
Proceedings on Privacy Enhancing Technologies ; 2020 (3):356–383

Debajyoti Das*, Sebastian Meiser, Esfandiar Mohammadi, and Aniket Kate

Comprehensive Anonymity Trilemma:
User Coordination is not enough
Abstract: For anonymous communication networks
(ACNs), Das et al. recently confirmed a long-suspected
trilemma result that ACNs cannot achieve strong ano-
nymity, low latency overhead and low bandwidth over-
head at the same time. Our paper emanates from the
careful observation that their analysis does not include
a relevant class of ACNs with what we call user coor-
dination where users proactively work together towards
improving their anonymity. We show that such proto-
cols can achieve better anonymity than predicted by the
above trilemma result. As the main contribution, we
present a stronger impossibility result that includes all
ACNs we are aware of. Along with our formal analysis,
we provide intuitive interpretations and lessons learned.
Finally, we demonstrate qualitatively stricter require-
ments for the Anytrust assumption (all but one protocol
party is compromised) prevalent across ACNs.

Keywords: anonymity, trilemma

DOI 10.2478/popets-2020-0056
Received 2019-11-30; revised 2020-03-15; accepted 2020-03-16.

1 Introduction
Anonymous communication networks (ACNs)[4, 7–10,
13, 16, 17, 22–24, 28, 31–33] are critical to communica-
tion privacy over the Internet as they enable individuals
to maintain their privacy from untrusted intermediaries
and endpoints. Typically, ACNs involve messages travel-
ing through some intermediaries before arriving at their
destinations, and therefore they introduce network la-
tency and bandwidth overheads. Even after almost four
decades of work, the search for an optimal overhead
ACN design is still unfinished: Anonymity requires the
company of others interested in anonymity, which in-

*Corresponding Author: Debajyoti Das: Purdue Univer-
sity, E-mail: das48@purdue.edu
Sebastian Meiser: Visa Research, E-mail: smeiser@visa.com
Esfandiar Mohammadi: Universitaet zu Luebeck, E-mail:
esfandiar.mohammadi@uni-luebeck.de
Aniket Kate: Purdue University, E-mail: aniket@purdue.edu

deed makes it a hard problem to solve. In practice, we
continue to rely on low latency and bandwidth over-
head networks such as Tor [29] that don’t provide strong
anonymity guarantees against global adversaries as the
protocol designs offering strong anonymity [7, 10, 31, 33]
(i.e., anonymity up to a negligible chance) incur a sig-
nificant latency overhead, bandwidth overhead, or both.
Although some of the recent designs [28] have been suc-
cessful in reducing these overheads and also in offering
latency-bandwidth trade-offs to an extent, it remains
unclear how optimal these designs are. In our search for
an optimal overhead ACN, lower bounds on the com-
munication overhead play an important guiding role.

Recently, Das et al. [12] reduced the search space of
possible ACN designs that could achieve strong anony-
mity by offering necessary constraints (i.e., impossibil-
ity results) for ACNs that relate bandwidth overhead,
latency overhead, and the degree (or strength) of anony-
mity. They show a universal necessary constraint that
states strong anonymity is impossible without signifi-
cant bandwidth overhead, latency overhead, or an in-
versely proportional combination of those, even if no
protocol parties are compromised. If some protocol par-
ties are compromised, Das et al. showed an additional
necessary constraint that in essence proves that strong
anonymity excludes low latency (i.e., constant w.r.t.
to the system’s security parameter), regardless of the
bandwidth overhead.

This necessary constraint arises from a key anony-
mity invariant (or restriction) that strong anonymity is
possible only if messages from two honest users mix in
an honest node. This invariant is in line with many mix-
net designs from the literature [9, 13, 23, 28, 32]. How-
ever, protocols following the dining cryptographer net-
works (DC-nets) [7] design avoid this constraint by pro-
viding robustness against compromisation using some
pre-established coordination among users. This leaves
hope for ACNs that leverage such techniques.

1.1 Our contribution

In this work, we limit the hope left for ACNs. To
this end we generalize techniques from the line of
works [4, 7, 10, 16, 33] that escape the earlier impos-

Comprehensive Anonymity Trilemma 357

sibility results of [12] in the following property, which
we call user coordination: assuming some form of (free)
coordination among a set of N users, h + 1 ≤ N users
send a packet each for some single (actual) message such
that (i) the receiver can retrieve the actual message only
after receiving all the h+ 1 packets, and that (ii) the re-
ceiver of the message cannot distinguish who among the
h+ 1 users actually sent the message.

The goal here is not to keep user coordination prac-
tical; rather, we define the notion in this way to cap-
ture all efficient instantiations of similar techniques. One
prominent example is given by DC-nets. DC-nets use
shared keys/coins to produce dummy messages (corre-
sponding to our shares) that allow the receiver to recon-
struct the actual message.

We show that even protocols with user coordination
must either use an excessive bandwidth overhead (every
user sends a share for every real message by any other
user) or adhere to our improved anonymity trilemma.
Formal lower bounds. Assuming that the bandwidth
is not trivially high, we derive various lower bounds
on the necessary latency overhead required for strong
anonymity depending on the number c of compromised
nodes. For c > 0, we show that strong anonymity is im-
possible for constant latency (` ∈ Θ(1)). If half of all K
nodes are compromised (c = K/2), ACNs with strong
anonymity cannot have a latency that is logarithmic
(` ≤ log(K)) in the number K of protocol nodes. For the
Anytrust setting [33] where all but a constant amount
of protocol nodes are compromised, strong anonymity
requires a minimal latency in the order of

√
K.

Proof formalism. While basing our techniques on
the foundation of the existing anonymity trilemma, we
contribute several key elements to their technique that
might be of independent interest: novel necessary con-
straints for anonymity as well as novel design goals for
an ideal AC protocol. Moreover, we provide intuitive
readings of our formal theorems that summarize their
key insights.
Lessons learned. Our exercise in formally analyzing
protocols with user coordination presents us with sev-
eral tangible lessons: first, as our novel necessary con-
straints inherently are more lenient (they allow more
anonymity with the same latency overhead and band-
width overhead) our results thereby point future re-
search on designing ACNs with reduced overhead in the
direction of ACNs with user coordination, in particular
with dynamic user coordination that relaxes the strict
turn-by-turn scheduling of DC-nets and its several ex-
tensions. Second, we further contribute to the quest for

optimal ACNs by clearly identifying the limits of our
novel necessary constraints. Effectively, our necessary
constraints raise open problems whose solutions would
escape our results and could lead to ACNs that are very
close to the universal necessary constraint.

Moreover, in Appendix A, we discuss the scope of
our results by discussing and quantifying the complexity
of user coordination techniques found in the literature.

1.2 Related work

Das et al. [12] formalized and confirmed the anony-
mity trilemma for mixing based protocols. They for-
mally proved for which parameters of bandwidth over-
head and latency overhead strong anonymity (anony-
mity up to a negligible adversarial advantage) is impos-
sible. Their analysis, however, does not fully apply to a
large class of protocols that includes DC-nets or secret
sharing based protocols.

In prior work, Oya et al. [27], also provided a generic
adversary in a general model that encompasses a large
class of ACNs. That work, however, concentrated on the
bandwidth overhead in terms of dummy messages for
protocols based on pool mixes specifically. Their result
does not give insights into the relationship between the
dummy message rate, the latency overhead, the com-
promisation rate, and the degree of anonymity.

Recently, Ando et al. [2] derived necessary con-
straints for communication complexity and the degree
of anonymity in the presence of active adversaries for
mix-nets. That work does not capture bandwidth over-
head and, more importantly, does not provide necessary
constraints for protocols with user coordination. More
recently, Ando et al. [3] proved about mix-nets that ano-
nymity can only be achieved if each client transmits on
average a superlogarithmic number of packets.

For other lines of work on upper bounds on anony-
mity for specific protocols and on provable anonymity
guarantees, we refer the readers to [12].

2 Overview
In this work we present an impossibility result for sender
anonymity of ACNs that allow messages to be sent, to
mix, and to confuse a potential adversary with dummy
messages. We measure sender anonymity based on the
AnoA framework [25] as the inability of an adversary to
distinguish between two different senders of their own

Comprehensive Anonymity Trilemma 358

choosing, say, Alice and Bob. We start by showing, with
an intuitive counter-example, why the existing anony-
mity trilemma by Das et al. does not sufficiently capture
this space of protocols.

Imagine a protocol in which users communicate out-
of-band to initialize secret-sharing for their messages,
e.g., they use a technique leveraged by DC-nets [17] with
pre-setup key agreement, where each user only needs to
publish their local messages.

Whenever a recipient receives a set of messages that
belong together, the recipient has to combine all of them
to extract the real message. There is a certain chance
that when Alice sends her message, Bob is one of the
users who provides a share. In this instance, no matter
the level of compromisation or the latency overhead of
the protocol, the adversary won’t be able to know who
out of Alice or Bob actually initiated the message.

This property was not captured in the anonymity
trilemma; consequently, we may ask whether such tech-
niques give us hope for cheap strong anonymity. We now
set out to formally show that this hope is unfounded
(or, at the very least, requires stronger techniques than
currently available).

We use the term shares to refer to messages created
to confuse the adversary in such a way, and use the
term user coordination to refer to the process. By these
terms we do not refer to specific techniques, but rather
capture all sorts of techniques that lead to this effect.

2.1 How we prove impossibility

To show that there is not (and, in fact, cannot be) a
protocol that provides strong anonymity without a sig-
nificant bandwidth overhead and/or latency overhead,
we need to capture all possible protocols and show that
each of them is vulnerable to attacks.
Impossibility proofs. The standard proof technique
for such a result is to, first, specify formally which pro-
tocols are considered; second, to come up with a spe-
cific adversary against such protocols; third, to show
that there is some idealized protocol that is at least as
good as any other protocol in defending against this ad-
versary; and finally, that even this idealized protocol is
vulnerable to that specific adversary. These steps let us
conclude that any protocol (which cannot be better than
the idealized one) is vulnerable to this specific adversary.
Our specific adversary is fairly simple and possibilistic.
There are more sophisticated adversaries that, e.g., take
the expected distribution for each sender into account.

To such adversaries the protocols are potentially even
more vulnerable; hence, our results might be untight.

The most important step is to be specific and care-
ful in the definitions of how users send messages, how
protocols can send them from one party to the other
and what exactly constitutes anonymity.
User message distributions. The user message dis-
tribution describes how we select which user sends mes-
sages at which point in time. This is crucial for anony-
mity as it defines which users are active and how often
they participate in the protocol. Note that the user mes-
sage distribution does not restrict an online user from
sending dummy messages or shares; the user message
distribution does, however, decide when and how often
users want to send real messages.

As we strive to provide a result comparable to the
anonymity trilemma [12] we consider two types of user
message distributions: a synchronized user message dis-
tribution in which users take turns for sending messages.
This distribution is fairly protocol-friendly, as the pro-
tocol has no uncertainty about the number of messages
available at any time and can choose its strategy ac-
cordingly and in a static way. The second user message
distribution we consider is the unsynchronized user mes-
sage distribution, where each round each user indepen-
dently at random decides whether or not to send a (real)
message this round. This distribution creates more re-
alistic patterns of behavior and it introduces an uncer-
tainty for the protocol that now might want to apply
dynamic strategies. We refer to Section 3.5 for more de-
tails on user message distributions.
Protocols. For showing an impossibility result, we de-
fine protocols via the constraints that we impose on
them. These are as follows: protocols operate in syn-
chronous rounds; for any packet to be sent from one
protocol party to another, the sending of said packet is
observable in the network; in every round, every packet
can only traverse one “hop” (from one party to one
other), i.e., packets cannot be sent onward in the same
round they were received; when a packet is transported
from one party to another the adversary can observe
that fact but not the content of the packet, and pack-
ets cannot be merged. We prominently restrict proto-
cols with two overheads: a latency overhead `, describing
how many rounds may pass between a user wanting to
send a message and the correct recipient actually receiv-
ing the message, and a bandwidth overhead B, describing
how many dummy messages or shares the protocol is al-
lowed to use for every real message. Sections 3.2 and 3.6
discuss the protocol model in detail.

Comprehensive Anonymity Trilemma 359

AnoA, strong sender anonymity and impossibil-
ity results. We allow our adversary to eavesdrop on
the whole network (global passive adversary) and to ad-
ditionally passively compromise a number of c out of K
internal protocol parties. We measure the success or fail-
ure of the adversary in de-anonymizing users via com-
putational indistinguishability in the AnoA framework:
the adversary chooses two users as possible senders for a
message to a specific adversarial recipient; after observ-
ing communication between protocol parties, the adver-
sary guesses which of the two users actually has sent the
message. We quantify the adversarial advantage δ as the
improvement of the adversary’s guess over a purely ran-
dom guess.

Given a security parameter η that we can explicitly
relate to protocol parameters such as the total number
of users N, the number of parties K, or the overhead
parameters for latency ` or bandwidth B, we say that
a protocol provides strong sender anonymity if the ad-
versary’s advantage δ is asymptotically constrained by
a negligible function (in the security parameter η).

Both the notions of strong anonymity and the def-
inition of the AnoA framework allow the adversary a
significant amount of knowledge and leverage, which is
bound to weaken impossibility results based on the re-
sulting anonymity notion. We think, however, that this
choice is still meaningful and reasonable: Strong anony-
mity describes that the protocol is guaranteed to pro-
vide meaningful anonymity under repeated observation.
A protocol cannot satisfy strong anonymity if repeated
observation would compromise anonymity.

From a technical point of view, strong anonymity
allows us to avoid discussions about a specific cutoff
point for the adversary in favor of an asymptotic view
while forcing protocols to utilize interesting strategies
for providing anonymity.

The AnoA framework assumes that the adversary
has an arbitrary degree of background knowledge, in-
cluding knowledge of the two potential users who might
send the challenge message. Note that as long as strong
sender anonymity is considered, this notion is equivalent
to having the adversary choose from an up to polyno-
mially larger set of potential senders.

We acknowledge that in many practical cases one
may choose a weaker anonymity notion that, e.g., re-
stricts the advantage to 1/poly for some polynomial.
Our results reason about such cases as well: While The-
orems 2, 3 and 5 to 8 rely upon the notion of strong
anonymity, the more technical Theorems 1 and 4 can
be used to derive results for weaker notions as well.

2.2 Lessons learned

As we are trying to steer the research community into
the right direction, we need to look at important proto-
col techniques. Protocols like DC nets and Dissent show
that coordinating messages between several users can
achieve a fundamentally different (and stronger) vari-
ant of anonymity than mixing independently generated
messages. We show that, even if user coordination is uti-
lized and implemented efficiently, it does not invalidate
the general premise of the trilemma for AC protocols.
Technically, we achieve this by abstracting away proto-
col features via this abstract user coordination.

Our analysis gives lower bounds for the adversarial
advantage, and, as part of the proof technique, intro-
duces design goals for a novel ideal protocol that might
be of independent interest. As the bounds we derive are,
admittedly, somewhat technically involved and hard to
intuitively understand, we boil down the formal insights
to a few simplified lessons formally learned from them.
The goal of these lessons is not to arrive at astound-
ing new conclusions but to formally show that existing
intuitions are correct.

If the bandwidth overhead used for shares is exces-
sive (for every message of every user, every other user
sends a (share) packet), strong anonymity is possible
(see DC-nets) – for any values of ` or c.

If the bandwidth overhead is not excessive (less than
all other user sends a share) we derive more fine-grained
insights from our formulas, depending on the number c
of compromised nodes and the latency overhead `. Most
of them can be expressed in the form: strong anonymity
is impossible if the product of the latency overhead `

and the message rate p (a measure that combines real
messages and shares) is smaller than some value X.

• Even without compromised nodes (c = 0), strong
anonymity is impossible if `p < 1 (this universal con-
straint is from [12]; we show that it still holds under
user coordination).

