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The Power of the Hybrid Model for Mean Estimation
Abstract: We explore the power of the hybrid model of
differential privacy (DP), in which some users desire the
guarantees of the local model of DP and others are con-
tent with receiving the trusted-curator model guaran-
tees. In particular, we study the utility of hybrid model
estimators that compute the mean of arbitrary real-
valued distributions with bounded support. When the
curator knows the distribution’s variance, we design a
hybrid estimator that, for realistic datasets and param-
eter settings, achieves a constant factor improvement
over natural baselines. We then analytically characterize
how the estimator’s utility is parameterized by the prob-
lem setting and parameter choices. When the distribu-
tion’s variance is unknown, we design a heuristic hybrid
estimator and analyze how it compares to the baselines.
We find that it often performs better than the baselines,
and sometimes almost as well as the known-variance es-
timator. We then answer the question of how our estima-
tor’s utility is affected when users’ data are not drawn
from the same distribution, but rather from distribu-
tions dependent on their trust model preference. Con-
cretely, we examine the implications of the two groups’
distributions diverging and show that in some cases, our
estimators maintain fairly high utility. We then demon-
strate how our hybrid estimator can be incorporated as
a sub-component in more complex, higher-dimensional
applications. Finally, we propose a new privacy amplifi-
cation notion for the hybrid model that emerges due to
interaction between the groups, and derive correspond-
ing amplification results for our hybrid estimators.
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1 Introduction
Differential privacy [25], has become one of the de facto
standards of privacy in computer science literature, par-
ticularly for privacy-preserving statistical data analysis
and machine learning. Two traditional models of trust
in DP literature are: the trusted-curator model (TCM)
and the local model (LM). In the TCM, the curator
receives the users’ true data and applies a randomized
perturbation to achieve DP. In the LM, the curator re-
ceives users’ privatized data through a locally random-
izing oracle that individually ensures DP for each user.

When it comes to deployments of DP, curators (e.g.,
companies, social scientists, government organizations)
and users alike find the LM to be a better match for
their privacy goals [34, 44]. Users’ privacy is assured
even when they don’t trust the curator, and the curator
limits its liability in the face of data leaks. However,
it is well understood theoretically and empirically that
utility outcomes are far worse in the LM than in the
TCM [11, 16, 22, 27, 38]. This poses a challenge for
curators with smaller user bases than the tech giants –
on the one hand, they want to guarantee local DP to
their users; on the other hand, they won’t be able to
gain much utility from the data if they do.

Until recently, these trust models were considered
mutually exclusively. Recent work of Avent et al. [3]
observed that it can be beneficial to consider a hybrid
model in which the majority of the users desire privacy
in the LM, but a small fraction of users are willing to
contribute their data with TCM guarantees. Indeed, it
is common in industry to have a small group of “early
adopters” or “opt-in users” who are willing to trust the
organization more than the average user [45]. The work
of [3] demonstrated experimentally that in the hybrid
model, one can develop algorithms that take advantage
of the opt-in user data to improve utility for the task of
local search. However, their results left open the ques-
tions of how much improvement can be gained compared
with the LM, the dependence of improvement on the
parameters (e.g., sample size, number of opt-in users,
privacy level, etc.), and whether hybrid algorithms exist
that improve over both the TCM and LM algorithms
simultaneously for all parameters (as their proposed
algorithm, BLENDER, was only able to achieve simul-
taneous improvement for some parameters). These are
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precisely the questions we address in this work for the
problem of mean estimation for bounded real-valued
distributions – a well-studied problem in statistical lit-
erature due to its prevalence as a fundamental building
block in solutions to more complex tasks.

Contributions: Our contributions are as follows.
– We initiate the study of mean estimation in the hybrid

model, where users with bounded real-valued data
self-partition into two groups based on their preferred
trust model. We rigorously formalize this problem in
a statistical framework (Section 2), making minimal
distributional assumptions for user data and even al-
lowing the groups to come from separate distribu-
tions.

– We define a family of hybrid estimators that utilize a
generic class of DP mechanisms (Section 3). To eval-
uate the hybrid estimators’ relative quality, we detail
two non-hybrid baseline estimators and theoretically
analyze their relationship.

– When the groups have the same distribution and the
curator knows its variance, we derive a hybrid esti-
mator from this family and analytically quantify its
utility (Section 4). First, we prove that it always out-
performs both non-hybrid baselines. Second, we prove
that for practical parameters, it outperforms both
baselines by a factor of no greater than 2.286. Ad-
ditionally, we empirically evaluate our hybrid estima-
tor on realistic distributions, showing that it achieves
high utility in practice.

– When the groups have the same distribution but the
curator doesn’t know its variance, we derive another
hybrid estimator from this family and analytically
quantify the estimator’s utility (Section 5). We prove
that it always outperforms at least one non-hybrid
baseline, and we precisely determine the conditions
under which it outperforms both. We empirically eval-
uate it on realistic distributions and find that it not
only achieves high utility in practice, but is sometimes
utility competitive with the known-variance case.

– Since users’ self-partitioning may induce a bias be-
tween the groups, we evaluate our analytic utility ex-
pressions in the cases where the groups’ distributions
diverge (Section 6). We find that the hybrid estima-
tor is robust to divergences in the variances of the
groups’ distributions, but sensitive to divergences in
the means of the groups’ distributions.

– To demonstrate how more complex algorithms can
use our estimator as a sub-component, we design a
hybrid K-means algorithm which uses the hybrid es-

timator to merge the intermediate results of two non-
hybrid K-means algorithms (Section 7). We experi-
mentally show that this algorithm is able to achieve
utility on-par with the better of its two non-hybrid
building blocks, even though its underlying hybrid es-
timator is not explicitly designed for this problem.

– We introduce a new privacy amplification notion for
the hybrid model that stems from interaction between
the groups (Section 8). We derive the amplification
level that our hybrid estimator achieves, and show
that this amplification is significant in practice.

2 Preliminaries
In this section, we present the requisite background on
differential privacy, define the mean estimation problem
setting, and then review related work.

2.1 Differential Privacy Background

In this background, we precisely define differential pri-
vacy, then describe two of the most popular DP mecha-
nisms, and conclude with a discussion of trust models.

Formally, a mechanism M is (ε, δ)-DP [25] if and
only if for all neighboring databases D and D′ differing
in precisely one user’s data, the following inequality is
satisfied for all possible sets of outputs Y ⊆ Range(M):

Pr[M(D) ∈ Y ] ≤ eε Pr[M(D′) ∈ Y ] + δ.

A mechanism that satisfies (ε, 0)-DP is said to be ε-DP.
Two of the most popular DP mechanisms are

the Laplace mechanism [25] and the Gaussian mecha-
nism [24]. These mechanisms ensure DP for any dataset
D evaluated under a real-valued function f by comput-
ing f̃(D) = f(D) + Y . For the Laplace mechanism, Y
is a random variable drawn from the Laplace distribu-
tion with scale parameter b = ∆1f/ε (yielding standard
deviation s =

√
2b), and ∆1f = max ‖f(D)− f(D′)‖1

over all neighboring D,D′. For the Gaussian mecha-
nism, Y is drawn from the Gaussian distribution with
standard deviation s =

√
2 ln(1.25/δ)∆2f/ε, and ∆2f =

max ‖f(D)− f(D′)‖2 over all neighboring D,D′.
As discussed in the introduction, there are two clas-

sic trust models in DP, distinguished by their timing of
when the privacy perturbation is applied. In the LM,
user data undergoes a privacy-preserving perturbation
before it is sent to the curator; in the TCM the curator
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first collects all the data, and then applies a privacy-
preserving perturbation. The hybrid model, first pro-
posed in [3], enables algorithms to utilize a combination
of trust models. Specifically, the hybrid model allows
users to individually select between the TCM and LM
based on their personal trust preferences.

2.2 Problem Setting

Statistical literature on mean estimation spans a wide
range of assumptions and utility objectives, so we begin
by stating ours.

There are n users, with each user i ∈ [n] holding
data xi to be used in a differentially private compu-
tation. Users self-partition into the TCM or the LM
group and, regardless of their group choice, are guaran-
teed the same level of DP. Thus, a user’s group choice
only reflects their trust towards the curator. The frac-
tion of users that opted-in to the TCM is denoted as
c ∈ (0, 1), while the remaining (1− c) fraction prefer the
LM. We denote the two groups as indicies in the sets
T = {1, . . . , cn} and L = {cn + 1, . . . , n} respectively,
such that T ∪ L = [n].

