
Proceedings on Privacy Enhancing Technologies ; 2020 (4):5–23

Brendan Avent, Javier González, Tom Diethe, Andrei Paleyes, and Borja Balle

Automatic Discovery of Privacy–Utility Pareto Fronts
Abstract: Differential privacy is a mathematical frame-
work for privacy-preserving data analysis. Changing the
hyperparameters of a differentially private algorithm al-
lows one to trade off privacy and utility in a principled
way. Quantifying this trade-off in advance is essential
to decision-makers tasked with deciding how much pri-
vacy can be provided in a particular application while
maintaining acceptable utility. Analytical utility guar-
antees offer a rigorous tool to reason about this trade-
off, but are generally only available for relatively sim-
ple problems. For more complex tasks, such as training
neural networks under differential privacy, the utility
achieved by a given algorithm can only be measured em-
pirically. This paper presents a Bayesian optimization
methodology for efficiently characterizing the privacy–
utility trade-off of any differentially private algorithm
using only empirical measurements of its utility. The
versatility of our method is illustrated on a number of
machine learning tasks involving multiple models, opti-
mizers, and datasets.

Keywords: Differential privacy, Pareto front, Bayesian
optimization

DOI 10.2478/popets-2020-0060
Received 2020-02-29; revised 2020-06-15; accepted 2020-06-16.

1 Introduction
Differential privacy (DP) [15] is the de-facto standard
for privacy-preserving data analysis, including the train-
ing of machine learning models using sensitive data. The
strength of DP comes from its use of randomness to hide
the contribution of any individual’s data from an adver-

Brendan Avent: University of Southern California†, E-mail:
bavent@usc.edu
Javier González: Now at Microsoft Research†, E-mail: Gon-
zalez.Javier@microsoft.com
Tom Diethe: Amazon Research Cambridge, E-mail: tdi-
ethe@amazon.com
Andrei Paleyes: Now at University of Cambridge†, E-mail:
ap2169@cam.ac.uk
Borja Balle: Now at DeepMind†, E-mail:
borja.balle@gmail.com

† Work done while at Amazon Research Cambridge.

sary with access to arbitrary side knowledge. The price of
DP is a loss in utility caused by the need to inject noise
into computations. Quantifying the trade-off between
privacy and utility is a central topic in the literature on
differential privacy. Formal analysis of such trade-offs
lead to algorithms achieving a pre-specified level pri-
vacy with minimal utility reduction, or, conversely, an
a priori acceptable level of utility with maximal privacy.
Since the choice of privacy level is generally regarded as
a policy decision [41], this quantification is essential to
decision-makers tasked with balancing utility and pri-
vacy in real-world deployments [3].

However, analytical analyses of the privacy–utility
trade-off are only available for relatively simple prob-
lems amenable to mathematical treatment, and can-
not be conducted for most problems of practical in-
terest. Further, differentially private algorithms have
more hyperparameters than their non-private counter-
parts, most of which affect both privacy and utility.
In practice, tuning these hyperparameters to achieve
an optimal privacy–utility trade-off can be an arduous
task, especially when the utility guarantees are loose
or unavailable. In this paper we develop a Bayesian op-
timization approach for empirically characterizing any
differentially private algorithm’s privacy–utility trade-
off via principled, computationally efficient hyperparam-
eter tuning.

A canonical application of our methods is differ-
entially private deep learning. Differentially private
stochastic optimization has been employed to train feed-
forward [1], convolutional [10], and recurrent [38] neu-
ral networks, showing that reasonable accuracies can
be achieved when selecting hyperparameters carefully.
These works rely on a differentially private gradient per-
turbation technique, which clips and adds noise to gradi-
ent computations, while keeping track of the privacy loss
incurred. However, these results do not provide action-
able information regarding the privacy–utility trade-off
of the proposed models. For example, private stochas-
tic optimization methods can obtain the same level of
privacy in different ways (e.g. by increasing the noise
variance and reducing the clipping norm, or vice-versa),
and it is not generally clear what combinations of these
changes yield the best possible utility for a fixed pri-
vacy level. Furthermore, increasing the number of hy-
perparameters makes exhaustive hyperparameter opti-
mization prohibitively expensive.

Automatic Discovery of Privacy–Utility Pareto Fronts 6

The goal of this paper is to provide a computa-
tionally efficient methodology to this problem by us-
ing Bayesian optimization to non-privately estimate
the privacy–utility Pareto front of a given differentially
private algorithm. The Pareto fronts obtained by our
method can be used to select hyperparameter settings of
the optimal operating points of any differentially private
technique, enabling decision-makers to take informed ac-
tions when balancing the privacy–utility trade-off of an
algorithm before deployment. This is in line with the
approach taken by the U.S. Census Bureau to calibrate
the level of DP that will be used when releasing the
results of the upcoming 2020 census [2, 3, 19].

Our contributions are: (1) Characterizing the
privacy–utility trade-off of a hyperparameterized al-
gorithm as the problem of learning a Pareto front
on the privacy vs. utility plane (Sec. 2). (2) De-
signing DPareto, an algorithm that leverages multi-
objective Bayesian optimization techniques for learning
the privacy–utility Pareto front of any differentially pri-
vate algorithm (Sec. 3). (3) Instantiating and experi-
mentally evaluating our framework for the case of dif-
ferentially private stochastic optimization on a variety
of learning tasks involving multiple models, optimizers,
and datasets (Sec. 4). Finally, important and challeng-
ing extensions to this work are proposed (Sec. 5) and
closely-related work is reviewed (Sec. 6).

2 The Privacy–Utility Pareto
Front

This section provides an abstract formulation of the
problem we want to address. We start by introducing
some basic notation and recalling the definition of differ-
ential privacy. We then formalize the task of quantifying
the privacy–utility trade-off using the notion of a Pareto
front. Finally, we conclude by illustrating these concepts
using classic examples from both machine learning as
well as differential privacy.

2.1 General Setup

Let A : Zn →W be a randomized algorithm that takes
as input a tuple containing n records from Z and out-
puts a value in some set W. Differential privacy formal-
izes the idea that A preserves the privacy of its inputs
when the output distribution is stable under changes in
one input.

Definition 1 ([14, 15]). Given ε ≥ 0 and δ ∈ [0, 1], we
say algorithm A is (ε, δ)-DP if for any pair of inputs
z, z′ differing in a single coordinate we have1

sup
E⊆W

(
P[A(z) ∈ E]− eεP[A(z′) ∈ E]

)
≤ δ .

To analyze the trade-off between utility and privacy for
a given problem, we consider a parametrized family of al-
gorithms A = {Aλ : Zn →W}. Here, λ ∈ Λ indexes the
possible choices of hyperparameters, so A can be inter-
preted as the set of all possible algorithm configurations
for solving a given task. For example, in the context of
a machine learning application, the family A consists of
a set of learning algorithms which take as input a train-
ing dataset z = (z1, . . . , zn) containing n example-label
pairs zi = (xi, yi) ∈ Z = X × Y and produce as output
the parameters w ∈ W ⊆ Rd of a predictive model. It
is clear that in this context different choices for the hy-
perparameters might yield different utilities. We further
assume each configuration Aλ of the algorithm satisfies
DP with potentially distinct privacy parameters.

To capture the privacy–utility trade-off across A we
introduce two oracles to model the effect of hyperparam-
eter changes on the privacy and utility of Aλ. A privacy
oracle is a function Pδ : Λ→ [0,+∞] that given a choice
of hyperparameters λ returns a value ε = Pδ(λ) such
that Aλ satisfies (ε, δ)-DP for a given δ. An instance-
specific utility oracle is a function Uz : Λ → [0, 1] that
given a choice of hyperparameters λ returns some mea-
sure of the utility2 of the output distribution of Aλ(z).
These oracles allow us to condense everything about our
problem in the tuple (Λ,Pδ,Uz). Given these three ob-
jects, our goal is to find hyperparameter settings for Aλ
that simultaneously achieve maximal privacy and util-
ity on a given input z. Next we will formalize this goal
using the concept of Pareto front, but we first provide
remarks about the definition of our oracles.

Remark 1 (Privacy Oracle). Parametrizing the pri-
vacy oracle Pδ in terms of a fixed δ stems from the
convention that ε is considered the most important pri-
vacy parameter3, whereas δ is chosen to be a negligibly
small value (δ � 1/n). This choice is also aligned with

1 Smaller values of ε and δ yield more private algorithms.
2 Due to the broad applicability of DP, concrete utility measures
are generally defined on a per-problem basis. Here we use the
conventions that Uz is bounded and that larger utility is better.
3 This choice comes without loss of generality since there is a con-
nection between the two parameters guaranteeing the existence
of a valid ε for any valid δ [6].