• If c > 0 then strong anonymity is impossible if
the latency overhead is constant (` ∈ O(1)).

• If at least half of all parties are compromised
(c/K ≥ 1/2) and ` ≤ log(η), strong anonymity is impos-
sible if `p ∈ O(1); `p must grow with η.

• Under the Anytrust assumption (and similar as-
sumptions where only a constant number of parties is
honest, K− c ∈ O(1)), we show even tighter constraints.
Unless the latency grows at least quadratically with the
security parameter, `p needs to grow more than logarith-
mically to provide strong anonymity (more specifically,
strong anonymity is impossible if ` < η2 and `p < 4

√
η).

Comprehensive Anonymity Trilemma 360

Beyond these insights, we stress that for recipient
anonymity shares do not help, since recipient anonymity
is defined as a property of tracking individual packets.
While shares can obfuscate the real sender among sev-
eral users, they do not prevent the tracking of any in-
dividual packet to a recipient. Therefore, recipient ano-
nymity bounds from [12] do not change with user co-
ordination, and in this paper we focus on the scope of
improvements of sender anonymity.

` Latency overhead for every message
β number of noise packets for every user per round
B number of noise packets per real message
p Probability to send a message per user per round
p′ Probability to send a real message per user per

round
K Number of (internal) protocol parties
c Number of compromised protocol parties

N Number of online users (that may send messages)
δ Adversarial advantage in the anonymity game
Π A protocol. Π ∈M : Π is within our model
η The security parameter
ε A (very small, but non-negligible) function

Fig. 1. Notation, as in Das et al. [12]

3 Preliminaries
We use the same notation as Das et al. [12]; see Figure 1
for a full notation table.

3.1 Anonymity definition

We define (sender) anonymity by a game between a
challenger (controlling the protocol) and a global pas-
sive adversary, following the AnoA framework [25]. The
challenger receives all protocol parameters and a de-
scription of how users want to send messages (the user
distribution), as well as a challenge bit b that influences
which of two adversarially chosen senders actually sends
a particular challenge message. The adversary’s goal is
to guess this challenge bit based on its observations. In
this section we briefly introduce the relevant concepts of
this anonymity game. We start with sender anonymity.

Consider an interactive game 〈A|Ch(Π, b)〉 between
a challenger and the adversary, where the adversary can
send messages of two flavors:

• (Input, u,R,m), which prompts the challenger to
make user u send a message m to recipient R.

• (Chall, u0, u1, R,m), in which case the challenger
selects one user based on the challenge bit b, and then
instructs user ub to send a message m to recipient R.

After receiving the adversarial inputs, the chal-
lenger Ch runs the protocol Π based on these choices.
Ch then forwards all adversarial observations to A.

Definition 1 (δ-sender anonymity from [12]). A pro-
tocol Π provides δ-sender anonymity for a class of adver-
saries C and a function δ(·) ≥ 0 describing the maximal
adversarial advantage, if for all PPT machines A ∈ C,
Pr [0 = 〈A|Ch(Π, 0)〉] ≤ Pr [0 = 〈A|Ch(Π, 1)〉] + δ(η).

Π provides strong sender-anonymity [12, 15, 18] if
it provides δ-sender anonymity for a function δ(η) that
is negligible in the security parameter η.

On the meaning of η. In our analyses we tie η to
system parameters such as the number of parties K, the
number of compromised parties c, the latency overhead
`, the bandwidth overhead B, the number of users N,
etc.; we explicitly describe the relationship between η

and these parameters for the cases we consider. The
system parameters don’t have to increase with η neces-
sarily. In some cases, parameters may decrease as η in-
creases, for example, the bandwidth overhead B might
decrease as the latency overhead increases, or the ratio
of compromised (or honest!) parties might decrease.

Note that if an AC protocol has strong anonymity, it
is secure under continual observation (e.g., for streams
of messages or usage over a longer time period) and
formally, η limits the number of observations.
On anonymity sets and strong anonymity. Strong
sender anonymity lets the adversary freely choose the
pair of challenge senders and requires that the AC pro-
tocol’s behavior is indistinguishable to the adversary.
Hence, strong sender anonymity corresponds to the full
anonymity set (see [25, Lemma 7]) that encompasses all
users. Sender anonymity for (non-full) anonymity sets
would result in restricting the adversary in Definition 1
to choose the pair of challenger senders from the same
anonymity set.

3.2 What can and cannot protocols do?

Anonymous communication protocols are communica-
tion protocols, so we require them to ultimately trans-
mit messages from senders to recipients; these messages
are encoded in packets of information. A protocol may
utilize its set of (internal) protocol parties P to mix,
delay or modify packets (i.e., encrypt or decrypt them).

Comprehensive Anonymity Trilemma 361

Time. We use a round-based definition of time in which
we assume that all protocol parties work in synchro-
nized rounds. In each round, a party can send packets
to other parties that will receive the packets at the end
of the round (and can then send them on in the next
round). We allow, but abstract away from any crypto-
graphic operations locally performed on these packets
and we don’t consider the computation time required
for such operations: independently of the cryptographic
operations performed, a packet is always ready for being
sent in the round after it arrived.

We define the latency overhead ` of a protocol as
the number of rounds that pass between the round in
which a message is scheduled for being (originally) sent
by a user u and the round it is received (and potentially
reconstructed) by a recipient R. We define the bandwidth
overhead B as the number of noise messages that the
protocol can create for every real message.

Finally, we allow the protocol to leverage what we
call user coordination. This term doesn’t specify any one
technique as much as it is an umbrella for a wide range
of strategies that leverage cooperation among users to
improve anonymity. The next subsection expands on the
intuition and techniques behind user coordination.

3.3 User coordination

In this subsection we introduce a concept fundamental
to our analysis: User coordination (UC) allows protocols
to leverage coordination between clients to add a layer
of uncertainty on top of what they could achieve by
mixing of messages.

Before discussing how we formally define UC, we
want to clarify a few important points about the con-
cept: First and foremost, UC is not a single technique,
but a sound over-approximation of different techniques
that protocols could employ. These techniques include
secret-sharing of messages, sending encryptions of 0’s
(e.g., in some DC-nets) and threshold encryption. Our
focus here is not on how exactly specific techniques un-
der the umbrella of user coordination can be imple-
mented, but rather on showing that even such strong
techniques do not allow protocols to overcome a fun-
damental anonymity trilemma. The following definition
captures, in an abstract manner, what benefits a proto-
col could achieve when employing UC.

Definition 2 (User Coordination). In a protocol with
user coordination (UC) users can send packets to help
anonymize a message m sent by a user u. If h users

other than u send their packets, then the recipient R of
m can retrieve m if and only if R has access to all h+ 1
packets (which we call the shares of m).

Even a malicious recipient cannot determine which
of the h+ 1 shares contained m. This feature effectively
provides the sender of a message with the ability to hide
among a group of h+ 1 users.

Even though we use the term share, we do not imply
that the message needs to be secret shared (as in crypto-
graphic secret sharing). Our over-approximation about
UC is sound because, if less than h+1 shares suffice
to reconstruct a message, the recipient can only learn
more about the potential senders (e.g., by being able
to exclude some shares the adversary can exclude some
potential senders).
Costs and complexity of UC. UC is an over-
approximation of a wide range of strategies a protocol
could employ to confuse an adversary. With our paper
we show that protocols that employ any such techniques
are still subject to an anonymity trilemma. Our model
soundly abstracts away from the potential overhead that
UC incurs: we allow the preparation for UC to happen
out of band, i.e., we consider it to be “free”. 1 However, h
out of the h+1 shares are considered overhead messages
for the purpose of determining bandwidth overhead. We
will see that choosing h = B is optimal.

3.4 Adversary

Following [12], we consider global passive adversaries,
that observe all communication between protocol par-
ties and that can additionally compromise c protocol
parties. These compromised parties still follow the pro-
tocol specification and thus are considered honest but
curious or passively compromised.

We assume that our adversary does not or cannot
interfere with packets in transmission and cannot link
packets sent by a party to packets previously received by
that party, except if the party is compromised. This is
equivalent to assuming an authenticated and encrypted
channel between all parties.
No active attacks. It is worth repeating that we strive
for impossibility results. While the adversary would nat-

1 Allowing UC to be set up essentially for free does not mean
we expect this to be particularly easy for every protocol. Rather,
our necessary constraints even hold if someone managed to im-
plement UC without any additional overheads.

Comprehensive Anonymity Trilemma 362

urally be more powerful when performing active attacks,
this restriction strengthens our results: even without ac-
tive attacks, we show upper bounds on anonymity.

3.5 User message distributions

We follow [12] in their distinction between two types of
user distributions, i.e., two different definitions of how
users interact with the protocol; Das et al. distinguish
between a synchronized user distribution UB and an un-
synchronized user distribution UP . In the synchronized
user distribution UB the users (globally) agree that ev-
ery round exactly one user gets to send a message, while
other users may or may not send noise messages (within
the bandwidth overhead). In the unsynchronized user
distribution UP every user flips a (biased) coin with
success probability p in every round, independently of
other users, to determine whether or not they will send
a message (real or noise) in this round.

The synchronized user distribution can be seen as a
control group that is predictable and thus fairly protocol
friendly. Protocols following DC-nets tend to use such a
synchronization (to ensure that messages from a sender
can actually be reconstructed). Our results show that
many interesting cases are the same for this predictable
user distribution UB and for the unsynchronized UP .
Difference between synchronization and UC.
Note the difference between synchronization of our user
message distribution and user coordination. The distri-
butions describe shapes of user traffic, i.e., users decide
when to send their own messages; whereas what we call
user coordination is a powerful way in which users can
coordinate their message content to confuse the adver-
sary, i.e., it tells each of the h+ 1 users what to send so
that the combination of the h+ 1 packets will allow the
recipient to obtain the original message.

3.6 Protocol model for ACNs

We follow [12] in our definition of a protocol model but
extend a protocol’s capabilities by allowing user coordi-
nation. Protocols in our model work as follows:

• a set of senders S can send packets to a set of
recipients R via some anonymizing proxies P.

• Protocols operate in rounds. In every round, the
protocol can decide to keep a packet with the same pro-
tocol party, or move the packet to a different protocol
party, as long as the latency overhead constraint is not
violated. No packets can be dropped by the protocol.

• Whenever a packet is sent from one party to an-
other, the eavesdropping adversary learns that a packet
is sent as well as the round in which this occurred.

• Additionally, the adversary is allowed to compro-
mise a number of c proxies. Whenever one of these com-
promised proxies sends a packet, the adversary learns to
which (previous) incoming packet it corresponds; other-
wise the adversary does not learn this.

• Besides, the adversary compromises all recipients
and upon receiving packets can learn their content.

• However, UC techniques add to the adversary’s
confusion here by requiring receiving several packets to
(re-)construct a real message. We call all packets re-
quired to reconstruct a message m the shares of m and
we identify them by assigning them the same tag (some
randomly generated string). The tag of a packet is re-
vealed only to the (final) recipient of a packet.

We do not restrict our protocols to any specific
technique of UC; it can be any method (e.g., secret
sharing, multi-party computation etc.) that achieve the
user coordination property. However, for our impossi-
bility analysis, we assume that user coordination can be
achieved via a pre-processing step or can be done effi-
ciently, and hence, we ignore the cost of user coordina-
tion. For completeness, we describe the formal protocol
model along with changes from [12] in Appendix B.

Note that we do not consider any compromised
sender in S for our analysis. If Nc out of N senders are
compromised, the adversary can always correctly iden-
tify their packets at the recipient, and hence, they don’t
contribute towards anonymity. This is equivalent to an-
alyzing N−Nc honest users and therefore, for simplicity,
we assume all users are honest.
Assumptions on user coordination. We impose the
following assumptions on user coordination:

1. If h+1 shares are used to reconstruct a message,
at least one of them is sent by the original sender.

2. A packet cannot have multiple tags, i.e., no share
can take part in reconstructing two separate messages.

3. A compromised protocol party is always able to
map its outgoing packets to its incoming packets.

Our assumptions are consistent with most ACNs
from the literature. In Appendix B.3, we discuss how
these assumptions present cryptographic challenges.

Additionally, to be consistent with how we count
the latency overhead for a real message, we add the
restriction that every packet (real or noise, created by a
user or an internal protocol party) is allowed to remain
in the system for no more than ` rounds. Finally, if a
message is scheduled to be sent in round t0 by the user

Comprehensive Anonymity Trilemma 363

distribution, all shares of that message (as well as the
real packer) must reach the recipient before round t0 +`.
Expressiveness of protocol model M . Unless ex-
cluded by the above assumptions, our protocol model
M can be used to express any protocol. Our model is
an extension of the one from [12]; therefore, any proto-
col techniques that can be expressed in their model, can
be expressed in our model. Mix networks very naturally
fit into their model. Other than that, protocols based
on Private Information Retrieval, Multi-party Compu-
tation, peer-to-peer protocols can be captured in their
model, as long as there is no user coordination. By ex-
tending the model for protocols with tags we capture
user coordination. The only protocol behaviors that can
not be expressed by our model are (1) the exploitation
of side channels, (2) using unreliability or worst-case in-
finite latency for anonymity, and (3) techniques that al-
low mixing in dishonest nodes. We refer to Appendix B.2
for a discussion of these limitations.

4 Towards a new trilemma
We investigate the fundamental limitations of protocols.
To this end, we define an abstract protocol within our
model that leverages user coordination combined with
mixing techniques. We then show that this protocol can
achieve a better degree of anonymity than the classical
impossibility results of Das et al. indicate.

The intuitive reason for this effect is that such a
protocol introduces an additional form of uncertainty
for the adversary that was not captured by the classical
impossibility results. Imagine an adversary that com-
promises every node in the path that a particular packet
traverses and then observes that the packet is being used
to reconstruct a message. This adversary might not al-
ways learn who actually sent the reconstructed message:
all the packets with shares that belong together have to
be combined to learn the message; thus all potential
senders of these packets could be the message’s sender.

We then show an anonymity trilemma that captures
even protocols with user coordination: every protocol in
our model can be defeated by a straight-forward path
adversary unless the protocol utilizes sufficient band-
width and latency overhead that depends on the degree
of compromisation in the network.

4.1 AC leveraging user coordination

We now describe a protocol that falls within our pro-
tocol model (Section 3.6) and that leverages user co-
ordination to provide more anonymity than postulated
in the impossibility results of Das et al. [12] for some
values of `, β, and c. While this doesn’t show that their
result is wrong (they didn’t consider user coordination),
it emphasizes the importance of covering such protocols
in an impossibility result.

The main idea that allows this to work is that we use
our bandwidth overhead for shares. Each such share is
associated with one real message (with content) within
the system and the recipient needs to collect all the
shares of a message to decipher it. When all the shares of
a message reach a recipient, the adversary can thus only
learn that the message has reached and which packets
were involved in reconstructing it, but not point to one
specific packet it was in.

We assume that the adversary can not break the
sharing of message origin provided by user coordination
and hence can not decipher an individual message be-
fore it reaches the recipient. Additionally, we assume
that our user coordination happens out-of-band and is
efficient. (For instance, in DC-net [17] with pre-setup
key agreement, the protocol parties only need to pub-
lish their local messages.)

The protocol works in the following way:
1. Users send messages based on a given user mes-

sage distribution (c.f., Section 3.5).
2. All users participate in the out-of-band user co-

ordination. Instead of sending a dummy noise message,
users send shares for other users’ messages.

3. Users run an out-of-band consensus protocol to
decide when their messages (real message or share) will
be delivered, such that in a given round the recipient
receives shares of the same message and all the shares of
that message (comparable to t-out-of-t secret sharing).