Users who opt-in to the TCM group (referred to
as TCM users) have data xi drawn iid from an un-
known distribution DT with mean µT , variance σ2

T , and
support on the subset of interval [0,mT ]. Users who
chose the LM group (referred to as LM users) have
data xi drawn iid from an unknown distribution DL
with mean µL, variance σ2

L, and support on the subset
of interval [0,mL]. Together, the groups’ distributions
form a mixture distribution D = cDT + (1− c)DL with
mean µ = cµT + (1 − c)µL, variance σ2 = c(µ2

T +
σ2
T ) + (1 − c)(µ2

L + σ2
L), and support on [0,m] where

m = max{mT ,mL}. Table 1 provides a summary of all
notation introduced in this work.

We make minimal assumptions about these distri-
butions, and the curator’s knowledge thereof, through-
out the paper. Specifically, in Sections 4 and 5, we as-
sume D = DT = DL and analyze the scenarios where
the curator both does and doesn’t know D’s variance re-
spectively. In Section 6, we lift this equal-distributions
assumption and analyze the consequences of the groups’
distributions diverging.

Measuring Utility
Our goal is to design accurate estimators of the mean
µ of the mixture distribution D. To measure utility, we
benchmark all estimators against the non-private em-
pirical mean estimator.

Definition 2.1. The non-private empirical mean esti-
mator is:

µ̂ = 1
n

∑
i∈[n]

xi = cµ̂T + (1− c)µ̂L.

This choice of benchmark reflects the fact that we are
interested in the excess error introduced by the priva-
tization scheme, beyond the inherent error induced by
a finite sample size. Concretely, we measure the abso-
lute error of an estimator µ̃ by explicitly computing the
mean squared error between it and the empirical mean.

Definition 2.2. The MSE between an estimator µ̃ and
the non-private empirical mean µ̂ is:

E = MSE(µ̃, µ̂) = E[(µ̃− µ̂)2]

Since the non-private empirical benchmark is used to
measure the MSEs of all estimators in this paper, we
simply refer to it as the MSE of the estimator.

Symbol Usage

ε, δ Differential privacy parameters
n Total number of users
c Fraction of users who opt-in to TCM

T, L Set of users who opted-in to TCM and set of users
who are using LM, respectively

D Mixture distribution of both groups’ data
µ, σ2,m Mean, variance, and maximum support of D
DT Distribution of TCM groups’ data

µT , σ
2
T ,mT Mean, variance, and maximum support of DT

DL Distribution of LM groups’ data
µL, σ

2
L,mL Mean, variance, and maximum support of DL

xi User i’s private data drawn iid from its group’s
distribution

µ̂, µ̂T , µ̂L Empirical mean estimates with all users, with only
the TCM users, and with only the LM users, re-
spectively

E MSE of an estimator with respect to µ̂
µ̃T , ET TCM-Only estimator and its MSE
µ̃F , EF Full-LM estimator and its MSE
µ̃L, EL LM-Only estimator and its MSE

µ̃H(w), EH(w) Hybrid estimator with weight w and its MSE
YT , s

2
T TCM-Only estimator’s privacy random variable and

its variance
YL,i, s

2
L User i’s local privacy random variable and its vari-

ance
ncrit, ccrit n and c values that partition where ET ≤ EF

R(E), r(E) Relative improvement of estimator with MSE E
over the best and worst non-hybrid baselines, re-
spectively

Table 1. Comprehensive list of notation.
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2.3 Related Work

We first compare our paper to the closest related work
in the hybrid model [3], then discuss other works on DP
mean estimation in non-hybrid models, and conclude by
discussing other work in hybrid trust models.

Comparison to BLENDER [3]
A shared goal of our work and [3] is to take advantage
of the hybrid model; beyond that, our work is funda-
mentally different from theirs in several ways.

The works address different problems. Avent et al.
studied the problem of local search, which is a specific
problem instance of heavy-hitter identification and fre-
quency estimation. BLENDER tackles the frequency es-
timation portion of the problem by estimating counts of
boolean-valued data using a variant of randomized re-
sponse [56]. Our work focuses on the conceptually sim-
pler, but not strictly weaker, problem of mean estima-
tion of real-valued data using a broad class of privatiza-
tion mechanisms. Because of this, their methods aren’t
applicable in this work.

Both works compare against the same types of base-
lines in their respective problems, but reach very dif-
ferent conclusions. The baselines are: 1) using only the
TCM group’s data under the TCM, and 2) using all data
under the LM. [3] experimentally evaluated BLENDER
and found that it typically outperformed at least one
of these baselines, and occasionally outperformed both.
For our problem, we derive utility expressions which
prove that not only does our estimator always outper-
form at least one of the baselines, but that under certain
assumptions, it always outperforms both.

Since the hybrid model enables users to self-
partition into groups based on their trust model
preference, an important consideration for utility is
whether the groups have the same data distribution.
In BLENDER, it was assumed that they did. In this
work, our setting allows for groups to have the same or
different distributions, and we derive analytic results for
both cases.

Finally, the works have different takes on the role
of interaction between groups. BLENDER carefully uti-
lizes inter-group interactivity to achieve high utility. In
this work, our hybrid estimators have no inter-group in-
teractivity; these estimators achieve high utility, demon-
strating that such interactivity isn’t always necessary
for improving utility. Moreover, we find that our lack
of interactivity can improve users’ privacy guarantees

with respect to a specific type of adversary, whereas
BLENDER’s interactivity gives no such improvement.

Non-Hybrid Mean Estimation
In this work, we use simple non-hybrid baseline mean
estimators to enable us to obtain exact finite-sample
utility expressions. However, DP mean estimation of
distributions under both the TCM and LM has been
studied since the models’ introductions [17, 21, 56], and
continues to be actively studied to this day [2, 15, 18,
20, 22, 28, 29, 32, 37, 39–42]. The goal of mean estima-
tion research under both models is to maximize utility
while minimizing the sample complexity by making var-
ious distributional assumptions. Some assumptions are
stronger than those made in this work, such as assuming
the data is drawn from a narrow family of distributions.
Other assumptions are weaker, such as requiring only
that the mean lies within a certain range or that higher
moments are bounded. Because of the complexity of the
mechanisms and their reliance on the distributional as-
sumptions in the related works, their utility expressions
are typically bounds or asymptotic rather than exact.
Since we need exact finite-sample utility expressions to
precisely determine the utility of our hybrid estimator
relative to the baselines, we are unable to use their
estimators and assumptions. Nevertheless, the related
works show a practically significant sample complexity
gap between the TCM and LM in their respective set-
tings, further motivating mean estimation in the hybrid
model.

Other Works in Hybrid Trust Models
Several other works utilize a hybrid combination of trust
models. Of these, the closest-related work is the con-
current work of Beimel et al. [12]. Their work exam-
ines precisely the same hybrid DP model as this work,
the combined trusted-curator/local model, and has the
same goal of understanding whether this hybrid model
is more powerful than its composing models. To ac-
complish this goal, they perform mathematical analy-
ses on several theoretical problems, deriving asymptotic
bounds which show that it is possible to solve problems
in the hybrid model which cannot be solved in the TCM
or LM separately. Additionally, they show that there
are problems which cannot be solved in the TCM or
LM separately, and can be solved in the hybrid model,
but only if the TCM and LM groups interact with each
other. Finally, they analyze a problem which does not
significantly benefit from the hybrid model: basic hy-
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pothesis testing. They prove that if there exists a hy-
brid model mechanism that distinguishes between two
distributions effectively, then there also exists a TCM
or LM mechanism which does so nearly as effectively.
This result implies a lack of power of the hybrid model
for the problem of mean estimation in certain settings.

Beyond the trusted-curator/local hybrid model,
there are multiple alternative hybrid models in DP lit-
erature. The most popular is the public/private hybrid
model of Beimel et al. [13] and Zhanglong et al. [36].
In this model, most users desire the guarantees of dif-
ferential privacy, but some users have made their data
available for use without requiring any privacy guar-
antees. In this model, some works assume that DP is
achieved in the TCM [35, 50], while others assume that
DP is achieved in the LM [55, 58]. In both cases, the
works show that by operating in the public/private hy-
brid model, one can significantly improve utility rel-
ative to either model separately. Recently, theoretical
works [9, 10] have explored the limits of this model’s
power via lower bounds on the sample complexity of
fundamental statistical problems.

