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Publishing Community-Preserving Attributed
Social Graphs with a Differential Privacy
Guarantee
Abstract: We present a novel method for publishing
differentially private synthetic attributed graphs. Our
method allows, for the first time, to publish synthetic
graphs simultaneously preserving structural properties,
user attributes and the community structure of the
original graph. Our proposal relies on CAGM, a new
community-preserving generative model for attributed
graphs. We equip CAGM with efficient methods for
attributed graph sampling and parameter estimation.
For the latter, we introduce differentially private com-
putation methods, which allow us to release community-
preserving synthetic attributed social graphs with a
strong formal privacy guarantee. Through comprehen-
sive experiments, we show that our new model outper-
forms its most relevant counterparts in synthesising dif-
ferentially private attributed social graphs that preserve
the community structure of the original graph, as well
as degree sequences and clustering coefficients.
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1 Introduction
The use of online social networks (OSNs) has grown
steadily during the last years, and is expected to con-
tinue growing in the future. The ubiquity of OSNs has
turned them into one of the most important sources of
data for the analysis of social phenomena. Such anal-
yses have led to significant findings used in a wide
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range of applications, from efficient epidemic disease
control [8, 36] to information diffusion [21, 66]. Despite
the social benefits that can be obtained from social net-
work analysis, access to social data by third parties such
as researchers and companies must be limited due to the
sensitivity of the information stored in OSNs, e.g. per-
sonal relationships, political preferences and religious af-
filiations. In addition, the increase of public awareness
about privacy and the entry into effect of strong privacy
regulations such as the GDPR [1] strengthen the reluc-
tance of OSN owners to release part of the data they
hold. Therefore, it is of critical importance to provide
mechanisms for privacy-preserving social data publica-
tion to encourage OSN owners to release data for anal-
ysis and to provide strong privacy guarantees to their
users.

Social graphs are a natural representation of social
networks, with nodes corresponding to participants and
edges to connections between participants. A large num-
ber of methods have been devised for publishing sani-
tised versions of the original social graph [5, 7, 9, 10, 33–
35, 38, 39, 50, 52, 53, 58, 65, 67], computing graph statis-
tics in a privacy-preserving manner [15, 24, 63], or re-
leasing synthetic graphs that preserve properties of the
original graph while protecting user’s private informa-
tion [16, 42, 51, 54, 59]. Among these methods, differen-
tial privacy (DP) [13] has gained enormous popularity
due to its strong privacy guarantees and the fact that it
is a semantic privacy notion, focusing on the data pro-
cessing algorithms rather than specific datasets or types
of adversary knowledge. According to the type of pub-
lished data, we can divide differentially private mech-
anisms for social graphs into two classes. The meth-
ods in the first class directly release specific statistics
of the social graph, e.g. the degree sequence [15, 24]
or the number of specific subgraphs (triangles, stars,
etc.) [63]. The second family of methods focuses on pub-
lishing synthetic social graphs as a replacement of real
social networks in a two-step process [42, 51, 54, 59].
In the first step, differentially private methods are used
to compute the parameters of a generative model that
accurately captures the original graph properties. Then,
in the second step, synthetic graphs are sampled from
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the private model. DP requires to define in advance a
privacy budget, which determines the amount of pertur-
bation that will be applied to the outputs of algorithms.
In consequence, methods in the first family need to ei-
ther limit in advance the number of queries to answer or
deliver increasingly lower quality answers. On the con-
trary, methods in the second family can devote the en-
tire privacy budget to the model parameter estimation,
without further degradation of the sampled graphs. For
this reason, in this paper we focus on the second type
of methods.

For analysts, the utility of synthetic graphs is de-
termined by the ability of the graph models to capture
relevant properties of the original graph. To satisfy this
need, several graph models have been proposed to accu-
rately capture global structural properties such as de-
gree distributions and clustering coefficients, as well as
heterogeneous user attributes such as gender, education
or marital status. However, the best differentially pri-
vate models proposed so far fail to capture the commu-
nity structure of the original graph. Informally, a com-
munity is a set of users who are much more interrelated
among themselves than to other users of the network.
Examples of communities are: a group of Gmail users
who frequently e-mail each other, or a group of employ-
ees of the same company. The emergence of communi-
ties has been shown to be an inherent property of social
networks [49, 61]. Analysts would tremendously bene-
fit from the availability of synthetic attributed graphs
that preserve the community structure of the original
graph. For example, they may be able to improve online
shopping recommendations based on the common pur-
chases of users belonging to the same community. Cur-
rent models and methods are insufficient for enabling
such an analysis, as they either lack information about
the community structure or they lack vertex features.

In this paper, we address the problem discussed
in the previous paragraph by introducing, for the first
time, a generative graph model that simultaneously
preserves global network properties, user attributes
and community structure. Our model is called CAGM
(Community-Preserving Attributed Graph Model). It is
equipped with efficient parameter estimation and graph
sampling methods. Furthermore, we provide differen-
tially private variants of the CAGM’s parameter estima-
tion methods, which allow us to release synthetic at-
tributed social graphs with a strong privacy guaran-
tee and increased utility with respect to preceding ap-
proaches.
Summary of contributions:

– We introduce CAGM, the first generative attributed
graph model that simultaneously captures a number
of properties of the community structure, along with
user attributes and structural properties.

– We present efficient methods for learning an in-
stance of our model from an input graph and sam-
pling community-preserving synthetic attributed
graphs from this instance. We show, via a number
of experiments on real-world social networks, that
the community structures of synthetic graphs sam-
pled from our model are more similar to those of
the original graphs than those of the graphs sam-
pled from previous models. Additionally, we show
that this behaviour is obtained without sacrificing
the ability to preserve global structural features.

– We devise differentially private methods for com-
puting the parameters of the new model. We empir-
ically demonstrate that differentially private syn-
thetic attributed graphs generated by our model
suffer a reasonably low degradation with respect to
their counterparts, in terms of their ability to cap-
ture the community structure and structural fea-
tures of the original graphs.

2 Related Work
Private graph synthesis. The key to synthesising so-
cial graphs is the model which determines both the in-
formation embedded in the published graphs and the
properties preserved. Mir et al. [42] used the Kronecker
graph generative model [30] to generate differentially
private graphs. As the Kronecker model cannot accu-
rately capture structural properties, Sala et al. [51] pro-
posed an alternative approach which makes use of the
dK-graph model, which is based on counting the occur-
rences of specific subgraphs with K vertices (e.g. length-
K paths). Wang et al. [54] further improved the work
of Sala et al. by considering global sensitivity instead of
local sensitivity (refer to Sect. 3 for the definition of sen-
sitivity). Xiao et al. [59] used the hierarchical random
graph (HRG) model [12] and found that it can further
reduce the amount of added noise and thus increase
the accuracy. Recently, Zhang et al. [64] proposed an
edge plausibility measure to help decide which edges
seem more natural when added to a graph as a part
of an anonymisation method. They applied this mea-
sure as an extension to Sala et al.’s method, in par-
ticular to its implementation included in the SecGraph
library [19]. Zhang et al. pointed out that this imple-
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mentation mostly adds fake edges to the original graph,
rather than synthesising a new graph from scratch.

The approaches described so far work on unlabelled
graphs. Pfiffer et al. [18] introduced the attributed graph
model (AGM) which attaches binary attributes to nodes
and captures the correlations between shared attributes
and the existence of connections. Jorgensen et al. [20]
adopted this model and proposed differentially private
methods to accurately estimate the model parameters.
They also designed a new graph generation method
based on the transitive Chung-Lu (TCL) model [17],
which enables the model to sample attributed graphs
preserving the clustering coefficient. As discussed previ-
ously, CAGM, the model introduced in this paper, is com-
parable to Jorgensen et al.’s model in preserving global
structural properties of the original graph, but it out-
performs it by also capturing the community structure.
Private statistics publishing. Degree sequences and
degree correlations are two types of the statistics fre-
quently studied in the literature. The general trend in
publishing these statistics under DP consists in adding
noise to the original sequences and then post-processing
the perturbed sequences to enforce or restore certain
properties, such as graphicality [24], vertex order in
terms of degrees [15], etc. Subgraph count queries, e.g.
the number of triangles or k-stars, have also received
considerable attention. Among the approaches to ac-
curately compute such queries, we have ladder func-
tions [63] and smooth sensitivity [23, 55].

The aforementioned approaches have focused on un-
labelled (non-attributed) graphs. The task of publishing
graph statistics from attributed social networks was ad-
dressed in [32]. This work focuses on studying the ef-
fect of dependences between tuples on differentially pri-
vate methods for computing the degree sequence of a
graph. They consider node attributes to be public in-
formation, and use the overlap between node attributes
as a model of dependences between nodes. Then, they
apply the stronger notion of dependent differential pri-
vacy (DDP), also introduced in the paper, to compute
degree sequences in the presence of an adversary who
knows the true values of node attributes. Our work dif-
fers from the one presented in [32] in the fact that we
do not treat node features as public information, but
as sensitive information, and apply DP for estimating
attribute distributions. Regarding the applicability of
DDP in our approach, a case where it may be applica-
ble is that of an adversary who can extract tuple de-
pendencies from additional public knowledge, e.g. loca-
tion traces which are obtainable from check-ins in social
network posts. While being an interesting direction for

future work, such an extension goes beyond the scope of
this work, since it would require new DDP mechanisms
for estimating all the parameters of our model under ev-
ery possible scenario in terms of adversary knowledge.
Community-preserving graph generation mod-
els. A number of existing random graph models claim
to capture community structure, e.g., block two-level
Erdős-Rényi (BTER) [26], ILFR [49], stochastic block
model (SBM) [56] and its variants (e.g., DCSBM [22]
and DCPPM [45]), attributed networks with communi-
ties generator (ANCG) [29] and DANCer [28]. BTER gener-
ates community-preserving social graphs given expected
node degrees and, for every degree value σ, the average
of the clustering coefficients of the nodes of degree σ.
The model assumes that every community is a set of
σ nodes with degree σ. On the contrary, CAGM makes
no assumptions on the community partition received.
Moreover, ILFR and the variants of SBM preserve edge
densities at the community level but, unlike our new
model, they do not preserve the clustering coefficients
of the original graph. Finally, ANCG and DANCer aim to
synthesise graphs satisfying some known behaviours of
complex networks such as small world, preferential at-
tachment and homophily, extending the behaviour of
the classic Barabási-Albert model [2]. Although these
models take node attributes and community structure
into account, they only provide generation methods
given user-defined parameters. Since their goals do not
include learning model parameters from existing graphs,
they do not provide estimation methods for model pa-
rameters and, consequently, privacy preservation mech-
anisms are not necessary for their application scenario.
Community-enhanced de-anonymisation and
community-preserving anonymisation. A num-
ber of works on user de-anonymisation have shown
that knowledge about communities can be exploited
by an adversary to improve the re-identification of
pseudonymised users [14, 47, 57]. The anonymisation
scenario in which these attacks are applied differs fun-
damentally from the one described in this paper. Our
approach views node attributes and edges as private,
but considers vertex ids to be public. As a consequence,
synthetic graphs generated by our mechanism share
the same vertex set of the original graph. Our pur-
pose is not to hide users’ identities. Therefore, in this
scenario, de-anonymisation is not a threat. Previous
works reported in the literature additionally support
our rationale that the goals of graph anonymisation
and community structure preservation are not nec-
essarily in contradiction. For example, edge edition
operations that better preserve community structures
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of the original graph during anonymisation are studied
in [6], whereas a community-preserving anonymisa-
tion method is proposed in [50]. A similar behaviour
is shown by synthetic graphs generated by our ap-
proach, when node ids are pseudonymised. Interested
readers can refer to App. E, where we empirically
show that pseudonymised versions of our synthetic
graphs also resist the strongest community-enhanced
de-anonymisation attack proposed in the literature [47].