4. In a given round, the recipient combines all the
shares that he receives to extract the real message.

5. The protocol utilizes a series of up to K relays; as
long as messages (real or share) are in the system, they
are sent from one relay to the next. Note the attacker
can compromise up to c of these relays. To prevent the
attacker from compromising a consecutive series of re-
lays, we permute the order in which relays are being
used. Once the protocol starts, the sequence of the re-
lays is sent to all users.
Analysis of adversarial advantage for the above
protocol. We know from Das et al. (c.f. Appendix C)

Comprehensive Anonymity Trilemma 364

that for the synchronized user distribution, the adver-
sarial advantage δ should be lower bounded by

δ ≥ 1−
[
1−

(c
`

)
/
(K
`

)]
×min

(
1, `+B`N−1

)
.

Recall that according to the anonymity notion (c.f.,
Section 3.1), the adversary has to distinguish between
two potential senders of a message, u0 and u1. If, say, u0
sends the challenge message and the adversary has com-
promised every entity on the path this message takes
from u0 to the recipient, then the classical trilemma in-
sists that the adversary wins, which is correct for proto-
cols without user coordination. With user coordination,
however, it is possible that u1 sends a share of the chal-
lenge message. This occurs with probability B

N−1 . If this
happens, there is no way in which the adversary can
know whether u0 or u1 has sent the challenge message
(even if the whole path was compromised) and hence
δ ≤ 1 − B

N−1 must hold. We directly see a conflict be-
tween the anonymity achieved by our protocol and the
impossibility result. For an illustrative example consider
the case where ` = 1,K = 2, c = 1. We compare the up-
per bound on δ derived directly from user coordination
with the lower bound from [12] and yield:

1− B

N− 1 < 1−
[
1−

(c
`

)
/
(K
`

)]
×min

(
1, `+B`

N− 1

)
⇐= B

N− 1 >
1
2 ×

`+B`

N− 1 assuming `+B`

N− 1 < 1

⇐⇒ 2B > 1 +B ⇐⇒ B > 1.
Thus, with just one noise message per real message

(B = 1), our protocol violates the classical impossibility
bounds. More generally, if a set of users sends shares for
a given message, the adversary can not distinguish the
actual sender of the message from other users in the set,
unless the user coordination is broken. Note that this
effect is similar to the amount of uncertainty introduced
by messages meeting (and mixing) in an honest relay.

4.2 The path possibility adversary

Having shown a separation, we now build up to our own
impossibility result: a new lower bound on the adversar-
ial advantage (upper bound on anonymity) in the pres-
ence of compromised relay nodes, both for synchronized
users and unsynchronized users. To this end, we first
introduce the path adversary, then present a necessary
invariant for anonymity and finally present an ideal pro-
tocol that, although provably superior to all protocols
within our model, still falls prey to our adversary.

Formally, we utilize a path possibility adversary
Apaths as in the work of Das et al.[12]: The adversary
observes all communication patterns of all users. Upon

arrival of the challenge message at the recipient, the ad-
versary checks whether one of the challenge users could
not have sent this message, i.e., whether it is impos-
sible to construct a consecutive path from the user to
the challenge message’s arrival that satisfies the latency
constraint. If one of the users can be excluded in this
way, the adversary guesses that the other user sent the
challenge message. Otherwise, the adversary simply flips
a coin to decide which challenge user to output. For a
complete description of the adversary see Appendix B.4.

4.3 Necessary invariant for anonymity

To prove their anonymity trilemma for protocols with-
out user coordination, Das et al. defined a necessary
invariant, i.e., if the invariant is not satisfied for a proto-
col run, then even the path possibility adversary Apaths
will certainly win independently of any specific actions
or strategies utilized by the protocol.

Invariant 1 (Necessary invariant from [12]). Let u0
and u1 be the challenge users; let b be the challenge bit.
Assume that the challenge message reaches the recipi-
ent at r. Assume furthermore that u1−b sends her mes-
sages (including noise messages) at V = {t1, t2, t3, . . . }.
If T = {t : t ∈ V ∧ (r − `) ≤ t < r},
(i) the set T is not empty, and
(ii) the challenge message passes through at least one

honest node at some time t′ such that, t′ ∈
{min(T), . . . , r − 1}.

Critically, this invariant is not necessary for protocols
with user coordination (see our example above in Sec-
tion 4.1). We now derive a new invariant that remains
necessary for anonymity in the presence of protocols
with user coordination.

Invariant 2 (New Invariant). Let u0 and u1 be the
challenge users; let b be the challenge bit. Assume that
the challenge message reaches the recipient at time r.
Assume furthermore that u1−b sends her messages (in-
cluding noise messages) at V = {t1, t2, t3, . . . }. If T =
{t : t ∈ V ∧ (r − `) ≤ t < r},
(i) the set T is not empty, AND
(ii) (a) at least one share of the challenge message is

dispatched by u1−b in {(r − `), . . . , (r − 1)}, OR
(b) at least one share of the challenge message
passes through an honest node at time t′ such that
t′ ∈ {min(T), (r−1)}, AND at least one of the mes-
sages (real message or noise) from u1−b, sent at

Comprehensive Anonymity Trilemma 365

t ∈ {(r − `), . . . , (r − 1)}, passes through an honest
node at time t′ such that t′ < r.

Claim 1 (Invariant 2 is necessary for anonymity). Let
Π be any protocol ∈M with latency overhead ` and band-
width overhead B. Let u0, u1, b and T be defined as in
Invariant 2. If Invariant 2 is not satisfied by Π, then
our adversary Apaths as in Section 4.2 wins.

We refer to Appendix D for the proof.
Intuition about Invariant 2 and Claim 1. The
invariant establishes minimal conditions for anonymity
to hold against a path possibility adversary. To this end,
we look at which cases would allow the adversary to
defeat the protocol and in which cases the adversary
can be fooled. Note that the adversary knows the two
potential challenge users and can observe the traffic, but
can only connect incoming and outgoing messages of a
compromised party. The adversary can also see when
the challenge message reaches the recipient.

• If only one of the two challenge users sends a
message in the ` rounds before the challenge message
reaches the recipient, then only that challenge user could
have sent the message without violating the latency con-
straint. This observation is captured in part (i).

• If both challenge users happen to collaborate on
sending the challenge message (ub is the actual sender of
the challenge message, u1−b happens to send a share for
this specific message), then the adversary cannot decide
which of the two users has sent the challenge message.
Even a more realistic adversary would, in most cases,
lose this game. The only way to still decipher which
user sent the message is to exploit other information
(say, about other messages sent by the two users), but
the path possibility adversary does not attempt this.
This observation is captured in part (ii a).

• In case (ii a) does not occur, there are two other
cases in which the path possibility adversary wins: (1) if
the adversary can track all the shares of the challenge
message from sender to recipient (since we assume (ii a)
does not hold, these senders don’t include u1−b); (2) if
the adversary can track all the packets sent by u1−b to
their respective recipients and thus be sure that u1−b
has not sent the challenge message. We see that in both
of these cases the path possibility adversary wins. Thus,
they have to be necessary for anonymity. This observa-
tion is captured in part (ii b).

Overall, Invariant 2 describes the following logical
formula: (i) AND (ii), where

• (ii) = (ii a) OR (ii b)
• (ii b) = (ii b 1) AND (ii b 2)

Lessons for an ideal protocol. Let us now look at
the parts of Invariant 2 and discuss what they mean for
constructing an ideal protocol:

• (i) The set T must not empty. This depends
solely on when users send (real or noise) messages, which
we capture with our definitions of the user message dis-
tribution. Thus, this part is independent of the decisions
of the actual protocol.

• (ii a) The user u1−b sends a share of the chal-
lenge message. To maximize this probability, which is
independent of our other choices, we want the chance
that any user is sending shares for any other user to be
as large as possible.

• (ii b 1) At least one share of the challenge mes-
sage travels through an honest node. To maximize the
probability that this occurs, a protocol should maximize
the number of nodes collectively visited by shares.

• (ii b 2) At least one message from u1−b trav-
els through an honest node. Since the (ideal) protocol
doesn’t know which users are the challenge users it needs
to generalize: To maximize the probability that this oc-
curs, the ideal protocol should maximize the number of
nodes collectively visited by messages from each user.

These lessons, particularly (ii b), inspire our choices
for an ideal protocol. Before we explore them, we briefly
discuss the role of internal noise messages and relate
them to the invariant.

4.4 Modeling internal noise

To make the accounting of bandwidth overhead easier
we want to disallow the protocol from using internal
noise, i.e., noise packets generated by a protocol party
6∈ S. Recall the assumptions we place on all packets,
including internal noise: 1. No packets can be dropped.
2. Packets can be tagged as a share of message m, but
only with one tag and that tag can never be changed.
3. Packets can remain in the system for at most ` rounds
from their generation. 4. Shares must not violate the
latency bound of the message that the noise is tagged
with (c.f. Section 3.6); i.e., for a message m, all packets
tagged with m must arrive within ` rounds of the round
in which the user wanted to send m.

Claim 2 (User noise can replace internal noise). For
every protocol in which noise is generated by internal
protocol parties (6∈ S) and latency overhead `, there
exists a protocol that uses only user-generated noise
(noise packets originating from a user u ∈ S) and la-

Comprehensive Anonymity Trilemma 366

tency overhead ` + 1 with at least equal probability of
satisfying Invariant 2.

If a noise message is generated by an internal party P
we randomly choose a user to generate it and then relay
it to P . We refer to Appendix D for the proof.

4.5 Ideal protocol

We now construct a protocol Πideal that has a proba-
bility of satisfying Invariant 2 against Apaths at least as
high as any other protocol in our protocol model.

Following Claim 2, we allow our ideal protocol to
have latency overhead of ˆ̀= `+1, and assume that every
message is created by some user u ∈ S. Consequently
the adversary behaves as if he is dealing with a protocol
that is allowed to have ˆ̀ latency overhead.

The protocol has a number of pre-defined paths.
Those paths are constructed at the beginning of the
protocol and do not change throughout the protocol
run. Πideal has access to an oracle O (discussed later);
Πideal calls O.QueryPaths() to decide the number of
paths and distribution of protocol parties in each path.
Fig. 2 presents pseudocode for the ideal protocol.

Since the protocol has control over the noise mes-
sages, it utilizes all the noise messages as shares of some
real message. Whenever a message (real or noise) is sent
to a path Path it is sent to the protocol party at position
r mod |Path| in the path, if the current round number
is r. In the next round either the message is delivered to
the recipient, or transferred to the next protocol party
(at position (r + 1) mod |Path|) in the same path. For
every message m, Πideal queries the oracle (by calling
O.QueryForMessage(m)) to decide which path the mes-
sage should be sent to and the number of rounds the
message should remain in the protocol. If the message
is a noise message, the oracle additionally returns the
real message that the noise should be a share of.

The oracle O is an overapproximation of different
strategies that a protocol can use to optimize paths and
noise messages. Our oracle knows the user distribution,
all past and future messages, the number of compro-
mised parties, and the protocol strategy. The protocol
is oblivious to the challenge message, the challenge bit,
the challenge users, the identity of the protocol parties
who are compromised; and so is the oracle. Thus, given
the user distribution, the past and future messages, and
the number of compromised parties, the oracle tries to
maximize the probability of satisfying Invariant 2 for
the protocol Πideal, against our adversary Apaths.

The oracle O can achieve the above by trying out all
possible configurations and calculating for each config-
uration the probability of satisfying Invariant 2 assum-
ing that the two challenge users are chosen uniformly
at random (refer to Fig. 4 in Appendix B.5 for a pos-
sible instantiation of the oracle.). This consideration is
different from the protocol actually satisfying the in-
variant, since the oracle does not actually run the pro-
tocol; is unaware of the actual challenge users, the ex-
act protocol parties that are compromised, or the actual
challenge message. Note that the oracle is not bounded
polynomially anymore; however, since we are proving
impossibility, a stronger protocol still provides a valid
impossibility result.

Oracle O;
Paths← O.QueryPaths();
MessageRoute〈m, path, delay, tag〉 ← empty set;

Upon Round r:

for each Path in Paths do
i← r mod |Path|
for each message m held by party Path[i− 1] do

(path, delay, tag)← MessageRoute.Get(m)
if delay is expired then send m to recipient
else send m to Path[i mod |Path|]

for each message m in the input queue do
(path, delay, tag)← O.QueryForMessage(m)
MessageRoute.Add(〈m, path, delay, tag〉)
Path← Paths[path]; send m to Path[r mod |Path|]

Fig. 2. Definition of Ideal Protocol Πideal

Special case of Ideal Protocol when K > (B +
1)ˆ̀. For a special case of parameters, we can construct
a fairly practical ideal protocol that does not require
as much help from the oracle. Consider the case where
the number of protocol parties K is large enough so all
shares of a message can travel on distinct paths that
do not overlap; also assume for simplicity that we have
a constant rate of input messages per round. In this
case, we can use static looping paths, where each path is
comparable to the ideal protocol from Das et al.: packets
on each path remain together and hop from one node
to the next (on that path).

Technically, we define B+ 1 paths with an approxi-
mately equal number (K/(B+ 1)) of mutually exclusive
protocol parties each. Whenever a user sends a packet,
the protocol queries the oracle for the latency and the
path index, but the paths themselves remain the same.
Otherwise the ideal protocol remains unmodified.

Comprehensive Anonymity Trilemma 367

The ideal protocol is ideal. We now show that the
ideal protocol is indeed ideal for Invariant 2.

Claim 3 (Ideal protocol is ideal for Invariant 2).
Against the given adversary Apaths, Πideal with la-
tency ˆ̀ satisfies Invariant 2 with probability at least as
high as any other protocol in M with latency `.

We refer to Appendix D for the proof. From here on-
wards, we assume that messages (real or noise) are gen-
erated only by users ∈ S, and whenever a latency of ` is
allowed to the protocol, we allow the ideal protocol to
have a latency of ˆ̀= `+ 1 in our calculations.

5 Analyzing synchronized users
The first user distribution we analyze is the synchro-
nized user message distribution UB as defined in Sec-
tion 3.5. Recall that in UB in every round exactly one
user sends a message and within N rounds each user
sends a message only once. We allow the protocol to
add up to B noise packets per round and leave it up to
the protocol to decide which users send those B packets.
If B is not a natural number, we allow the protocol to
send bBc noise messages per round and one more every
few rounds s.t. the average bandwidth overhead remains
B while spacing them out as evenly as possible.

5.1 Lower bound on adversarial advantage

Theorem 1. For user distribution UB, no protocol Π
∈M can provide δ-sender anonymity, for any
δ <

(
1− B

N−1
) [

1− (τ+1)N−B ˆ̀−ˆ̀
N g(τ)− B ˆ̀+ˆ̀−τN

N g(τ+1)
]

where τ = bB ˆ̀+ˆ̀
N c, ˆ̀= `+ 1

and g(x) =

1 c < xˆ̀

1−
(c
xˆ̀
)/(K

xˆ̀
)

c ≥ xˆ̀.

Proof. Suppose u0 and u1 are the challenge users, and
ub sends the challenge message which reaches the recip-
ient in some round r. We know from Claim 3 that Πideal
is ideal; thus, we focus on Πideal here. By definition of
Πideal, the challenge message can have up to (B + 1)
shares, including the one sent by ub. Since the challenge
users are not known to the oracle O, the best strategy
for O is to have B shares per real message.