Another DP hybrid model recently introduced is the
shuffle model, which was conceptually proposed by Bit-
tau et al. [16] before being mathematically defined and
analyzed for its DP guarantees by Cheu et al. [19] and
Erlingsson et al. [26]. In this model, users privately sub-
mit their data under the LM via an anonymous chan-
nel to the curator. The anonymous channel randomly
permutes the users’ contributions so that the curator
has no knowledge of what data belongs to which user.
This “shuffling” enables users to achieve improved DP
guarantees over their LM guarantees in isolation. Sev-
eral works have since improved the original analyses and
expanded the shuffle model to achieve even greater im-
provements in the users’ DP guarantee [6, 7, 30–33].

3 DP Estimators
In this section, we introduce the baseline estimators in
the classic DP models, describe how we compare new
estimators against these baselines, and define the family
of hybrid estimators that we will be working with.

3.1 Baseline Non-hybrid DP Estimators

To understand the utility of the hybrid model, we put it
into context with the utility of non-hybrid approaches.

The most natural non-hybrid alternatives are: 1) only
using the TCM group’s data under the TCM, and 2)
using all the data under the LM. This is motivated di-
rectly by the decision that an analyst must make when
choosing between these two models: 1) use only the data
of the more-trusting users under the TCM so as to not
violate the trust preferences of the remaining users, or
2) treat all users the same under the less-trusting LM.

For both baselines, we consider estimators which
directly compute the empirical mean, then add 0-mean
noise from an arbitrary distribution whose variance is
calibrated to ensure DP under the respective model.
For pure ε-DP, this typically corresponds to using the
Laplace mechanism; for (ε, δ)-DP, this typically corre-
sponds to using the Gaussian mechanism [24]. We derive
all results for the generic noise-addition mechanisms,
and we use the ε-DP Laplace mechanism for empirical
evaluations.

TCM-Only Estimator
The stated consequence of using the TCM is that the
LM group’s data cannot be used. Thus, we design an
estimator for this model and refer to it as the “TCM-
Only” estimator.

Definition 3.1. The TCM-Only estimator is:

µ̃T = 1
cn

∑
i∈T

xi + YT ,

where YT is a random variable with 0 mean and s2
T vari-

ance chosen such that DP is satisfied for all TCM users.

Lemma 3.2. µ̃T has expected squared error:

ET = (1− c)2

cn
σ2
T + 1− c

n
σ2
L + s2

T + (µT − µ)2.

Proof. See Appendix A.

This error has three components, (1−c)2

cn σ2
T + 1−c

n σ2
L, s2

T ,
and (µT −µ)2. The first component is the error induced
by subsampling only the TCM users – we refer to this as
the excess sampling error. The second component is the
error due to DP – we refer to this as the privacy error.
The third component is the bias error induced by the
groups’ means differing.

Full-LM Estimator
Since the LM doesn’t require trust in the curator, the
data of all users can be used under this model. We de-
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sign an estimator for this model and refer to it as the
“Full-LM” estimator.

Definition 3.3. Suppose each user i privately reports
their data as xi + YL,i, where YL,i is a random variable
with 0 mean and s2

L variance chosen such that DP is
satisfied for user i. The Full-LM estimator is then:

µ̃F = 1
n

∑
i∈[n]

(xi + YL,i),

Lemma 3.4. µ̃F has expected squared error:

EF =
s2
L

n
.

Proof. See Appendix A.

This error only consists of a single simple component:
the privacy error. Since the entire dataset is used, there
is no excess sampling error and no bias error.

3.2 Utility Over Both Baselines

While our absolute measure of an estimator’s utility is
the MSE (discussed in Section 2.2), we are primarily
interested in a hybrid estimator’s relative gain over the
baseline estimators. Explicitly, given some hybrid esti-
mator with MSE E , we consider the following measure
of relative improvement over the baseline estimators.

Definition 3.5. The relative improvement of an esti-
mator with MSE E over the best baseline estimator is:

R(E) = min{ET , EF }
E

.

This measure of relative improvement can be re-written
to explicitly consider the regimes where each of the base-
line estimators achieves the min{·}. That is, we deter-
mine the parameter configurations in which the TCM-
only estimator is better/worse than the Full-LM estima-
tor. Intuitively, we expect that when very few users opt-
in to the TCM, the TCM-Only estimator’s large excess
sampling error will overshadow its smaller privacy error
(relative to the Full-LM estimator’s privacy error). This
intuition is made precise by considering “critical values”
of c and n that determine the regimes where each of the
estimators yields better utility.

Lemma 3.6. Let ncrit and ccrit be defined as follows.

ncrit =
cs2
L + (1− c)((1− c)σ2

T − cσ2
L)

c((µT − µ)2 + s2
T )

(1)

ccrit =


σ2
L

σ2
L

+s2
L

, σT = σL,

2σ2
T−σ

2
L+s2

L−
√

(σ2
L
−s2

L
)2+4s2

L
σ2
T

2(σ2
T
−σ2

L
) , σT 6= σL

(2)

We have that ET ≤ EF if and only if c > ccrit∧n ≤ ncrit.

Proof. Directly reduce the system of inequalities con-
structed by ET ≤ EF in conjunction with the regions
given by the valid parameter ranges. This immediately
yields the result.

This characterization allows us to partition the defini-
tion of relative improvement into the behavior of each
baseline estimator, re-written as follows.

Definition 3.7. The relative improvement of an esti-
mator with MSE E over the best baseline estimator is:

R(E) = 1
E
·

{
ET if c > ccrit ∧ n ≤ ncrit
EL otherwise

The behavior of these two cases further depends on the
privacy mechanism used, as that dictates sT and sL.
For example, when using the ε-DP Laplace mechanism
in the homogeneous setting where both group means
are µ and variances are σ2, these definitions of critical
values and relative improvement become the following.

Lemma 3.8. Adding ε-DP Laplace noise for privacy,
define ccrit = ε2σ2

2m2+ε2σ2 and ncrit = 2m2

c(2cm2−(1−c)ε2σ2) .
We have that ET ≤ EF if and only if c > ccrit∧n ≥ ncrit.

Definition 3.9. Adding ε-DP Laplace noise for pri-
vacy, the relative improvement of an estimator with
MSE E over the best baseline estimator is:

R(E) = 1
E
·

{
1−c
cn σ

2 + 2m2

c2n2ε2 if c > ccrit ∧ n ≥ ncrit
2m2

nε2 otherwise

Thus, once the fraction of users opting-in to the TCM is
large enough, the TCM-Only estimator has better MSE
than the Full-LM estimator. In all other regimes, the
Full-LM estimator has better MSE than the TCM-Only
estimator. This matches the intuition.

Designing a hybrid estimator which outperforms at least
one of these baselines in all regimes (i.e., for all settings
of parameters µ, σ2, n, c,m, etc.) is trivial, as is design-
ing a hybrid estimator which outperforms both baselines
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in some regimes. One challenge solved in this work is de-
signing a hybrid estimator which provably outperforms
both baselines across all regimes.

3.3 Convex Hybrid DP Estimator Family

Simply described, this family of hybrid estimators has
the two groups independently compute their own pri-
vate estimates of the mean, then directly combines them
as a weighted average. The TCM group’s estimator is
the TCM-Only estimator. The LM group’s estimator is
almost the same as the Full-LM estimator, except now
with reports only from the LM users. We refer to this as
the “LM-Only” estimator, and briefly detour to define
and analyze it.

Definition 3.10. The LM-Only estimator is:

µ̃L = 1
(1− c)n

∑
i∈L

(xi + YL,i),

where, for each i ∈ L, YL,i is a random variable with 0
mean and s2

L variance chosen such that DP is satisfied
for user i.

Lemma 3.11. µ̃L, has expected squared error:

EL = c2

(1− c)nσ
2
L + c

n
σ2
T + 1

(1− c)ns
2
L + (µL − µ)2.

Proof. See Appendix A.

This estimator has excess sampling error, privacy error,
and bias error. Since it has strictly greater error than
the Full-LM estimator, it is not used as one of the base-
line estimators.

We now define a family of convexly-weighted hybrid
estimators parameterized by weight w ∈ [0,1], which we
will use throughout this paper. For any w, the hybrid
estimator computes a convex combination of the inde-
pendent TCM-Only and LM-Only estimators.