3 Preliminaries

3.1 Notations

An attributed graph is represented as a triple G =
(V, E , X), where V = {v1, v2, . . . , vn} is the set of nodes,
E ⊆ V × V is the set of edges, and X is a binary ma-
trix called the attribute matrix. The i-th row of X is the
attribute vector of vi, which is individually denoted by
τ(vi). Every column of X represents a binary feature,
which is set to 1 (true), or 0 (false), for each user.
For example, if the j-th column represents the attribute
“owning a car”, Xij = 1 means that the user repre-
sented by vi owns a car. Non-binary real-life attributes
are assumed to be binarised. The order of the columns
of X is fixed, but arbitrary, and has no impact on the
results described hereafter. Throughout the paper, we
deal with undirected graphs. That is, if (vi, vj) ∈ E ,
then (vj , vi) ∈ E . Additionally, we use A to denote the
adjacency matrix of the graph.

We use C = {C0, C1, . . . , Cp}, with Ci ⊆ V for every
i ∈ {0, 1, . . . , p}, to represent a community partition of
the attributed graph. As the term suggests, in this pa-
per we assume that Ci∩Cj = ∅, with 0 ≤ i < j ≤ p, and
∪Ci∈CCi = V. The community C0 has a special inter-
pretation. Since some community detection algorithms
assign no community to some vertices, we will use C0
as a “discard” community of unassigned vertices. We do
so to avoid having a potentially large number of single-
ton communities, for which no meaningful co-affiliation
statistics can be computed. We use ψC(vi) to denote the
community to which the node vi belongs in the commu-
nity partition C. If C is clear from the context, we will
simply use ψ(vi). Table 1 summarises the most impor-
tant notation used throughout the paper.

3.2 Differential Privacy

Differential privacy [13] is a well studied statistical no-
tion of privacy. The intuition behind it is to randomise
the output of an algorithm in such a way that the pres-

Table 1. Important notations.

G = (V, E, X) An attributed graph G
V Set of nodes of G
E Set of edges of G
X Attribute matrix of G
τ(v) Attribute vector of v ∈ V
C Community partition of G
ψC(v) Community to which v belongs in C
β(τ(v), τ(w)) Descriptor of the edge (v, w) in terms

of τ(v) and τ(w)
M = An instance of CAGM
〈V, C,Θc

M ,Θc
X ,Θ

c
F 〉

Θc
M Edge generation model

Θc
X Attribute vector generation model

Θc
F Attribute-edge correlations generation

model
dintra(v) Intra-community degree of v
dinter(v) Inter-community degree of v
nintra

4 Number of intra-community triangles
ninter

4 Number of inter-community triangles
n`

C Number of nodes in C ∈ C whose `-th
attribute has value 1

ru
C Number of intra-community edges

(v, w) in C ∈ C such that
β(τ(v), τ(w)) = u

ru
inter Number of inter-community edges

(v, w) such that β(τ(v), τ(w)) = u

ence of any individual element in the input dataset
has a negligible impact on the probability of observ-
ing any particular output. In other words, a mechanism
is ε-differentially private if for any pair of neighbouring
datasets, i.e. datasets that only differ by one element,
the probabilities of obtaining any output are measur-
ably similar. The amount of similarity is determined by
the parameter ε, which is commonly called the privacy
budget. In what follows, we will use the notation D for
the set of possible datasets, O for the set of possible out-
puts, and D ∼ D′ for a pair of neighbouring datasets.

Definition 1 (ε-differential privacy [13]). A ran-
domised mechanism M : D → O satisfies ε-differential
privacy if for every pair of neighbouring datasets
D,D′ ∈ D, D ∼ D′, and for every S ⊆ O, we have
Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S).

A number of differentially private mechanisms have
been proposed. For queries of the form q : D → Rn,
the most widely used mechanism to enforce differen-
tial privacy is the Laplace mechanism, which consists
in obtaining the (non-private) output of q and adding
to every component a carefully chosen amount of ran-
dom noise, which is drawn from the Laplace distribution
Lap(λ) : f(y | λ) = 1

2λ exp(−|y|λ ), where y is a real-valued
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variable indicating the noise to be added, λ = ∆q

ε and
∆q is a property of the original function q called global
sensitivity. This property is defined as the largest differ-
ence between the outputs of q for any pair of neighbour-
ing datasets, that is ∆q = maxD∼D′ ‖q(D)− q(D′)‖1,
where ‖·‖1 is the L1 norm. For categorical queries of the
form q : D → O, where O is a finite set of categories, the
exponential mechanism [41] is the most commonly used.
In this case, for each value o ∈ O, a score is assigned by
a function (usually called scoring function) quantifying
the value’s utility, denoted by u(o,D). The global sensi-
tivity of u is ∆u = maxo∈O,D∼D′ |u(o,D) − u(o,D′)|,
and the randomised output is drawn with probabil-
ity proportional to exp( ε·u(o,D)

2∆u
). Differentially private

methods are composable [40], and deterministic post-
processing of the output of an ε-differentially private
algorithm also satisfies ε-differential privacy [25]. These
properties allow us to divide a complex computation,
such as the set of model parameters, into a sequence of
sub-tasks for which differentially private methods exist
or can be more easily developed.

4 The CAGM Model
In this section we give the formal definition of CAGM.
We introduce the methods for sampling synthetic graphs
from the model, and describe the methods for learning
the model parameters from an attributed graph.

4.1 Overview

Alg. 1 summarises the process by which CAGM is used for
publishing synthetic attributed graphs. A thorough de-
scription of the parameters of CAGM is given in Sect. 4.2,
and parameter estimation is discussed in Sect. 4.4. Once
the model parameters have been estimated, we can sam-
ple any number of synthetic attributed graphs from the
model, as described in steps 3 to 7 of Alg. 1. Thus,
the synthetic graphs generated by Alg. 1 have the same
vertex set as the original graph, whereas the attribute
matrix and the edge set are sampled from the model
(step 6). For every new synthetic attributed graph, we
first sample the attribute matrix, and then this matrix
is used, in combination with an edge generation model
(Sect. 4.3.1), to generate the edge set of the synthetic
graph. There are two reasons for dividing this process
into two steps. The first one is to make the sampling
process efficient. The second reason is to profit from
the two-step process to enforce the intuition that users
with features of certain patterns are more likely to be

Algorithm 1: Given G = (V, E , X), obtain t

attributed synthetic graphs.
1 Obtain community partition;
2 Estimate CAGM parameters;
3 for i ∈ {1, 2, . . . , t} do
4 Sample Xi from CAGM;
5 Sample Ei from CAGM;
6 Gi ← (V, Ei, Xi)

connected in the social network. The attributed graph
sampling procedure is discussed in detail in Sect. 4.3.
To conclude, note that if steps 1 and 2 are executed
in a differentially private manner, the synthetic graphs
obtained by steps 3 to 7 also satisfy DP, because the
generation is done as a post-processing step of the dif-
ferentially private computation.

4.2 Model Parameters

As we discussed in Sect. 1, given an attributed graph
G and a community partition C of G, the purpose of
CAGM is to capture a number of properties of C that are
overlooked by previously defined models, without sacri-
ficing the ability to capture global structural properties
such as degree distributions and clustering coefficients.
To that end, CAGM models the following properties of
the community partition:

1. the number and sizes of communities;
2. the number of intra-community edges in every

community;
3. the number of inter-community edges;
4. the distributions of attribute vectors in every com-

munity;
5. the distributions of the so-called attribute-edge cor-

relations [20], for the set of inter-community edges
and for the set of intra-community edges in every
community.

Graphs generated by CAGM will have the same num-
ber of vertices as the original graph, as well as the
same number of communities. Moreover, every commu-
nity will have the same cardinality as in the original
graph, and the same number of intra-community edges.
The number of inter-community edges of the gener-
ated graph will also be the same as that of the orig-
inal graph. Notice that the model preserves the total
number, but not necessarily the pairwise numbers of
inter-community edges for every pair of communities.
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Attribute-edge correlations were defined in [20] as
heuristic values for characterising the relation between
the feature vectors labelling a pair of vertices and the
likelihood that these vertices are connected. They en-
code the intuition that, for example, co-workers who at-
tended the same university and live near to each other
are more likely to be friends than persons with fewer
features in common, whereas friends are more likely to
support the same sports teams or go to the same bars
than unrelated persons. In our model, we compute one
distribution of attribute-edge correlations for each com-
munity, as well as an inter-community distribution.

A key element in the representation of attribute-
edge correlations is the notion of aggregator functions.
An aggregator function β : {0, 1}k×{0, 1}k → B maps a
pair of attribute vectors x, x′ of dimensionality k into a
value in a discrete range B, which is used as a descrip-
tor, also called aggregated feature, of the pair (x, x′).
For example, B can contain a set of similarity levels for
pairs of feature vectors, such as {low, medium, high},
and β can map a pair of vectors whose cosine similarity
is in the interval [0, 0.33] to low, a pair of vectors whose
cosine similarity is in the interval [0.67, 1] to high, etc.
Attribute-edge correlations, along with the community-
wise distributions of attribute vectors, are useful for an-
alysts, as they allow to characterise the members of a
community in terms of frequently shared features, hy-
pothesise explanations for the emergence of a commu-
nity, etc.