For our invariant to be satisfied, it is necessary that
u1−b sends at least one message within [r−`, r−1]. Such

a message can be a share of the challenge message, or a
real message. If we denote by x the number of messages
sent by u1−b in a given interval of ˆ̀ rounds, x can have
only two possible values depending on the values of B,
ˆ̀ and N. That is because the protocol tries to maximize
the total number of users that send messages in a given
interval of ` rounds. Hence, u1−b sends τ = bB ˆ̀+ˆ̀

N c mes-
sages with probability (τ+1)N−B ˆ̀−ˆ̀

N , and sends (τ + 1)
messages with probability B ˆ̀+ˆ̀−τN

N .
If none of them is a share of the challenge message,

we require that at least one of those messages passes
through an honest node before round r. Hence,
Pr [Invariant 2 is true]

≤ Pr [u1−b sends a share of the challenge message]

+ Pr[u1−b sends no shares of the challenge message

∧ u1−b sends a message in the given span of ˆ̀ rounds]

× Pr [At least one of the messages visits an honest node]
≤ B

N−1 +
(
1− B

N−1
) (τ+1)N−B ˆ̀−ˆ̀

N × g(τ)
+
(
1− B

N−1
)
B ˆ̀+ˆ̀−τN

N × g(τ + 1).
where τ = bB ˆ̀+ˆ̀

N c, and g(x) is a function that provides
an upper bound on the probability that at least one
message from u1−b passes through at least one honest
node in a given interval of ˆ̀ rounds, when u1−b sends
exactly x messages. Hence,

Pr[at least one message from u1−b passes through
an honest node |u1−b sends x messages]

≤ g(x) =

1 c < xˆ̀

1−
(c
xˆ̀
)/(K

xˆ̀
)

c ≥ xˆ̀

By Claim 1 whenever Invariant 2 is not true the ad-
versary wins. Whenever it is true, the adversary still can
flip a coin and thus the probability that the adversary
loses is bounded by:
Pr
[
0 = Apaths|b = 1

]
= Pr

[
1 = Apaths|b = 0

]
≤ 1

2Pr [Invariant 2 is true] .
Therefore,
δ ≥ 1− Pr [Invariant 2 is true]
≥
(
1− B

N−1
) [

1− (τ+1)N−B ˆ̀−ˆ̀
N g(τ)− B`+`−τN

N g(τ + 1)
]
.

Although the above bound is a perfectly valid lower
bound for δ over 0 ≤ c ≤ K, when c < ˆ̀ and τ = 0,
we can derive a more precise lower bound on δ:

δ ≥
(
1− B

N−1
) (

1− B(ˆ̀−c)+(ˆ̀−c)
N − Bc+c

N

[
1− 1

/(K
c

)])
.

Appendix F.1 presents a full derivation for this bound.

Comprehensive Anonymity Trilemma 368

5.2 Impossibility for strong anonymity

Using Theorem 1, we can derive the following impossi-
bility theorems. Appendix E presents the full proofs.

Theorem 2. For user distribution UB with K,N ∈
poly(η), K > c, ˆ̀ < N, N − 1 > B ≥ 0, no protocol
Π ∈M can achieve strong anonymity if
(i) ˆ̀(B+1) < N− ε(η) where ε(η) = 1/ηd for a positive

constant d, OR
(ii) c ≥ (B + 1)ˆ̀ and ˆ̀∈ O(1).

Theorem 2 in words. For our user distribution UB in
which user behavior is synchronized and somewhat pre-
dictable, a protocol has only three options to achieve
strong anonymity: (1) to use a massive amount of la-
tency overhead ˆ̀≥ N (intuitively: “wait until everyone
has sent a message”); (2) to use a massive amount of
bandwidth overhead B ≥ N− 1 (intuitively: “every user
sends a packet in every round”); or (3) to have a trade-
off between the two: ˆ̀(B + 1) ≥ N (intuitively: “make
sure that messages wait long enough for everyone to
have sent a packet”). In case (3) we have an additional
requirement: if the adversary is allowed to compromise
more than the number of parties that any message and
its shares can meet while they are within the protocol,
then it is possible that the challenge message and all
its shares only travel through compromised nodes. If
the length of the paths taken by these messages is con-
stant, this occurs with non-negligible probability and
thus strong anonymity is impossible.

Theorem 3 (Anytrust Impossibility Theorem). For
user distribution UB with K,N ∈ poly(η), K − c = γ ∈
O(1), K > c, no protocol Π ∈ M can achieve strong
anonymity if ˆ̀≤ N− 1 and B ≤ N− 2 and ˆ̀2 ≤ K− γ.

Theorem 3 in words. If all but a constant number of
nodes are compromised, then strong anonymity is only
possible with a massive latency overhead or a massive
bandwidth overhead (cases (1) and (2) from Theorem 2
in words respectively) or if the latency overhead ` allows
each packet to traverse at least the square root of all
compromised parties (ˆ̀2 ≥ c).

6 Analyzing unsynchronized users
We now analyze the unsynchronized user message dis-
tribution UP as defined in Section 3.5. Recall that in

UP in every round each user tosses a biased coin with
success probability p ∈ (0, 1] to decide whether or not to
send a message. This coin toss is independent of coins
tossed by other users or in other rounds. We assume
that the bandwidth overhead is part of p, i.e., we divide
up p into the probability to send a real message p′ < p

and define our bandwidth overhead as B = p−p′

p′ noise
messages per real message.

6.1 Lower bound on adversarial advantage

Theorem 4. For user distribution UP , no protocol Π
∈M can provide δ-sender anonymity, for any

δ <
(

1− Beff
N− 1

) [
1− g(ˆ̀)× fSA

p (ˆ̀)
]
, where

Beff = min(B, ˆ̀pN− 1),

fSA
p (d) = min

(
1, 1

2 +
(
1− (1− p)d

))
, and

g(x) =

{
1−

(c
xˆ̀
)
/
(K
xˆ̀
)

xˆ̀≤ c ≤ K

1 otherwise.

We refer to Appendix E for the proof of this theorem.
Although the above bound is a valid bound for 0 ≤

c ≤ K, we can derive a more precise bound when c < `:

δ ≥
(

1− Beff
N−1

)
×
(

1− fSA
p (ˆ̀− c)

)
×
[
1− fSA

p (c)
(
w2 + w1

[
1− 1/

(K
c
)])]

,

where w1 = cp (1− p)c−1 and w2 = 1−w1−(1− p)c. We
refer to Appendix F.3 for the derivation of this bound.

6.2 Impossibility for strong anonymity

Using Theorem 4, we can derive the following impossi-
bility theorems. We refer to Appendix E for their proofs.

Theorem 5. For user distribution UP , with ˆ̀< N and
B < (N−1)−ε(η), no protocol Π ∈M can achieve strong
anonymity if pˆ̀< 1− ε(η). Moreover, strong anonymity
can not be achieved if ˆ̀∈ O(1).

Theorem 5 in words. We confirm that a protocol
even with user coordination generally can only provide
strong anonymity if it (1) uses a massive amount of
bandwidth overhead B ≥ N − 1 (intuitively: “for ev-
ery real message, every other user sends a share”); or
(2) satisfies the bound for UP without compromised
nodes from Das et al. [12, 12]. Thus, we confirm that
for B < N − 1 their basic trilemma condition (with-
out compromised nodes) holds even against protocols

Comprehensive Anonymity Trilemma 369

with user coordination. In other words, while user co-
ordination with B < N strengthens a protocol against
compromised parties, it does not suffice for overcoming
the basic trilemma condition.

Theorem 6. For user distribution UP , Given p < 1 −
ε(η), B < (N − 1) − ε(η) c

K = const, no protocol Π ∈
M can achieve strong anonymity if c > ˆ̀2 and ˆ̀2 ∈
O(log(η)), where ε(η) = 1/ηx for a positive constant x.

Theorem 6 in words. If a constant fraction c
K of

protocol parties is compromised and the protocol does
not use a massive bandwidth overhead (see above), then
the latency has to grow significantly with the security
parameter (ˆ̀must grow superlogarithmic in η).

Theorem 7. For user distribution UP , given B < (N−
1)− ε(η), no protocol Π ∈M can achieve strong anony-
mity if p×max

{
ˆ̀− c, ˆ̀

2

}
< 1− ε(η).

Theorem 7 in words. For UP , if the protocol does
not use a massive bandwidth overhead (see above),
then compromised parties reduce the effective latency
in terms of the basic trilemma by a factor of up to two;
the more parties can be compromised, the harder it be-
comes for the protocol.

Theorem 8 (Anytrust Impossibility Theorem). For
user distribution UP with K,N ∈ poly(η), K − c = γ ∈
O(1), K > c, no protocol Π ∈ M can achieve strong
anonymity if ˆ̀≤ N− 1 or B ≤ N− 2 or ˆ̀2 ≤ K− γ.

This theorem is similar to Theorem 3 from Section 5. If
there are only constant number of honest nodes, strong
anonymity is impossible without a large latency over-
head or a huge bandwidth overhead or if the latency
overhead ˆ̀ allows each packet to traverse at least

√
c

parties. The proof is also similar to that of Theorem 3,
therefore we skip the proof here.

7 Discussion of results

7.1 Impossibility results

From our impossibility theorems in Sections 5 and 6, we
observe that strong anonymity requires a combination
of latency overhead and bandwidth overhead – which is
very similar to the observations from Das et al. [12]. The
strong assumption of user coordination (U.C.) appears

to reduce the cost to achieve anonymity, but in most
cases does not suffice. As an exception, strong anony-
mity can always be achieved with user coordination for
B ≥ N – even in cases where it is provably impossible
for protocols that do not use user coordination.

In Table 1 we compare the impossibility results for
protocols with user coordination with those for pro-
tocols without user coordination. We compare differ-
ent cases for the number of compromised nodes c in
relation to the latency overhear ` and the bandwidth
overhead B. Each entry shows under which condition
we can prove that strong anonymity is impossible. Re-
call that the impossibility bounds cannot be tight, as
we solely consider the possible paths adversary Apaths.
Tight bounds would have to also make requirements
about the message distributions. Our results are nev-
ertheless comparable to those from [12], since we use
the same adversary Apaths.
Unified impossibility bound for both user distri-
butions. When comparing our impossibility results for
both user distributions, we can represent them with a
single unified impossibility condition ˆ̀(p′+β) < 1−ε(η),
where β is the number of noise messages per user per
round. For the unsynchronized user message distribu-
tion, β = p′B = p− p′. For the synchronized user distri-
bution, β = B

N = p′B, since p′ by definition is 1
N .

Limitations of our results. In our derivations we
do not consider a probabilistic adversary which indeed
has a higher chance of deanonymizing users. Addition-
ally, we do not count the cost of user coordination in
our results. These factors make our results untight, still
giving us a strict lower bound on the cost of anonymity
in terms of latency and bandwidth overhead.

We also assume that no user ever goes offline, which
means that any restrictions we prove in our protocol
model directly translate to both protocols that have
an always online representation of users and protocols
that are more vulnerable. In other words: strong anony-
mity might be even harder to achieve in practice. This
makes our analysis slightly more untight for protocols
that don’t provide solutions for coping with offline users
and set intersection attacks.

Conversely, notions weaker than “strong anony-
mity”, e.g., a partial but robust anonymity set, can be
easier to achieve. However, if the cardinality of such a
partial set is known in advance our analysis can be easily
adapted by reducing the “set of all users” to the par-
tial set and then following our methodology to compute
bounds: If NW is the cardinality of an anonymity setW ,
our bounds will hold for parameter NW instead of N.

Comprehensive Anonymity Trilemma 370

Table 1. Impossibility Conditions for Anonymous Communication, with number of protocol-nodes K, number of compromised
protocol parties c, number of clients N, latency overhead `. In all cases we assume that ` < N, 1 ≤ B < (N − 1) − ε(η), and
ε(η) = 1/ηd for a positive constant d. We compare different cases for the number of compromised nodes c in relation to the la-
tency overhead ` and the bandwidth overhead B. Each entry shows under which condition we can prove that strong anonymity
is impossible. Note that we allow protocols with U.C. to utilize a latency of ˆ̀= `+ 1 (c.f., Footnote 2).
Cases UB without U.C. UB , with U.C. UP without U.C. UP , with U.C.
c ≥ 0 `(B + 1) < N− ε(η) ˆ̀(B + 1) < N− ε(η) `p < 1− ε(η) ˆ̀p < 1− ε(η)
0 < c ≤ ` (`− c)(B + 1) < N− ε(η) (ˆ̀− c)(B + 1) < N− ε(η) (`− c)p < 1− ε(η) p(ˆ̀− c) < 1− ε(η)
` < c ≤ (B + 1)` ` ∈ O(1) ˆ̀(B + 1) < N− ε(η) ` ∈ O(1) ˆ̀∈ O(1)
(B + 1)` < c ` ∈ O(1) ˆ̀∈ O(1) ` ∈ O(1) ˆ̀∈ O(1)
K/c ∈ O(1) ` ∈ log(η) ˆ̀∈

√
log(η) ` ∈ log(η) ˆ̀∈

√
log(η)

Table 2. Interesting cases for AC, with number of protocol-nodes K, number of compromised protocol parties c, number of clients
N, latency overhead `. The table assumes for all rows N ∈ Θ(η2), K ∈ Θ(η), ` < K < N and B ≤ (N − 2). Here, 7 denotes
that strong anonymity is provably impossible and (3) denotes that we could not show this impossibility, i.e., strong anonymity
could be possible. In some cases the impossibility proofs rely on additional requirements, i.e., we can only show 7 if these re-
quirements are met. Note that we allow protocols with U.C. to utilize a latency of ˆ̀= `+ 1 (c.f., Footnote 2).

UB without U.C. UB with U.C. UP without U.C. UP with U.C.
Interesting cases Ano. Add. req. Ano. Add. req. Ano. Add. req. Ano. Add. req.
β` = 1, ` < K, c ∈ Θ(log(K)) 7 7 7 p′ < 1

`
7 p′ < 1

`

β = 1
`
, ` ∈ O(1),K− c ∈ Θ(η) 7 7 7 7

β = 1
`
, ` < c < `2,K− c ∈ Θ(1) 7 7 7 (3)

β = 1
`
, `2 ≤ c,K− c ∈ Θ(1) 7 7 7 7

β = 1√
`
, `2 ≤ c,K− c ∈ Θ(1) 7 7 7 7

β` ∈ O(1), ` ≤ log(K), c = K/2 7 7 7 p′ < 1
2 7 p′ < 1

2
β > 1

log(η) , ` ≥ log(K), c = K/4 7 (3) 7 (3)
` <

log(η)
2 , c = K− 1 7 7 7 7

7.2 Interesting cases & corner cases

This section discusses some boundary cases and some
interesting cases to breathe life into our necessary con-
straints. We discuss combinations of bandwidth over-
head B, latency overhead `, and number c of compro-
mised nodes with respect to the impact of utilizing user
coordination (U.C.) in an ACN. In Table 1 we compare
the impossibility results for those cases for protocols
with user coordination with those cases. Here, 7 de-
notes that strong anonymity is provably impossible and
(3) denotes that we could not show this impossibility,
i.e., strong anonymity could be possible. In some cases
the impossibility proofs rely on additional requirements,
i.e., we can only show 7 if these requirements are met.

Our results are dominated by the universal nec-
essary constraints without any compromisation, i.e.,
ˆ̀(p′ + β) < 1 − ε(η). Hence, the focus of Table 2 is to
show which combinations of parameters along the lines
ˆ̀(p′+β) = 1 are impossible for which scenario. We illus-
trate that, while U.C. might lead to strongly anonymous
ACNs in some cases, there are interesting cases along
the lines of the universal necessary constraints where
even ACNs with U.C. cannot achieve strong anonymity.

When we compare the results for protocols without
user coordination vs. protocols with user coordination,
we compare ` = x vs. ˆ̀ = x to induce fairness2. For
deciding the verdicts, we directly use the lower bounds
on δ from our results.
Constant latency, full bandwidth overhead. Let
us consider ACNs that send for every real message N
shares (B = N), which we call full bandwidth overhead.
In this case, from our lower bounds on δ we can observe
that U.C. has an impact, as no internal node is needed to
achieve strong anonymity, as is done in DC-nets [8]. As
a consequence, even if there are internal parties but all
internal parties are compromised U.C. leaves the pos-
sibility of achieving strong anonymity (e.g., along the
lines of DC-nets). Without U.C., strong anonymity is
impossible if the latency is short (` ∈ O(1)). However,
when a protocol does not have full bandwidth overhead,

2 When we allow latency to be ` + 1 for protocols with user
coordination to approximate noise generated by internal parties
with user noise, we also allow protocols with only user noise to
have latency `+ 1. It is unfair to compare them with protocols
without user coordination with latency `. Moreover, when ` = 0,
there is no intermediate party, so there is no internal noise.