Definition 3.12. The hybrid estimator, parameterized
by w ∈ [0,1], is:

µ̃H(w) = wµ̃T + (1− w)µ̃L.

Lemma 3.13. µ̃H(w) has expected squared error:

EH(w) =
(w − c)2

cn
σ2

T +
(w − c)2

(1− c)n
σ2

L + w2s2
T +

(1− w)2

(1− c)n
s2

L

+ (wµT + (1− w)µL − µ)2.

Proof. See Appendix A.

This estimator has all three types of error – excess sam-
pling error, privacy error, and bias error – where the
amounts of each error type depend on the weighting w.

4 Homogeneous, Known-Variance
Setting

In this section, we design a hybrid estimator in the ho-
mogeneous setting which outperforms the baselines by
carefully choosing a particular weighting for the hybrid
estimator family from Definition 3.12. To choose such a
weighting, we restrict our focus to the homogeneous set-
ting, where both groups’ means are the same (µ = µT =
µL) and variances are the same (σ2 = σ2

T = σ2
L). Beyond

simplifying the expressions we’re analyzing, the homo-
geneous setting eliminates bias error from our defined
estimators, which removes any dependence on µ from
the derived error expressions. This is important, since
the curator’s goal is to learn µ from the data; thus, no
particular knowledge of µ is assumed. Therefore, in the
homogeneous setting, a weighting can be chosen by an-
alyzing the hybrid estimator’s derived error expressions
without needing any knowledge of µ. However, there is
still excess sampling error for the estimators in this set-
ting – in other words, error expressions still depend on
the data variance σ2. Thus, in this section, we make the
common assumption in statistical literature that σ2 is
known to the curator, and derive and analyze the opti-
mal hybrid estimator from the convex family.

KVH Estimator
We now derive and analyze the “known-variance hybrid”
(KVH) estimator by computing the optimal weighting
w∗ that minimizes EH(w). This can be analytically com-
puted and directly implemented by the curator, since
each term of EH(w) is known in this setting.

Definition 4.1. The known-variance hybrid estimator
in the homogeneous setting is:

µ̃KVH = w∗µ̃T + (1− w∗)µ̃L,

where w∗ = c(σ2+s2
L)

σ2+c(ns2
T

(1−c)+s2
L

) is obtained by minimiz-
ing EH(w) with respect to w.

Lemma 4.2. µ̃KVH has expected squared error:

EKVH = (w∗ − c)2

c(1− c)n σ
2 + w∗2s2

T + (1− w∗)2 s2
L

(1− c)n.
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Although all users’ data is used here, weighting the es-
timates by w∗ induces excess sampling error (w∗−c)2

c(1−c)n σ
2,

and the privacy error w∗2s2
T + (1−w∗)2

(1−c)n s
2
L is the weighted

combination of the groups’ privacy errors.

Now we compute and analyze the relative improve-
ment in MSE of the KVH estimator over the best MSE
of either the TCM-Only estimator or the Full-LM esti-
mator.

Theorem 4.3. The relative improvement of µ̃KVH
over the better of µ̃T and µ̃F is:

R(EKVH) = γ ·

{
1−c
cn σ

2 + s2
T if c > ccrit ∧ n ≤ ncrit

s2
L
n otherwise

,

where γ = (1−c)σ2s2
L+cn(cσ2+s2

L)s2
T

n(σ2+cs2
L

)+(1−c)cn2s2
T

and ccrit and ncrit
are as defined in Lemma 3.6.

Proof. Direct application of Lemmas 3.2, 3.4, and 4.2
to Definition 3.7.

Algebraic analysis of this relative improvement reveals
that R(EKVH) > 1 when the number of TCM users is
less than s2

L/s
2
T . For the common DP mechanisms that

apply 0-mean additive noise, this is trivially satisfied.
For instance, when adding ε-DP Laplace noise, s2

L/s
2
T =

c2n2 ≥ cn = |T |. Moreover, although R(EKVH) is the-
oretically unbounded, using the ε-DP Laplace mecha-
nism in the high-privacy regime (ε ≤ 1) enables a tight
characterization of the maximum possible relative im-
provement.

Corollary 4.4. The maximum relative utility of µ̃KVH
when using the Laplace mechanism in the high-privacy
regime is bounded as:

17/8 ≤ max
ε≤1

c,n,m,σ

R(EKVH) ≤ 16/7.

Proof. See Appendix B.

Empirical Evaluation of R(EKV H)
To better understand what improvements one can ex-
pect from µ̃KVH in practical applications, we empiri-
cally evaluate R(EKVH) using the ε-DP Laplace mech-
anism in the context of various datasets. Note that al-
though the hybrid estimator’s performance is dependent
on the data distribution only through σ, n, and m, we
use datasets to realistically motivate these values.

In Figure 1, we use three synthetic datasets from
the Beta(α, β) distribution: Beta(10, 10), Beta(1, 1), and

Beta(0.1, 0.1). These symmetric distributions are cho-
sen to induce different σ values – low (σ ≈ 0.109),
medium (σ ≈ 0.289), and high (σ ≈ 0.456). For each
distribution, R(EKVH) is plotted across n ∈ [103, 105],
c ∈ {0.5%, 5%}, and ε ∈ {0.1, 1}. Since the Beta distri-
butions are supported on the interval [0,1], we letm = 1.
Figures 1b,c,d show that in these settings, R(EKVH) is
lower-bounded by 1 and none are much larger than 2
– matching our theoretical analysis. Observe that the
“peaking” behavior of some curves is caused by the
the ncrit and ccrit values being surpassed, which cor-
responds to the TCM group’s data beginning to out-
perform the LM group’s data in terms of MSE. The
curves which don’t peak either have trivially surpassed
the critical values (i.e., ncrit < 1 with c > ccrit) or have
c < ccrit; importantly, they don’t change behavior at
some n not shown in the figures.

In Figure 2, we use a real-world dataset of salaries
of n = 252,540 employees in the University of Califor-
nia system in 2010 [49]. This dataset was chosen due to
its relatively high asymmetry, with a maximum salary
of m ≈ 2,349,033 and standard deviation of σ ≈ 53,254
(both assumed to be known). As σ, n, and m are deter-
mined by the dataset, we examine the R(EKVH) values
across a large space of the remaining free parameters:
c ∈ [0.1%, 10%] and ε ∈ [0.1, 10]. We see the relative im-
provement peak just above 2 in the high-privacy regime,
with this maximum improvement continuing into the
low-privacy regime.

5 Homogeneous,
Unknown-Variance Setting

In this section, we design a different hybrid estimator
for the homogeneous setting, now applied to the case
where the variance σ2 of the data is not known. This is a
more realistic setting, as an analyst with no knowledge
of the distribution’s mean typically also doesn’t have
knowledge of its variance.

The KVH estimator was able to use knowledge of
the variance to weigh the estimates of the two groups
so that the trade-off of excess sampling error and pri-
vacy error was optimally balanced. In this unknown-
variance case, determining the optimal weighting is no
longer viable. Nevertheless, we can heuristically choose a
weighting which may (or may not) perform well depend-
ing on the underlying distribution. Thus, we propose
a heuristic weighting choice for combining the groups’
estimates and analyze it theoretically and empirically.



The Power of the Hybrid Model for Mean Estimation 56

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

p(
x)

Beta distributions

= = 10
= = 1
= = 0.1

0 20000 40000 60000 80000 100000
n

1.0

1.2

1.4

1.6

1.8

2.0

R(
KV

H
)

= = 10
c=0.005, =0.1
c=0.005, =1
c=0.05, =0.1
c=0.05, =1

(a) (b)

0 20000 40000 60000 80000 100000
n

1.0

1.2

1.4

1.6

1.8

2.0

R(
KV

H
)

= = 1
c=0.005, =0.1
c=0.005, =1
c=0.05, =0.1
c=0.05, =1

0 20000 40000 60000 80000 100000
n

1.0

1.2

1.4

1.6

1.8

2.0

R(
KV

H
)

= = 0.1
c=0.005, =0.1
c=0.005, =1
c=0.05, =0.1
c=0.05, =1

(c) (d)

Fig. 1. (a) Probability density functions of Beta(α, β) distributions for various α, β values. (b,c,d) The relative improvement R(EKV H)
for each Beta distribution across a range of n values, for various c and ε values.