Formally, an instance of the CAGM model is defined
as a quintupleM = 〈V, C,Θc

M ,Θc
X ,Θc

F 〉, where:
– V is a set of vertices.
– C is a community partition of V.
– Θc

M is an instance of an edge set generative model
that preserves properties 1 to 3 of the community
partition C, as well as degree distributions and clus-
tering coefficients.

– Θc
X is an instance of an attribute vector generation

model, which aims to preserve property 4 of the
community partition. The model defines, for every
attribute vector x, every C ∈ C and every v ∈ C,
the probability Pr(τ(v) = x |C,Θc

X) that a vertex in
C is labelled with x.

– Θc
F is an instance of a generative model for

attribute-edge correlations, which aims to preserve
property 5 of the community partition. This model
defines:
– The discrete range B and aggregator function β.
– The probability

Pr(β(τ(vi), τ(vj)) = u |ψC(vi) = ψC(vj) = C,

Ai,j = 1,ΘcF )

for every community C ∈ C and every u ∈ B.
– The probability

Pr(β(τ(vi), τ(vj)) = u |ψC(vi) 6= ψC(vj), Ai,j = 1,ΘcF )

for every u ∈ B.

4.3 Sampling Attributed Graphs from an
Instance of CAGM

Given an instance G = 〈V, C,Θc
M ,Θc

X ,Θc
F 〉 of CAGM,

with V = {v1, v2, . . . , vn}, an attributed graph G =
(V, E , X) is sampled from G with probability Pr(G | G) =
Pr(E , X | G) which, for tractability, is approximated as

Pr(E, X |C,ΘcM ,Θ
c
F ,Θ

c
X) = Pr(E |X, C,ΘcM ,Θ

c
F ) · Pr(X |C,ΘcX).

That is, we first sample from Θc
X the attribute vectors

labelling each vertex and then use them in sampling the
edge set. Again, for tractability, we make

Pr(X |C,Θc
X) =

∏
vi∈V

Pr(τ(vi) = xi |ψC(vi),Θc
X),

where xi is the i-th row of X. Probabilities of the form
Pr(τ(vi) = xi |ψC(vi),Θc

X) are estimated from the input
graph, as will be described in Sect. 4.4. Then, under the
assumption that edges are sampled independently, we
approximate Pr(E | X, C,Θc

M ,Θc
F ) in terms of attribute-

edge correlations as follows:

Pr(E |X, C,ΘcM ,Θ
c
F ) =∏

vi,vj∈V

Pr(Ai,j = 1 |β(τ(vi), τ(vj)), C,ΘcM ,Θ
c
F ).

An efficient two-step procedure was presented in [18]
for sampling edges from the distribution Pr(Ai,j = 1 |
β(τ(vi), τ(vj)),Θc

M ,Θc
F ). Here, we adapt this procedure

for sampling edges from the distribution Pr(Ai,j = 1 |
Θc
M ,Θc

F , β(τ(vi), τ(vj)), C). In the first step, a candidate
edge (vi, vj) is sampled from the edge generation model
Θc
M (which does not account for node features) with

probability Q′M (i, j) = Pr(Ai,j=1|C,Θc
M )∑

vp,vq∈V
Pr(Ap,q=1|C,Θc

M
)
, where

the probabilities of the form Pr(Ai,j = 1 | C,Θc
M ) are

estimated from the input graph. In the second step,
the candidate edge is accepted as an edge of G with
probability Γ(β(τ(vi), τ(vj)), C), which is computed in
two different manners depending on the community co-
affiliation of vi and vj . If ψC(vi) = ψC(vj) = C, we first
compute

Rintra(β(τ(vi), τ(vj)), C) =
Pr(β(τ(vi),τ(vj))|ψC(vi)=ψC(vj)=C,Ai,j=1,Θc

F )
PrM (β(τ(vi),τ(vj))|ψC(vi)=ψC(vj)=C,Ai,j=1,Θc

M
,Θc

F
) ,
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Algorithm 2: SampleFromCAGM(V, C,Θc
M ,Θc

X ,Θc
F )

1 X′ ← SampleAttributeVectors(ΘcX);
2 Q′M ← ComputeQM(ΘcM , C);
3 E ′ ← SampleEdgeSet(Q′M );
4 for s ∈ B do
5 Compute Γinter (s);
6 for C ∈ C do
7 Compute Γintra(s, C)
8 E ′ ← ∅;
9 while |E ′| < |E| do

10 (v, w)← SampleEdge(Q′M );
11 s← β(τ(v), τ(w));
12 u← Uniform(0, 1);
13 if (ψC(v) = ψC(w) ∧ u ≤

Γintra(s, ψC(v)) or (ψC(v) 6= ψC(w) ∧ u ≤
Γinter (s) then

14 E ′ ← E ′ ∪ {(v, w)};
15 return X′, E ′;

which represents the ratio between the probability that
an edge joining two nodes in community C of the input
graph is described by β(τ(vi), τ(vj)) and the probability
that an edge generated by Θc

M , and joining two nodes
in C, is described by β(τ(vi), τ(vj)). Then, we make

Γ(β(τ(vi), τ(vj)), C) = Γintra(β(τ(vi), τ(vj)), C) =

=
Rintra(β(τ(vi), τ(vj)), C)

SupR
.

On the contrary, if ψC(vi) 6= ψC(vj), we first compute

Rinter (β(τ(vi), τ(vj))) =
Pr(β(τ(vi),τ(vj))|ψC(vi) 6=ψC(vj),Ai,j=1,Θc

F )
PrM (β(τ(vi),τ(vj))|ψC(vi) 6=ψC(vj),Ai,j=1,Θc

M
,Θc

F
) ,

which represents the ratio between the probability that
an edge joining two nodes from different communities in
the input graph is described by β(τ(vi), τ(vj)) and the
probability that an edge generated by Θc

M , and joining
two nodes from different communities, is described by
β(τ(vi), τ(vj)). Then, we make

Γ(β(τ(vi), τ(vj)), C) = Γinter (β(τ(vi), τ(vj))) =

=
Rinter (β(τ(vi), τ(vj)))

SupR
.

In computing the values of both Γintra and Γinter ,

SupR = sup∪s∈B,C∈C (Rintra(s, C) ∪Rinter (s)) .

Alg. 2 describes the procedure to sample an at-
tributed graph from CAGM.

4.3.1 Edge generation model

As we discussed in Sect. 4.2, the component Θc
M of

CAGM is an edge generation model which preserves sev-

eral properties of the community partition of the origi-
nal graph (properties 1 to 3 listed in Sect. 4.2), in ad-
dition to the degree distribution and clustering coeffi-
cients. We call this model Community-preserving Graph
Model (CPGM). It is an extension of the TriCycle model,
introduced in [20], that takes community structure into
account. CPGM takes as input the set of vertices, as well
as the expected number of neighbours of every vertex v
within its community (that is, its intra-community de-
gree, denoted by dintra(v)) and the expected number of
neighbours outside its community (that is, the inter-
community degree, denoted by dinter (v)). These values
are used to enforce the expected densities within ev-
ery community and between communities. Additionally,
the model also requires the number of triangles hav-
ing all vertices in one community (which we call intra-
community triangles and denote by nintra

4 ), as well as the
number of triangles spanning more than one community
(inter-community triangles, denoted by ninter

4 ). It was
shown in [20] that synthetic graphs that preserve the
number of triangles of the original graph are more likely
to approximate its clustering coefficient. Moreover, both
nintra
4 and ninter

4 can be efficiently and accurately com-
puted under DP. In CPGM, the edge generation process
consists of two steps. The first step produces a graph
that preserves the intra- and inter-community degrees,
but not the number of intra- and inter-community trian-
gles. Then, the second step iteratively edits the original
edge set until nintra

4 and ninter
4 are approximately en-

forced, within a tolerance threshold. The second step
is based on the observation presented in [17] that the
clustering behaviour in social networks stems from the
higher likelihood of users with common friends to con-
nect to each other, thus creating triangles.

At the first step, we follow the idea of the
CL model [11]. For every pair of vertices v and w

satisfying ψC(v) = ψC(w) = C, the intra-community
edge (v, w) is added with probability πintra

C (v, w) =
dintra(v)dintra(w)

2mintra
C

, where mintra
C is the original number of

intra-community edges in C. That is, intra-community
edges are added with a probability proportional to the
product of the intra-community degrees of the linked
vertices. If ψC(v) 6= ψC(w), then the inter-community
edge (v, w) is added with probability πinter (v, w) =
dinter (v)dinter (w)

2minter , where minter is the total number of
inter-community edges in the original graph. Alg. 3 de-
scribes the first step of the generation process. The
second step of the generation process consists in iter-
atively applying edge swaps until the numbers of intra-
and inter-community triangles are approximately en-
forced, within a 98% tolerance window. Every edge swap
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Algorithm 3: GenInitialEdgeSet(dintra, dinter , C)
1 E ← ∅;
2 for C ∈ C do
3 mintra

C ← 1
2
∑

v∈C dintra(v);
4 m← 0;
5 while m ≤ mintra

C do
6 (v, w)← Sample(πintra

C );
7 if (v, w) /∈ E then
8 E ← E ∪ {(v, w)};
9 m← m+ 1;

10 minter ← 1
2
∑

v∈V dinter (v);
11 while m ≤

∑
C∈Cm

intra
C +minter do

12 (v, w)← Sample(πinter );
13 if (v, w) /∈ E then
14 E ← E ∪ {(v, w)};
15 m← m+ 1 ;

consists in first adding a new edge and then remov-
ing another. If the added edge is an intra-community
edge, then the oldest intra-community edge (in terms
of the order of creation by Alg. 3) is removed, even
if it does not belong to the same community. Like-
wise, if the added edge is an inter-community edge,
then the oldest inter-community edge is removed. In the
method, all intra-community edge swaps are executed
before inter-community edge swaps. The reason for this
is that adding or removing an intra-community edge
may change the number of inter-community triangles
as well, whereas inter-community triangles can be cre-
ated without modifying the number of intra-community
triangles. Edge swaps resulting in a reduction in the
number of intra- or inter-community triangles are dis-
carded, in which case the edge selected for removal is set
to be the youngest in the graph so it is not selected again
in a sufficiently large number of coming iterations. To
reduce the likelihood of discarding edge swaps, the edge
selected for addition must be one that transforms at
least one wedge (a length-3 path not forming a triangle)
into an intra- or inter-community triangle, as required.
The edge edition method is described in Alg. 4. In the
algorithm, we denote by Nintra(v) the set of neighbours
of v in its community, that is Nintra(v) = {w | ψC(v) =
ψC(w) ∧ (v, w) ∈ E}. Likewise, we denote by Ninter (v)
the set of neighbours of v in different communities, that
is Ninter (v) = {w | ψC(v) 6= ψC(w) ∧ (v, w) ∈ E}.