Comprehensive Anonymity Trilemma 371

U.C. can not provide strong anonymity without the help
of latency overhead and honest intermediate parties.
Almost very high latency, high bandwidth over-
head. For high latency bounds ` ≤ K− 1 that are just
shy of visiting every node in the ACN (` = K), strong
anonymity is impossible for synchronized users, even if a
high amount of bandwidth overhead B = N/` or β = 1/`
is tolerated. (In Table 2 we use β to unify the impossi-
bility bounds for synchronized and unsynchronized user
message distribution, where β = p′B; for synchronized
users, always p′ = 1/N.) In Appendix F.1 we provide ad-
ditional calculations relevant for these corner cases. For
the unsynchronized user distribution, strong anonymity
is impossible if the rate p′ at which real messages are
sent per round is low, roughly p′ < 1/`.
Moderate latency, minimal bandwidth overhead.
Next, we consider interesting cases where we fix the la-
tency ` and consider a bandwidth overhead in such a
way that β is along the lines of β` = 1. For the synchro-
nized user distribution, if the latency ` ≈ √η ≈

√
K and

B = N/`, our results leave the possibility for strong ano-
nymity only if the total number of compromised parties
is less than `, i.e., ` > c. For the unsynchronized user dis-
tribution, for similar latency (` ≈

√
K) and compromisa-

tion up to c ≤ `2, strong anonymity is possible and the
bandwidth overhead can be as low as B = β/p′ = O(1)
for a high rate of real messages (p′ is a constant frac-
tion). If all nodes but one are compromised (c = K− 1),
strong anonymity is impossible for both user distribu-
tions when ` <

√
K, independent of the bandwidth over-

head — which confirms our Anytrust impossibility the-
orem (Theorems 3 and 8).
Log latency, with nearly full bandwidth over-
head. Along the line β` = 1, another interesting case is
` = log(K)/2. In this case, the latency overhead is so low
that there is no chance to evade a pervasive adversary
that compromises a lot of nodes (c ≥ K/2). In a more
specific case, strong anonymity is impossible in a strong
compromisation scenario where all nodes but one are
compromised (c = K − 1), regardless of the bandwidth
overhead, i.e., for any β < 1− ε(η) and B ≤ (N− 2). For
a slightly higher latency ` ≥ 2 log(K) and a weak ad-
versary with c ≤ K/4, we cannot exclude the possibility
for strong anonymity as long as the universal necessary
constraints are satisfied (ˆ̀(p′ + β) ≥ 1).

In Appendix A, we discuss AC protocols from the
literature that utilize some form of user coordination
technique, how close they are to our bounds, and the
overhead of the user-coordination subprotocols.

8 Conclusion and future work
In this work, we have shown that the anonymity
trilemma by Das et al. leaves out AC protocols that uti-
lize what we call user coordination, an ability by which
users work together to introduce uncertainty. We ex-
tended their analysis and have covered all known ACNs,
including DC-nets (and Herbivore and Dissent-AT).

We have shown that even this additional power does
not fundamentally change the requirements on latency
overhead ` and bandwidth overhead B – except that
excessive bandwidth on its own is sufficient to provide
strong anonymity, independent of latency or even the
level of compromisation. In the absence of this extreme
case, a combination of latency and bandwidth overhead
similar to the results of Das et al. is still necessary. In
addition to confirming this crucial insight, our formal
analysis yields additional requirements for strong ano-
nymity based on the number of compromised nodes c: if
c > 0 then the latency overhead must grow (` /∈ O(1)); if
c/K ≥ 1/2 and ` ≤ log(η), then more and more messages
must be in the system, i.e., `p cannot be constrained by
any constant; if K − c ∈ O(1), such as in the Anytrust
assumption, then either ` > η2 or `p > 4

√
η are required.

Future work on ACNs can directly build on our in-
sights; our formulas indicate that user coordination in
the style of DC-nets (or Herbivore or Dissent-AT) can
reduce the gap to the universal necessary constraint
(`p ≥ 1 − ε(η)) significantly. For closing the gap, how-
ever, our results point to ACN designs outside of our
wide class of ACNs (see Appendix B.3 for a thorough
discussion). Protocol designers thus face a choice: settle
for a weaker notion of anonymity, come up with novel
techniques, sacrifice reliability or adhere to the latency
and bandwidth overheads described in this work.

Acknowledgments

We thank our shepherd Sebastian Angel and anonymous
reviewers for their valuable comments. This work has
been partially supported by Zurich Information Secu-
rity Center (ZISC), the European Commission through
H2020-DS-2014-653497 PANORAMIX, EPSRC Grant
EP/M013-286/1, the National Science Foundation un-
der grant CNS-1719196, CNS-1846316, and the Purdue
Research Foundation (PRF) Research Grants.

Comprehensive Anonymity Trilemma 372

References
[1] N. Alexopoulos, A. Kiayias, R. Talviste, and

T. Zacharias, MCMix: Anonymous Messaging via Se-
cure Multiparty Computation, in Proceedings of the 26th
USENIX Security Symposium, USENIX Association, 2017,
pp. 1217–1234.

[2] M. Ando, A. Lysyanskaya, and E. Upfal, Practical and
Provably Secure Onion Routing, in Proceedings of the 45th
International Colloquium on Automata, Languages, and
Programming (ICALP), Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018, pp. 144:1–144:14.

[3] , On the Complexity of Anonymous Communication
Through Public Networks, CoRR arXiv, abs/1902.06306
(2019).

[4] S. Angel and S. Setty, Unobservable Communication
over Fully Untrusted Infrastructure, in Proceedings of the
12th USENIX Conference on Operating Systems Design
and Implementation (OSDI), USENIX Association, 2016,
pp. 551–569.

[5] G. R. Blakley and C. Meadows, Security of ramp
schemes, in Advances in Cryptology, 1985, pp. 242–268.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan,
(leveled) fully homomorphic encryption without bootstrap-
ping, in Proceedings of the 3rd Innovations in Theoretical
Computer Science (ITCS) Conference, 2012, pp. 309–325.

[7] D. Chaum, Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms, Communications of the ACM, 4
(1981), pp. 84–88.

[8] D. Chaum, The dining cryptographers problem: Uncondi-
tional sender and recipient untraceability, Journal of Cryp-
tology, 1 (1988), pp. 65–75.

[9] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and
A. Perrig, HORNET: High-speed onion routing at the
network layer, in Proc. ACM Conference on Computer and
Communications Security (CCS), 2015, pp. 1441–1454.

[10] H. Corrigan-Gibbs, D. Boneh, and D. Mazières, Ri-
poste: An anonymous messaging system handling millions
of users, in Proc. 36th IEEE Symposium on Security and
Privacy (S&P 2015), 2015, pp. 321–338.

[11] G. Danezis, C. Diaz, C. Troncoso, and B. Laurie,
Drac: An architecture for anonymous low-volume commu-
nications, in Proc. 10th Privacy Enhancing Technologies
Symposium (PETS 2010), 2010.

[12] D. Das, S. Meiser, E. Mohammadi, and A. Kate, Ano-
nymity trilemma: Strong anonymity, low bandwidth over-
head, low latency - choose two, in 2018 IEEE Symposium
on Security and Privacy (SP), May 2018, pp. 108–126. ex-
tended version under https://eprint.iacr.org/2017/954.

[13] R. Dingledine, N. Mathewson, and P. Syverson,
Tor: The Second-Generation Onion Router, in Proc. 13th
USENIX Security Symposium (USENIX), 2004, pp. 303–
320.

[14] , Tor: The second-generation onion router, in Proc.
13th USENIX Security Symposium, 2004.

[15] N. Gelernter and A. Herzberg, On the limits of prov-
able anonymity, in Proc. Workshop on Privacy in the Elec-
tronic Society (WPES 2013), 2013, pp. 225–236.

[16] S. Goel, M. Robson, M. Polte, and E. Sirer, Herbi-
vore: A scalable and efficient protocol for anonymous com-
munication, (2003). https://www.cs.cornell.edu/people/egs/
herbivore/herbivore.pdf.

[17] P. Golle and A. Juels, Dining cryptographers revisited,
in Proc. of Eurocrypt 2004, 2004.

[18] A. Hevia and D. Micciancio, An indistinguishability-
based characterization of anonymous channels, in Proc.
Eighth International Symposium on Privacy Enhancing
Technologies (PETS 2008), N. Borisov and I. Goldberg,
eds., 2008, pp. 24–43.

[19] K. Jensen, Colored Petri Nets. Basic Concepts, Analysis
Methods and Practical Use., vol. 3, 1997.

[20] D. Kesdogan, J. Egner, and R. Büschkes, Stop-and-go
MIXes: Providing probabilistic anonymity in an open system,
in Proc. Information Hiding Workshop (IH 1998), 1998.

[21] L. M. Kristensen, S. Christensen, and K. Jensen,
The practitioner’s guide to coloured petri nets, International
Journal on Software Tools for Technology Transfer (STTT),
2 (1998), pp. 98–132.

[22] A. Kwon, D. Lazar, S. Devadas, and B. Ford, Rif-
fle: An efficient communication system with strong anony-
mity, Proceedings on Privacy Enhancing Technologies, 2016
(2016), pp. 115–134.

[23] D. Lazar and N. Zeldovich, Alpenhorn: Bootstrapping
secure communication without leaking metadata, (2016).

[24] S. Le Blond, D. Choffnes, W. Caldwell, P. Dr-
uschel, and N. Merritt, Herd: A Scalable, Traffic Analy-
sis Resistant Anonymity Network for VoIP Systems, in Proc.
ACM Conference on Special Interest Group on Data Com-
munication (SIGCOMM 2015), 2015, pp. 639–652.

[25] M. Backes, A. Kate, P. Manoharan, S. Meiser, and
E. Mohammadi, AnoA: A Framework For Analyzing Anony-
mous Communication Protocols, Journal of Privacy and
Confidentiality (JPC), 7(2) (2016).

[26] P. Mittal, M. Wright, and N. Borisov, Pisces: Anony-
mous communication using social networks, in Proc. 20th
Network and Distributed System Security Symposium
(NDSS 2013), 2013.

[27] S. Oya, C. Troncoso, and F. Pérez-González, Do
dummies pay off? limits of dummy traffic protection in
anonymous communications, in Proc. 14th Privacy Enhanc-
ing Technologies Symposium (PETS 2014), 2014.

[28] A. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and
G. Danezis, The loopix anonymity system, in Proc. 26th
USENIX Security Symposium, 2017.

[29] M. G. Reed, P. F. Syverson, and D. M. Goldschlag,
Anonymous Connections and Onion Routing, IEEE J-SAC,
16 (1998), pp. 482–494.

[30] W. Reisig, Primer in Petri Net Design, 1st ed., 1992.
[31] T. Ruffing, P. Moreno-Sanchez, and A. Kate, P2P

Mixing and Unlinkable Bitcoin Transactions, in Proc. 25th
Annual Network & Distributed System Security Symposium
(NDSS), 2017.

[32] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zel-
dovich, Vuvuzela: Scalable private messaging resistant to
traffic analysis, in Proc. 25th ACM Symposium on Operat-
ing Systems Principles (SOSP 2015), 2015.

[33] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and
A. Johnson, Dissent in Numbers: Making Strong Anony-

https://eprint.iacr.org/2017/954
https://www.cs.cornell.edu/people/egs/herbivore/herbivore.pdf
https://www.cs.cornell.edu/people/egs/herbivore/herbivore.pdf

Comprehensive Anonymity Trilemma 373

mity Scale, in 10th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 12), 2012, pp. 179–
182.

A Implications and scope
Our novel necessary constraints for the core of ACNs
with user coordination describe a large set of lower
bounds for combinations of bandwidth overhead, la-
tency overhead, resistance to compromised parties, and
the degree of anonymity. The rich literature on ACNs
contains a few proposals that come close to these novel
necessary constraints. This section discusses some of
these ACNs, in particular, their usage of user coordi-
nation to achieve stronger anonymity and the user co-
ordination online overhead against passive adversaries,
i.e., without the overhead of DoS countermeasures. We
do not discuss protocols that do not utilize user coordi-
nation [1, 22, 24, 28, 32].

Chaum started a line of work on so-called DC-
nets [8, 16, 17, 33] that implements anonymous broad-
cast channels assuming users have agreed on some cryp-
tographic keys with each other or with the protocols
parties and have decided on a schedule to ensure that
only one real message is sent in each round. As we
model the single-recipient setting and assume a passive
adversary, for communication overhead analyses we as-
sume variants where broadcast implementations are re-
placed by directed messages from protocol parties to
the dedicated recipient. In particular, for [8, 17], in ev-
ery round, we assume that each party sends either a
real message or a noise message (a share in our model)
to the recipient. As a protocol in our model, each client
would in each round send packets with the same tag and
one of these packets would contain the real message,
leading to a bandwidth overhead of N . With B = N

and ` = 0, DC-nets satisfy our novel necessary con-
straints for ACNs with user coordination from Theo-
rem 6, thereby showing tightness of our bounds for this
border case.3 Concerning the complexity of the user co-
ordinations, Chaum proposed [8] a solution where two
messages sent at the same time over the broadcast chan-
nel would collide. To avoid collisions, he proposed to
divide the broadcast into N2 blocks and to constantly
maintain a separate reservation array of size N2 in the

3 For DC-nets, [12] did not show necessary constraints under
active attacks.

broadcast that is sent in each round. Even if only 1-bit
messages are sent, this protocol results in an additional
bandwidth overhead of 2N2 and one additional round.
This bandwidth overhead can also be spread over the
latency by spreading the reservation array of the blocks
over several rounds.

Herbivore [16] partitions the set of clients into sev-
eral subsets of size N/q (for some integer q > 1) and
solely implements DC-nets within a partition, effectively
reducing the bandwidth B to the size N/q of a partition.
With B = N/q and ` = 1, our results prove that Herbi-
vore cannot achieve the employed AnoA-styled notion
of strong sender anonymity, which is easy to see: if the
two challenge senders u0, u1 are from different parti-
tions, an adversary can easily win. Herbivore also uses
the concept of reservations for avoiding collisions, yet
also provides several bandwidth-latency sweet spots.

Dissent-AT [33] also reduces DC-nets communica-
tion overhead. It relies on K computation servers (the
K protocol parties in our model). Assuming that every
client has a shared secret with each of the K servers, each
client only has to send her real message or share to one of
the K servers. Afterwards, in our model, these K servers
send their combined shares to the dedicated recipient.
Hence, the bandwidth overhead is N messages for each
real message, except that these N messages are not sent
to N parties as in DC-nets (leading to a communication
overhead of N2) but only to one of the K servers (lead-
ing to a communication overhead of N). As we assume a
single recipient, in our comparison the bandwidth over-
head is B = N just as for DC-nets. Hence, Dissent-AT
satisfies our necessary constraints for ACNs with user
coordination from Theorem 6; so, our results do not ex-
clude strong anonymity for Dissent-AT. DISSENT-AT
uses a verifiable shuffle among the K servers and results
in a periodic latency overhead of K.

Dicemix [31] is outside the scope of our model (see
Appendix B.3), as it can mix shares with different tags,
yet it nevertheless obeys our bounds. Dicemix aims at
removing the scheduling requirements of other DC-nets.
Dicemix assumes that each party sends a message, and
in our synchronized user distribution, it has to wait for
N rounds until real messages arrive. The protocol re-

Comprehensive Anonymity Trilemma 374

quires 4 communication rounds4 leading to a latency
of N + 4 in our model, which includes the user coor-
dination’s collision-avoidance subprotocol. Every party
sends N packets whenever all messages have been col-
lected (in every Nth round); so, the bandwidth over-
head (per client) in our model is B = N . If we average
the overhead (B′ = B/N = 1) over N rounds, however,
Dicemix is close to our universal bound N = B′` ≥ N ,
hence our results do not rule out strong anonymity, even
if almost all other parties are compromised.