Automatic Discovery of Privacy–Utility Pareto Fronts 7

recent uses of DP in machine learning where the privacy
analysis is conducted under the framework of Rényi DP
[39] and the reported privacy is obtained a posteriori
by converting the guarantees to standard (ε, δ)-DP for
some fixed δ [1, 18, 22, 38, 48]. In particular, in our ex-
periments with gradient perturbation for stochastic opti-
mization methods (Sec. 4), we implement the privacy or-
acle using the moments accountant technique proposed
by Abadi et al. [1] coupled with the tight bounds pro-
vided by Wang et al. [48] for Rényi DP amplification by
subsampling without replacement. More generally, pri-
vacy oracles can take the form of analytic formulas or
numerical optimized calculations, but future advances
in empirical or black-box evaluation of DP guarantees
could also play the role of privacy oracles.

Remark 2 (Utility Oracle). Parametrizing the utility
oracle Uz by a fixed input is a choice justified by the type
of applications we tackle in our experiments (cf. Sec. 4).
Other applications might require variations which our
framework can easily accommodate by extending the
definition of the utility oracle. We also stress that since
the algorithms in A are randomized, the utility Uz(λ)
is a property of the output distribution of Aλ(z). This
means that in practice we might have to implement the
oracle approximately, e.g. through sampling. In particu-
lar, in our experiments we use a test set to measure the
utility of a hyperparameter setting by running Aλ(z) a
fixed number of times R to obtain model parameters
w1, . . . , wR, and then let Uz(λ) be the average accuracy
of the models on the test set.

The Pareto front of a collection of points Γ ⊂ Rp con-
tains all the points in Γ where none of the coordinates
can be decreased further without increasing some of the
other coordinates (while remaining inside Γ).

Definition 2 (Pareto Front). Let Γ ⊂ Rp and u, v ∈ Γ.
We say that u dominates v if ui ≤ vi for all i ∈ [p], and
we write u � v. The Pareto front of Γ is the set of all
non-dominated points PF(Γ) = {u ∈ Γ | v 6� u, ∀ v ∈
Γ \ {u}}.

According to this definition, given a privacy–utility
trade-off problem of the form (Λ,Pδ,Uz), we are in-
terested in finding the Pareto front PF(Γ) of the 2-
dimensional set4 Γ = {(Pδ(λ), 1 − Uz(λ)) | λ ∈ Λ}. If

4 The use of 1−Uz(λ) for the utility coordinate is for notational
consistency, since we use the convention that the points in the
Pareto front are those that minimize each individual dimension.

able to fully characterize this Pareto front, a decision-
maker looking to deploy DP would have all the necessary
information to make an informed decision about how to
trade-off privacy and utility in their application.

Threat Model Discussion
In the idealized setting presented above, the desired
output is the Pareto front PF(Γ) which depends on z

through the utility oracle; this is also the case for the
Bayesian optimization algorithm for approximating the
Pareto front presented in Sec. 3. This warrants a discus-
sion about what threat model is appropriate here.

DP guarantees that an adversary observing the out-
put w = Aλ(z) will not be able to infer too much about
any individual record in z. The (central) threat model
for DP assumes that z is owned by a trusted curator that
is responsible for running the algorithm and releasing its
output to the world. However, the framework described
above does not attempt to prevent information about z
from being exposed by the Pareto front. This is because
our methodology is only meant to provide a substitute
for using closed-form utility guarantees when selecting
hyperparameters for a given DP algorithm before its de-
ployment. Accordingly, throughout this work we assume
the Pareto fronts obtained with our method are only re-
vealed to a small set of trusted individuals, which is the
usual scenario in an industrial context. Privatization of
the estimated Pareto front would remove the need for
this assumption, and is discussed in Sec. 5 as a useful
extension of this work.

An alternative approach is to assume the existence
of a public dataset z0 following a similar distribution to
the private dataset z on which we would like to run the
algorithm. Then we can use z0 to compute the Pareto
front of the algorithm, select hyperparameters λ∗ achiev-
ing a desired privacy–utility trade-off, and release the
output of Aλ∗(z). In particular, this is the threat model
used by the U.S. Census Bureau to tune the parameters
for their use of DP in the context of the 2020 census
(see Sec. 6 for more details).

2.2 Two Illustrative Examples

To concretely illustrate the oracles and Pareto front con-
cept, we consider two distinct examples: private logistic
regression and the sparse vector technique. Both exam-
ples are computationally light, and thus admit computa-
tion of near-exact Pareto fronts via a fine-grained grid-
search on a low-dimensional hyperparameter space; for

Automatic Discovery of Privacy–Utility Pareto Fronts 8

brevity, we subsequently refer to these as the “exact” or
“true” Pareto fronts.

Private Logistic Regression
Here, we consider a simple private logistic regression
model with `2 regularization trained on the Adult
dataset [28]. The model is privatized by training with
mini-batched projected SGD, then applying a Gaussian
perturbation at the output using the method from [49,
Algorithm 2] with default parameters5. The only hyper-
parameters tuned in this example are the regularization
γ and the noise standard deviation σ, while the rest are
fixed6. Note that both hyperparameters affect privacy
and accuracy in this case. To implement the privacy or-
acle we compute the global sensitivity according to [49,
Algorithm 2] and find the ε for a fixed δ = 10−6 using
the exact analysis of the Gaussian mechanism provided
in [7]. To implement the utility oracle we evaluate the
accuracy of the model on the test set, averaging over 50
runs for each setting of the hyperparameters. To obtain
the exact Pareto front for this problem, we perform a
fine grid search over γ ∈ [10−4, 100] and σ ∈ [10−1, 101].
The Pareto front and its corresponding hyperparameter
settings are displayed in Fig. 1, along with the values
returned by the privacy and utility oracles across the
entire range of hyperparameters.

Sparse Vector Technique
The sparse vector technique (SVT) [16] is an algorithm
to privately run m queries against a fixed sensitive
database and release under DP the indices of those
queries which exceed a certain threshold. The naming of
the algorithm reflects the fact that it is specifically de-
signed to have good accuracy when only a small number
of queries are expected to be above the threshold. The
algorithm has found applications in a number of prob-
lems, and several variants of it have been proposed [36].

Alg. 1 details our construction of a non-interactive
version of the algorithm proposed in [36, Alg. 7]. Un-
like the usual SVT that is parametrized by the tar-
get privacy ε, our construction takes as input a total
noise level b and is tailored to answer m binary queries
qi : Zn → {0, 1} with sensitivity ∆ = 1 and fixed thresh-
old T = 1/2. The privacy and utility of the algorithm are
controlled by the noise level b and the bound C on the

5 These are the smoothness, Lipschitz and strong convexity
parameters of the loss, and the learning rate.
6 Mini-batch size m = 1 and number of epochs T = 10.

number of answers; increasing b or decreasing C yields
a more private but less accurate algorithm. This noise
level is split across two parameters b1 and b2 controlling
how much noise is added to the threshold and to the
query answers respectively7. Privacy analysis of Alg. 1
yields the following closed-form privacy oracle for our
algorithm: P0 = (1 + (2C)1/3)(1 + (2C)2/3)b−1 (refer to
Appx. B for proof).

Algorithm 1: Sparse Vector Technique
Input: dataset z, queries q1, . . . , qm
Hyperparameters: noise b, bound C
c← 0, w ← (0, . . . , 0) ∈ {0, 1}m

b1 ← b/(1 + (2C)1/3), b2 ← b− b1, ρ← Lap(b1)
for i ∈ [m] do

ν ← Lap(b2)
if qi(z) + ν ≥ 1

2 + ρ then
wi ← 1, c← c+ 1
if c ≥ C then return w

return w

As a utility oracle, we use the F1-score between the
vector of true answers (q1(z), . . . , qm(z)) and the vector
w returned by the algorithm. This measures how well
the algorithm identifies the support of the queries that
return 1, while penalizing both for false positives and
false negatives. This is again different from the usual
utility analyses of SVT algorithms, which focus on pro-
viding an interval around the threshold outside which
the output is guaranteed to have no false positives or
false negatives [17]. Our measure of utility is more fine-
grained and relevant for practical applications, although
to the best of our knowledge no theoretical analysis of
the utility of the SVT in terms of F1-score is available
in the literature.

In this example, we set m = 100 and pick queries
at random such that exactly 10 of them return a 1.
Since the utility of the algorithm is sensitive to the
query order, we evaluate the utility oracle by running
the algorithm 50 times with a random query order and
compute the average F1-score. The Pareto front and its
corresponding hyperparameter settings are displayed in
Fig. 2, along with the values returned by the privacy
and utility oracles across the entire range of hyperpa-
rameters.