Due to the removal of initially generated edges, the
synthetic graph may become disconnected. In this case,
we apply an edge-swapping post-processing step to re-
connect every small connected component to the main
component (the connected component with the most
nodes). If the post-processing reduces the number of

Algorithm 4: GetFinalEdgeSet(dintra, dinter , nintra
4 ,

ninter
4 , C)

1 µintra
4 ← CountIntraCommTriangles(E);

2 while µintra
4 < nintra

4 do
3 Uniformly sample C from C;
4 Sample v1 from C with probability dintra(v1)

2mintra
C

;

5 Uniformly sample v2 from Nintra(v1);
6 Uniformly sample v3 from Nintra(v2);
7 if (v1, v3) 6∈ E ∧ v3 6= v1 then
8 (v′1, v′2)← GetOldestIntraCommEdge(E, C);
9 nprev

cn ← GetCommonNeighbour(v′1, v′2);
10 E ← E/{(v′1, v′2)};
11 nnew

cn ← GetCommonNeighbour(v1, v3);
12 if nprev

cn < nnew
cn then

13 E ← E ∪ {(v1, v3)};
14 µintra

4 ← µintra
4 − nprev

cn + nnew
cn ;

15 else
16 E ← E ∪ {(v′1, v′2)};
17 µinter

4 ← CountInterCommTriangles(E);
18 while µinter

4 < ninter
4 do

19 Sample v1 from V with probability dinter (v1)
2minter ;

20 Uniformly sample v2 from Ninter (v1);
21 Uniformly sample v3 from Nintra(v2);
22 (v′1, v′2)← GetOldestInterCommEdge(E, C);
23 nprev

cn ← GetCommonNeighbour(v′1, v′2);
24 E ← E/{(v′1, v′2)};
25 nnew

cn ← GetCommonNeighbour(v1, v3);
26 if nprev

cn < nnew
cn then

27 E ← E ∪ {(v1, v3)}
µinter
4 ← µinter

4 − nprev
cn + nnew

cn ;
28 else
29 E ← E ∪ {(v′1, v′2)};

triangles, we recall Alg. 4. The alternation between the
post-processing and Alg. 4 is not guaranteed to yield a
graph having exactly the required number of triangles,
so we stop the iteration when the total number of tri-
angles in the synthetic graph is within a 98% tolerance
window with respect to the original one. We also note
that Alg. 4 is not guaranteed to enforce nintra

4 and ninter
4

in all cases. This issue is inherited from TriCycle, but it
does not occur in realistic social graphs as the ones used
in our experiments, neither in those used in [20].

4.4 Parameter Estimation for CAGM

Estimating Θc
M . The estimation of Θc

M reduces to
computing the community-wise counters that it relies
on: intra- and inter-community degrees of every vertex,
the number of intra-community triangles for each com-
munity and the number of inter-community triangles.
As we mentioned in Sect. 4.3.1, degrees and triangle
counts are used to preserve global structural properties



Publishing Community-Preserving Attributed Social Graphs with a Differential Privacy Guarantee 139

of the generated graphs such as degree distribution and
clustering coefficients. They can be efficiently computed
on the original graph both exactly and under DP.
Estimating Θc

X . In order to keep the estimation pro-
cedure tractable, we introduce the assumption that at-
tributes are independent. While not realistic in all sce-
narios, this assumption simplifies the estimation and
handles the sparsity of the attribute vectors when the
number of attributes is large. As seen in [18, 20], not
having such an assumption severely limits the number
of features that can be practically handled. We will de-
note by x` be the value for the `-th component of the
attribute of vector x. Likewise, we will denote by τ`(v)
the value of the `-th component of the vector labelling
vertex v. We estimate the probability that a node v is
labelled with an attribute vector x by the following for-
mula:

Pr(τ(v) = x |ψC(v),ΘcX) =
∏k

`=1 Pr`(τ`(v) = x` | ψC(v),ΘcX),

where k is the number of columns of X (ergo the cardi-
nality of all attribute vectors) and

Pr`(τ`(v) = x` | ψC(v),ΘcX) = |{v′∈ψC(v)|τ`(v′)=x`}|
|ψC(v)| .

Estimating Θc
F . As we discussed in Sect. 4.2, for defin-

ing Θc
F it is necessary to define an aggregator function

for pairs of attribute vectors. Our aggregator function
is based on the widely used cosine similarity, that is,
the cosine of the angle between the two feature vectors.
Since the range B of aggregator functions needs to be
discrete, we split the range [0, 1] of the cosine similar-
ity into a set of intervals, determined by a parameter δ
satisfying 0 < δ ≤ 1. Let scos(x, x′) denote the similar-
ity between vectors x and x′. Our aggregator function
is defined as β(x, x′) =

⌊
scos(x,x′)

δ

⌋
. Note that, accord-

ing to this definition, B = {b sδ c | s ∈ [0, 1]}. Finally,
the probability that an aggregated feature u ∈ B char-
acterises a pair of connected vertices vi, vj satisfying
ψC(vi) = ψC(vj) = C in the input graph is computed as

Pr(β(τ(vi), τ(vj)) = u |ψC(vi) = ψC(vj) = C,Ai,j = 1,ΘcF ) =
|{(vp, vq) ∈ E | β(τ(vp), τ(vq)) = u ∧ ψ(vp) = ψ(vq) = C}|

|{(vp, vq) ∈ E | ψ(vp) = ψ(vq) = C}|
.

Analogously, for a pair of connected vertices vi, vj sat-
isfying ψC(vi) 6= ψC(vj), we make

Pr(β(τ(vi), τ(vj)) = u |ψC(vi) 6= ψC(vj), Ai,j = 1,ΘcF ) =
| {(vp, vq) ∈ E | β(τ(vp), τ(vq)) = u ∧ ψ(vp) 6= ψ(vq)} |

| {(vp, vq) ∈ E | ψ(vp) 6= ψ(vq) |
.

Compared to the approach introduced in [18, 20],
our model uses a coarser granularity for aggregated fea-
tures. Thanks to that, it avoids computing 22k different
probability values, which is extremely inefficient.

5 Differentially Private CAGM
As we discussed in Sect. 3, the difference between in-
stantiations of DP for graphs lies in the definition of
the graph pairs considered to be neighbouring datasets.
Here, we adopt the following definition from [20].

Definition 2 (Neighbouring attributed graphs [20]).
A pair of attributed graphs G = (V, E , X) and G′ =
(V, E ′,X ′) are neighbouring, denoted G ∼at G′, if and
only if they differ in the presence of exactly one edge or
the attribute vector of exactly one node. That is,

G ∼at G′ ⇐⇒ |E∇E ′| =1 ∨ (∃v∈V τG(v) 6= τG′(v) ∧
∧ ∀v′∈V\{v} τG(v) = τG′(v)).

Def. 2 entails that the existence of relations, that is the
occurrence of edges, and the attributes describing every
particular user, are treated as sensitive. On the contrary,
vertex identifiers are treated as non-private. These cri-
teria are in line with the current privacy policies of most
social networking sites, where the fact that a profile ex-
ists is public information, but users can keep their per-
sonal information and friends list private or hidden from
the general public. With Def. 2 in mind, we describe in
what follows the differentially private computation of
every parameter of CAGM. Due to space limitations, we
develop all the proofs in the appendices.

5.1 Obtaining the Community Partition

Our differentially private community partition method
extends the algorithm ModDivisive [46], in such a way
that it takes node attributes into account. ModDivisive
searches for a community partition that maximisesmod-
ularity, a structural parameter encoding the intuition
that a user tends to be more connected to users in
the same community than to users in other communi-
ties [44]. Modularity is defined as

∑
C∈C

(
`C
m −

(
dC
2m
)2),

where `C is the number of edges between the nodes in C
and dC is the sum of degrees of the nodes in C. ModDivi-
sive uses the exponential mechanism, considering the set
of possible partitions as the categorical co-domain, and
using modularity as the scoring function. In order to in-
tegrate node features into ModDivisive, we introduce a
new objective function that combines the original modu-
larity with an attribute-based quality criterion. The new
function is defined as Q(C) = ws · Qs(C) + wa · Qa(C),
where ws ∈ [0, 1], wa = 1 − ws, Qs(C) is the modular-
ity of the original graph and Qa(C) is the modularity
of an auxiliary graph obtained from the original as fol-
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lows. First, we take the vertex set of the original graph.
Then, we compute all pairwise similarities between their
associated feature vectors. Similarities are computed us-
ing the cosine measure. Finally, we add to the auxiliary
graph the edges corresponding to the

⌈
n(n−1)

20

⌉
most

similar attributed node pairs, that is the top-ranked
10%. It is proven in [46] that the global sensitivity of
Qs(C) is upper bounded by 3

m , where m is the minimum
number of edges of all potential graphs to publish. In
the worst case, ∆Qs(C) = 3, considering that the orig-
inal graph is an arbitrary non-empty graph. However,
this is not the case for real-life social graphs, so intro-
ducing more realistic assumptions about the value of m
allows us to use smaller values of ∆Qs(C) and thus reduce
the amount of noise added in differentially privately
computing Qs(C). Throughout this paper, we assume
m = 10, 000, which leads to ∆Qs(C) = 0.0003. In what
follows, we apply an analogous reasoning for bounding
∆Qa(C).

Proposition 1. Every graph G of order n satisfies
LSQa(C)(G) ≤ 60

n .

Combining the result in [46] with that of Prop. 1,
we conclude that LSQ(C)(G) ≤ 0.0003 · ws + 60

|V(G)| · wa
for every G satisfying the aforementioned assumptions,
and use this value as an upper bound for ∆Qa(C).

