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Abstract: Home and Building Automation Systems are
becoming more and more popular these days. While
they increase the comfort of living, they may also leak
private information such as user presence to passive ob-
servers. In this paper we investigate approaches for the
generation of dummy traffic in Home Automation Sys-
tems (HASs). We discuss fundamental requirements and
their impact as well as two concrete dummy traffic gen-
eration algorithms. We measure the impact of Constant-
Rate Dummy Traffic (CRDT) on the responsiveness and
energy efficiency of Home Automation Systems. As an
alternative, we present the Naive Exponential Dummies
(NED) generation scheme in which the balance between
privacy guarantees and energy efficiency can be arbitrar-
ily moved. We formally prove its privacy guarantees and
evaluate it against realistic sample data.
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1 Introduction
Home and Building Automation is becoming common
among new houses and existing properties. Benefits of
this technology range from increased comfort over as-
sistive technology to higher security. Tedious tasks are
no longer performed by the inhabitant and systems can
also monitor the property for emergencies such as fires
or burglaries. Naturally, these systems are tied to the
users’ lives and process information about the inhabi-
tants’ private space.

Contrary to the need for privacy, however, research
has shown that smart home appliances often undermine
the privacy of their users by leaking data—voluntarily or
involuntarily—to outside observers. Early HASs trans-
mitted data in the clear and allowed for detailed analy-
ses about user behaviour and habits, down to the exact
time a person woke up and left the house. [16] Further
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research has shown that wired connections are as sus-
ceptible to these attacks as wireless ones [19] and that
information can still be deduced even if all content and
addressing metadata is stripped or concealed. [7, 17]

Arguably, eavesdropping attacks on HASs are not a
widespread issue as of now. However, this may partly be
due to the fact that passive attacks are virtually unde-
tectable. Even if a burglary is observed, it is next to im-
possible to reliably determine whether the perpetrator
has used an eavesdropping attack on the HAS prior to
their break-in. Moreover, the attacks may quickly rise as
smart home devices are becoming more and more preva-
lent. Once a majority of households is equipped with
such systems, large-scale surveillance becomes feasible
for professional adversaries for the following reasons:
1. Eavesdropping attacks can be fully automated.

Whole blocks of buildings can be monitored by a
single device and without requiring a line of sight.
The adversary can receive notifications such as “all
inhabitants have left the building” and can use these
to plan burglaries.

2. The hardware required to mount these attacks is
becoming cheaper. The hardware used in previous
papers [16] costs no more than $100 as of now
and similar suitable devices are likely to further de-
crease in price. A strong antenna can increase the
attack range well beyond the bidirectional commu-
nication range of smart home equipment, increasing
the range of each listening device.

3. Traffic analysis attacks do not require any a pri-
ori knowledge about the victims such as encryption
keys for the network. Available hardware is able to
detect and log traffic from a variety of systems using
different radio frequencies and protocols.

In this paper we investigate countermeasures to the in-
formation leakage from Home Automation and similar
IoT systems from the timings of messages. Our contri-
butions are as follows:
1. We identify key techniques such as the encryption of

link-layer address information and the equalization
of packet sizes which are necessary for any overlying
dummy traffic generation scheme.
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2. We provide a quantitative evaluation of dummy
traffic generation in HASs with respect to the traf-
fic volume as well as energy consumption overhead.
While many related works evaluate the traffic over-
head, little is known about the impact on energy ef-
ficiency. This is especially important in HASs where
most devices are battery powered. We show that
traffic overhead is not proportional to an increase
in power consumption and highlight how this can
be leveraged to achieve privacy at moderate cost in
terms of energy consumption.

3. Given the heavy impact of Constant-Rate Dummy
Traffic (CRDT) on power consumption, we propose
a new dummy traffic generation scheme. By relaxing
the targeted privacy goals, we propose a stochastic
dummy traffic generation mechanism which allows
for easy tuning of privacy versus traffic overhead.
We call this scheme Naive Exponential Dummies
(NED).

4. We formalize inherent shortcomings of zero-latency
dummy traffic generation schemes as well as NED
in particular and discuss the important breakpoints
in energy efficiency and privacy.

5. We compare the performance of Constant-Rate
Dummy Traffic and our stochastic NED scheme us-
ing data from real-world HAS installations which in-
clude authentic user interactions. We evaluate both
approaches with respect to traffic overhead and en-
ergy efficiency.

2 Related Work
In recent years, research on privacy in smart home sys-
tems has gained momentum.

2.1 Smart Home Privacy

In previous works we have investigated deduction of user
behavior and user presence from unencrypted [16] as
well as encrypted [17] HomeMatic traffic. Copos et al.
have performed a similar analysis on encrypted IEEE
802.11 (WiFi) traffic. [7]

Based on this, we have established a model for traf-
fic analysis attacks in HASs. [18] Our concept takes
ideas from differential privacy [28] and applies them to
a communication network. This analysis builds on the
previous findings with some amendments and offers two
concrete approaches towards solving the problem of pri-

vate communication in small-scale IoT networks such as
HASs. Our evaluations are based on the same data set.

Apthorpe et al. have investigated HAS traffic anal-
ysis using a similar setup. [1] They have monitored en-
crypted WiFi traffic of popular HA devices and iden-
tified interactions based on spikes in the traffic rate.
Similar to us, Apthorpe et al. model user interaction as
a stochastic process. Their work however differs from
this paper in several ways, including the following:
1. Their analysis is based on traffic from single devices

whereas our analysis uses the output of a complete
HAS system including interactions of different de-
vices with each other.