Before detailing this estimator, we first discuss a useful,
but weaker, measure of relative improvement for this
unknown-variance case.

Utility Over At Least One Baseline
Ideally, estimators would have R(E) ≥ 1 for all parame-
ters. If the regions can be computed where each baseline
estimator has the best MSE, then a hybrid estimator
can be designed to use this knowledge to trivially ensure
R(E) ≥ 1. However, depending on the setting (such as
when variance is unknown), determining these regions
precisely may not be feasible. In these cases, we want to
at least ensure that the hybrid estimator is never per-
forming worse than both baselines, and do so by defining
the following measure of relative improvement.

Definition 5.1. The relative improvement of an esti-
mator E over the worst baseline estimator is:

r(E) = max{ET , EF }
E

.

Our characterization of the critical values in Lemma 3.6
enables r(ε) to be re-written as follows.

Definition 5.2. The relative improvement of an esti-
mator with MSE E over the worst baseline estimator is:

r(E) = 1
E
·

{
s2
L
n if c > ccrit ∧ n ≤ ncrit

1−c
cn σ

2 + s2
T otherwise

We remark that although any “reasonable” hybrid es-
timator should satisfy r(E) ≥ 1, this criteria is not
automatically satisfied. Even among the family of hy-
brid estimators from Definition 3.12, there exist estima-
tors which have r(EH(w)) < 1 in some regimes. Con-
cretely, consider an arbitrary constant as the weight;
e.g., w = 0.001. Using the parameters from experi-
ments (m = 1, σ = 1/6, c = 0.01, ε = 0.1), we have
r(EH(0.001)) < 1 for n ≥ 10,058. Thus, estimators must
be designed carefully to maximize utility and, at the
very least, ensure r(E) > 1 everywhere.

We now propose and analyze a hybrid estimator
with a heuristically-chosen weighting that is based on
the amount of privacy noise each group adds. However,
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Fig. 2. (a) Distribution of salaries of UC employees. (b) The relative improvement R(EKV H) across a range of c and ε values.

we first remark that we additionally investigated a naïve
weighting heuristic, which performs the same weighting
as the non-private benchmark estimator: weight the es-
timates based purely on the group size (i.e., w = c). Our
empirical evaluations showed that for practical parame-
ters, this estimator is typically inferior to the estimator
we’re about to discuss. Thus, we have omitted it from
this presentation for brevity.

PWH Estimator
We choose this heuristic weighting by considering only
the induced privacy error of each groups’ estimate.
Thus, we refer to this as the “privacy-weighted hybrid”
(PWH) estimator. Note that this weighting seeks solely
to optimally balance privacy error between the groups,
and therefore ignores the induced excess sampling er-
ror. Explicitly, from EH(w) of Lemma 3.13 applied to
the homogeneous setting, this weighting corresponds to
choosing w to minimize w2s2

T + (1 − w)2 s2
L

(1−c)n , stated
in the following definition.

Definition 5.3. The privacy-weighted hybrid estimator
is:

µ̃PWH = wPWH µ̃T + (1− wPWH)µ̃L,

where wPWH = s2
L

s2
L

+(1−c)ns2
T

Lemma 5.4. µ̃PWH has expected squared error:
EPWH=

(1−c)cn2s4
T (cσ2+s2

L)+cns2
L
s2
T (2(c−1)σ2+s2

L)+(1−c)σ2s4
L

cn(s2
L

+(1−c)ns2
T )2 .

This estimator has a mixture of both excess sampling
error and privacy error. Since the privacy error was di-
rectly optimized, we expect this estimator to do well

when the data variance σ2 is small, as this will natu-
rally induce small excess sampling error.

Now we are able to discuss the relative improvement
of the PWH estimator over the baselines.

Theorem 5.5. The relative improvements of the PWH
estimator µ̃PWH over µ̃T and µ̃F are:

R(EPWH) = γ ·

{
1−c
cn σ

2 + s2
T if c > ccrit ∧ n ≤ ncrit

s2
L
n otherwise

,

r(EPWH) = γ ·

{
s2
L
n if c > ccrit ∧ n ≤ ncrit

1−c
cn σ

2 + s2
T otherwise

,

where γ=
cn(s2

L
+(1−c)ns2

T )2

(1−c)cn2s4
T (cσ2+s2

L)+cns2
L
s2
T (2(c−1)σ2+s2

L)+(1−c)σ2s4
L

and ccrit and ncrit are as defined in Definition 3.7.

Proof. Direct application of Lemmas 3.2, 3.4, and 5.4
to: Definition 3.7 for R(EPWH), and Definition 5.2 for
r(EPWH).

With the generic noise-addition privacy mechanisms,
algebraic analysis of the weaker relative improve-
ment measure reveals r(EPWH) > 1 uncondition-
ally. However, the regions where R(EPWH) is greater
than 1 are difficult to obtain analytically with these
generic mechansisms. By restricting our attention to
the Laplace mechanism, we find that R(EPWH) > 1 is
satisfied under certain conditions. The first is a “low
relative privacy” regime where ε ≥

√
2m
σ ; that is, once

ε is large enough, we have R(EPWH) > 1. For ε un-
der this threshold, achieving R(EPWH) > 1 requires the
following conditions on c and n: either c ≤ ε2σ2

2m2 , or
c > ε2σ2

2m2 ∧ n < 2m2(1+c)
c(2cm2−ε2σ2) .
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Empirical Evaluation of R(EP W H) and r(EP W H)
Here, we perform an empirical evaluation analogous to
that done in Section 4. Figure 3 presents R(EPWH)
(top row) and r(EPWH) (bottom row) using the same
Beta distributions and parameters (n ∈ [103, 105], c ∈
{0.5%, 5%}, and ε ∈ {0.1, 1}). We find that there are
many regions where R(EPWH) achieves a value of just
greater than 1, and some regions where it achieves val-
ues competitive with the KVH estimator. Unsurpris-
ingly, since this weighting is chosen without account-
ing for the variance, there are also clear regions where
the R(EPWH) is noticeably less than 1. Even in the re-
gions where R(EPWH) is low, the r(EPWH) values in the
bottom row often show that the PWH estimator signif-
icantly improves over the worse of the two baseline es-
timators. An empirical evaluation of this estimator on
the UC salaries dataset can be found in Appendix C.

6 Heterogeneous Setting
In this section, we examine the effects of the groups’
distributions diverging on the quality of our estimators.
This is motivated by the fact that the hybrid model
allows users to self-partition based on their trust prefer-
ences. Such self-partitioning may cause the groups’ dis-
tributions to be different. For instance, since the TCM
users have similar trust preferences, their data may also
be more similar than the LM users’. This could mani-
fest as variance-skewness between the groups. Alterna-
tively, the TCM users may have fundamentally different
data than the LM users, which would manifest as mean-
skewness between the groups. Thus, we examine the case
where the group means are the same but their variances
are different, as well as the case where the group means
are different but their variances are the same. To un-
derstand these skewness effects, we empirically evaluate
R(EKVH)1.

Although the heterogeneous setting is more general
and complex, we can still derive the optimal weight-
ing for the KVH estimator analogously to homogeneous
KVH weighting of Definition 4.1.

1 We also performed the same empirical evaluation with the
unknown-variance PWH estimator. The results were nearly iden-
tical to the KVH estimator’s, and the conclusions were the same.
Thus, we omitted them for brevity.

Definition 6.1. The known-variance hybrid estimator
in the heterogeneous setting is:

µ̃KVH = w∗µ̃T + (1− w∗)µ̃L,

where w∗ = c(s2
L+cσ2

L+(1−c)(n(µL−µ)(µL−µT )+σ2
T ))

cs2
L

+(1−c)cn((µL−µT )2+s2
T

)+cσ2
L

+(1−c)σ2
T

Variance-Skewness
Here, we examine the case where µT = µL but σ2

T 6= σ2
L.

This reduces the KVH estimator’s weighting to w∗ =
c(s2

L+cσ2
L+(1−c)σ2

T )
cs2
L

+(1−c)cns2
T

+cσ2
L

+(1−c)σ2
T

. To gain insight into the ef-
fect of variance-skewness, we recall two Beta distribu-
tions previously used in our empirical evaluations: the
low-variance Beta(10,10) distribution (σ = 0.109) and
the high-variance Beta(0.1, 0.1) distribution (σ = 0.456).
We evaluate R(EKVH) in two scenarios: when the TCM
group has data drawn from the low-variance distribu-
tion but the LM group has data drawn from the high-
variance distribution, and vice versa. Figure 4 gives the
results across the same range of n, c, and ε values as
used in previous experiments.