5.2 Attribute Vector Distribution

As discussed in Sect. 4.4, given a community parti-
tion C, in order to obtain the differentially private es-
timation of Θc

X (denoted by Θc
X), we need to compute

the probability distribution of each attribute for every
community, i.e. Pr`(τ`(v) = x` | ψC(v),Θc

X), for each
` ∈ {1, . . . , k} and C ∈ C (recall that k is the number of
attributes). Computing this probability reduces to com-
puting the number of nodes in C whose `-th attribute
has value 1, which we denote n`C . Let nC be the k-uple(
n1
C , n

2
C , . . . , n

k
C

)
. In order to obtain the differentially

private k-uple nC =
(
n1
C , n

2
C , . . . , n

k
C

)
, we add to each

element in nC noise sampled from Lap
(
k
εX

)
, where εX

is the privacy budget reserved for this computation and
k is the global sensitivity of nC , as shown next.

Proposition 2. The global sensitivity of nC is k.

5.3 Attribute-Edge Correlations

Recall that the aggregator function β defined in Sect. 4.4
maps every pair of attribute vectors to a non-negative

integer in B = {b sδ c | s ∈ [0, 1]}, for some δ ∈ [0, 1].
In order to estimate Θc

F , we need to count, for each
possible output of β, the number of edges whose end-
nodes are mapped to this value. For every u ∈ B and
every C ∈ C, let ruC be the number of intra-community
edges (v, w) in C such that β(τ(v), τ(w)) = u. Likewise,
let ruinter be the number of inter-community edges (v, w)
such that β(τ(v), τ(w)) = u. Thus, in order to compute
Θc
F , we need to differentially privately compute ruC for

every u ∈ B and every C ∈ C, as well as ruinter for every
u ∈ B. We denote by ruC and ruinter the corresponding
differentially private values.

The global sensitivity of every |B|-uple of the form(
ru1
C , ru2

C , . . . , r
u|B|
C

)
, C ∈ C, as well as that of ev-

ery |B|-uple of the form
(
ru1

inter , r
u2
inter , . . . , r

u|B|
inter

)
, is

2(|V| − 2) [20], which is unbounded. To overcome this
problem, we follow an approach analogous to the one
used in [20] for counting attribute-edge correlations in
the entire graph. The method, introduced in [3], consists
in truncating the edge set of the graph to ensure that
the degree of all nodes is at most p, which in the case of
attribute-edge correlations ensures that the global sen-
sitivity is 2p [3, 20]. In consequence, for every u ∈ B
and every C ∈ C, we obtain ruC from ruC by adding noise
sampled from Lap( 2p

εF
), where where εF is the privacy

budget reserved for this computation. Likewise, we ob-
tain ruinter from ruinter by adding noise sampled from
Lap( 2p

εF
).

5.4 CPGM Parameters

Intra- and inter-community degrees. We first
add noise to the raw degree values and then apply
a post-processing on the perturbed degree sequences
to restore certain properties of the original sequence,
namely graphicality and the order of the nodes in
terms of their degrees, as well as certain community-
specific properties. Let dCintra = (d1,C

intra, d
2,C
intra . . . , d

m,C
intra),

where m = |C| and di,Cintra ≤ di+1,C
intra (1 ≤ i <

|C|), be the list of non-decreasingly ordered original
intra-community degrees in C ∈ C. Analogously, let
dCinter = (d1,C

inter , d
2,C
inter , . . . , d

m,C
inter ) be the sequence of

inter-community degrees of nodes in C. The global sen-
sitivity of the degree sequence of the entire graph is
2, as adding or removing one edge changes the degrees
of exactly two nodes by 1 [15]. The same is true for
every dCintra and dCinter , since the degrees of at most
two intra-community nodes (or at most one node in
C and one node outside of C) change by 1. Thus, for
every C ∈ C, we obtain from dCintra the differentially
private sequence dCintra by adding noise sampled from



Publishing Community-Preserving Attributed Social Graphs with a Differential Privacy Guarantee 141

Lap( 2
εd

) to every degree value. Similarly, we obtain from
dCinter the differentially private sequence dCinter . After-
wards, the noisy sequences are post-processed to restore
three properties: (i) the non-decreasing order between
the intra-community degrees inside every community,
(ii) the graphicality of the intra-community degrees of
every community, and (iii) the graphicality of the inter-
community degrees of all nodes in the graph. Prop-
erty (i) is enforced using the method proposed in [15],
whereas properties (ii) and (iii) are enforced using the
method proposed in [24].
Numbers of intra- and inter-community trian-
gles. The global sensitivity of the number of triangles
in a graph is proven in [48] to be n − 2, where n is
the number of vertices. The next result characterises
the global sensitivity of the number of intra-community
triangles.

Proposition 3. The global sensitivity of the number of
intra-community triangles of a graph G with a commu-
nity partition C is ∆nintra

4
= maxC∈C{|C| − 2}.

Since the global sensitivity of triangle count queries
is unbounded, the Laplace mechanism cannot be ap-
plied in this case. An accurate differentially private
method for counting the number of triangles of a graph
is presented in [63]. This method uses the exponential
mechanism. It interprets the triangle count query as a
categorical query, whose co-domain is a partition O of
Z+. One of the elements of O is a singleton set com-
posed exclusively of the correct output of the query,
whereas every other element contains a set of inaccu-
rate values which are treated as equally useful. They
define the notion of ladder function, which is used as a
scoring function on the elements of O. A ladder function
gives better scores to the sets of values that are closer
to the correct query answer. In order to differentially
privately compute the number of triangles of a graph
G, it is first necessary to compute the correct number of
triangles. Then, the ladder function is built, and a set
O ∈ O is sampled following the exponential mechanism.
Finally, a random element of O is given as the differ-
entially private output of the query [63]. It is shown
in [63] that the best ladder function, in the sense that
it adds the minimum necessary amount of noise, is the
so-called local sensitivity at distance t [48], denoted as
LSq(G, t), which is based on the notion of local sensitiv-
ity. The local sensitivity of a query q on a graph G [48]
is computed as LSq(G) = maxG∼G′ ‖q(G)− q(G′)‖1,
that is the maximum difference between the output
of q on G and those on its neighbouring datasets.

The local sensitivity at distance t is defined as the
maximum local sensitivity of the query q among all
the graphs at edge-edit distance at most t from G.
Formally, LSq(G, t) = max{G′ | φ(G,G′)≤t} LSq(G′),
where φ(G,G′) is the edge-edit distance between G

and G′. It is also shown in [48, 63] that LSq(G, t) =
max1≤i<j≤|V| LSqij(G, t), where LSqij(G, t) =
max{G′,G′′ | φ(G,G′)≤t,G′∼ijG′′ |q(G′)− q(G′′)| and
G′ ∼ij G′′ indicates that G′ and G′′ differ in exactly
the addition or removal of (vi, vj).

Here, we apply the ladder function approach for
computing the number of intra-community triangles. To
that end, we characterise the function LSnintra

4
((G, C), t)

for every graph G with a community partition C.

Proposition 4. For every graph G, every community
partition C of G, and every positive integer t ≥ 1,

LSnintra
4

((G, C), t) =

max
{i,j | ψC(vi)=ψC(vj )}

{
min
{
aij +

⌊
t+ min{t, bij}

2

⌋
,

|ψC(vi)| − 2}} ,

where aij = |{v` ∈ ψC(vi) | Ai,` = 1 ∧ Aj,` = 1}| and
bij = |{v` ∈ ψC(vi) | Ai,` ⊕Aj,` = 1}|.

In Prop. 4, the operator ⊕ denotes exclusive or.
Notice that LSnintra

4
((G, C), t) can be efficiently com-

puted for small values of t, and it converges to the
efficiently computable global sensitivity ∆nintra

4
for t ≥

2 maxC∈C |C|, so it can be used for efficiently and pri-
vately computing the number of intra-community tri-
angles. Finally, for computing the number of inter-
community triangles, we use the method from [63] to
compute the number of triangles of the entire graph,
and subtract from it the number of intra-community
triangles computed with the method described above.

5.5 Summary and Discussion

In what follows, we will use the notation CAGMDP to
refer to a differentially private instance of CAGM. The
privacy budget ε is split among the different compu-
tations as follows: εc = ε

2 for the community parti-
tion method, εF = ε

6 for the estimation of Θc
F , and

εd = ε4 = εintra
4 = εX = ε

12 for the estimation of degree
distributions, triangle counts and Θc

X .
As we mentioned in Sect. 2, it was shown in [32]

that dependencies among tuples can harm the level of
privacy offered by differential privacy, since DP implic-
itly assumes that tuples are independent. To showcase
this problem, they showed that in the scenario of differ-
entially private degree sequence computation from an
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attributed graph with public attributes, node affinity
(determined by the similarity of their feature vectors)
can be used to improve the adversary’s certainty on the
existence of edges. For example, users born in the same
city, who attended the same university and have approx-
imately the same age are more likely to be connected
than the average. Our approach does not suffer from
this problem, because we do not treat node attributes as
public. Instead, we assign synthetic attribute vectors to
nodes, which are sampled from the differentially private
model Θc

X . In Sect. 4.3, for the sake of efficiency in the
synthetic graph generation process, we introduced the
assumption that the features of one node are indepen-
dent from each other. For example, even though intu-
itively only one of the features “eye color is blue”, “eye
color is brown” and “eye color is green” can take the
value 1 for a given user, we treat them as independent.
While this assumption can certainly add inaccuracies in
the generated graph, such as a user portrayed as hav-
ing blue and brown eyes at the same time, it does not
create an additional privacy risk, and it does not entail
additional assumptions of independence among tuples,
other than the ones already implicit in the differentially
private methods for computing the model parameters.

6 Experiments
The purpose of our experiments is to empirically vali-
date two claims: (i) our CPGM model outperforms ex-
isting models in generating graphs whose community
structures are similar to those of the input graphs with-
out sacrificing the ability to preserve global structural
properties, and (ii) differentially private instances of
CAGM outperform preceding models in terms of commu-
nity structure preservation, and remain comparable in
terms of the preservation of global structural properties.

6.1 Datasets

We use four real-world social networks with node at-
tributes. The first one has been collected from Petster,
a website for pet owners [27]. It is an undirected graph,
where each node’s attributes contain information about
the user’s pet. We extracted 13 binary attributes from
8 categorical attributes such as favourite food, gender,
colour, etc. The second dataset is a subgraph of Face-
book available via SNAP [31]. In this dataset, node at-
tributes are already binary and are tagged with serial
pseudonyms. For our experiments, we selected the first
50 attributes with the smallest serial numbers. The last

Table 2. Datasets used for our experiments.