7 The split used by the algorithm is based on the privacy budget
allocation suggested in [36, Section 4.2].

Automatic Discovery of Privacy–Utility Pareto Fronts 9

10−1 100 101

σ

10−4

10−3

10−2

10−1

100

γ

ε

20

40

60

80

100

120

140

10−1 100 101

σ

10−4

10−3

10−2

10−1

100

γ

Classification Error

0.20

0.25

0.30

0.35

0.40

0.45

0.50

10−4 10−2 100 102

ε

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

C
la

ss
ifi

ca
ti

on
E

rr
or

Pareto Front

10−1 100 101

σ

10−4

10−3

10−2

10−1

100

γ

Pareto Inputs

Fig. 1. Top: Values returned by the privacy and utility oracles across a range of hyperparameters in the private logistic regres-
sion example. Bottom: The Pareto front and its corresponding set of input points.

3 DPareto: Learning the Pareto
Front

This section starts by recalling the basic ideas be-
hind multi-objective Bayesian optimization. We then de-
scribe our proposed methodology to efficiently learn the
privacy–utility Pareto front. Finally, we revisit the pri-
vate logistic regression and SVT examples to illustrate
our method.

3.1 Multi-objective Bayesian Optimization

Bayesian optimization (BO) [40] is a strategy for sequen-
tial decision making useful for optimizing expensive-to-
evaluate black-box objective functions. It has become in-
creasingly relevant in machine learning due to its success
in the optimization of model hyperparameters [24, 45].
In its standard form, BO is used to find the minimum

of an objective function f(λ) on some subset Λ ⊆ Rp

of a Euclidean space of moderate dimension. It works
by generating a sequence of evaluations of the objective
at locations λ1, . . . , λk, which is done by (i) building a
surrogate model of the objective function using the cur-
rent data and (ii) applying a pre-specified criterion to
select a new location λk+1 based on the model until a
budget is exhausted. In the single-objective case, a com-
mon choice is to select the location that, in expectation
under the model, gives the best improvement to the cur-
rent estimate [40].

In this work, we use BO for learning the privacy–
utility Pareto front. When used in multi-objective prob-
lems, BO aims to learn a Pareto front with a minimal
number of evaluations, which makes it an appealing tool
in cases where evaluating the objectives is expensive. Al-
though in this paper we only work with two objective
functions, we detail here the general case of minimizing
p objectives f1, . . . , fp simultaneously. This generaliza-

Automatic Discovery of Privacy–Utility Pareto Fronts 10

10−2 10−1 100 101 102

b

5

10

15

20

25

30

C

ε

1000

2000

3000

4000

5000

6000

7000

8000

10−2 10−1 100 101 102

b

5

10

15

20

25

30

C

1− F1

0.0

0.2

0.4

0.6

0.8

10−1 100 101 102

ε

0.0

0.2

0.4

0.6

0.8

1.0

1
−
F

1

Pareto front

10−2 10−1 100 101 102

b

5

10

15

20

25

30

C

Pareto inputs

Fig. 2. Top: Values returned by the privacy and utility oracles across a range of hyperparameters in the SVT example. Bottom:
The Pareto front and its corresponding set of input points.

tion could be used, for instance, to introduce the run-
ning time of the algorithm as a third objective to be
traded off against privacy and utility.

Let λ1, . . . , λk be a set of locations in Λ and denote
by V = {v1, . . . , vk} the set such that each vi ∈ Rp is
the vector (f1(λi), . . . , fp(λi)). In a nutshell, BO works
by iterating over the following:

1. Fit a surrogate model of the objectives
f1(λ) . . . , fp(λ) using the available dataset D =
{(λi, vi)}ki=1. The standard approach is to use a
Gaussian process (GP) [42].

2. For each objective fj calculate the predictive distri-
bution over λ ∈ Λ using the surrogate model. If GPs
are used, the predictive distribution of each output
can be fully characterized by their mean mj(λ) and
variance s2

j (λ) functions, which can be computed in
closed form.

3. Use the posterior distribution of the surrogate
model to form an acquisition function α(λ; I),

where I represents the dataset D and the GP pos-
terior conditioned on D.

4. Collect the next evaluation point λk+1 at the (nu-
merically estimated) global maximum of α(λ; I).

The process is repeated until the budget to collect new
locations is over.

There are two key aspects of any BO method: the
surrogate model of the objectives and the acquisition
function α(λ; I). In this work, we use independent GPs
as the surrogate models for each objective; however, gen-
eralizations with multi-output GPs [4] are possible.

Acquisition with Pareto Front Hypervolume
Next we define an acquisition criterion α(λ; I) useful to
collect new points when learning the Pareto front. Let
P = PF(V) be the Pareto front computed with the ob-
jective evaluations in I and let v† ∈ Rp be some chosen

Automatic Discovery of Privacy–Utility Pareto Fronts 11

“anti-ideal” point8. To measure the relative merit of dif-
ferent Pareto fronts we use the hypervolume HVv†(P) of
the region dominated by the Pareto front P bounded
by the anti-ideal point. Mathematically this can be ex-
pressed as HVv†(P) = µ({v ∈ Rp | v � v†, ∃u ∈ P u �
v}), where µ denotes the standard Lebesgue measure on
Rp. Henceforth we assume the anti-ideal point is fixed
and drop it from our notation.

Larger hypervolume therefore implies that points
in the Pareto front are closer to the ideal point (0, 0).
Thus, HV(PF(V)) provides a way to measure the qual-
ity of the Pareto front obtained from the data in V. Fur-
thermore, hypervolume can be used to design acquisi-
tion functions for selecting hyperparameters that will
improve the Pareto front. Start by defining the incre-
ment in the hypervolume given a new point v ∈ Rp:
∆PF (v) = HV(PF(V ∪ {v})) − HV(PF(V)). This quan-
tity is positive only if v lies in the set Γ̃ of points non-
dominated by PF(V). Therefore, the probability of im-
provement (PoI) over the current Pareto front when se-
lecting a new hyperparameter λ can be computed using
the model trained on I as follows:

PoI(λ) = P[(f1(λ), . . . , fp(λ)) ∈ Γ̃ | I] (1)

=
∫
v∈Γ̃

p∏
j=1

φj(λ; vj)dvj , (2)

where φj(λ; ·) is the predictive Gaussian density for fj
with mean mj(λ) and variance s2

j (λ).
The PoI(λ) function (1) accounts for the probabil-

ity that a given λ ∈ Λ has to improve the Pareto front,
and it can be used as a criterion to select new points.
However, in this work, we opt for the hypervolume-based
PoI (HVPoI) due to its superior computational and prac-
tical properties [13]. The HVPoI is given by

α(λ; I) = ∆PF (m(λ)) · PoI(λ) , (3)

where m(λ) = (m1(λ), . . . ,mp(λ)). This acquisition
weights the probability of improving the Pareto front
with a measure of how much improvement is expected,
computed using the GP means of the outputs. The
HVPoI has been shown to work well in practice and
efficient implementations exist [27].

8 The anti-ideal point must be dominated by all points in PF(V).
In the private logistic regression example, this could correspond to
the worst-case ε and worst-case classification error. See Couckuyt
et al. [13] for further details.

3.2 The DPareto Algorithm

The main optimization loop of DPareto is shown in
Alg. 2. It combines the two ingredients sketched so far:
GPs for surrogate modeling of the objective oracles, and
HVPoI as the acquisition function to select new hyper-
parameters. The basic procedure is to first seed the op-
timization by selecting k0 hyperparameters from Λ at
random, and then fit the GP models for the privacy
and utility oracles based on these points. We then max-
imize of the HVPoI acquisition function to obtain the
next query point, which is then added into the dataset.
This is repeated k times until the optimization budget
is exhausted.

Algorithm 2: DPareto
Input: hyperparameter set Λ, privacy and

utility oracles Pδ,Uz, anti-ideal point
v†, number of initial points k0, number
of iterations k, prior GP

Initialize dataset D ← ∅
for i ∈ [k0] do

Sample random point λ ∈ Λ
Evaluate oracles v ← (Pδ(λ), 1− Uz(λ))
Augment dataset D ← D ∪ {(λ, v)}

for i ∈ [k] do
Fit GPs to transformed privacy and utility
using D

Obtain new query point λ by optimizing
HVPoI in (3) using anti-ideal point v†

Evaluate oracles v ← (Pδ(λ), 1− Uz(λ))
Augment dataset D ← D ∪ {(λ, v)}

return Pareto front PF({v | (λ, v) ∈ D})

A Note on Output Domains
The output domains for the privacy and utility oracles
may not be well-modeled by a GP, which models out-
puts on the entire real line. For instance, the output
domain for the privacy oracle is [0,+∞]. The output do-
main for the utility oracle depends on the chosen mea-
sure of utility. A common choice of utility oracle for
ML tasks is accuracy, which has output domain [0, 1].
Thus, neither the privacy nor utility oracles are well-
modeled by a GP as-is. Therefore, in both cases, we
transform the outputs so that we are modeling a GP
in the transformed space. For privacy, we use a simple
log transform; for accuracy, we use a logit transform
logit(x) = log(x) − log(1 − x). With this, both oracles

Automatic Discovery of Privacy–Utility Pareto Fronts 12

have transformed output domain [−∞,+∞]. Note that
it is possible to learn the transformation using Warped
GPs [44]. The advantage there is that the form of both
the covariance matrix and the nonlinear transformation
are learnt simultaneously under the same probabilistic
framework. However, for simplicity and efficiency we
choose to use fixed transformations.