The similarities between Figure 4 and Figure 1
demonstrate that our estimator is robust to deviations
in the LM group’s variance. For example, Figure 1b
shows R(EKVH) when all the data is from the low-
variance distribution; that figure nearly exactly matches
Figure 4a despite the fact that most of the data is now
from the LM group’s high-variance distribution. As this
applies to both of Figure 1’s graphs, it is clear that
the relative improvement heavily depends on the vari-
ance of the TCM group, regardless of whether the LM
group had the low- or high-variance data. In fact, in
both graphs, the difference in relative improvement from
the homogeneous case with variance σ2 to the hetero-
geneous case where only the TCM group has variance
σ2
T = σ2 does not vary by more than ±0.1, and, typi-

cally, varies by less than ±0.01.

Mean-Skewness
Here, we examine the case where µT 6= µL but σ2

T =
σ2
L. This reduces the KVH estimator’s weighting to
w∗ = c(s2

L+(1−c)n(µL−µ)(µL−µT )+σ2)
cs2
L

+(1−c)cn((µL−µT )2+s2
T

)+σ2 . Importantly, this
expression depends on the curator’s knowledge of µT
and µL – an unreasonable requirement, since the cura-
tor’s overarching goal is to learn the mean from the
user data. For applications where the groups’ means
are assumed to be different, computing separate esti-
mates of each group’s mean in their respective trust
models would likely be more useful than a joint esti-
mate. Thus, we instead explore mean-skewness from the
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Fig. 3. Across a range of n values, for various c and ε values for each Beta distribution (plotted in Figure 1a): (a,b,c) shows
R(EP W H) values and (d,e,f) shows r(EP W H) values.

point of view of a curator who mistakenly believes they
are operating in the homogeneous setting, and thus uses
the homogeneous weighting from Definition 4.1. This is
useful in practice, as it demonstrates how a curator can
use our analytical expressions for their specific problem
instance to understand how utility is affected by mis-
specified assumptions about user data.

To analyze this case, we set up the following exper-
iment, displayed in Figure 5. At the high level, we start
with the control for the experiments: set both groups to
the same distribution DT = DL and obtain R(EKVH).
Next, we retain the distributional shape for both groups,
but shift them in opposite directions; e.g., DT −t,DL+t
for some t. We obtain the new R(EKVH) values under
these distributions, and compare against the un-shifted
results. For clarity, we denote the relative improvement
on the t-shifted distribution as Rt(EKVH).

We expect that as the divergence in means t in-
creases, the relative utility of our hybrid estimator will
decrease. To test this hypothesis concretely, we use
the medium-variance Beta(1,1) distribution (σ = 0.289)
from our previous empirical evaluations as the experi-
ment’s base distribution. We center this distribution at
1 without rescaling, inducing support on [0.5,1.5]. Then
we set both DT and DL to this distribution, and obtain
R0(EKVH) on it (Figure 5ab). Next, we add a small
shift of t = 0.25 to each of the groups’ distributions in

opposite directions; i.e., DT − 0.25 and DL + 0.25, so
that so that |µT − µL| = 0.5. These distributions, along
with the corresponding R0.25(EKVH) results, are shown
in the second column of Figure 5. Finally, the third col-
umn of Figure 5 shows the analogous distributions and
results when a large shift of t = 0.5 is added so that
|µT − µL| = 1.2 Unsurprisingly, these results depict a
clear negative impact on the relative improvement as
the means diverge, showing that our estimator is sensi-
tive to skewness in the groups’ means.

7 Hybrid Estimator Applications
In this section, we demonstrate how more complex non-
hybrid algorithms can be easily extended into the hybrid
model using our hybrid esimator as a mean estimation
primitive. In particular, we implement a hybrid vari-
ant of the classic DP K-means algorithm [23] using the

2 One caveat to these shifts is that as the data distribution
becomes wider, the noise required to ensure DP must increase.
Since we are interested in the effect of mean-skewness here, and
not the effect of distribution-width, we conservatively fix m = 2
for all experiments. That is, the same level of noise is used across
shift-amounts, even if less noise may have sufficed to ensure DP.
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Fig. 4. The relative improvement R(EKV H) values when: (a) the TCM group has low-variance data but the LM group has high, and
(b) when the TCM group has high-variance data but the LM group has low.

PWH hybrid estimator as a sub-component, then em-
pirically evaluate its effectiveness.

The K-means problem is to partition n d-
dimensional real-valued observations x1, . . . , xn into K
clusters C1, . . . , CK such that the within-cluster sum of
squares (WCSS) is minimized. Denoting µk as the cen-
ter of cluster Ck, this is formally:

arg min
C1,...,CK

K∑
k=1

∑
x∈Ck

||x− µk||2.

This problem is NP-hard, and thus heuristic algorithms
are generally used. The classic DP algorithm for this
problem was designed for the TCM and analyzed in
[23]. This algorithm partitions the total privacy budget
across τ iterations, and each iteration refines the esti-
mates of the clusters’ centers. Each iterative refinement
assigns the observations to their nearest cluster, then
updates each cluster’s center to the mean of all points
within it while carefully applying Laplace noise.

We extend this algorithm to the LM in a simple way.
First, LM users expend a portion of their privacy budget
reporting their data to the curator with Laplace noise.
The curator uses their data analogously to the TCM
case, except that in each iteration, LM users use a por-
tion of their privacy budget to report the nearest cluster
to them using randomized response – this reduces bias
in the cluster centers, relative to computing the nearest
cluster directly based on their already-reported data.

Other DP K-means algorithms exist in both the
TCM [4, 8, 43, 46, 48, 53] and LM [47, 52, 54, 57] which
improve on our two non-hybrid K-means algorithms.
However, the purpose of this section is to demonstrate
how our hybrid estimator can be effectively leveraged
in more complex applications. Thus, we present our hy-
bridK-means algorithm in Appendix E, which combines

our simpler TCM and LM algorithms in the following
straightforward way. Each separate algorithm performs
its iterative refinement as previously described. Then,
at the end of each iteration, the TCM and LM cluster
center estimates are combined using the PWH estimator
on each dimension.

We evaluate the hybrid algorithm in the follow-
ing experiment, showing that it automatically achieves
WCSS on-par with the best baseline. The baselines here,
analogous to our estimators’ TCM-Only and Full-LM
MSE baselines, are: the WCSS of the TCM variant us-
ing only TCM data, and the WCSS of the LM variant
using all data. The dataset used for evaluations is shown
in Figure 6a: 4 clusters of 2-dimensional spherical Gaus-
sian data with scale σ ≈ 0.028 and 40,000 points per
cluster. In Figure 6bc, across a range of total iterations
τ and fractions of TCM users 0.1% and 1%, we evalu-
ate the mean WCSS values of each model’s algorithm
with 364 trials. The privacy budget for each algorithm is
ε = 7; this relatively high budget is necessitated for the
TCM and LM algorithms to achieve acceptable practical
utility. The regimes where each non-hybrid algorithm is
better than the other is unclear a priori, and the results
here show one example of each. By simply combining the
two using our hybrid estimator, the hybrid algorithm is
able to maintain a WCSS approximately equal to the
better of the two.

8 Privacy Amplification Via
Inter-group Interaction

The benefit or necessity of inter-group interaction in
the hybrid model is an active area of research. Avent
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Fig. 5. (Left column) Initial data distributions with no mean shift, and the KVH estimator’s corresponding relative improvement. Small
(middle column) and large (right column) mean shifts of the initial data distribution with t = 0.25 and t = 0.5 respectively, along with
the KVH estimator’s corresponding change in relative improvement.

et al. [3] showed experimentally that good utility is
achievable by intelligently utilizing inter-group interac-
tion. In this work, we’ve shown mathematically that
we can guarantee good utility for mean estimation with
no inter-group interactivity. However, both works only
focus on inter-group interactivity’s effect on a mecha-
nism’s utility – neither consider its effect on privacy.
Each group is assumed to independently guarantee pri-
vacy, without considering how subsequent interaction
and processing by the curator may effect the DP guar-
antee. The post-processing property of DP ensures that
such interaction and processing won’t degrade privacy,
but the question of whether it improves privacy was un-
studied. It is precisely this effect on privacy that we in-
troduce and examine in this section. We find that for our
hybrid mean estimators, the privacy guarantee against
certain adversaries can be significantly improved.