All of the above protocols only deal with a boundary
condition from our results and their bandwidth over-
heads are tremendous. None of the known ACNs with
user coordination utilize the combination of multi-hop
layered encryption feature (as used in mix-nets) with
user coordination features that render the real sender’s
packet indistinguishable from a noise message, even for
the recipients. Indeed, there is significant scope for im-
provement here specially if we need to reduce the band-
width overhead by introducing some latency overhead.

ACNs with global static synchronization (i.e., UB
with U.C.) effectively introduce large overhead (e.g., N
rounds for DC-nets), since each user has to wait for
its turn to send a message. Hence, such ACNs are dif-
ficult to use with low-latency applications. Moreover,
current designs with user coordination (e.g., DC-nets or
Dissent-AT) can only then provide a full anonymity5

set (encompassing all clients) in the Anytrust setting
(c = K− 1) if almost all clients send a dummy message
(i.e., B = N − 1). For dynamic user coordination (UP
with U.C.), our results, however, do not exclude strong
anonymity for B < N if sufficient latency is added, as
in the third row of Table 2: B = β/p′ = 1/(`p′) = q/

√
K

(for p′ = 1/q and a constant q), ` =
√

K, c = K− 1,K =
η,N = K2. Such overhead combinations might be inter-
esting for future exploration of ACN designs.

One possible direction is to reconsider the recent
mix-net protocol designs [1, 24, 28, 32] in light of user co-
ordination. In particular, our lower bounds indicate that
these designs could benefit from incorporating user co-
ordination techniques, which could increase their resis-
tance against compromisation (by increasing the band-

4 While Dicemix includes integrity protection and self-healing
mechanism that leads to 4 + 2f communication rounds for one
message if f peers are deviating from the protocol, these mech-
anisms do not kick in if all peers follow the protocol (as even
the compromised parties do in our analysis), leading to only 4
communication rounds.
5 Satisfying strong anonymity implies achieving a full anony-
mity set.

width overhead B) while reducing latency overhead `.
Another possibility, for employing the user coordina-
tion, is to consider Riposte design [10], which uses the
private information storage primitive. In Riposte, to en-
able the recipient to point to the exact incoming packet
a sender input needs to include a number of elements
proportional to the square root of the size of the whole
stored database. Using user coordination can allow the
Riposte-like design to reduce this bandwidth overhead
by sending a smaller number of elements.

B Protocol model for AC
protocols

The main purpose of an AC protocol is to let an AC-user
(from the set of users S) send information to a recipient
(from the set of recipients R). Typically, an AC pro-
tocol utilizes a set of nodes (anonymizing parties P) to
improve performance and distribute trust. In this work,
we consider a global eavesdropping (i.e., passive) adver-
saryA that can observe the link between any two parties
S∪P (including anonymizing parties and users) and has
additionally compromised a set of c anonymizing parties
Pc ⊆ P.

We assume that the AC protocol uses cryptographic
means (e.g., encryption or secret sharing) to hide the ac-
tual message that a packet between two parties P1, P2 ∈
P ∪ S contains. We abstract the leakage of each such
packet as the current round number, the direct sender
P1, the direct recipient P2, and a random identifier for
the packet. This leakage indicates that a packet was sent
but doesn’t leak any content. Consequently, the adver-
sary only sees the challenge message in plain text when
it reaches the recipient.

We stress that we do not require the sets S, R, and
P to be mutually disjoint. In some protocols from the
literature, these sets actually intersect [8, 17, 31]. As
we concentrate on sender anonymity, for simplicity we
require the set R of recipients, to be disjoint from S∪P.

Next, using a Petri net model, we formally define a
generic AC protocol that captures a large class of AC
protocols. This section presents an extension of the pro-
tocol model from [12] with User coordination. Hence,
large parts of the protocol model coincide with the pro-
tocol model from [12].

Comprehensive Anonymity Trilemma 375

B.1 Protocol model

This section defines a generic timed colored Petri
net [19, 21, 30] M that can be instantiated with a large
class of (abstractions of) AC protocols from the litera-
ture. We use K as set of parties, S as the set of users,
P1, . . . , PK as the anonymizing (protocol) parties, $1 as
the randomness, R as the recipient of messages, m as
a message or packet (containing a real user message, a
noise, or being a share) sent by a client or a protocol
parties, TS as transitions for inserting messages into the
Petri net (i.e., into the AC protocol), and TP1 , . . . , TPK

as transitions for sending messages from one party to
another. We stress that for every AC protocol, we use
the same Petri net M , i.e., the same places, tokens, and
transitions. The guards within the transitions can, how-
ever, differ; hence, instantiating this generic Petri netM
for (the abstraction of) a concrete AC protocol amounts
to specifying the guards within the transitions, e.g., by
specifying to which party messages are sent next or how
much a message should be delayed. As this specifica-
tion of the generic Petri net M shows, all protocols that
can be instantiated by M , in particular these guards,
are oblivious to the challenge message or the challenge
users.

Next, we introduce the abstraction of packets in our
Petri net model. Formally, packets are colored tokens
with eight components. Four public components that
an adversary can observe are a unique identifier IDt, the
sender prev and the receiver next of a packet, and the
time ts at which the packet is activated. The four private
components that an adversary cannot observe are the
message content msg, some internal protocol meta-data
meta, the message’s time-to-live tr, and the share-group
tag to which this message belongs (see below).6 We treat
the following list as a definition that we quote verbatim
(in light green) from [12] with minor modifications:

Definition 3 (Colored token (green part from [12])).
A colored token is represented by the tuple m =
〈msg, tag, meta, tr, IDt, prev, next, ts〉,
where,
- msg is the content of the message,
- meta is the internal protocol meta-data for this mes-
sage,

- tr is the time the message can remain in the network,

6 As sender anonymity solely considers one recipient, for sim-
plicity we do not list the final recipient of the message in the
private part.

- IDt is a new unique ID generated by each transition
for each token by honest parties; dishonest parties in-
stead keep IDt untouched to allow the adversary to link
incoming and outgoing messages,

- prev is the party/user that sent the token and next is
the user/party that receives the token.

- Finally, ts is the time remaining for the token to be el-
igible for a firing event (a feature of timed Petri nets).
Here, ts either describes when new messages are in-
troduced into the Petri net or is set to the next round,
such that messages can be processed in every round as
soon as they enter the network.

- For allowing user coordination, we introduce an addi-
tional field tag that allows a token to be tagged and
several such tokens to contribute to sending one single
message. When user coordination is used by the proto-
col, msg field of all the tokens contributing for a single
message are populated with ⊥, and the tag field of all
those tokens are populated with a same tag. We dis-
cuss below, how the recipient can retrieve the original
message content once he receives a sufficient number
of such tokens.

IDt, prev, next, ts are public fields – which means they
are always visible to the adversary. However, the fields
meta and tr are never visible to the adversary. The fields
msg and tag can not be observed by the adversary until
a packet reaches the recipient.

In case user coordination is used, the field msg
does not help to retrieve the message content (because
msg = ⊥). In this case we use a more complex re-
construction: the recipient has access to a dictionary
D (outside the petri-net); when a message reaches the
recipient, the recipient queries the dictionary D to re-
trieve the content of the message. The dictionary has
four fields 〈tag,msg, count, countNeeded〉. The field msg
stores the actual content of the message. The fields
tag,msg, countNeeded are already populated (during
initialization of the system), whereas the value of count
is set to 0 initially. Every time, the recipient queries the
dictionary with D[tag], the dictionary increments the
value of count by 1; and only when count reaches the
value of countNeeded it returns msg. We want to specify
here that each token in our petri-net model can contain
only one tag.

We define a set Tokens that that contains each pair
(t, r), where t is a copy of a colored token and r the round
number in which the token was observed. Formally, we
introduce a set Tokens, that is initially empty and in
which we collect the pair (t, r), where t is a copy of a

Comprehensive Anonymity Trilemma 376

token and r the round number in which the token was
observed.
Places. We treat the list of places as a definition and
quote the definition verbatim from [12].

Any AC protocol with K parties P = {P1, . . . , PK}
consists of the following places:

– S: A token in S denotes a user message (real or
noise) which is scheduled to enter the network after ts
rounds.

– $1: This place is responsible for providing ran-
domness. Whenever a transition picks a token from this
place, the transition basically picks a random value.

– Pi with Pi ∈ P: A token in Pi denotes a message
which is currently held by the party Pi ∈ P.

– R: A token in R denotes a message which has
already been delivered to a recipient.

TX on tokens q = 〈msg, tag,_, tr, IDt,_, prev, ts〉
from X ∈ S ∪ P, $ from $1:

(P ′,meta′) = fΠ(q, $) ; r = current round
if tr = 0 then P ′ = R

if X ∈ P and X is compromised then IDt′ = IDt
else IDt′ = a fresh randomly generated ID
t = 〈tag,meta′, tr − 1, IDt′, Pi, P ′, 1〉
if P ′ 6= R then obs = 〈_,_,_,_, IDt′, prev, P ′, 1〉
else obs = 〈msg, tag,_,_, IDt′, prev, P ′, 1〉
Tokens = Tokens ∪ {(obs, r)}

Output: token t at P ′

fΠ: a function provided by Π to choose P ′ and to keep
state meta.

Reconstruct(tag):

if tag = ⊥ or D[tag] does not exist then return ⊥
D[tag].count = D[tag].count + 1
if D[tag].count = count.countNeeded then return
D[tag] else return _

Fig. 3. Transitions in the Petri net model M

Transitions. At the beginning of the execution, the
challenger specifying the set S on behalf of the AC pro-
tocol. The other places are initialized as empty. Trans-
ferring a message from one party to another party is
formalized by executing a transition that modifies the
configuration of the Petri net by consuming a token from
one place to producing a token in another place. The
Petri netM includes the following transitions, for which
the Figure 3 presents the pseudocode. Again, we treat
the following list as a definition that we quote verbatim
from [12] with minor modifications:

– TS : takes a token 〈msg, tag_,_,_,_, u, ts〉
from S and a token from $1 to write t =
〈msg, tag,meta, `, IDt, u, Pi, ts = 1〉 to Pi; the values of i
and meta are decided by the AC protocol.

– TPi
: takes a token 〈msg, tag,meta, tr, IDt,_, Pi, ts〉

from Pi and a token from $1 to write t =
〈msg, tag,meta′, tr − 1, IDt

′, Pi, P
′, 1〉 to P ′. If Pi is an

honest party IDt
′ is freshly generated, but if Pi is

a compromised party IDt
′ = IDt. The place P ′ ∈

{P1, . . . , PK} ∪ {R} and meta′ are decided by the AC
protocol, except when tr = 0, P ′ always is R.

The execution of each transition is followed by
adding a pair (t′, r′) to the set Tokens, with t′ being
a copy of the produced token t without the fields meta
and tr and r′ being the current round number. More-
over, if the place where t was produced is not in R also
the field msg is not contained in t′.

B.2 Expressing protocols

The generic Petri net M captures a large class of AC
protocols. This section discusses the expressivity of M
in general and for a few particular interesting cases.

M can model mix networks and onion routing pro-
tocols. Abstractions of stop-and-go mix [20] that use
a discrete distribution and AC protocols with sophisti-
cated path selection algorithms [11, 26] can be directly
encoded in M . AC protocols that are not round-based,
e.g., Tor [14], can be abstracted as round-based AC pro-
tocols, since we solely use M for impossibility results
and making the AC round-based only strengthens the
anonymity property.
Users as protocol parties. There are peer-to-peer
AC protocols, such as dining cryptographers networks
(DC-nets [17, 31]), in which users constitute relays. As
in the proof of Claim 2, we model users in such AC pro-
tocols with two nodes: one user node and one protocol
node. In this way, the latency is increased by one, but
in many cases that is not important.
Splitting and recombining messages. Our generic
Petri net M can abstract AC protocols that split and
recombine messages. In Claim 2, we prove that against
our adversary the protocol always benefits from letting
the user split the message, which we capture. Moreover,
our model capture AC protocols that let the recipient
recombine messages. Recombination at an earlier inter-
nal protocol node does not help against our adversary.
Recall that our adversary tries to follow all paths and
throws a random coin if the challenge message cannot be

Comprehensive Anonymity Trilemma 377

uniquely traced back to a user. Recombining the shares
earlier reduces the chance of each share mixing with
other messages; hence, it cannot increase our adver-
sary’s success probability. As a result, we can overap-
proximate internal splitting and recombination as user
splitting and recombination at the recipient.
Broadcasting messages. We prove that internal par-
ties creating messages is less strong than users creat-
ing messages against our concrete adversary (Claim 2);
hence, we can overapproximate protocols that inter-
nally broadcast messages with protocols where the users
broadcast messages. We include protocols in which a
user can send multiple messages with the same tag.

B.3 Discussion about user coordination
assumptions

In Section 3.6, we make three assumptions regarding
the protocol model. Most ACNs from the literature are
consistent with these assumptions.

The first assumption is that among the shares em-
ployed to reconstruct a message at least one must be
sent by the message sender. This follows from our as-
sumption that the messages are unavailable while User
Coordination gets established; if senders were allowed
to know and transmit their messages during setup, the
whole protocol could take place during the setup phase.

The second assumption is that no share can take
part in reconstructing two separate messages. Although
concepts such as Ramp secret-sharing [5] from the cryp-
tographic literature indeed offer the possibility to ex-
tract multiple shared messages from a given set of
shares, it requires messages to be known in advance.
In general, reusing the same share will introduce confi-
dentiality issues similar to a two-times pad. Dicemix [31]
uses such a technique where shares of different messages
are mixed and is thus outside our model. Nevertheless,
Dicemix utilizes n2 shares for reconstructing n mes-
sages; so, it does not break our impossibility bounds. Re-
cent mailbox-based schemes like Riposte [10] are within
our protocols model.

The third assumption is indeed interesting. It ex-
pects that a compromised party will always be able to
map its outgoing packets with its incoming packets. Al-
though this is trivially correct when there is one incom-
ing packet, the assumption focuses on the question when
there are two or more incoming packets. It suggests
that the party cannot permute these multiple incom-
ing packets such that it itself cannot determine the em-

ployed permutation. Performing non-interactive MPC
using fully homomorphic encryption (FHE) [6] may en-
able a node to permute message locally (i.e., without
introducing bandwidth and latency overheads) without
determining the permutation. This is highly inefficient
for current FHE mechanisms as the evaluation circuit
depth will be at least logarithmic in the number of users.
Nevertheless, it presents an interesting avenue for future
ACN design.

B.4 Construction of a concrete adversary

We use the same adversary Apaths as in the work of
Das et al. [12]. As we consider sender anonymity, the
adversary can start its analysis of all observations from
the challenge message that it observes at the recipient.
The adversary Apaths constructs all possible paths from
which the challenge message could have originated. Re-
call that in the sender anonymity game the adversary
knows two candidate senders u0 and u1. So, the adver-
sary checks whether there is a possible path from the
challenge message to u0 and to u1. If there is no path
to one of then, say ub, the adversary chooses the other
challenge sender u1−b. If there is a path to both of them,
Apaths makes a random choice.