Dataset #node #edges #4 GCC #attr.
Petster 1,898 12,534 16,750 0.14 13
Facebook 3,953 84,070 1,526,985 0.54 50
Epinions8K 8,000 67,547 203,257 0.17 50
Epinions 29,515 106,147 235,790 0.13 50

two datasets are constructed from a directed graph ex-
tracted from Epinions, an online consumer reviews sys-
tem where every vertex represents a reviewer [37]. In the
original dataset, a directed edge from node A to node B
exists if user A trusts the reviews of B. For our exper-
iments, we derived an undirected graph from the origi-
nal dataset by keeping the same vertex set and adding
an undirected edge for every pair of mutually trusting
users. Additionally, we selected the 50 most frequently
rated products as node attributes. If the user rated the
product, the value is set to 1. We sampled the subgraph
Epinions8K from the undirected version of Epinions by
randomly selecting a seed node and progressively taking
random neighbouring nodes until totalling 8,000. Ta-
ble 2 summarises the statistics of the datasets.

6.2 Evaluation Measures

For every pair (G,G′), where G is a real-life graph and
G′ is a synthetic graph sampled from a model learned
from G, we evaluate the extent to which G′ preserves
the following properties of G.
Numbers of edges and triangles: Our evaluation
measures in this case are the relative errors of the num-
bers of edges and triangles in G′ with respect to G,

defined as ρE =
∣∣|EG′ |−|EG|

∣∣
|EG| and ρ4 = |n4(G′)−n4(G)|

n4(G) .
Global clustering coefficient: The global clustering
coefficient (GCC) of a graph measures the proportion of
wedges, that is, paths of length 2, that are embedded in
triangles. It is defined as 3n4

nw
, where nw is the number of

wedges and n4 is the number of triangles. We compare
G and G′ in terms of the relative error of the GCC of
G′ with respect to that of G, which we denote ρc.
Degree distribution. We compare G and G′ in terms
of the Hellinger distance between their degree distri-
butions. The Hellinger distance has been deemed as
the most appropriate distance for comparing probabil-
ity distributions in previous works on graph synthesis-
ing [20, 43]. Given two probability distributions p1 and
p2 on a discrete domain W , the Hellinger distance be-
tween p1 and p2 is defined as

H(p1, p2) = 1√
2

√∑
w∈W (

√
p1(w)−

√
p2(w))2.
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The Hellinger distance yields values in [0, 1]. The more
similar two distributions are, the smaller the Hellinger
distance between them. For degree distributions, we
compute pd and p′d, defined on the domain W =
{0, 1, . . . , n− 1}, where n is the number of vertices in G
and G′. For every i ∈W , pd(i) (resp. p′d(i)) is the prob-
ability that a vertex of G (resp. G′) has degree i. The
score used for comparing G and G′ is Hd = H(pd, p′d).
Local clustering coefficients. The local clustering co-
efficient (LCC) of a node v measures the proportion of
pairs of mutual neighbours of v that are connected by
an edge. In social graphs, LCC(v) is an indicator of
the likelihood of v’s mutual friends to also be friends.

LCC(v) is defined as
2
∑

vi,vj ∈N (v)
Ai,j

|N (v)|·(|N (v)|−1) whereN (v) is the
set of v’s neighbours. For comparing G and G′ in terms
of LCC, we compute the distributions p`c and p′`c, which
are defined in the domain W = {0.01, 0.02, . . . , 1.0} in
such a way that for every i ∈ W , p`c(i) (resp. p′`c(i)) is
the probability that a vertex of G (resp. G′) has LCC
between i− 0.01 and i. We compare G and G′ in terms
of H(p`c, p′`c), and denote this measure by H`c.
Distribution of attribute-edge correlations. We
define, for each community C, the probability distribu-
tion pCF , where pCF (i) is the probability that the similar-
ity between the attribute vectors of two connected nodes
in C is i. The original graph G, with community struc-
ture C, is compared to a synthetic graph G′ in terms of
the average of the Hellinger distances of the attribute-
edge distributions of all communities of C in G from
those in G′, defined as ρa(G,G′) = 1

|C|
∑
C∈C H(pCF , p̃CF ).

Detectability of community partition.We evaluate
to what extent state-of-the-art community detection al-
gorithms find similar communities in G and G′. To that
end, we use the averaged F1 score, denoted Avg-F1, of
the community structures C and C′ determined by the
algorithm in G and G′, respectively. Given two com-
munities C1 and C2, the F1 score between these two
communities, denoted F1(C1, C2) combines two auxil-
iary measures: precision and recall. Precision is defined
as prec(C1, C2) = |C1∩C2|

|C1| , whereas recall is defined as
recall(C1, C2) = |C1∩C2|

|C2| . Precision and recall are com-
bined as F1(C1, C2) = 2·prec(C1,C2)·recall(C1,C2)

prec(C1,C2)+recall(C1,C2) . If both
precision and recall are zero, F1 is made zero by con-
vention. Following the evaluation strategy introduced
in [46, 60, 62], given two sets of communities C1 and C2,
the average F1-score is defined as

1
2|C1|

∑
C1

i
∈C1

max
C2

j
∈C2

F1(C1
i , C

2
j ) +

1
2|C2|

∑
C2

i
∈C2

max
C1

j
∈C1

F1(C2
i , C

1
j ).

Avg-F1 values are in [0, 1], and larger Avg-F1 values in-
dicate more similar community structures.

6.3 Results and Discussion

We first evaluate the ability of our new edge genera-
tion model CPGM to synthesise graphs that preserve the
community structures of the original graphs along with
global structural properties. Then, we assess the overall
quality of the differentially private CAGMDP model.

6.3.1 Evaluation of CPGM

We compare CPGM with the two most similar coun-
terparts reported in the literature which are amenable
to DP: TriCycle [20] and DCSBM [22]. Fig. 1 shows the
extent to which the community structures found by
the state-of-the-art community detection method Lou-
vain [4] in the synthetic graphs generated by each model
are similar to those detected in the corresponding origi-
nal graphs. Table 3 compares the behaviours of the edge
generation models in terms of global structural proper-
ties. In all columns, the values shown are averaged over
100 executions, and smaller values indicate better re-
sults.

Fig. 1. Similarities of community structures found by Louvain in
synthetic graphs to those found in the original graphs.

From the analysis of these results, we extract three
major observations. First, as Fig. 1 shows, the commu-
nity structures of the graphs synthesised using our CPGM
model are consistently more similar to those of the orig-
inal graphs, in comparison to those induced by DCSBM
and TriCycle. This supports our claim that CPGM is able
to preserve community structure to a larger extent. Note
that, in several cases, our model performs almost twice
as good as the second best, DCSBM. As expected, Tri-
Cycle shows the poorest results, corroborating the intu-
ition that community structure needs to be explicitly
included in the generative model if we want synthetic
graphs to preserve it. The previous observations sup-
port our design choices of preserving (i) the community
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Table 3. Comparison of edge generative models in terms of global
structural properties.

Dataset Model ρE ρ4 ρc Hd H`c

Petster
CPGM 0.00 0.18 0.05 0.16 0.19
DCSBM 0.00 0.12 0.49 0.17 0.27
TriCycle 0.00 0.00 0.19 0.18 0.21

Facebook
CPGM 0.00 0.03 0.32 0.15 0.32
DCSBM 0.00 0.25 0.71 0.25 0.64
TriCycle 0.00 0.04 0.56 0.37 0.60

Epinions8K
CPGM 0.001 0.00 0.16 0.11 0.13
DCSBM 0.001 0.63 0.81 0.12 0.40
TriCycle 0.001 0.04 0.11 0.15 0.24

Epinions
CPGM 0.001 0.04 0.27 0.13 0.31
DCSBM 0.002 0.60 0.83 0.14 0.26
TriCycle 0.001 0.04 0.22 0.10 0.31

structure, and (ii) separate intra- and inter-community
structural properties. Second, the graphs generated by
our CPGM model are consistently the most accurate in
terms of the distributions of local clustering coefficients
(see right-most column of Table 3), and have close accu-
racy in terms of global clustering coefficient to the best
model (see column labelled ρc in Table 3). An analogous
observation can be made for the number of triangles
(column labelled ρ4). We consider that these observa-
tions support our design choice of preserving separate
intra- and inter-community edge densities and triangle
counts. The comparably poorer performance of DCSBM
in terms of global and local clustering coefficients also
corroborates the need to explicitly model them, as do
CPGM and TriCycle. A more detailed graphical descrip-
tion of the behaviour of the three models in terms of
the distributions of local clustering coefficients is shown
in Fig. 4, in App. F. The figure shows the complemen-
tary cumulative distribution functions of local cluster-
ing coefficients for the three models, and highlights the
special ability of CPGM to capture the behaviour of the
distribution for denser-than-normal graphs (the Face-
book dataset in this case). Finally, we point out that
all three models successfully preserve the properties of
the degree distribution. Our CPGM model produces the
most consistent results in all the datasets in terms of
Hellinger distances.

The results shown in this subsection support our
claim that synthetic graphs sampled from CPGM pre-
serve the community structure of the original graph to
a considerably larger extent than its closest counter-
parts, without sacrificing the ability to preserve global
structural properties. These results also show that the
manner in which CPGM computes intra- and inter-
community parameters also helps it outperform com-

peting models in preserving local and global clustering
coefficients.

6.3.2 Evaluation of differentially private CAGM

We compare CAGMDP with two other models. The first
one is the differentially private AGM model using TriCy-
cle as edge set generator [20]. We refer to this model as
AGMDP-Tri. It was shown in [20] that, despite the noise
added to guarantee privacy, AGMDP-Tri still preserves to
some extent TriCycle’s ability to capture global structural
properties. As we saw in the previous section, TriCycle
performs poorly in preserving the community structure
of the original graph, so we consider for our evaluation
an additional model, which is a modification of CAGMDP
where CPGM is replaced by DCSBM as the edge genera-
tion model. We refer to this model as CAGMDP-D.