We are specifically interested in users’ privacy
against adversaries who can view the output of the cu-
rator’s computation (i.e., output-viewing adversaries).
This is the classic adversary model that the TCM pro-
tects against. The LM protects against a larger class
of adversaries: the output-viewing adversaries, as well
as against the curator itself. However, the LM’s sin-
gular DP guarantee doesn’t distinguish between these
adversary types. In the hybrid model, each groups’ DP

guarantee may be overly-conservative against output-
viewing adversaries since it doesn’t account for the cu-
rator’s joint processing of the LM users’ reports – which
each include their own privacy noise – in conjunction
with the TCM group’s privacy noise. Thus, we inves-
tigate users’ DP guarantee against output-viewing ad-
versaries as a result of: 1) the combined privacy noise
from both groups, in conjunction with 2) the inter-group
interaction strategy of the curator. We show that these
two components together can serve to amplify users’ pri-
vacy against this adversary class. This provides a two-
tier DP guarantee for LM users – their standard DP
guarantee against the curator, and an improved guar-
antee against output-viewing adversaries – and an im-
proved DP guarantee for TCM users. To make this con-
crete, we first analyze our hybrid estimator family and
show how its non-interactive strategy can amplify pri-
vacy. We then describe why BLENDER’s [3] interaction
strategy does not provide such amplification. Together,
these examples highlight the value of looking at the ef-
fects of inter-group interaction not only on utility, but
also on privacy.
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(a) (b) (c)

Fig. 6. (a) Clustering dataset with 4 clusters of 2-d spherical Gaussians with σ ≈ 0.028 and 40,000 points per cluster. (b,c) WCSS
values of each model’s algorithm across a range of total iterations τ , 0.1% and 1% fractions of TCM users respectively, and ε = 7.

Hybrid Mean Estimator Amplification
Recall that the hybrid estimator family from Defini-
tion 3.12 utilizes no inter-group interaction – i.e., the cu-
rator only outputs once: after it has received all the LM
users reports, computed both groups’ estimates, then
combined them. For adversaries that can only view the
output of this curator, the combined noise from all the
LM users and the TCM group can serve to improve the
DP guarantee. To see this, we re-write the estimator as

µ̃H(w) =

(
w

cn

∑
i∈T

xi + 1− w
(1− c)n

∑
i∈L

xi

)
︸ ︷︷ ︸
non-private hybrid mean estimator

+

(
wYT + 1− w

(1− c)n
∑
i∈L

YL,i

)
︸ ︷︷ ︸

joint privacy noise

.

Thus, this joint privacy noise is providing some DP
guarantee for the mechanism as a whole, rather than
individual noises protecting the individual groups.

There is one caveat: the TCM users’ noise is pro-
vided by the curator and never revealed to them, but
the LM users each provide their own noise. DP requires
that the privacy noise not be known to an adversary;
any noise that is known cannot be considered towards
the DP guarantee. Here, we assume LM users are semi-
honest – i.e., they apply the specified mechanism prop-
erly to their data, but they know the privacy noise they
add. Thus, LM user i’s knowledge of their own privacy
noise weakens the the joint noise term by an additive

1−w
(1−c)nYL,i amount. Furthermore, they may choose to
form coalitions with other users and share this knowl-
edge to adversarially weaken the joint privacy noise
term. The largest such coalition, denoted as A, reduces
the joint privacy noise by 1−w

(1−c)n
∑
i∈A YL,i. Excluding

the largest such coalition’s noise enables the remaining
joint privacy noise to be analyzed for a DP guarantee.

The DP guarantee from the remaining joint noise
depends on the privacy mechanisms used by the TCM
group and each LM user. For instance, the ε-DP Laplace
mechanism would yield a joint noise term which guar-
antees ε′-DP where ε′ = ε – i.e., it wouldn’t enable
any privacy amplification (see proof in Appendix D).
Alternatively, consider the Gaussian mechanism, where
the curator adds YT ∼ N (0,s2

T ) and each LM user i
adds YL,i ∼ N (0,s2

L), where s2
T and s2

L are calibrated
to ensure (ε,δ)-DP for both groups. Now, analyzing this
joint noise provides the following amplified DP guaran-
tee against output-viewing adversaries.

Theorem 8.1. Assume the curator adds Gaussian
noise of variance s2

T to provide an (ε, δ)-DP guaran-
tee for the TCM group, and that each LM user adds
Gaussian noise of variance s2

L to provide an (ε, δ)-DP
guarantee for themselves. Furthermore, assume that the
largest adversarial coalition is of size |A|. Define

s′2 = w2s2
T +

(
1− w

(1− c)n

)2
|L \A|s2

L.

The users’ ε′-DP guarantee against output-viewing ad-
versaries is given by:

ε′ =
√

2 ln(1.25/δ)m
ns′

·

{
w
c , w ≤ c
1−w
1−c , otherwise

Proof. See Appendix D.

For practical applications, even with a moderate frac-
tion of adversarial LM users, this amplification can be
significant. To make this concrete, consider the UC
salary dataset used in the previous experiments. Sup-
pose we compute the KVH estimator with each group
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using the Gaussian mechanism with ε = 1 and δ = 10−7.
In Figure 7, we plot the users’ amplified ε′ value across
c ∈ [0.1%, 10%] as well as across the fraction of LM users
assumed to be adversarial.
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Fig. 7. The amplified (ε′, δ)-DP guarantee when the (1, 10−7)-
DP Gaussian mechanism is used in the KVH estimator.

BLENDER Amplification
Now that we’ve shown how a lack of inter-group in-
teraction can facilitate privacy amplification, we turn
our focus to BLENDER’s inter-group interactions strat-
egy for improving utility. As described in Section 2.3,
BLENDER takes advantage of the TCM group by hav-
ing it identify the heavy hitters. The TCM group then
passes the identified heavy hitters on to the LM users,
who perform frequency estimation. The curator then
combines the LM users’ reports and outputs the heavy
hitters along with their frequencies.

One might be tempted to analyze this final output
for an amplified DP guarantee. However, the initial out-
put of the curator – the privatized list of heavy hitters
from the TCM group – has already been released to all
LM users. Unless all LM users are non-adversarial, the
TCM users gain no further benefit from the incorpora-
tion of the LM users’ privacy noise. Conversely, the LM
users may experience privacy amplification through the
combination of their locally-added noise; however, this
is solely due to intra-group interaction in the LM, and
related topics are currently an active area of research
on the LM [5, 6, 16, 19, 26, 33].

9 Conclusions
Under the hybrid model of differential privacy, which
permits a mixture of the trusted-curator and local trust
models, we explored the problem of accurately estimat-
ing the mean of arbitrary distributions with bounded
support. We designed a hybrid estimator for the joint
mean of both trust models’ users and derived analyti-
cally exact finite sample utility expressions – applicable
even when the trust models may have different user data
distributions.

When the trust models have the same distribution
and the curator knows its variance, we proved that our
estimator is able to always achieve higher utility than
both baseline estimators in the two individual trust
models. When the variance is unknown, for many prac-
tical parameters, we showed that our hybrid estimator
achieves utility nearly as good as when the variance is
known. For both cases, we evaluated our estimator on
realistic datasets and found that it achieves good utility
in practice.

By designing a hybrid variant of the classic differen-
tially private K-means algorithm, we showed how more
complex hybrid algorithms can be designed by using
the hybrid estimator as a sub-component. Experimen-
tally, we found that this hybrid algorithm automatically
achieves utility on-par with the best of its corresponding
two non-hybrid algorithms, even though it is unclear a
priori when each non-hybrid algorithm is better.

