¬X holds when A performs no
encryption queries at all.

Now consider the case when event X happens and
let 〈c, I〉 be the output of the adversary. The set of iden-

Game2
UF-CPA
A,G,H (λ)

S := {}

〈G, q, g〉 ← G(1λ)

a, x, y ←$ Zq , k←$K, f ←$F

h := gx, j := gy

ek := G

sk :=
〈
G, q, g, a, x, y, h, j, f

〉
〈c, I〉 ← AEsk (1λ, ek)

l :=
∏
i∈I

f(i)

parse c = 〈u, v, w〉

m := u−x · v

t := uy ·ma · l

m̃ :=
⊕

(m′,i)∈S,i∈I

m′

return t = w ∧m 6= m̃

Esk(m, i)

parse sk =
〈
G, q, g, a, x, y, h, j, f

〉
if i ∈ π2(S) then

return ⊥

else

S := S ∪ {(m, i)}

r←$ Zq , l := f(i)

c := 〈gr, hr ·m, jr ·ma · l〉

return c

Fig. 8. Final security experiment used in HASE-UF-CPA proof.
Changes compared to the first experiment are highlighted.

tifiers I determines a label l and an expected message m̃.
Furthermore, let c̃ = 〈ũ, ṽ, w̃〉 be the ciphertext resulting
from the application of Π.Eval to ciphertexts identified
by I. As c̃ is an honestly derived encryption of m̃, the
following must hold:

m̃ = ũ−x · ṽ
w̃ = ũy · m̃a · l

= (ũy−x · ṽ)a · l (2)

Similarly, in order for c = 〈u, v, w〉 to be accepted as a
forgery regarding I, it must hold that:

w = (uy−x · v)a · l (3)

for some m := u−x · v 6= m̃. Because m 6= m̃ we know
that ũy−x · ṽ 6= uy−x · v and w̃ 6= w.

Computation on Encrypted Data using Dataflow Authentication 25

Combining equations (2) and (3) yields

w̃

w
= (ũy−x · ṽ)a · l

(uy−x · v)a · l

=
(
ũy−x · ṽ
uy−x · v

)a
(4)

In order for c to be a forgery with regard to I, equation
(4) needs to be satisfied. But since a is a random element
of Zq, the probability that A can satisfy (4) is only 1

q .
Hence,

Pr[S2 ∧X] = 1
q
· Pr[X] . (5)

Summing up (1) and (5), we have

Pr[S2] = Pr[S2 ∧ ¬X] + Pr[S2 ∧X] = 1
q

and overall we have that AdvUF-CPA
A,Π (λ) = negl(λ)

A.3 Theorems 3 and 4

The security of Construction 2 (Theorem 3 and Theo-
rem 4) follows directly from the security of Construc-
tion 1 (Theorem 1 and Theorem 2).

B Additive HASE Benchmark
The decryption algorithm of the Additive HASE con-
struction (Construction 2) involves computing a discrete
logarithm for each ciphertext component (after ElGa-
mal decryption). Since each homomorphic addition can
increase the bit length of exponents by 1, a large amount
of homomorphic additions can make decryption expo-
nentially costlier (or impossible, assuming only a lookup
table with precomputed logarithms), despite the use of
the CRT-approach provided by Hu et al. [23]. In the fol-
lowing experiment we demonstrate that re-encryptions
inserted by the DFAuth compiler are an effective mea-
sure for preventing excessive exponent growth and en-
suring an efficient decryption.

Experimental Setup.
Thoughout this experiment, we use a CRT decomposi-
tion involving 13 different 5-bit primes. These parame-
ters were chosen such that we can represent 64-bit inte-
ger values. In the Trusted Module a lookup table con-
taining 218 precomputed discrete logarithms was gener-
ated. We measure the runtime of the decryption algo-
rithm when applied to a ciphertext resulting from the

0

1

10

100

1,000

10,000

100,000

10 100 1000 10000 100000

D
ec

ry
p

ti
o

n
 T

im
e

[m
s]

#Additions

With Re-encryptions No Re-encryptions

Fig. 9. Mean runtime [ms] to decrypt a ciphertext produced by
summing up a varying number of ciphertexts using the Additive
HASE scheme.

homomorphic evaluation of n ciphertexts. For each n

we consider two variants of the experiment: one with-
out re-encryptions, the other with re-encryptions per-
formed after every 4000 homomorphic evaluations. We
use n ∈ {10, 100, 1000, 10000, 100000} and perform each
measurement 100 times.

Evaluation Results.
Figure 9 presents the mean runtime of the decryption
algorithm for each n and each variant (without re-
encryption and with re-encryptions). We can see that
the decryption time without re-encryptions are mostly
constant up to 1000 homomorphic evaluations, but in-
creases drastically for larger numbers of evaluations.
The reason for this sharp increase in decryption time
is likely the fact that the discrete logarithms can no
longer be computed via table lookup but the decryp-
tion has to fall back to exhaustive search (cf. Section
5.1). In comparison, when re-encryptions are performed,
the decryption time only increases minimally, even for
n = 100000.

	Computation on Encrypted Data using Dataflow Authentication
	1 Introduction
	2 Definitions
	2.1 Adversary Model
	2.2 Notation
	2.3 Game-Based Security
	2.4 Homomorphic Authenticated Symmetric Encryption (HASE)

	3 Dataflow Authentication (DFAuth)
	4 HASE Constructions
	5 Implementation
	5.1 Setup Phase
	5.2 Runtime Phase

	6 Evaluation
	6.1 Secure Sales Application
	6.2 Secure Neural Networks in the Cloud

	7 Related Work
	8 Conclusions
	9 Acknowledgements
	A Postponed Security Reductions
	A.1 Proof of Theorem 1 (HASE-IND-CPA)
	A.2 Proof of Theorem 2 (HASE-UF-CPA)
	A.3 Theorems 3 and 4

	B Additive HASE Benchmark