More precisely, let (t′, r′) ∈ Tokens be an adversary
observation, with t′ being the colored token that was
observed in round r′. Let r be the round at which the
challenge message arrives. Fix j ∈ {0, 1}, and let a pos-
sible path for uj be a path from a challenge user uj to
the recipient R such that the path is at most ` elements
long. Observe that if the challenge bit is b the there
is at least one possible path for ub; there has to be a
path from ub to the recipient R. We quote the precise
definition from [12] with minor modification.
Sj ={p = (t1.prev, . . . , tk.prev, tk.next) :

((t1, r1), . . . , (tk, rk)) ∈ Tokens s.t. k ≤ `

∧ t1.prev = uj ∧ tk.next = R

∧ (tk.msg = Chall ∨ D[tk.tag] = Chall)

∧ ∀i∈{1,...,k−1}(ti.next = ti+1.prev ∧ ri+1 = ri + 1

∧ (∃t′i+1 : (t′i+1, ri+1) ∈ Tokens ∧ t′i+1.prev = ti.next

∧ t′i+1.IDt = ti.IDt)⇒ t′i+1 = ti+1)}

Definition 4 (Adversary Apaths). Given a set of users
S, a set of protocol parties P of size K, and a number
of possibly compromised nodes c, the adversary Apaths
proceeds as follows: 1. Apaths selects and compromises c
different parties from P uniformly at random. 2. Apaths
chooses two challenge users u0, u1 ∈ S uniformly at

Comprehensive Anonymity Trilemma 378

random. 3. Apaths makes observations and, based upon
those, constructs the sets S0 and S1. For any i ∈ {0, 1},
if Si = ∅, then Apaths returns 1−i. Otherwise, it returns
0 or 1 uniformly at random.

We stress that Apaths does (per run) not take any
probabilities into account. Even if in a particular run
it is overwhelmingly more likely that ub sent the mes-
sage but there is a negligible chance that u1−b sent the
message, Apaths does not decide for either of them and
randomly picks one. Moreover, if c = 0, Apaths only con-
stitutes a non-compromising global network-level adver-
sary, which compromises no protocol parties yet listens
on all links between nodes. If c > 0, Apaths is a partially
compromising global network-level adversary.

B.5 A possible instance of the Oracle
functionality

Figure 4 describes a possible instantiation of our oracle
O that our ideal protocol uses. The oracle is initialized
before the protocol starts; The oracle provides two main
functionalities QueryPaths() and QueryForMessage() as
defined in Figure 4.

C Impossibility bounds for
protocols without user
coordination

The work by Das et al. [12] derives impossibility re-
sults for mix nets. This protocol class rules out ACNs
with user coordination, like DC-nets. This section sum-
marizes their bounds on anonymity for mix nets. Us-
ing Invariant 1 and adversary Apaths, Das et al. derive
the following lower bounds on the adversarial advantage
δ against protocols without user coordination for syn-
chronized (UB) and unsynchronized (UP) user message
distributions.

Theorem 9 ([12]). For user distribution UB, even with
c = 0, no protocol Π ∈ M can provide δ-sender
anonymity, for any δ < 1 − fβ(`), where fβ(x) =
min(1, ((x+ βNx)/(N− 1))).

Theorem 10 ([12]). For user distribution UB, no pro-
tocol Π ∈M can provide δ-sender anonymity, for any

Paths := set of paths; Delays〈message, delay〉;
MessagePaths〈message, path〉;
MessageTags〈message, tag〉;

Initialize(Parties P , users U , input messages IU ,
protocol definition Π, latency `):

PathsConfigs ← set of all possible path configuration
(arrangements of parties in P)
DelaysConfigs← Set of all possible delay (of messages)
configuration of IU
Pglobal ← 0
for each (PathsConfig,DelaysConfig) in
(PathsConfigs,DelaysConfigs) do

PathsMaps ← set of all possible mappings for
messages to paths for the given DelaysConfig and
PathsConfig
TagsMaps ← all possible valid tags for messages
mapping noise messages to real messages for the
purpose of user coordination
for each (PathsMap,TagsMap) ∈
(PathsMaps,TagsMaps) do
Plocal ← the probability of satisfying Invariant 2
by protocol Π
if Plocal > Pglobal then
Pglobal ← Plocal; Paths← PathsConfig
MessagePaths← PathsMaps
MessageTags← TagsMap
Delays← DelaysConfig

QueryPaths():

return Paths

QueryForMessage(message m):

delay← Delays.Get(m) ; tag← MessageTags.Get(m)
path← MessagePaths.Get(m)
return (path, delay, tag)

Fig. 4. Instance of Oracle Functionality

δ <

1− [1−
(c
`

)
/
(K
`

)
]fβ(`) c ≥ `

1− [1− 1/
(K

c
)
]fβ(c)− fβ(`− c) c < `

where fβ(x) = min(1, ((x+ βNx)/(N− 1))).

Theorem 11 ([12]). For user distribution UP , even
with c = 0, no protocol Π ∈ M can provide δ-sender
anonymity, for any δ < 1 −

(1
2 + fp(`)

)
, where fp(x) =

min(1/2, 1− (1− p)x) for a positive integer x.

Theorem 12 ([12]). For user distribution UP , no pro-
tocol Π ∈M can provide δ-sender anonymity, for any

δ <

1− [1−

(c
`

)
/
(K
`

)
][1

2 + fp(`)] c ≥ `(
1− [1− 1/

(K
c
)
][1

2 + fp(c)]
)

×
(

1− [1/2 + fp(`− c)]
)

c < `

Comprehensive Anonymity Trilemma 379

where fp(x) = min(1/2, 1−(1−p)x) for a positive integer
x.

The impossibility conditions provided by the classi-
cal bounds are summarized in Table 3.

Table 3. Impossibility Results for Anonymous Communication
(Mix-nets), with the number of protocol-nodes K, number
of compromised protocol parties c, number of clients N, and
message-threshold T , expected latency `′ per node, dummy-
message rate β. In all cases we assume that ` < N and βN ≥ 1
and ε(η) = 1/ηd for a positive constant d.

dist. Compromisation Latency&Bandwidth
UB c = 0 2`β < 1− ε(η)
UB K > ` > c ∈ O(1) 2(`− c)β < 1− ε(η)
UB K > ` > c ∈ poly(η) 2`β < 1− ε(η)
UB K > c ≥ ` 2`β < 1− ε(η) or ` ∈ O(1)
UP c = 0 2`p < 1− ε(η)
UP K > ` > c ∈ O(1) 2(`− c)p < 1− ε(η)
UP K > ` > c ∈ poly(η) 2(`− c)p < 1− ε(η)
UP K > c ≥ ` 2`p < 1− ε(η) or ` ∈ O(1)

D Proofs of claims from Section 4
Proof of Claim 1. To prove the above, we need to prove
that anonymity is broken whenever either of (i) or (ii)
is false.

Whenever (i) is false, the set T is empty. Thus, the
challenge message could not have been sent by the u1−b.

For (ii) of the invariant to be false, both (ii.a) and
(ii.b) have to be false. Note here, (ii.a) directly im-
plies anonymity, because if one of the shares of the
challenge message is dispatched by u1−b within rounds
{(r − `), . . . , (r − 1)} there is no way for the adversary
to distinguish between the challenge users.

If (ii.a) is false, (ii.b) can be false in the following
ways:

1. no share of the challenge message passes through
an honest node: When the adversary backtracks the
paths of the shares of the challenge message starting
from the recipient, the path will never cross the paths
of any message from u1−b at an honest node. So, Apaths
can see that none of the messages from u1−b is a share
of the challenge message; u1−b could not have sent the
challenge message and hence Apaths wins.

2. At least one of the shares of the challenge mes-
sage sent at t ∈ T passes through one or more honest
nodes at times t′, but 6∃ t′ such that t′ ∈ {min(T), (r −

1)}: Following the same reasoning as above, we see that
paths after round min(T) can be ambiguous, but there
is no message from u1−b before min(T). So, none of
them will mix with any of the shares of the challenge
message. Thus, Apaths wins.

3. no message from u1−b sent at t ∈ T passes
through an honest node: Similar to previous cases, when
the adversary backtracks the paths of the shares of the
challenge message starting from the recipient, no path
will cross the paths of the messages from u1−b at an
honest node. So, no message from u1−b could have been
a share of the challenge message.

4. At least one of the messages from u1−b sent at
t ∈ T passes through one or more honest nodes at times
t′, but 6∃ t′ such that t′ < r: Following the same rea-
soning as above cases, we see that paths after round r

can be ambiguous, but the challenge message is already
delivered at round r. So, none of them will mix with any
of the shares of the challenge message.

In all cases where (ii.b) is false, Apaths wins with
probability 1, (assuming that (ii.a) is also false).

Proof of Claim 2. We prove this claim by construction.
Given a protocol Π1 we want to construct a protocol
Π2 that satisfies the invariant with at least the same
probability as Π1. Once, an internal noise message is
created, the content of the message can not be modified
(although, it can be re-encrypted with different keys or
decrypted), the message has to be delivered to the re-
cipient. Additionally an internal noise message can re-
main in the system for min(`, z). where z is the latency
bound for the message tag the message wants to use.
Thus, having a user send a message "costs" as much as
having internal nodes create the message. (Any internal
noise message created not as a share of a user message
will not influence the probability of the invariance being
true.)

We can consider two different cases for an internal
noise message:

1. A dishonest node creates the noise mes-
sage: since, messages can not mix at a dishonest node,
this does not help. Instead, a message sent by a user
could help the protocol.

2. An honest node creates the noise message:
This can definitely help the protocol. However, if a user
creates the noise one round before and sends it to the
given internal node in the current round, that is at least
as good as a noise message created by the node in the
current round.

Hence, for each internal noise messagem (created at
round r) in Π1 , we make Π2 send a noise message from

Comprehensive Anonymity Trilemma 380

a user (picked uniformly at random) at round r − 1.
And, because of the reasons explained above, Π2 will
have at least the same probability as Π1 in satisfying
Invariant 2. However, Π2 now uses latency overhead `+1
for the messages corresponding to the internal noises in
Π2 that uses latency overhead `.

Proof of Claim 3. We want to prove our claim by con-
tradiction. Suppose, there exists a protocol Π, given a
latency `, satisfies Invariant 2 with a higher probabil-
ity than Πideal (that uses latency ` + 1), against the
adversary Apaths. By Claim 2, we can construct a pro-
tocol Πnew where every message is created by some user
u ∈ S, and allow Πnew to use a latency of ˆ̀= `+ 1; and
Πnew will have a probability at least as much as Πideal
to satisfy the invariant.

Now we construct a new protocol Πhybrid, which
exactly follows the strategy of Πideal with one exception:
for a given message Πhybrid selects the time delay t same
as Πnew, instead of querying it from oracle O of Πideal.

The ideal strategy for ensuring that at least one
honest party is on at least one the path of the messages
from u1−b is to ensure that as many distinct parties as
possible are on all the paths combined. Similarly, the
possibility of having an honest party of the paths of the
shares of the challenge message is also maximized by
maximizing the number of distinct parties on all those
paths combined.

Similarly, the ideal strategy for obfuscating the chal-
lenge sender with user coordination is by maximizing
the number of users sending shares for the challenge
message. Since the user distribution is the same for both
Πnew and Πhybrid, Πhybrid is at least as successful in sat-
isfying the invariant due to the oracle.

For both Πnew and Πhybrid, the times when mes-
sages are sent and the time delays are same, and hence,
for every message the path length is same for both Πnew
and Πhybrid. However, Πhybrid decides the number of
paths, and distribution of the protocol parties on those
paths by querying the oracle. Hence, Πhybrid has a prob-
ability of satisfying Invariant 2 at least as high as Πnew.

Now, if we compare Πhybrid and Πideal : they follow
the same strategy. But Πideal picks the time delay t for
any message from oracle O such that t is optimal. Hence,
Πideal satisfies Invariant 2 with probability at least as
high as Πhybrid. Thus, Πnew does not satisfy Invariant 2
with a higher probability than Πideal.

E Deferred proofs
Proof of Theorem 2. We know,
δ ≥

(
1− B

N−1
) [

1− (τ+1)N−B ˆ̀−ˆ̀
N g(τ)−B`+`−τN

N g(τ+1)
]
.

First, we observe that, if B ˆ̀+ ˆ̀< N− 1
ηx , τ is zero,

and hence, g(τ) is zero. Moreover, B ˆ̀−ˆ̀
N < 1 − 1

Nηx =
not overwhelming. Which means δ cannot be negligible.
Now,

B ˆ̀+ ˆ̀< N− ε(η) ⇐= (B + 1)ˆ̀< N− ε(η).
We additionally need both g(τ) and g(τ + 1) to be

overwhelming to achieve strong anonymity. When c ≥
(B+1)ˆ̀, both τ(ˆ̀+1) and (τ+1)ˆ̀ have to be in ω(1) (i.e.,
not in O(1)), in order for g(τ) and g(τ + 1) to become
overwhelming. We know that B < N− 1 =⇒ B

N < 1. If
ˆ̀ is in O(1),
τ = bB ˆ̀+ˆ̀

N c = b
(
B
N

ˆ̀+ ˆ̀
N

)
c ≤ (`+ 1) ∈ O(1).

Hence, τ ˆ̀ is also in O(1). Therefore, g(τ) and g(τ + 1)
are not overwhelming.

Proof of Theorem 3. We know, τ = bB ˆ̀+ˆ̀
N c < ˆ̀. When

ˆ̀2 < K− γ,(c
τ ˆ̀
)(K

τ ˆ̀
) ≥ (c

ˆ̀2

)(K
ˆ̀2

) ≥ c! (K− ˆ̀2)!
(c− ˆ̀2)! K!

≥ (K− γ)! γ!
K!

For γ ∈ O(1), the above quantity is always non-
negligible. Hence, g(τ) is never overwhelming. There-
fore, δ cannot be negligible unless ˆ̀ ≥ N − negl(η) or
B ≥ N− 1− negl(η).

Proof of Theorem 4. Suppose u0 and u1 are challenge
users, and ub sends the challenge message. The challenge
reaches the recipient at round r. The challenge message
can have up to B = p−p′

p′ additional shares (excluding
the share sent by ub). Ideally, we want u1−b to send at
least one of the p−p′

p′ shares. If not, we at least want
u1−b to send at least one message in [r − ˆ̀, r − 1], that
passes through an honest node before round r.

By Invariant 2, only the shares sent in rounds
{(r− ˆ̀), . . . , (r−1)} can contribute to anonymity. There-
fore, the number of shares for the challenge message is
bounded by Beff = min(B, ˆ̀pN− 1).

The probability that u1−b sends at least one mes-
sage within a span of ˆ̀ rounds is upper bounded by
fSA
p (`) as explained in Appendix F.2. Moreover, u1−b
can not send more than ˆ̀ messages in ˆ̀ rounds. Thus,
we can derive:

Comprehensive Anonymity Trilemma 381

Pr [Invariant 2 is true]

≤ Pr [u1−b sends a share of the challenge message.]

+ Pr[u1−b sends no shares of the challenge message

∧ u1−b sends a message in the given span of round ˆ̀]

× Pr[Some share of the challenge message visits honest

node and some message from u1−b visits honest node]

≤ Beff
N− 1 +

(
1− Beff

N− 1

)
× Pr[u1−b sends at least

one message in {(r − ˆ̀), . . . , (r − 1)}]

× Pr
[
At least one honest node in ˆ̀ paths

]
≤ Beff

N− 1 +
(

1− Beff
N− 1

)
× g(ˆ̀)× fSA

p (ˆ̀)

By Claim 1, whenever Invariant 2 is not satisfied the
adversary wins, bounding the adversary’s advantage by:

δ ≥ 1− Pr [Invariant 2 is true]

≥
(

1− Beff
N− 1

)[
1− g(ˆ̀)× fSA

p (ˆ̀)
]
.

Proof of Theorem 5. If B < (N− 1)− ε(η), B
N−1 will be

less than 1 − neg(η). Hence, H =
(

1− g(ˆ̀)× fSA
p (ˆ̀)

)
has to be negligible to achieve strong anonymity. How-
ever, this is a generic lower bound on δ, and from
Appendix F.2 we know that it is sufficient to con-
sider

(
1− (1− p)ˆ̀) instead of fSA

p (ˆ̀). Hence, we re-

quire H ′ =
(

1− g(ˆ̀)×
(

1− (1− p)ˆ̀)) to be negligi-
ble for the protocol to achieve strong anonymity. When
pˆ̀< 1− ε(η) =⇒ (1− p)ˆ̀

< 1− ε(η), H ′ can never be
negligible, and consequently, δ can never be negligible.