Finally, we introduced a notion of privacy amplifica-
tion that arises in the hybrid model due to interaction
between the two underlying trust models. We derived
the privacy amplification that our hybrid estimator pro-
vides all users, and discussed when other hybrid mech-
anisms may fail to achieve amplification.
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A Estimator MSE Proofs
Proof of Lemma 3.2

V[µ̃T − µ̂] = V
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cn
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i∈T

xi + YT −
1
n
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i∈[n]
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Thus,

ET = E[(µ̃T − µ̂)2]
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Proof of Lemma 3.4
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Proof of Lemma 3.11
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Proof of Lemma 3.13
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B Proof of Corollary 4.4
Note the following for upper-bounding R(EKVH).
Popoviciu’s inequality [51] states that a random vari-
able bounded in [a,b] has variance at most (b−a)2/4. For
our purposes, this ensures σ2 ≤ m2/4. For real-world use
cases, it is realistic to constrain ε to the “high-privacy”
regime of ε ≤ 1. Thus, with ε ≤ 1 and σ2 ≤ m2/4, we
have 0 ≤ ε2σ2/m2 ≤ 1/4. Let y = ε2σ2/m2. Now, we
upper-bound the improvement ratio as follows.

R(EKVH) ≤ 2(2− c)m2

2m2 − (1− c)ε2σ2 = 2(2− c)
2− (1− c)y ≤ 16/7,

where the final inequality stems from constrained maxi-
mization across c ∈ [0,1] and y ∈ [0,1/4] (justified in the
above note).

A lower-bound is given by the following concrete
instance. Let m = 1, ε = 1, σ2 = 1/4, and c =
1

18

(
1 +

√
288+n
n

)
. Then, as n → ∞, we have that

R(EKVH) converges to 17/8.

C PWH Utility (continued)
Figure 8 presents heatmaps of R(EPWH) and r(EPWH)
for the UC salaries dataset across the same parameters
as before (c ∈ [0.1%, 10%] and ε ∈ [0.1, 10]). We find
that R(EPWH) achieves a value of slightly greater than
1 across a large portion of the space. The results here
tell a similar story to that of Figure 3. Most of the space
has R(EPWH) values above 1, and even approaching 2
in narrow region. There is also a small region at the
large c values where the relative improvement drops be-
low 0.5.The majority of the space has r(EPWH) between



The Power of the Hybrid Model for Mean Estimation 67

10 and 100, although it includes a region at the high ε

values where this relative improvement exceeds 1,500.
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Fig. 8. The relative improvements R(EP W H) (a) and r(EP W H)
(b) across a range of c and ε values. Note the log scale on (b).

D Privacy Amplification Proofs
ε-DP Laplace Mechanism Amplification
Here, we show that the unweighted sum of user’s re-
ports, each privatized by their own ε-DP Laplace mech-
anism, only provides a ε′-DP joint guarantee of ε′ = ε.
We note that a convex weighting of the terms in this
sum yields the same joint guarantee, proving our claim.
To formalize this, we define

S̃n :=
∑
i∈[n]

(xi + Yi) =
∑
i∈[n]

xi +
∑
i∈[n]

Yi

where xi ∈ [0,m], Yi ∼ Lap(b), and b = m/ε for each
user i. Denote Sn :=

∑
i∈[n] xi and Y :=

∑
i∈[n] Yi. We

show here that the joint noise Y provides ε′-DP for Sn
against output-viewing adversaries, where ε′ = ε.

First, note that each user at least has the ε-DP guar-
antee via their own privacy noise. Thus, by the post-

processing property of DP, we have ε′ ≤ ε as a trivial
upper-bound. Note that if ε ≤ ε′ without any adver-
sarial users, then our upper-bound implies ε ≤ ε′ with
an arbitrary number of adversarial users. Therefore, we
assume w.l.o.g. that no users are adversarial.

Towards lower-bounding ε′, we compute the charac-
teristic function of Y as the product of the characteristic
functions of each Yi. Y ’s probability density function,
pY (x), is then recovered from its characteristic func-
tion [14] via the inverse Fourier transform to yield

p(x) = 2 1
2−n

√
πb

1
2 +nΓ(n)

K 1
2−n

(
|x|
b

)
|x|n−

1
2 ,

where ϕY (t) is the complex conjugate of ϕY (t) and K·(·)
is the modified Bessel function of the second kind [1].
For ε′-DP, noting that ∆1Sn = m, we must bound

−ε′ ≤ max
k∈[−m,m]

log
(

p(x)
p(x+ k)

)
≤ ε′.

Consider the instance where k = m and x→∞:

lim
x→∞

log
(

p(x)
p(x+ k)

)
= lim
x→∞

log

(
K 1

2−n
(
x
b

)
K 1

2−n
(
x+m
b

) ( x

x+m

)n− 1
2

)
= m

b
.

By the definition of b, we have m
b = ε. Therefore

ε = lim
x→∞

log
(

p(x)
p(x+ k)

)
≤ max

k∈[−m,m]
log
(

p(x)
p(x+ k)

)
≤ ε′.

Thus, we conclude that ε′ = ε.

(ε, δ)-DP Gaussian Mechanism Amplification
Denote the non-private hybrid mean estimator as

µ̂H(w) := w

cn

∑
i∈T

xi + 1− w
(1− c)n

∑
i∈L

xi

and the joint privacy noise (without the largest adver-
sarial coalition) as

Y := wYT + 1− w
(1− c)n

∑
i∈L\A

YL,i.

We first compute the sensitivity

∆2µ̂H(w) = max
∥∥µ̂H(w)− µ̂′H(w)

∥∥
2 ,

where µ̂H(w) is the estimator on any dataset D =
T ∪ L and µ̂′H(w) is the estimator on any neighboring
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dataset D′ = T ′ ∪ L′ differing in the data of at most
one user. If the data of one T user is changed, then
max

∥∥µ̂H(w)− µ̂′H(w)
∥∥

2 ≤
wm
cn . If instead the data of

one L user is changed, then max
∥∥µ̂H(w)− µ̂′H(w)

∥∥
2 ≤

(1−w)m
(1−c)n . Note that wm

cn ≤
(1−w)m
(1−c)n when w ≤ c. Thus,

we have

∆2µ̂H(w) =

{
wm
cn , w ≤ c

(1−w)m
(1−c)n , otherwise

.

Next, let YT ∼ N (0,s2
T ) and YL,i ∼ N (0,s2

L,i) such
that sT satisfies (ε, δ)-DP for the TCM group and sL,i
satisfies (ε, δ)-DP for each LM user i. By the well-known
properties of Gaussians, the weighted combination of
Gaussians is also a Gaussian, as

Y ∼ N

(
0, s′2 := w2s2

t +
(

1− w
(1− c)n

)2
|L \A|s2

L

)
.

Recall that the classic Gaussian mechanism [24]
guarantees (ε, δ)-DP for a function f with sensitivity
∆2f by adding noise from N (0,s2) such that s2 =
2 log(1.25/δ)∆2f

2/ε2. Applying this result to our prob-
lem with a fixed δ′ = δ and solving ε′, we have

ε′ =

√
2 ln(1.25/δ)∆2µ̂2

H(w)
s′2

=
√

2 ln(1.25/δ)m
ns′

·

{
w
c , w ≤ c
1−w
1−c , otherwise

.

E Hybrid K-means Pseudocode

Algorithm 1: Hybrid-DP K-means
Input: TCM users T , LM users L, data range

m, data dimension d, num. clusters K,
num. iterations τ

1 Initialize centers of clusters C1, . . . , CK

2 bT ← (md+1)τ
ε and bL ← md(τ+1)

ε

3 Each i ∈ T reports x̃i ← xi to the curator
4 Each i ∈ L reports x̃i ← xi + YL,i to the

curator, YL,i ∼ Lapd(bL)
5 for t← 1 . . . τ do
6 Assign each x̃i from T to closest cluster

non-privately
7 Assign each x̃i from L to closest cluster

with prob. exp(ε/(τ+1))−1
K+exp(ε/(τ+1))−1 ; to a

uniformly random cluster otherwise
8 for k ← 1 . . .K do
9 Count T users in cluster k with DP :

ÑT ← |Ck ∩ T |+ Y1, Y1 ∼ Lap(bT )
10 Compute mean of all T users’ data in

cluster k with DP: µ̃T ←
1
ÑT

(∑
i∈T xi + Y2

)
, Y2 ∼ Lapd(bT )

11 Count L users in cluster k:
ÑL ← |Ck ∩ L|

12 Compute mean of all L users’ data in
cluster k: µ̃L ← 1

ÑL

∑
i∈L x̃i

13 c← ÑT
ÑT+ÑL

, s2
T ← 2b2

T , and s2
L ← 2b2

L

14 Compute wPWH as defined in Def. 5.3
15 Update center of Ck to hybrid mean of

all data: wPWH µ̃T + (1− wPWH )µ̃L

16 return centers of C1, . . . , Ck
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