We compare the behaviour of the three models un-
der four privacy budgets: 2.0, 3.0, 4.0 and 5.0. We chose
these values to ensure that the part of the privacy bud-
get devoted to ModDivisive (1.0, 1.5, 2.0 and 2.5, re-
spectively) is within the same range as the budgets
used in the experiments reported in [46]. The authors of
ModDivisive state that epsilon values for their method
should be in these ranges in order to enable the accu-
rate privacy-preserving generation of a search tree that
guarantees to yield communities of reasonable size. The
use of smaller values usually leads to obtaining a sin-
gle community containing all nodes, which is equivalent
to obtaining no community partition at all. Each com-
parison between instances of the three models uses the
same value for the privacy budget. Since CAGMDP-D and
AGMDP-Tri each have fewer parameters than CAGMDP,
we re-allocate in each case the remaining privacy bud-
get to other computations. In estimating CAGMDP-D,
we allocate to community partition the same budget
as for CAGMDP, i.e. ε

2 . CAGMDP-D requires to compute
the numbers of edges between every pair of communi-
ties. We assign to this computation the budget used in
CAGMDP for counting the number of intra-community
triangles, i.e. ε

12 . Finally, CAGMDP-D is given for degree
sequence computation the budget ε′d = εd + ε4 = ε

6 ,
as it does not require to count the global number of
triangles. Since AGMDP-Tri computes every parameter
computed by CAGMDP, except for the community par-
tition (which takes half of the budget of CAGMDP) we
double the budget assigned to every other computa-
tion of AGMDP-Tri. These re-allocations give comparative
advantages to both competing models CAGMDP-D and
AGMDP-Tri in their comparison with our model, as they
will be able to more accurately compute some of the
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Fig. 2. Comparison of differentially private models in terms of community structure preservation.

parameters they have in common with our model. We
allow this advantage because requiring a smaller number
of computations is a positive feature of differentially pri-
vate methods, so it should not be punished in the com-
parison. In CAGMDP and CAGMDP-D, ModDivisive is run
with ws = 0.98. Finally, in estimating the attribute-edge
correlations distribution (discussed in Sect. 5.3), we set
the maximum degree parameter p to 100.

Fig. 2 displays the behaviours of the three models in
terms of community structure preservation, whereas Ta-
bles 4, 5, 6 and 7 summarise their behaviours in terms
of global structural properties and attribute-edge cor-
relations on the selected datasets. In what follows, we
analyse these results from three different perspectives.
Community structure preservation. In Fig. 2, the
four upper charts display the extent to which the com-
munity structures found by Louvain in the synthetic
graphs generated by each differentially private model
are similar to those detected in the corresponding orig-
inal graphs. Two important features of the Louvain al-
gorithm are shared by ModDivisive, the method used
for obtaining community partitions in CAGMDP and
CAGMDP-D. Both generate a community partition, and
both operate by maximising modularity. In order to
assess whether the community structures induced by
our models in the synthetic graphs are also detectable
by algorithms based on different criteria, we addition-
ally obtained analogous results using the algorithm
CESNA [62]. These results are shown in the lower four
charts of Fig. 2. Unlike Louvain, CESNA takes node
attributes into consideration for computing communi-
ties. However, CESNA tends to obtain substantially
overlapping communities, whereas both CAGMDP and
CAGMDP-D assume a partition. CESNA requires as a pa-
rameter the number of communities, which we set to 10.

From the analysis of these results, the most rele-
vant observation is that, considering the communities
detected by both Louvain and CESNA, the graphs sam-
pled from our CAGMDP model consistently rank as the
ones whose community structure is most similar to that
of the corresponding original graphs. In the particular
cases of Petster, Facebook and Epinions8K with the
Louvain algorithm, the similarity values displayed by
our CAGMDP model are in most cases more than twice
better than their counterparts for AGMDP-Tri, and con-
siderably more than those for CAGMDP-D. However, this
advantage decreases as the number of vertices grows.
All three models fail to effectively preserve the commu-
nity structures on Epinions, which has more than 20, 000
nodes. This is because the amount of noise added to en-
force DP grows proportionally to the number of nodes.
Distributions of attribute-edge correlations. For
each original graph, we compute the distributions of
attribute-edge correlations in all communities detected
by CESNA. Then, we compute the equivalent distri-
butions on each synthetic graph and compare them to
that of the original graph in terms of ρa (see right-most
columns of Tables 4, 5, 6 and 7). From the analysis of
these results, we can see that the synthetic graphs sam-
pled from CAGMDP and CAGMDP-D, the two models that
consider community structures, consistently outperform
those sampled from AGMDP-Tri in terms of ρa. Another
important observation is that the qualities, in terms of
ρa, of synthetic graphs sampled from our CAGMDPmodel
and those sampled from its variant CAGMDP-D are quite
similar. This observation suggests that CAGMDP can in
some cases be seen as a meta-model, where several edge
generation models, e.g. CPGM and DCSBM, can be used.
Global structural properties. From the analysis of
Tables 4, 5, 6 and 7, we can see that, as expected,
our CAGMDP model suffers a larger degradation than



Publishing Community-Preserving Attributed Social Graphs with a Differential Privacy Guarantee 146

CAGMDP-D and AGMDP-Tri in terms of the measures that
depend on parameters for which the latter models were
allocated larger privacy budgets, most notably the num-
bers of edges. The reason for these relatively larger er-
rors is that our edge generative model CPGM requires to
perturb two degree-related parameters (intra- and inter-
community degrees) while other models just have one.
This also affects the performance of CAGMDP in preserv-
ing global clustering coefficients.

Table 4. Comparison of DP models on Petster.

ε Model ρE ρ4 ρc Hd H`c ρa

2.0
CAGMDP 0.56 0.09 0.43 0.42 0.39 0.14
CAGMDP-D 0.22 0.55 0.69 0.30 0.44 0.23
AGMDP-Tri 0.25 0.09 0.25 0.23 0.30 0.17

3.0
CAGMDP 0.31 0.09 0.23 0.33 0.29 0.16
CAGMDP-D 0.11 0.30 0.55 0.24 0.34 0.16
AGMDP-Tri 0.13 0.09 0.21 0.19 0.26 0.17

4.0
CAGMDP 0.19 0.08 0.20 0.29 0.26 0.13
CAGMDP-D 0.06 0.29 0.54 0.22 0.32 0.14
AGMDP-Tri 0.09 0.08 0.19 0.19 0.25 0.17

5.0
CAGMDP 0.13 0.08 0.08 0.24 0.23 0.09
CAGMDP-D 0.04 0.29 0.54 0.20 0.31 0.12
AGMDP-Tri 0.06 0.10 0.17 0.18 0.24 0.16

Table 5. Comparison of DP models on Facebook.

ε Model ρE ρ4 ρc Hd H`c ρa

2.0
CAGMDP 0.15 0.04 0.65 0.32 0.59 0.13
CAGMDP-D 0.07 0.89 0.90 0.19 0.89 0.08
AGMDP-Tri 0.09 0.08 0.58 0.31 0.58 0.19

3.0
CAGMDP 0.12 0.04 0.59 0.18 0.47 0.09
CAGMDP-D 0.05 0.63 0.79 0.17 0.76 0.06
AGMDP-Tri 0.07 0.09 0.58 0.32 0.58 0.19

4.0
CAGMDP 0.09 0.04 0.53 0.17 0.44 0.07
CAGMDP-D 0.05 0.39 0.73 0.16 0.69 0.05
AGMDP-Tri 0.06 0.09 0.59 0.32 0.58 0.08

5.0
CAGMDP 0.07 0.04 0.52 0.17 0.43 0.06
CAGMDP-D 0.04 0.37 0.71 0.16 0.68 0.04
AGMDP-Tri 0.05 0.09 0.59 0.33 0.58 0.19

It is worth noting, however, that in the cases where
a differentially private parameter underwent a post-
processing, most notably regarding the number of trian-
gles, our model obtained error rates of the same scale as
AGMDP-Tri. For example, the error rate dropped to 0.04
for the Facebook dataset. Also in the Facebook graph,
despite the larger error rate in the number of edges,
in some cases our model showed roughly the same or
even better performance in preserving the degree se-
quence and clustering coefficients than the AGMDP-Tri
model. This is also reflected in preserving the density

Table 6. Comparison of DP models on Epinions8K.

ε Model ρE ρ4 ρc Hd H`c ρa

2.0
CAGMDP 0.15 0.15 0.44 0.34 0.34 0.15
CAGMDP-D 0.07 0.82 0.86 0.32 0.49 0.14
AGMDP-Tri 0.09 0.06 0.10 0.20 0.24 0.19

3.0
CAGMDP 0.12 0.15 0.61 0.25 0.30 0.14
CAGMDP-D 0.05 0.76 0.83 0.26 0.44 0.14
AGMDP-Tri 0.07 0.08 0.09 0.17 0.22 0.18

4.0
CAGMDP 0.09 0.11 0.54 0.20 0.23 0.14
CAGMDP-D 0.05 0.71 0.81 0.22 0.42 0.13
AGMDP-Tri 0.06 0.09 0.11 0.17 0.21 0.18

5.0
CAGMDP 0.07 0.07 0.48 0.17 0.20 0.14
CAGMDP-D 0.04 0.57 0.76 0.18 0.35 0.13
AGMDP-Tri 0.05 0.09 0.13 0.15 0.21 0.18

Table 7. Comparison of DP models on Epinions.

ε Model ρE ρ4 ρc Hd H`c ρa

2.0
CAGMDP 1.29 0.32 0.64 0.55 0.40 0.09
CAGMDP-D 0.55 0.95 0.96 0.50 0.32 0.08
AGMDP-Tri 0.17 0.18 0.19 0.33 0.37 0.15

3.0
CAGMDP 0.79 0.38 0.66 0.44 0.25 0.09
CAGMDP-D 0.30 0.84 0.84 0.35 0.28 0.08
AGMDP-Tri 0.13 0.25 0.08 0.28 0.32 0.14

4.0
CAGMDP 0.53 0.29 0.56 0.34 0.22 0.08
CAGMDP-D 0.18 0.89 0.92 0.33 0.27 0.08
AGMDP-Tri 0.11 0.28 0.02 0.24 0.30 0.14

5.0
CAGMDP 0.38 0.23 0.53 0.27 0.21 0.08
CAGMDP-D 0.14 0.85 0.90 0.30 0.27 0.08
AGMDP-Tri 0.08 0.21 0.08 0.18 0.28 0.14

of node neighbourhoods. CAGMDP has the same power
as AGMDP-Tri in preserving local clustering coefficients.
Finally, since the amount of added noise grows with the
number of vertices, synthetic graphs generated by all
three models for the Epinions dataset suffer from a more
significant degradation in terms of structural properties.

7 Conclusions
We have presented, to the best of our knowledge,
the first community-preserving differentially private
method for publishing synthetic attributed graphs.
To devise this method, we developed CAGM, a
new community-preserving generative attributed graph
model. We have equipped CAGM with efficient parame-
ter estimation and sampling methods, and have devised
differentially private variants of the former. A compre-
hensive set of experiments on real-world datasets sup-
port the claim that our method is able to generate use-
ful synthetic graphs satisfying a strong formal privacy
guarantee. Our main direction for future work is to im-
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prove CAGM by increasing the repertoire of community-
related statistics captured by the model, and by equip-
ping it with a new differentially private community par-
tition method that integrates node attributes via a low-
sensitivity objective function and/or differentially pri-
vate maximum-likelihood estimation methods.
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A Proof of Proposition 1
Proposition 1. Every graph G of order n satisfies
LSQa(C)(G) ≤ 60

n .