Even when (1− p)ˆ̀ is negligible, g(ˆ̀) has to be over-
whelming as well to achieve strong anonymity in case
c > `, which implies

[(c
ˆ̀2
)/(K

ˆ̀2
)]

has to be negligible

(since c ≥ ˆ̀2 =⇒ c ≥ ˆ̀2), to achieve strong anonymity.(c
ˆ̀2

)/(K
ˆ̀2

)
can never be negligible if ˆ̀2 ∈ O(1).

When c < ˆ̀, We need
[
1− 1/

(K
c
)]

to be overwhelm-
ing to achieve strong anonymity. This means, we need
the term 1/

(K
c
)
to be negligible and that never happens

for a constant c. If ˆ̀∈ O(1), c is also O(1), since ˆ̀> c
by our assumption. And, that shows that our theorem
holds for c < ˆ̀ as well.

Finally consider the case ˆ̀ ≤ c < ˆ̀2. For a con-
stant `, if a constant c can provide adversary better ad-
vantage, the adversary will choose to compromise fewer
protocol parties even though he can compromise more.
Therefore, Whenever we have constant ˆ̀, it is impossi-
ble to achieve strong anonymity, since it is impossible
even for c being as small as 1.

Proof of Theorem 6. If B < N − 1 − ε(η),
(

1− Beff
N−1

)
cannot be negligible. In that case, both fSA

p (ˆ̀) and
g(ˆ̀) = 1 −

(c
ˆ̀2
)
/
(K

ˆ̀2
)
have to be overwhelming to make

δ ≥
(

1− Beff
N−1

)[
1− g(ˆ̀)× fSA

p (ˆ̀)
]
negligible. For c >

ˆ̀2 and c
K = const = 1

y ,

c− ˆ̀2

K− ˆ̀2
>

1
y
⇐⇒

(
c− ˆ̀2

K− ˆ̀2

)ˆ̀2

>

(
1
y

)ˆ̀2

=⇒ c . . . (c− ˆ̀2)
K . . . (K− ˆ̀2)

>

(
1
y

)ˆ̀2

(
1
y

)ˆ̀2

cannot be negligible for ˆ̀2 ∈ O(log(η)).

Proof of Theorem 7. When B < (N − 1) − ε(η),(
1− Beff

N−1

)
can never be negligible. Additionally, be-

cause p(ˆ̀−c) < 1−ε(η), (1− p)ˆ̀−c can not be negligible.
Therefore, to achieve strong anonymity,

(
1− (1− p)c)

and
[
1− 1/

(K
c
)]

has to be overwhelming – that is not
possible if pc < 1−ε(η). [Here we use the knowledge from
Appendix F.2 to use (1− p)ˆ̀−c instead of fSA

p (ˆ̀−c) and(
1− (1− p)c) instead of fSA

p (c).]
Finally, note that the adversary can always choose

to compromise less than c nodes and thus would choose
to compromise ˆ̀

2 at most to maximize the advantage.

F Interesting calculations

F.1 A tighter special case for Theorem 1

When τ = 0 and c < ˆ̀, we can derive a more precise
bound than the one in Theorem 1. Since τ = 0, there is
at most one message sent by u1−b in a span of ˆ̀ rounds.
There is a chance that u1−b does not send a message,
the invariants are not satisfied (and the adversary wins)
in that case. When u1−b sends a message, the invariants
are satisfied only if the whole path of the message is not
compromised. However, since c < ˆ̀, the adversary can
not compromise a whole path of length ˆ̀. Therefore,
the adversary has a chance to break the invariants if the
message from u1−b is dispatched in {r − c, . . . , r − 1}.
If the message is sent by u1−b in {r − ˆ̀, r − c − 1}, the
invariants can be satisfied. Therefore, we can derive a
lower bound on δ as follows:

Comprehensive Anonymity Trilemma 382

δ ≥Pr[u1−b does not send a share of challenge message]

×
(

1− Pr[u1−b sends a message in {r − ˆ̀, r − c− 1}]

− Pr[u1−b sends a message in {r − c, r − 1}]

× Pr[At least one of the c parties is honest]
)

≥
(
1− B

N−1
) (

1− B(ˆ̀−c)+(ˆ̀−c)
N − Bc+c

N ×
[
1− 1

/(K
c
)])

Bound on anonymity when B ˆ̀≤ N and c < ˆ̀. We
can use a similar technique as above to derive a precise
bound on δ when B ˆ̀≤ 1 and c < ˆ̀. Since B ˆ̀≤ N, for
ˆ̀< N the number of messages sent by bob is bounded
by 2, and τ ≤ 1. Therefore, we can derive the following
lower bound on δ:

δ ≥ Pr[u1−b does not send a share of challenge message]

×
(

1− Pr[u1−b sends two messages in {r − ˆ̀, r − 1}]

− Pr[u1−b sends only one message in {r − ˆ̀, r − c− 1}]
− Pr[u1−b sends only one message in {r − c, r − 1}]

× Pr[At least one of the c parties is honest]
)

≥
(
1− B

N−1
)(

1−max
(

0, B ˆ̀+ˆ̀−N
N

)
− B(ˆ̀−c)+(ˆ̀−c)

N − Bc+c
N ×

[
1− 1

/(K
c
)])

Note that, Pr[At least one of the c parties is honest]
can never be negligible. Because, even for c = 1, 1

/(K
c
)

is not negligible. The adversary can always choose to
compromise less number of parties if that gives the
adversary more advantage. This untightness is because
of the approximations in our proof, tighter bounds are
left for future work.

Therefore, a protocol can not achieve strong ano-
nymity if max

(
0, B ˆ̀+ˆ̀−N

N

)
+ B(ˆ̀−c)+(ˆ̀−c)

N is not over-
whelmingly 1.

F.2 Calculating the probability of a
specific user sending a message in a
span of d rounds, for unsynchronized
user message distribution

Here we derive an upper bound on the probability that
a specific user (Bob) sends a message in a given span of
d rounds, given that the protocol knows the frequency
distribution of the messages over rounds. This approx-
imates the cases where protocols can choose the delay
of a message depending on the density of messages at

different times. The calculations follow along the lines
of the proof of Theorem 8 from [12].

Consider the following indicator random variables:
X(1), X(2), . . . , X(N), each X(i) denoting if user i sends
a message or not in a span of d rounds. Since every user
acts independent of all other users, X(i)s are mutually
independent, and X(i) can be defined as,

X(i) =

{
0 with probability (1− p)d

1 with probability (1− (1− p)d).
We further denote X =

∑N
i=1 X

(i). The expectation
of X can be calculated as, E[X] =

∑N
i=1 E[X(i)] =

N(1− (1− p)d) = µ.

Using Markov’s Inequality we can say, Pr [X ≥ 2µ] ≤ 1
2 .

At least one message is sent by our chosen user
Bob is denoted by the event Y . If the total number
of messages in the span of d rounds is x ∈ {0, . . . ,N},
Pr [Y |X = x] ≤ x

N .
For 2µ ≤ N, we can derive,

fSA
p (d) = Pr [Y]

=Pr [X ≥ 2µ] · Pr [Y |X ≥ 2µ] + Pr [X < 2µ] · Pr [Y |X < 2µ]

≤Pr [X ≥ 2µ] · Pr [Y |X = N] + Pr [X < 2µ] · Pr [Y |X = 2µ]

≤1
2 ·

N
N +

(
1− 1

2

)
· 2µ

N = 1
2 +

(
1− (1− p)d

)
.

If 2µ > N, we get f(d) = Pr [Y] = 1. Using Cher-
noff bound, we can derive derive a tighter bound
Pr [X ≥ 2µ] = σ(d) ≤ exp (−2(µ2/N2)N). However, since
we are interested in impossibility results, and the dif-
ference is a constant factor 1

2 , we utilize the result ob-
tained by using Markov’s inequality. We formally define
the probability of Bob sending a message in the given d
rounds as, fSA

p (d) = min
(
1, 1

2 +
(
1− (1− p)d

))
.

However, when we analyze the possibility of strong
anonymity, if pd ≤ 1 we use fSA

p (d) =
(
1− (1− p)d

)
in-

stead. Because σ(d) becomes negligible in N, thus neg-
ligible in η.

Lemma 1. When pd ≤ 1, σ(d) ≤ exp (−2(µ2/N2)N) is
negligible in N for µ = N(1− (1− p)d).

Proof. For pd ≤ 1 we can say,
pd ≤ 1⇒ (1− p)d < 1

e

⇒ 1− (1− p)d > 1
2

⇒ µ2

N2 >
1
4

Therefore, σ(d) ≤ exp (−2(µ2/N2)N) ≤ exp (−N/2)
— which is always negligible in N.

Comprehensive Anonymity Trilemma 383

F.3 A tighter special case for Theorem 4

Let us derive a tighter upper bound on δ, in case of un-
synchronized user message distribution, when 0 ≤ c < `.
W is a random variable denoting the minimum number
of paths that the adversary needs to compromise to
ensure no honest party on the paths of the shares of the
challenge messages as well as no honest party on the
paths of the messages from u1−b. When c < ˆ̀,

Pr [Invariant 2 is true]

≤Pr [u1−b sends a share of the challenge message.]

+Pr[u1−b sends no shares of the challenge message]

×
(
Pr[u1−b sends a message in {r − ˆ̀, r − c− 1}]

+Pr[u1−b does not send a message in {r − ˆ̀, r − c− 1}]

×
(
Pr[u1−b sends more than one message in {r − c, r − 1}]

+Pr[u1−b sends only one message in {r − c, r − 1}]

×Pr[Some share of the challenge message visits honest

node and some message from u1−b visits honest node]
))

≤ Beff
N− 1 +

(
1− Beff

N− 1

)[
fSA
p

(ˆ̀− c
)

+
(
1− fSA

p (ˆ̀− c)
)

×
(

Pr [W ≥ 2 ∧ Y (c) ≥ 2]

+ Pr [W = 1 ∧ Y (c) ≥ 1]×
[
1− 1/

(K
c
)])]

≤ Beff
N− 1 +

(
1− Beff

N− 1

)[
fSA
p (ˆ̀− c) +

(
1− fSA

p (ˆ̀− c)
)

× fSA
p (c)

(
Pr [W ≥ 2] + Pr [W = 1]

[
1− 1/

(K
c
)])]

Note that W is a random variable, where
W = min

(
(X−X′)
X′ + 1, X

)
. Here X and X ′ follow

Binom(c, p) and Binom(c, p′) respectively. Therefore,
We can say that Pr[W = 1] is bounded by Pr[W =
1] ≤ w1 = Pr[X = 1] = cp (1− p)c−1. Consequently,
Pr[W > 1] ≥ w2 = Pr[X > 1] = 1 − w1 − (1− p)c.
Therefore, we can write,
Pr [Invariant 2 is true]

≤ Beff
N− 1 +

(
1− Beff

N− 1

)[
fSA
p (ˆ̀− c) +

(
1− fSA

p (ˆ̀− c)
)

× fSA
p (c)

(
w2 + w1

[
1− 1/

(K
c
)])]

Thus, δ ≥ 1− Pr [Invariant 2 is true]

≥
(

1− Beff
N−1

)
×
(

1− fSA
p (ˆ̀− c)

)[
1− fSA

p (c)

×
(
w2 + w1

[
1− 1/

(K
c
)])]

.

F.4 Analyze average case of the user
distribution, to derive impossibility
conditions for strong/quadratic
anonymity

Lemma 2. Let R be the set of all possible sequences of
execution of an AC protocol. Let Runs ∈ R be a random
variable denoting the sequence of execution. Suppose, for
a set of sequences of execution R′ ⊂ R, Pr[Runs ∈ R′] is
µ, and µ non-negligible. If the protocol can not provide
strong anonymity for any execution o ∈ R, the protocol
can not provide strong anonymity overall.

Proof. Suppose Y denotes the event that the adver-
sary wins, and o∗ is the element in R′ for which
the probability that the adversary wins is maximum,
i.e., Pr [Y | o∗] ≥ Pr [Y | o] for all o ∈ R′. Suppose,
Pr [Y | o∗] = ν. Then we can say,
Pr[Y] =

∑
o∈R

Pr[Y | Runs = o] · Pr[Runs = o]

=
∑
o∈R′

Pr[Y | Runs = o] · Pr[Runs = o]

+
∑

o∈R\R′

Pr[Y | Runs = o] · Pr[Runs = o]

≤
∑
o∈R′

Pr[Y ∧Runs = o∗] · Pr[Runs = o] + SR′′

= Pr[Y ∧Runs = o∗] · Pr[Runs ∈ R′] + SR′′

=ν · µ+ SR′′

where SR′′ =
∑
o∈R\R′ Pr[Y | Runs = o] · Pr[Runs = o].

We know µ and ν both are non-negligible. Therefore,
Pr[Y] is non-negligible.

The above lemma provides us with a very helpful in-
sight for unsynchronized user message distribution. Sup-
pose X denotes the total number of messages in a given
slice of ˆ̀ rounds, and R′ denotes the set of all se-
quences of execution where X < E[X]. For two val-
ues x1 and x2 drawn from X and x1 > x2, the pro-
tocol has a better chance for anonymity with X = x1.
Therefore, if we are analyzing the possibility of strong
anonymity, it is enough to analyze the average case
scenario in most of the cases (e.g., pˆ̀ ∈ O(1) – in
which case we can replace fSA

p (d) with
(
1− (1− p)d

)
for a given slice of d rounds). Additionally, we can
use δ ≥

(
1− Beff

N−1

)[
1− g(Z)× fSA

p (ˆ̀)
]
, where Z =

min
(

ˆ̀, 2B + 1
)
to analyze strong anonymity. Because,

by Markov inequality, the number of additional shares
for a message will be bounded by 2B with probability
at least 1

2 .

	Comprehensive Anonymity Trilemma:User Coordination is not enough
	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 Overview
	2.1 How we prove impossibility
	2.2 Lessons learned

	3 Preliminaries
	3.1 Anonymity definition
	3.2 What can and cannot protocols do?
	3.3 User coordination
	3.4 Adversary
	3.5 User message distributions
	3.6 Protocol model for ACNs

	4 Towards a new trilemma
	4.1 AC leveraging user coordination
	4.2 The path possibility adversary
	4.3 Necessary invariant for anonymity
	4.4 Modeling internal noise
	4.5 Ideal protocol

	5 Analyzing synchronized users
	5.1 Lower bound on adversarial advantage
	5.2 Impossibility for strong anonymity

	6 Analyzing unsynchronized users
	6.1 Lower bound on adversarial advantage
	6.2 Impossibility for strong anonymity

	7 Discussion of results
	7.1 Impossibility results
	7.2 Interesting cases & corner cases

	8 Conclusion and future work
	A Implications and scope
	B Protocol model for AC protocols
	B.1 Protocol model
	B.2 Expressing protocols
	B.3 Discussion about user coordination assumptions
	B.4 Construction of a concrete adversary
	B.5 A possible instance of the Oracle functionality

	C Impossibility bounds for protocols without user coordination
	D Proofs of claims from @tempd *@tempc sectionsec:impossibility_secretsharing
	E Deferred proofs
	F Interesting calculations
	F.1 A tighter special case for @tempd *@tempc subsectionthm:perm_compromised_dcnet
	F.2 Calculating the probability of a specific user sending a message in a span of d rounds, for unsynchronized user message distribution
	F.3 A tighter special case for @tempd *@tempc subsectionthm:poisson_compromised_dcnet
	F.4 Analyze average case of the user distribution, to derive impossibility conditions for strong/quadratic anonymity