3.3 Two Illustrative Examples: Revisited

We revisit the examples discussed in Sec. 2.2 to con-
cretely illustrate how the components of DPareto work
together to effectively learn the privacy–utility Pareto
front.

Private Logistic Regression
For this example, we initialize the GP models with
k0 = 250 random hyperparameter pairs (γi, σi). γi takes
values in [10−4, 100] and σi takes values in [10−1, 101],
both sampled uniformly on a logarithmic scale. The pri-
vacy and mean utility of the trained models correspond-
ing to each sample are computed, and GPs are fit to
these values as surrogate models for each oracle. The
predicted means of these surrogate models are shown in
the top row of Fig. 3. Comparing directly to the oracles’
true values in Fig. 1, we observe that the surrogate mod-
els have modeled them well in the high σ and γ regions,
but is still learning the low regions. The bottom-left
of Fig. 3 shows the exact Pareto front of the problem,
along with the output values of the initial sample and
the corresponding empirical Pareto front. The empirical
Pareto front sits almost exactly on the true one, except
in the extremely-high privacy region (ε < 10−2) – this in-
dicates that the selection of random points (γi, σi) was
already quite good outside of this region. The goal of
DPareto is to select new points in the input domain
whose outputs will bring the empirical front closer to
the true one. This is the purpose of the HVPoI function;
the bottom-right of Fig. 3 shows the HVPoI function
evaluated over all (γi, σi) pairs. The maximizer of this
function, marked with a star, is used as the next loca-
tion to evaluate the oracles. Note that given the current
surrogate models, the HVPoI seems to be making a sen-
sible choice: selecting a point where ε and classification
error are both predicted to have relatively low values,
possibly looking to improve the upper-left region of the
Pareto front.

Sparse Vector Technique
For this example, we initialize the GP models with
k0 = 250 random hyperparameter pairs (Ci, bi). The
Ci values are sampled uniformly in the interval [1, 30],
and the bi values are sampled uniformly in the interval
[10−2, 102] on a logarithmic scale. The privacy and util-
ity values are computed for each of the samples, and
GPs are fit to these values as surrogate models for each
oracle. The predicted means of these surrogate models
are shown in the top row of Fig. 4. We observe that
both surrogate models have modeled their oracles rea-
sonably well, comparing directly to the oracles’ true val-
ues in Fig. 2. The bottom-left of Fig. 4 shows the exact
Pareto front of the problem, along with the output val-
ues of the initial sample and the corresponding empir-
ical Pareto front. The empirical Pareto front sits close
to the true one, which indicates that the selection of
points (Ci, bi) is already quite good. The HVPoI func-
tion is used by DPareto to select new points in the
input domain whose outputs will bring the empirical
front closer to the true one. The bottom-right of Fig. 4
shows this function evaluated over all (Ci, bi) pairs. The
maximizer of this function, marked with a star, is used
as the next location to evaluate the oracles. Note that
given the current surrogate models, the HVPoI appears
to be making a sensible choice: selecting a point where
ε is predicted to have a medium value and 1−F1 is pre-
dicted to have a low value, possibly looking to improve
the gap in the lower-right corner of the Pareto front.

4 Experiments
In this section, we provide experimental evaluations of
DPareto on a number of ML tasks. Unlike the illustra-
tions previously discussed in Secs. 2.2 and 3.3, it is com-
putationally infeasible to compute exact Pareto fronts
for these tasks. This highlights the advantage of using
DPareto over random and grid search baselines, show-
casing its versatility on a variety of models, datasets,
and optimizers. See Appendix A for implementation de-
tails.

4.1 Experimental Setup

In all our experiments we used v† = (10, 1) as the anti-
ideal point in DPareto, encoding our interest in a
Pareto front which captures a practical privacy range
(i.e., ε ≤ 10) across all possible utility values (since clas-
sification error can never exceed 1).

Automatic Discovery of Privacy–Utility Pareto Fronts 13

10−1 100 101

σ

10−4

10−3

10−2

10−1

100

γ

ε (predicted)

0

1

2

3

4

5

6

10−1 100 101

σ

10−4

10−3

10−2

10−1

100

γ

Classification Error (predicted)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

10−4 10−2 100 102

ε

0.0

0.1

0.2

0.3

0.4

0.5

C
la

ss
ifi

ca
ti

on
E

rr
or

Pareto Front

True Pareto

Observation outputs

Empirical Pareto

Non dominated set Γ̃

10−1 100 101

σ

10−4

10−3

10−2

10−1

100

γ

HVPoI

Next location

0.0000

0.0005

0.0010

0.0015

0.0020

Fig. 3. Top: Mean predictions of the privacy (ε) and the utility (classification error) oracles using their respective GPs models
in the private logistic regression example. The locations of the k0 = 250 sampled points are plotted in white. Bottom left:
Empirical and true Pareto fronts. Bottom right: HVPoI and the selected next location.

Optimization Domains and Sampling Distributions
Table 1 gives the optimization domain Λ for each of
the different experiments, which all point-selection ap-
proaches (i.e., DPareto, random sampling, and grid
search) operate within. Random sampling distributions
for experiments on both mnist and adult datasets were
carefully constructed in order to generate as favorable
results for random sampling as possible. These distribu-
tions are precisely detailed in Appx. C, and were con-
structed by reviewing literature (namely Abadi et al. [1]
and McMahan et al. [38]) in addition to the authors’ ex-
perience from training these differentially private mod-
els. The Pareto fronts generated from these constructed
distributions were significantly better than those yielded
by the naïve strategy of sampling from the uniform dis-
tribution, justifying the choice of these distributions.

Datasets
We tackle two classic problems: multiclass classification
of handwritten digits with the mnist dataset, and bi-
nary classification of income with the adult dataset.
mnist [31] is composed of 28 × 28 gray-scale images,
each representing a single digit 0-9. It has 60k (10k) im-
ages in the training (test) set. adult [28] is composed
of 123 binary demographic features on various people,
with the task of predicting whether income > $50k. It
has 40k (1.6k) points in the training (test) set.

Models
For adult dataset, we consider logistic regression
(LogReg) and linear support vector machines (SVMs),
and explore the effect of the choice of model and opti-
mization algorithm (SGD vs. Adam), using the differ-
entially private versions of these algorithms outlined in
Sec. 4.2. For mnist, we fix the optimization algorithm

Automatic Discovery of Privacy–Utility Pareto Fronts 14

10−2 10−1 100 101 102

b

5

10

15

20

25

30

C

ε (predicted)

1000

2000

3000

4000

5000

6000

7000

10−2 10−1 100 101 102

b

5

10

15

20

25

30

C

1− F1 (predicted)

0.0

0.2

0.4

0.6

0.8

101 102

ε

0.0

0.2

0.4

0.6

0.8

1
−
F

1

Pareto front

True Pareto

Empirical Pareto

Observation outputs

Non-dominated set Γ̃

10−2 10−1 100 101 102

b

5

10

15

20

25

30

C

HVPoI

Next location

0

5

10

15

20

25

30

Fig. 4. Top: Mean predictions of the privacy (ε) and the utility (1− F1) oracles using their respective GPs models in the sparse
vector technique example. The locations of the k0 = 250 sampled points are plotted in white. Bottom left: Empirical and true
Pareto fronts. Bottom right: HVPoI and the selected next location.

as SGD, but use a more expressive multilayer percep-
tron (MLP) model and explore the choice of network ar-
chitectures. The first (MLP1) has a single hidden layer
with 1000 neurons, which is the same as used by Abadi
et al. [1] but without DP-PCA dimensionality reduction.
The second (MLP2) has two hidden layers with 128 and
64 units. In both cases we use ReLU activations.

4.2 Privatized Optimization Algorithms

Experiments are performed with privatized variants of
two popular optimization algorithms – stochastic gradi-
ent descent (SGD) [8] and Adam [25] – although our
framework can easily accommodate other privatized al-
gorithms when a privacy oracle is available. Stochastic
gradient descent (SGD) is a simplification of gradient de-
scent, where on each iteration instead of computing the

gradient for the entire dataset, it is instead estimated
on the basis of a single example (or small batch of exam-
ples) picked uniformly at random (without replacement)
[8]. Adam [25] is a first-order gradient-based optimiza-
tion algorithm for stochastic objective functions, based
on adaptive estimates of lower-order moments.