Proof. Let G ∼at G′ be two neighbouring attributed
graphs and let Ga and G′a be the auxiliary graphs ob-
tained from G and G′, respectively. If the difference be-
tween G and G′ consists only in one edge, then Ga = G′a,
so in what follows we will consider that G and G′ differ

in one attribute vector. Let v be the (sole) vertex such
that τG(v) 6= τG′(v). In the worst case, we have that,
for every w ∈ V \ {v}, (v, w) ∈ Ga and (v, w) /∈ G′a (or
vice versa). It was shown in [46] that the modularities
of two graphs differing in one edge differ in up to 3

m ,
where m is the minimum number of edges. Then, in the
worst case we have LSQa

(G) ≤ 3(n−1)
ma

, where n is the
order of G and G′, and ma is the minimum number of
edges in auxiliary graphs. As we discussed in Sect. 5.1,
ma ≥ n(n−1)

20 , so LSQa
(G) ≤ 60

n . The proof is thus com-
pleted.

B Proof of Proposition 2
Proposition 2. The global sensitivity of nC is k.

Proof. Let G ∼at G′ be two neighbouring attributed
graphs, let C ⊆ V be a community and let nC(G) and
nC(G′) be the instances of nC =

(
n1
C , n

2
C , . . . , n

k
C

)
in

G and G′, respectively. If the difference between G and
G′ consists only in one edge, then nC(G) = nC(G′), so
in what follows we will consider that G and G′ differ
in one attribute vector. Let v be the (sole) vertex such
that τG(v) 6= τG′(v). If v /∈ C, then nC(G) = nC(G′).
On the contrary, if v ∈ C, for every component ` ∈
{1, . . . , k} such that τ`,G(v) 6= τ`,G′(v), we have that∣∣n`C(G)− n`C(G′)

∣∣ = 1. In consequence, we have ∆nC =
max

G∼atG′

∥∥nC(G)− nC(G′)
∥∥

1 = k.

C Proof of Proposition 3
Proposition 3. The global sensitivity of the number of
intra-community triangles of a graph G with a commu-
nity partition C is ∆nintra

4
= maxC∈C{|C| − 2}.

Proof. Let G ∼at G′ be two neighbouring attributed
graphs and let C be a community partition of V.
Let nintra

4 (G) and nintra
4 (G′) be the numbers of intra-

community triangles of G and G′, respectively. If the dif-
ference between G and G′ consists only in one attribute
vector, then nintra

4 (G) = nintra
4 (G′), so in what follows

we will consider that G and G′ differ in one edge. We will
assume, without loss of generality, that E ′ \ E = (v, v′).
Two cases are possible for ψC(v) and ψC(v′):

(i) ψC(v) 6= ψC(v′). In this case, since (v, v′) is an
inter-community edge, nintra

4 (G) = nintra
4 (G′).
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(ii) ψC(v) = ψC(v′) = C. In this case, we have that
nintra
4 (G′)−nintra

4 (G) = |C∩NG(v)∩NG(v′)|, that
is the number of common neighbours of v and v′

in the same community.

It is simple to see that every pair of vertices v and v′ such
that ψC(v) = ψC(v′) = C satisfy |C ∩NG(v)∩NG(v′)| ≤
|C| − 2. Hence, ∆nintra

4
= maxC∈C{|C| − 2}.

D Proof of Proposition 4
Proposition 4. For every graph G, every community
partition C of G, and every positive integer t ≥ 1,

LSnintra
4

((G, C), t) =

max
{i,j | ψC(vi)=ψC(vj )}

{
min
{
aij +

⌊
t+ min{t, bij}

2

⌋
,

|ψC(vi)| − 2}} ,

where aij = |{v` ∈ ψC(vi) | Ai,` = 1 ∧ Aj,` = 1}| and
bij = |{v` ∈ ψC(vi) | Ai,` ⊕Aj,` = 1}|.

Proof. Consider a graph G with a community partition
C, and a positive integer t ≥ 1. As discussed in [48, 63],

LSnintra
4

((G, C), t) = max
1≤i<j≤|V|

LSn
intra
4
ij ((G, C), t).

For every i and j such that ψC(vi) 6= ψC(vj), we have
that no intra-community triangle is created (resp. de-
stroyed) by the addition (resp. removal) of (vi, vj), so
LSn

intra
4
ij ((G, C), t) = 0. Thus,

LSnintra
4

((G, C), t) = max
{i,j | ψC(vi)=ψC(vj)}

LSn
intra
4
ij ((G, C), t).

We now focus on determining LSn
intra
4
ij ((G, C), t) for

every i and j such that ψC(vj) = ψC(vj) = C. Consider a
pair of such values i and j, and let S1 = {v` ∈ C | Ai,` =
1 ∧Aj,` = 1} and S2 = {v` ∈ C | Ai,` ⊕Aj,` = 1}1.

Let Gt be the class of all graphs that can be obtained
by modifying G as follows:

1. Add min{bij , t} arbitrary edges of the form (x, y),
where x ∈ {vi, vj} and y ∈ S2.

2. If t > bij , take an arbitrary subset S3 of ver-
tices of C \ (S1 ∪ S2 ∪ {vi, vj}), with cardinality

1 Note that S1 and S2 are the sets whose cardinalities define
aij and bij , respectively

min
{⌊

t−bij

2

⌋
, |C \ (S1 ∪ S2 ∪ {vi, vj})|

}
. For every

x ∈ S3, add the edges (vi, x) and (vj , x).

From the definition of Gt, it follows that every G′ ∈ Gt
satisfies φ(G,G′) ≤ t and the graph G′′ ∼ij G′ satisfies

|nintra
4 (G′)− nintra

4 (G′′)| = min
{
aij +

⌊
t+min{t,bij}

2

⌋
, |C| − 2

}
.

Now, consider an arbitrary graph G′, obtained by
modifying G, such that φ(G,G′) ≤ t and G′ /∈ Gt. Also
consider the graph G′′ ∼ij G′. According to the defini-
tion of Gt, the following situations are possible:

(i) G′ is the result of adding to G a proper subset of
the set of edges added by steps 1 and 2 of the pro-
cedure described above for obtaining an element
of Gt. In this case, only a proper subset of the tri-
angles created (resp. destroyed) by the addition
(resp. removal) of (x, y) is added (resp. removed).
Thus,

|nintra
4 (G′)− nintra

4 (G′′)| <

min
{
aij +

⌊
t+ min{t, bij}

2

⌋
, |C| − 2

}
.

(ii) G′ is the result of applying t− t′ additional mod-
ifications (t′ < t) on an element H of Gt. Note
that, by the definition of edge-edit distance, the
additional modifications do not consist in revert-
ing any edge addition made in steps 1 and 2 of
the procedure described above. In this case, none
of the additional modifications can result in the
addition of a par of edges of the form (vi, x) and
(vj , x), with x ∈ C, so

|nintra
4 (G′)− nintra

4 (G′′)| =

|nintra
4 (H)− nintra

4 (H′)| =

min
{
aij +

⌊
t+ min{t, bij}

2

⌋
, |C| − 2

}
,

where H ′ ∼ij H.
(iii) In every other case, the transformation that allows

to obtain G′ from G can be divided into a set of
edge additions as the ones described in (i) and a set
of additional modifications as the ones described
in (ii). Applying an analogous reasoning, we have
that

|nintra
4 (G′)− nintra

4 (G′′)| <

min
{
aij +

⌊
t+ min{t, bij}

2

⌋
, |C| − 2

}
.
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Summing up the set of cases analysed above, we have
that, for every i and j such that ψC(vi) = ψC(vj),

LS
nintra

4
ij ((G, C), t) =

max
{G′,G′′ | φ(G,G′)≤t,G′∼ijG′′}

{|nintra
4 (G′)− nintra

4 (G′′)|} =

min
{
aij +

⌊
t+ min{t, bij}

2

⌋
, |ψC(vi)| − 2

}
and, in consequence,

LSnintra
4

((G, C), t) =

max
{i,j | ψC(vi)=ψC(vj )}

LS
nintra

4
ij ((G, C), t) =

max
{i,j | ψC(vi)=ψC(vj )}

{
min
{
aij +

⌊
t+ min{t, bij}

2

⌋
,

|ψC(vi)| − 2}} .

The proof is thus completed.

E Resistance against
community-enhanced
re-identification attacks

We implemented the strongest community-enhanced re-
identification attack reported in the literature [47], fol-
lowing the specification given in the paper. Fig. 3 shows
the success rate of this attack on pseudonymised ver-
sions of synthetic graphs generated by our model. In
the figure, dashed lines represent the success rates of
the attack on the original graphs, whereas solid lines
represent the success rates on the pseudonymised syn-
thetic graphs. The figure clearly shows that, in the best
cases, the attack identifies around 5% of users in the
pseudonymised synthetic graphs generated by our ap-
proach. These values are considerably low in compari-
son with the success rates on the original graphs, which
range from 65% to 75%. The success rates obtained by
the attack on the original graphs in these experiments
are consistent with the ones reported in [47]. Regarding
the attack’s ineffectiveness on synthetic graphs, it stems
from its underlying assumption that, after anonymisa-
tion, the number of changes in the neighbourhood of
each individual vertex is relatively small. This assump-
tion does not hold in the scenario of graph synthesis. In
this scenario, the methods focus on generating graphs
that are similar to the original one in terms of global
properties. However, the synthetic edge sets generally
differ from the original ones to a larger extent than as-
sumed by the attack. This behaviour effectively thwarts
the attack, and is rather independent of epsilon values,

as illustrated in Fig. 3. In fact, we verified that the at-
tack is thwarted even when the synthetic graphs are
generated from non private instances of the model.

Fig. 3. Resistance against community-enhanced re-identification
attack from [47].

F Distribution of local clustering
coefficients

Fig. 4 shows the comparison of distributions of local
clustering coefficients in terms of the complementary cu-
mulative distribution functions (CCDF).
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(a) Petster

(b) Facebook

(c) Epinions8K

(d) Epinions

Fig. 4. Comparison of edge generative models in terms of com-
plementary cumulative distribution functions of local clustering
coefficient distributions.
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