As a privatized version of SGD, we use a mini-
batched implementation with clipped gradients and
Gaussian noise, detailed in Alg. 3. This algorithm is
similar to that of Abadi et al.’s [1], but differs in two
ways. First, it utilizes sampling without replacement
to generate fixed-size mini-batches, rather than using
Poisson sampling with a fixed probability which gener-
ates variable-sized mini-batches. Using fixed-size mini-
matches is a is a more natural approach, which more-
closely aligns with standard practice in non-private ML.
Second, as the privacy oracle we use the moments ac-

Automatic Discovery of Privacy–Utility Pareto Fronts 15

Algorithm Dataset Epochs (T) Lot Size (m) Learning Rate (η) Noise Variance (σ2) Clipping Norm (L)

LogReg+SGD adult [1, 64] [8, 512] [5e−4, 5e−2] [0.1, 16] [0.1, 4]
LogReg+Adam adult [1, 64] [8, 512] [5e−4, 5e−2] [0.1, 16] [0.1, 4]
SVM+SGD adult [1, 64] [8, 512] [5e−4, 5e−2] [0.1, 16] [0.1, 4]
MLP1+SGD mnist [1, 400] [16, 4000] [1e−3, 5e−1] [0.1, 16] [0.1, 12]
MLP2+SGD mnist [1, 400] [16, 4000] [1e−3, 5e−1] [0.1, 16] [0.1, 12]

Table 1. Optimization domains used in each of the experimental settings.

countant implementation of Wang et al. [48], which sup-
ports sampling without replacement. In Alg. 3, the func-
tion clipL(v) acts as the identity if ‖v‖2 ≤ L, and other-
wise returns (L/‖v‖2)v. This clipping operation ensures
that ‖clipL(v)‖2 ≤ L so that the `2-sensitivity of any
gradient to a change in one datapoint in z is always
bounded by L/m.

Algorithm 3: Differentially Private SGD
Input: dataset z = (z1, . . . , zn)
Hyperparameters: learning rate η,

mini-batch size m,
number of epochs T ,
noise variance σ2,
clipping norm L

Initialize w ← 0
for t ∈ [T] do

for k ∈ [n/m] do
Sample S ⊂ [n] with |S| = m uniformly
at random

Let g ←
1
m

∑
j∈S clipL(∇`(zj , w)) + 2L

m N (0, σ2I)
Update w ← w − ηg

return w

Our privatized version of Adam is given in Alg. 4,
which uses the same gradient perturbation technique
as stochastic gradient descent. Here the notation g�2

denotes the vector obtained by squaring each coordi-
nate of g. Adam uses three numerical constants that
are not present in SGD (κ, β1 and β2). To simplify our
experiments, we fixed those constants to the defaults
suggested in Kingma et al. [25].

4.3 Experimental Results

DPareto vs. Random Sampling
A primary purpose of these experiments is to high-
light the efficacy of DPareto at estimating an algo-

Algorithm 4: Differentially Private Adam
Input: dataset z = (z1, . . . , zn)
Hyperparameters: learning rate η,

mini-batch size m,
number of epochs T ,
noise variance σ2,
clipping norm L

Fix κ← 10−8, β1 ← 0.9, β2 ← 0.999
Initialize w ← 0, µ← 0, ν ← 0, i← 0
for t ∈ [T] do

for k ∈ [n/m] do
Sample S ⊂ [n] with |S| = m uniformly
at random

Let g ←
1
m

∑
j∈S clipL(∇`(zj , w)) + 2L

m N (0, σ2I)
Update µ← β1µ+ (1− β1)g,
ν ← β2ν + (1− β2)g�2, i← i+ 1

De-bias µ̂← µ/(1− βi1), ν̂ ← ν/(1− βi2)
Update w ← w − ηµ̂/(

√
ν̂ + κ)

return w

rithm’s Pareto front. As discussed above, the hypervol-
ume is a popular measure for quantifying the quality of
a Pareto front. We compare DPareto to the traditional
approach of random sampling by computing the hyper-
volumes of Pareto fronts generated by each method.

In Fig. 5 the first two plots show, for a variety of
models, how the hypervolume of the Pareto front ex-
pands as new points are sampled. In nearly every ex-
periment, the DPareto approach yields a greater hy-
pervolume than the random sampling analog – a direct
indicator that DPareto has better characterized the
Pareto front. This can be seen by examining the bot-
tom left plot of the figure, which directly shows a Pareto
front of the MLP2 model with both sampling meth-
ods. Specifically, while the random sampling method
only marginally improved over its initially seeded points,
DPareto was able to thoroughly explore the high-
privacy regime (i.e. small ε). The bottom right plot
of the figure compares the DPareto approach with

Automatic Discovery of Privacy–Utility Pareto Fronts 16

20 22 24 26 28

Sampled points

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

P
F

h
y
p

er
vo

lu
m

e

Adult Hypervolume Evolution

LogReg+SGD (RS)

LogReg+SGD (BO)

LogReg+ADAM (RS)

LogReg+ADAM (BO)

SVM+SGD (RS)

SVM+SGD (BO)

20 22 24 26 28

Sampled points

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
F

h
y
p

er
vo

lu
m

e

MNIST Hypervolume Evolution
MLP1 (RS)

MLP1 (BO)

MLP2 (RS)

MLP2 (BO)

10−1 100 101

ε

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
ti

on
er

ro
r

MNIST MLP2 Pareto Fronts

Initial

+256 RS

+256 BO

10−1 100 101

ε

0.15

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

C
la

ss
ifi

ca
ti

on
er

ro
r

Adult LogReg+SGD Pareto Fronts
1500 RS

256 BO

Fig. 5. Top: Hypervolumes of the Pareto fronts computed by the various models, optimizers, and architectures on the adult
and mnist datasets (respectively) by both DPareto and random sampling. Bottom left: Pareto fronts learned for MLP2 archi-
tecture on the mnist dataset with DPareto and random sampling, including the shared points they were both initialized with.
Bottom right: adult dataset DPareto sampled points and its Pareto front compared with the larger set of random sampling
points and its Pareto front.

256 sampled points against the random sampling ap-
proach with significantly more sampled points, 1500.
While both approaches yield similar Pareto fronts, the
efficiency of DPareto is particularly highlighted by the
points that are not on the front: nearly all the points cho-
sen by DPareto are close to the actual front, whereas
many points chosen by random sampling are nowhere
near it.

To quantify the differences between random sam-
pling and DPareto for the adult dataset, we split the
5000 random samples into 19 parts of size 256 to match
the number of BO points, and computed hypervolume
differences between the resultant Pareto fronts under

the mild assumption that DPareto is deterministic9.
We then computed the two-sided confidence intervals for
these differences, shown in Table 2. We also computed
the t-statistic for these differences being zero, which
were all highly significant (p < 0.001). This demon-
strates that the observed differences between Pareto
fronts are in fact statistically significant. We did not
have enough random samples to run statistical tests for
mnist, however the differences are visually even clearer
in this case.

9 While not strictly true, since BO is seeded with a random
set of points, running repetitions would have been an extremely
costly exercise with results expected to be nearly identical.

Automatic Discovery of Privacy–Utility Pareto Fronts 17

Algorithm+Optimizer Mean Difference 95% C.I.

LogReg+SGD 0.158 (0.053, 0.264)∗

LogReg+ADAM 0.439 (0.272, 0.607)∗

SVM+SGD 0.282 (0.161, 0.402)∗

Table 2. Mean hypervolume differences between BO and 19
random repetitions of 256 iterations of random sampling. Two-
sided 95% confidence intervals (C.I.) for these differences, as
well as t-tests for the mean, are included. Asterisks indicate
significance at the p < 0.001 level.

DPareto vs. Grid search
For completeness we also ran experiments using grid
search with two different grid sizes, both of which per-
formed significantly worse than DPareto. For these ex-
periments, we have defined parameter ranges as the lim-
iting parameter values from our random sampling ex-
periment setup (see Table 4). We evaluated a grid size
of 3, which corresponds to 243 total points (approxi-
mately the same amount of points as DPareto uses),
and grid size 4, which corresponds to 1024 points (4
times more than were used for DPareto). As can be
seen in Fig. 6, DPareto outperforms grid search even
when significantly more grid points are evaluated.

10−1 100 101

ε

0.16

0.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

C
la

ss
ifi

ca
ti

on
er

ro
r

Adult LogReg+SGD Pareto Fronts

256 BO

243 GS

1024 GS

Fig. 6. Grid search experiment results compared with the
Bayesian optimization approach used in DPareto.

Variability of Pareto Front
DPareto also allows us to gather information about
the potential variability of the recovered Pareto front.
In order to do that, recall that in our experiments we
implemented the utility oracle by repeatedly running
algorithm Aλ with a fixed choice of hyperparameters,
and then reported the average utility across runs. Using
these same runs we can also take the best and worst

utilities observed for each choice of hyperparameters.
Fig. 7 displays the Pareto fronts recovered from consid-
ering the best and worst runs in addition to the Pareto
front obtained from the average over runs. In general
we observe higher variability in utility on the high pri-
vacy regime (i.e. small ε), which is to be expected since
more privacy is achieved by increasing the variance of
the noise added to the computation. These type of plots
can be useful to decision-makers who want to get an idea
of what variability can be expected in practice from a
particular choice of hyperparameters.

DPareto’s Versatility
The other main purpose of these experiments is to
demonstrate the versatility of DPareto by comparing
multiple approaches to the same problem. In Fig. 8, the
left plot shows Pareto fronts of the adult dataset for
multiple optimizers (SGD and Adam) as well as mul-
tiple models (LogReg and SVM), and the right plot
shows Pareto fronts of the mnist dataset for different
architectures (MLP1 and MLP2). With this, we can see
that on the adult dataset, the LogReg model optimized
using Adam was nearly always better than the other
model/optimizer combinations. We can also see that on
the mnist dataset, while both architectures performed
similarly in the low-privacy regime, the MLP2 architec-
ture significantly outperformed the MLP1 architecture
in the high-privacy regime. With DPareto, analysts
and practitioners can efficiently create these types of
Pareto fronts and use them to perform privacy–utility
trade-off comparisons.

Computational Overhead of DPareto
Although it is clear that DPareto more-efficiently pro-
duces high-quality Pareto fronts relative to random sam-
pling and grid search, we must examine the computa-
tional cost it incurs. Namely, we are interested in the
running time of DPareto, excluding the model train-
ing time. Therefore, for the BO experiments on both
datasets, we measured the time it took for DPareto
to: 1) initialize the GP models with the 16 seed points,
plus 2) iteratively propose the subsequent 256 hyperpa-
rameters and incorporate their corresponding privacy
and utility results.

For both the adult and mnist datasets, despite the
difference in hyperparameter domains as well as the pri-
vacy and utility values that were observed, DPareto’s
overhead remained fairly consistent at approximately 45
seconds of total wall-clock time. This represents a neg-
ligible fraction of the total Pareto front computation

Automatic Discovery of Privacy–Utility Pareto Fronts 18

10−1 100

ε

0.14

0.16

0.18

0.20

0.22

0.24

0.26

C
la

ss
ifi

ca
ti

on
er

ro
r

LogReg+SGD Confidence
Average

Best/Worst

10−1 100

ε

0.14

0.16

0.18

0.20

0.22

0.24

0.26

C
la

ss
ifi

ca
ti

on
er

ro
r

LogReg+ADAM Confidence
Average

Best/Worst

10−1 100

ε

0.14

0.16

0.18

0.20

0.22

0.24

0.26

C
la

ss
ifi

ca
ti

on
er

ro
r

SVM+SGD Confidence
Average

Best/Worst

Fig. 7. Variability of estimated Pareto fronts across models and optimizers for adult.

10−1 100

ε

0.150

0.175

0.200

0.225

0.250

0.275

0.300

C
la

ss
ifi

ca
ti

on
er

ro
r

Adult Pareto Fronts
LogReg+SGD

LogReg+ADAM

SVM+SGD

10−1 100 101

ε

0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
ti

on
er

ro
r

MNIST Pareto Fronts
MLP1

MLP2

Fig. 8. Left: Pareto fronts for combinations of models and optimizers on the adult dataset. Right: Pareto fronts for different
MLP architectures on the mnist dataset.

time for either dataset; specifically, less than 0.1% of
the total time for the adult Pareto fronts, and less than
0.01% for the mnist Pareto fronts. Thus, we conclude
that DPareto’s negligible overhead is more than offset
by its improved Pareto fronts.

We remark here that although the overhead is neg-
ligible, DPareto does have a shortcoming relative to
traditional methods: it is an inherently sequential pro-
cess which cannot be easily parallelized. On the other
hand, random search and grid search can be trivially
parallelized to an arbitrarily high degree bounded only
by one’s compute resources. Improving upon this facet
of DPareto is beyond the scope of this work, however
we briefly discuss it as a possible extension in the fol-
lowing section.

5 Extensions
There are several extensions and open problems whose
solutions would enhance DPareto’s usefulness for prac-
tical applications.

The first open problem is on the privacy side. As de-
signed, DPareto is a system to non-privately estimate
the Pareto front of differentially private algorithms. One
challenging open problem is how to tightly characterize
the privacy guarantee of the estimated Pareto front it-
self. This involves analyzing the privacy guarantees for
both the training and test data sets. Naïvely applying
DP composition theorems immediately provides conser-
vative bounds on the privacy for both sets (assuming a
small amount of noise is added to the output of the util-
ity oracle). This follows from observing that individual
points evaluated by DPareto enjoy the DP guarantees
computed by the privacy oracle, and the rest of the algo-
rithm only involves post-processing and adaptive com-
position. However, these bounds would be prohibitively
large for practical use; we expect a more advanced analy-

Automatic Discovery of Privacy–Utility Pareto Fronts 19

sis to yield significantly tighter guarantees since for each
point we are only releasing its utility and not the com-
plete trained model. For a decision-maker, these would
provide an end-to-end privacy guarantee for the entire
process, and allow the Pareto front to be made publicly
available.

The other open problem is on the BO side. Re-
call that the estimated Pareto front contains only the
privacy–utility values of the trained models, along with
their corresponding hyperparameters. In practice, a
decision-maker may be interested in finding a hyperpa-
rameter setting that induces a particular point on the
estimated Pareto front but which was not previously
tested by DPareto. The open problem here is how
to design a computationally efficient method to extract
this information from DPareto’s GPs.

On the theoretical side, it would also be interest-
ing to obtain bounds on the speed of convergence of
DPareto to the optimal Pareto front. Results of this
kind are known for single-objective BO under smooth-
ness assumptions on the objective function (see, e.g.,
[9]). Much less is known in the multi-objective case, es-
pecially in a setting like ours that involves continuous
hyper-parameters and noisy observations (from the util-
ity oracle). Nonetheless, the smoothness we observe on
the privacy and utility oracles as a function of the hyper-
parameters, and our empirical evaluation against grid
and random sampling, suggests similar guarantees could
hold for DPareto.

For applications of DPareto to concrete problems,
there are several interesting extensions. We focused on
supervised learning, but the method could also be ap-
plied to e.g. stochastic variational inference on proba-
bilistic models, as long as a utility function (e.g. held-out
perplexity) is available. DPareto currently uses inde-
pendent GPs with fixed transformations, but an interest-
ing extension would be to use warped multi-output GPs.
It may be of interest to optimize over additional crite-
ria, such as model size, training time, or a fairness mea-
sure. If the sequential nature of BO is prohibitively slow
for the problem at hand, then adapting the recent ad-
vances in batch multi-objective BO to DPareto would
enable parallel evaluation of several candidate models
[20, 34, 47]. Finally, while we explored the effect of
changing the model (logistic regression vs. SVM) and
the optimizer (SGD vs. Adam) on the privacy–utility
trade-off, it would be interesting to optimize over these
choices as well.

6 Related Work
While this work is the first to examine the privacy–
utility trade-off of differentially private algorithms us-
ing multi-objective optimization and Pareto fronts, ef-
ficiently computing Pareto fronts without regards to
privacy is an active area of research in fields relat-
ing to multi-objective optimization. DPareto’s point-
selection process aligns with Couckuyt et al. [13], but
other approaches may provide promising alternatives for
improving DPareto. For example, Zuluaga et al. [50]
propose an acquisition criteria that focuses on uniform
approximation of the Pareto front instead of a hyper-
volume based criteria. Note that their technique does
not apply out-of-the-box to the problems we consider
in our experiments since it assumes a discrete hyper-
parameter space.

The threat model and outputs of the DPareto algo-
rithm are closely aligned with the methodology used by
the U.S. Census Bureau to choose the privacy parameter
ε for their deployment of DP to release data from the
upcoming 2020 census. In particular, the bureau is com-
bining a graphical approach to represent the privacy–
utility trade-off for their application [19] together with
economic theory to pick a particular point to balance
the trade-off [3]. Their graphical approach works with
Pareto fronts identical to the ones computed by our al-
gorithm, which they construct using data from previous
censuses [2]. We are not aware of the specifics of their hy-
perparameter tuning, but, from what has transpired, it
would seem that the gross of hyperparameters in their
algorithms is related to the post-processing step and
therefore only affects utility10.

Several aspects of this paper are related to recent
work in single-objective optimization. For non-private
single-objective optimization, there is an abundance of
recent work in machine learning on hyperparameter se-
lection, using BO [23, 26] or other methods [32] to max-
imize a model’s utility. Recently, several related ques-
tions at the intersection of machine learning and differ-
ential privacy have emerged regarding hyperparameter
selection and utility.

One such question explicitly asks how to per-
form the hyperparameter-tuning process in a privacy-
preserving way. Kusner et al. [30] and subsequently
Smith et al. [43] use BO to find near-optimal hyperpa-

10 Or, in the case of invariant forcing, privacy effects not quan-
tifiable within standard DP theory.

Automatic Discovery of Privacy–Utility Pareto Fronts 20

rameter settings for a given model while preserving the
privacy of the data during the utility evaluation stage.
Aside from the single-objective focus of this setting, our
case is significantly different in that we are primarily
interested in training the models with differential pri-
vacy, not in protecting the privacy of the data used to
evaluate an already-trained model.

Another question asks how to choose utility-
maximizing hyperparameters when privately training
models. When privacy is independent of the hyperpa-
rameters, this reduces to the non-private hyperparam-
eter optimization task. However, two variants of this
question do not have this trivial reduction. The first
variant inverts the stated objective to study the prob-
lem of maximizing privacy given constraints on the fi-
nal utility [21, 33]. The second variant, closely align-
ing with this paper’s setting, studies the problem of
choosing utility-maximizing, but privacy-dependent, hy-
perparameters. This is particularly challenging, since
the privacy’s dependence on the hyperparameters may
be non-analytical and computationally expensive to de-
termine. Approaches to this variant have been stud-
ied [37, 46], however the proposed strategies are 1) based
on heuristics, 2) only applicable to the differentially pri-
vate SGD problem, and 3) do not provide a computa-
tionally efficient way to find the Pareto optimal points
for the privacy–utility trade-off of a given model. Wu
et al. [49] provide a practical analysis-backed approach
to privately training utility-maximizing models (again,
for the case of SGD with a fixed privacy constraint), but
hyperparameter optimization is naïvely performed using
grid-search. By contrast, this paper provides a computa-
tionally efficient way to directly search for Pareto opti-
mal points for the privacy–utility trade-off of arbitrary
hyperparameterized algorithms.

The final related question revolves around the dif-
ferentially private “selection” or “maximization” prob-
lem [11], which asks: how can an item be chosen (from
a predefined universe) to maximize a data-dependent
function while still protecting the privacy of that data?
Here, Liu et al. [35] recently provided a way to choose hy-
perparameters that approximately maximize the utility
of a given differentially private model in a way that pro-
tects the privacy of both the training and test data sets.
However, this only optimizes utility with fixed privacy
– it does not address our problem of directly optimiz-
ing for the selection of hyperparameters that generate
privacy–utility points which fall on the Pareto front.

Recent work on data-driven algorithm configuration
has considered the problem of tuning the hyperparam-
eters of combinatorial optimization algorithms while

maintaining DP [5]. The setting considered in [5] as-
sumes there is an underlying distribution of problem
instances, and a sample from this distribution is used
to select hyperparameters that will have good compu-
tational performance on future problem instances sam-
pled from the same distribution. In this case, the au-
thors consider a threat model where the whole sample
of problem instances used to tune the algorithm needs
to be protected. A similar problem of data-driven algo-
rithm selection has been considered, where the problem
is to choose the best algorithm to accomplish a given
task while maintaining the privacy of the data used [29].
For both, only the utility objective is being optimized,
assuming a fixed constraint on the privacy.

7 Conclusion
In this paper, we characterized the privacy–utility trade-
off of a hyperparameterized algorithm as a Pareto
front learning problem.We then introduced DPareto, a
method to empirically learn a differentially private algo-
rithm’s Pareto front. DPareto uses Bayesian optimiza-
tion (BO), a state-of-the-art method for hyperparame-
ter optimization, to efficiently form the Pareto front by
simultaneously optimizing for both privacy and utility.
We evaluated DPareto across various datasets, mod-
els, and differentially private optimization algorithms,
demonstrating its efficiency and versatility. Further, we
showed that BO allows us to construct useful visualiza-
tions to aid the decision making process.

Acknowledgments

This work was funded by Amazon Research Cambridge.

References
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMa-

han, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep learn-
ing with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, pages 308–318. ACM, 2016.

[2] John M. Abowd. Disclosure avoidance for block level data
and protection of confidentiality in public tabulations. Census
Scientific Advisory Committee (Fall Meeting), 2018.

[3] John M Abowd and Ian M Schmutte. An economic anal-
ysis of privacy protection and statistical accuracy as social
choices. American Economic Review, pages 171–202, 2019.

Automatic Discovery of Privacy–Utility Pareto Fronts 21

[4] Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D.
Lawrence. Kernels for vector-valued functions: A review.
Foundations and Trends in Machine Learning, 4(3):195–266,
March 2012.

[5] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Dis-
persion for data-driven algorithm design, online learning, and
private optimization. In 2018 IEEE 59th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages
603–614. IEEE, 2018.

[6] Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy am-
plification by subsampling: Tight analyses via couplings and
divergences. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada., 2018.

[7] Borja Balle and Yu-Xiang Wang. Improving the Gaussian
mechanism for differential privacy: Analytical calibration
and optimal denoising. In Proceedings of the 35th Inter-
national Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
pages 403–412, 2018.

[8] Léon Bottou. Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT’2010, pages
177–186. Springer, 2010.

[9] Adam D Bull. Convergence rates of efficient global opti-
mization algorithms. Journal of Machine Learning Research,
12(Oct):2879–2904, 2011.

[10] Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlingsson,
and Dawn Song. The secret sharer: Measuring unintended
neural network memorization & extracting secrets. In Pro-
ceedings of the 27th USENIX Security Symposium, 2018.

[11] Kamalika Chaudhuri, Daniel J Hsu, and Shuang Song. The
large margin mechanism for differentially private maximiza-
tion. In Advances in Neural Information Processing Systems,
pages 1287–1295, 2014.

[12] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and
Zheng Zhang. MXNet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274, 2015.

[13] Ivo Couckuyt, Dirk Deschrijver, and Tom Dhaene. Fast
calculation of multiobjective probability of improvement
and expected improvement criteria for Pareto optimization.
Journal of Global Optimization, 60(3):575–594, 2014.

[14] Cynthia Dwork. Differential privacy. In Automata, Languages
and Programming, 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II,
volume 109, pages 1–12, 2006.

[15] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data anal-
ysis. In Theory of cryptography conference, pages 265–284.
Springer, 2006.

[16] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N Roth-
blum, and Salil Vadhan. On the complexity of differentially
private data release: efficient algorithms and hardness results.
In Proceedings of the forty-first annual ACM symposium on
Theory of computing, pages 381–390, 2009.

[17] Cynthia Dwork, Aaron Roth, et al. The algorithmic foun-
dations of differential privacy. Foundations and Trends® in
Theoretical Computer Science, 9(3–4):211–407, 2014.

[18] Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep
Thakurta. Privacy amplification by iteration. In 2018
IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), 2018.

[19] Simson L Garfinkel, John M Abowd, and Sarah Powazek.
Issues encountered deploying differential privacy. In Pro-
ceedings of the 2018 Workshop on Privacy in the Electronic
Society, 2018.

[20] David Gaudrie, Rodolphe Le Riche, Victor Picheny, Benoit
Enaux, and Vincent Herbert. Targeting solutions in bayesian
multi-objective optimization: sequential and batch versions.
Annals of Mathematics and Artificial Intelligence, 88(1):187–
212, 2020.

[21] Chang Ge, Xi He, Ihab F Ilyas, and Ashwin Machanavajjhala.
Apex: Accuracy-aware differentially private data exploration.
In Proceedings of the 2019 International Conference on
Management of Data. ACM, 2019.

[22] Joseph Geumlek, Shuang Song, and Kamalika Chaudhuri.
Rényi differential privacy mechanisms for posterior sampling.
In Advances in Neural Information Processing Systems,
pages 5289–5298, 2017.

[23] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg
Kochanski, John Karro, and D Sculley. Google vizier: A
service for black-box optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1487–1495. ACM, 2017.

[24] Rodolphe Jenatton, Cedric Archambeau, Javier González,
and Matthias Seeger. Bayesian optimization with tree-
structured dependencies. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1655–1664, International Conven-
tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proceedings of International
Conference on Learning Representations (ICLR), 2015.

[26] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig,
and Frank Hutter. Fast Bayesian Optimization of Machine
Learning Hyperparameters on Large Datasets. In Aarti Singh
and Jerry Zhu, editors, Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Research,
pages 528–536, Fort Lauderdale, FL, USA, 20–22 Apr 2017.
PMLR.

[27] Nicolas Knudde, Joachim van der Herten, Tom Dhaene, and
Ivo Couckuyt. GPflowOpt: A Bayesian Optimization Library
using TensorFlow. arXiv preprint – arXiv:1711.03845, 2017.

[28] Ron Kohavi. Scaling up the accuracy of Naïve-Bayes clas-
sifiers: a decision-tree hybrid. In KDD, volume 96, pages
202–207. Citeseer, 1996.

[29] Ios Kotsogiannis, Ashwin Machanavajjhala, Michael Hay,
and Gerome Miklau. Pythia: Data dependent differentially
private algorithm selection. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages
1323–1337. ACM, 2017.

[30] Matt Kusner, Jacob Gardner, Roman Garnett, and Kilian
Weinberger. Differentially private Bayesian optimization.
In International Conference on Machine Learning, pages
918–927, 2015.

Automatic Discovery of Privacy–Utility Pareto Fronts 22

[31] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

[32] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. J.
Mach. Learn. Res., 18(1):6765–6816, January 2017.

[33] Katrina Ligett, Seth Neel, Aaron Roth, Bo Waggoner, and
Steven Z Wu. Accuracy first: Selecting a differential privacy
level for accuracy constrained ERM. In Advances in Neural
Information Processing Systems, pages 2566–2576, 2017.

[34] Xi Lin, Hui-Ling Zhen, Zhenhua Li, Qingfu Zhang, and
Sam Kwong. A batched scalable multi-objective bayesian
optimization algorithm. arXiv preprint arXiv:1811.01323,
2018.

[35] Jingcheng Liu and Kunal Talwar. Private selection from
private candidates. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019,
pages 298–309, New York, NY, USA, 2019. ACM.

[36] Min Lyu, Dong Su, and Ninghui Li. Understanding the sparse
vector technique for differential privacy. Proceedings of the
VLDB Endowment, 2017.

[37] H. Brendan McMahan and Galen Andrew. A general ap-
proach to adding differential privacy to iterative training
procedures. In NeurIPS 2018 workshop on Privacy Preserving
Machine Learning, 2018.

[38] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and
Li Zhang. Learning differentially private recurrent language
models. In International Conference on Learning Representa-
tions, 2018.

[39] Ilya Mironov. Rényi differential privacy. In Computer Security
Foundations Symposium (CSF), 2017 IEEE 30th, pages
263–275. IEEE, 2017.

[40] J Močkus. On Bayesian methods for seeking the extremum.
In Optimization Techniques IFIP Technical Conference,
pages 400–404. Springer, 1975.

[41] Kobbi Nissim, Thomas Steinke, Alexandra Wood, Micah
Altman, Aaron Bembenek, Mark Bun, Marco Gaboardi,
David O’Brien, and Salil Vadhan. Differential privacy: A
primer for a non-technical audience (preliminary version).
Vanderbilt Journal of Entertainment and Technology Law,
2018.

[42] Carl Edward Rasmussen and Christopher K. I. Williams. Gaus-
sian Processes for Machine Learning (Adaptive Computation
and Machine Learning). The MIT Press, 2005.

[43] Michael Smith, Mauricio Álvarez, Max Zwiessele, and Neil
Lawrence. Differentially private regression with Gaussian pro-
cesses. In International Conference on Artificial Intelligence
and Statistics, pages 1195–1203, 2018.

[44] Edward Snelson, Zoubin Ghahramani, and Carl E Rasmussen.
Warped Gaussian processes. In Advances in neural informa-
tion processing systems, pages 337–344, 2004.

[45] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical
Bayesian optimization of machine learning algorithms. In
Advances in neural information processing systems, pages
2951–2959, 2012.

[46] Koen Lennart van der Veen. A practical approach to dif-
ferential private learning. Master’s thesis, University of
Amsterdam, The Netherlands, 2018.

[47] Hongyan Wang, Hua Xu, Yuan Yuan, Xiaomin Sun, and
Junhui Deng. Balancing exploration and exploitation in
multiobjective batch bayesian optimization. In Proceedings
of the Genetic and Evolutionary Computation Conference
Companion, pages 237–238, 2019.

[48] Yu-Xiang Wang, Borja Balle, and Shiva Kasiviswanathan.
Subsampled Rényi differential privacy and analytical mo-
ments accountant. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2019.

[49] Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri,
Somesh Jha, and Jeffrey Naughton. Bolt-on differential pri-
vacy for scalable stochastic gradient descent-based analytics.
In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 1307–1322. ACM, 2017.

[50] Marcela Zuluaga, Andreas Krause, and Markus Püschel.
ε-pal: an active learning approach to the multi-objective
optimization problem. The Journal of Machine Learning
Research, 17(1):3619–3650, 2016.

A Implementation Details
Hyperparameter optimization was done using the
GPFlowOpt library [27] which offers GP-based Bayesian
optimization. In particular, we used the provided GP re-
gression functionality with a Matérn 5/2 kernel, as well
as the provided HVPoI acquisition function. Machine
learning models used in the paper are implemented with
Apache MXNet [12]. We have made use of the high-level
Gluon API whenever possible. However, the privacy
accountant implementation that we used (see [48]) re-
quired low-level changes to the definitions of the models.
In order to keep the continuous MXNet execution graph
to ensure a fast evaluation of the model, we reverted to
the pure MXNet model definitions. Even though this
approach requires much more effort to implement the
models themselves, it allows for more fine-grained con-
trol of how the model is executed, as well as provides a
natural way of implementing privacy accounting.

B Privacy Proof for Sparse
Vector Technique

Here we provide a proof of the privacy bound for Alg. 1
used to implement the privacy oracle P0. The proof is
based on observing that our Alg. 1 is just a simple re-
parametrization of [36, Alg. 7] where some of the pa-
rameters have been fixed up-front. For concreteness, we
reproduce [36, Alg. 7] as Alg. 5 below. The result then

Automatic Discovery of Privacy–Utility Pareto Fronts 23

follows from a direct application of [36, Thm. 4], which
shows that Alg. 5 is (ε1 + ε2, 0)-DP.

Algorithm 5: Sparse Vector Technique ([36,
Alg. 7] with ε3 = 0)
Input: dataset z, queries q1, . . . , qm, sensitivity

∆
Hyperparameters: bound C, thresholds

T1, . . . , Tm, privacy
parameters ε1, ε2

c← 0, w ← (⊥, . . . ,⊥) ∈ {⊥,>}m

ρ← Lap(∆/ε1)
for i ∈ [m] do

ν ← Lap(2C∆/ε2)
if qi(z) + ν ≥ Ti + ρ then

wi ← >, c← c+ 1
if c ≥ C then return w

return w

Comparing Alg. 5 with the sparse vector technique
in Alg. 1, we see that they are virtually the same algo-
rithms, where we have fixed ∆ = 1, Ti = 1/2, ε1 = 1/b1
and ε2 = 2C/b2. Thus, by expanding the definitions of
b1 and b2 as a function of b and C, we can verify that
Alg. 1 is (ε, 0)-DP with

ε = ε1 + ε2

= 1
b1

+ 2C
b2

= 1 + (2C)1/3

b
+ (2C)2/3(1 + 2C)1/3

b

= (1 + (2C)1/3)(1 + (2C)2/3)
b

.

This concludes the proof.

C Random Sampling Distributions
Tables 3 and 4 list the distributions for the hyperparam-
eters used in the mnist and adult experiments respec-
tively.

Hyperparameter Distribution Parameters Int-Valued Accept Range

Epochs Uniform a = 1, b = 400 True [1, 400]
Lot Size Normal µ = 800, σ = 800 True [16, 4000]
Learning Rate Shifted Exp. λ = 10, shift = 1e−3 False [1e−3, 5e−1]
Noise Variance Shifted Exp. λ = 5e−1, shift = 1e−1 False [1e−1, 16]
Clipping Norm Shifted Exp. λ = 5e−1, shift = 1e−1 False [1e−1, 12]

Table 3. mnist random sampling distributions.

Hyperparameter Distribution Parameters Int-Valued Accept Range

Epochs Uniform a = 1, b = 64 True [1, 64]
Lot Size Normal µ = 128, σ = 64 True [8, 512]
Learning Rate Shifted Exp. λ = 10, shift = 1e−3 False [1e−3, 1e−1]
Noise Variance Shifted Exp. λ = 1e−1, shift = 1e−1 False [1e−1, 16]
Clipping Norm Shifted Exp. λ = 1e−1, shift = 1e−1 False [1e−1, 4]

Table 4. adult random sampling distributions.

	Automatic Discovery of Privacy–Utility Pareto Fronts
	1 Introduction
	2 The Privacy–Utility Pareto Front
	2.1 General Setup
	2.2 Two Illustrative Examples

	3 DPareto: Learning the Pareto Front
	3.1 Multi-objective Bayesian Optimization
	3.2 The DPareto Algorithm
	3.3 Two Illustrative Examples: Revisited

	4 Experiments
	4.1 Experimental Setup
	4.2 Privatized Optimization Algorithms
	4.3 Experimental Results

	5 Extensions
	6 Related Work
	7 Conclusion
	A Implementation Details
	B Privacy Proof for Sparse Vector Technique
	C Random Sampling Distributions