2. Their evaluation focuses on traffic overhead. As we
show in this paper, traffic overhead and energy over-
head are related, but not proportional. Our evalua-
tion takes this into account and provides an estima-
tion of the energy consumption overhead of dummy
traffic in HASs.

3. The limitation regarding “long user activities” does
not apply to our approach, because the differential-
privacy-based model uses a more general notion of
traffic patterns induced by user interaction. In fact,
our findings apply to any system regardless of how
user interaction is distributed.

Despite the differences, some ideas from Apthorpe et
al.’s STP algorithm can be applied to our approach.
Partitioning time into short intervals which are then
viewed as constant-rate traffic sequences (either empty
or padded to maximum rate) makes it harder for an
adversary to identify traffic patterns belonging to in-
dividual devices. Furthermore, it reduces the temporal
dimension from a continuous to a discrete one which
simplifies the calculation of privacy guarantees.

2.2 Wireless Networks

Research on Wireless Sensor Networks (WSNs) focuses
on location privacy.[5, 6, 14] The goal is to hide the
origin rather than the existence of communication.

Approaches for private communication in WSNs as-
sume that messages are routed over several hops before
arriving at the destination. In HASs, nodes are often lo-
cated closely together wrt. their maximum transmission
range. Therefore, mesh networks with direct source-to-
sink communication channels as well as star topology
networks with at most one hop are very common.

Yang et. al. propose to use Constant-Rate Dummy
Traffic on all links. [31] We analyse a similar approach in
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Section 5. An approach using less traffic has been pro-
posed by the same authors, [26] but introduces consid-
erable delays. As we state in Section 5, delays in HASs
are to be avoided. Our scheme presented in Section 6
offers comparable privacy guarantees without delaying
genuine messages.

In Low-Power Wide Area Networks (LPWANs), Leu
et al. have formalized information leakage and cover
traffic. [13] Their work significantly overlaps with our
previous findings [18], but targets a different scenario.
The system and attacker model are quite similar: Es-
sentially, both models try to capture the confidence of
an attacker guessing the genuine events in a captured
traffic sample. We choose to base our contribution on
our model due to its verifiable privacy goals that match
intuitive, desirable properties of a HAS.

2.3 MIX networks

MIX networks and derived systems such as Tor [9] or
Loopix [24] provide anonymity for their users. Similar
to their attacker models, we have to assume a global
adversary in HASs. Using readily available hardware it
is easy to capture any and all traffic from a single HAS.

Contrary to MIX networks, routing in HASs is usu-
ally not performed and messages are being broadcast
(most systems are either wireless or use a bus network).
Furthermore, the attacker’s goal is fundamentally differ-
ent in HASs: The adversary tries to identify user interac-
tion or the absence thereof, i.e. the existence and/or pat-
tern of genuine communication. In models for MIX net-
works, the adversary’s goal is usually to link the sender
and receiver or to estimate the average sending or re-
ceiving behavior of users. The metrics established by us
[18] are more suitable for the HAS scenario.

Previous research has shown limits of dummy traf-
fic generation in MIX networks. [8, 21] However, HASs
exhibit incompatible differences: Das et al. have explic-
itly excluded protocols where information is contained
in the absence of messages. [8] Oya et al. assume an
attacker who tries to estimate the generic sender or re-
ceiver profile of users in contrast to examining specific,
fixed timing patterns. [21] Furthermore, the model used
in this paper is agnostic to sender behavior, notably to
changes in the genuine message rate.

Despite the differences, some approaches from MIX
networks like Constant-Rate Dummy Traffic can be
adapted and applied. [23] Shmatikov and Wang have
developed an approach which uses adaptive padding to
offer privacy at a lower communication overhead. [27]

Our proposed NED scheme is similar, but does not build
on pre-sampled traffic patterns and is tailored towards
the characteristics HASs.

Loopix [24] also offers a property called Sender on-
line unobservability which corresponds to our goal of
hiding the existence of user interaction. It does so by
having the users send data through the MIX network
back to themselves. In HASs, we cannot leverage this
route of partially trusted MIXes, as the system does not
route messages at all. However, our approach builds on
some of the same principles: Inter-message timings are
modelled as an exponentially distributed random vari-
able, thus the output of a given node corresponds to a
Poisson process. This allows for an intuitive and well
manageable model.

2.4 Website Fingerprinting

A large body of literature is available on the topic of
website traffic fingerprinting and recognition. [4, 12, 22]
The general idea is that web browsers exhibit a unique
traffic pattern when accessing a single website. These
patterns can be learned and later recognized to match
users to websites even if the traffic is encrypted and
possibly routed through a MIX network.

Some ideas from this field can be adapted and used
in HAS settings as well. For example, traffic fingerprint-
ing algorithms could be used to recognize known com-
munication patterns between particular pairs of devices.
However, in our particular use case the attacker has lit-
tle to no a priori information about the system, the
devices or the inhabitants. The attacks presented by us
in previous works [17] leak information about the users
without requiring large amounts of sample data and our
model [18] is abstract. In general, the models of website
fingerprinting and HAS traffic analysis differ in several
regards:
1. In website fingerprinting attacks, the initiator of the

communication is known and the attacker tries to
match the counterpart against a set of known and
publicly reachable entities. In our scenario, only the
HAS to which the communicating parties belong
is known. The attacker tries to determine whether
some particular category of communication (e.g.
genuine user interaction) is happening.

2. Countermeasures against website fingerprinting at-
tacks generally aim to be applied at the user’s node
and possibly at nodes along the way to the web
server. Unrelated third parties and the website it-
self are to be protected from negative side-effects of
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the countermeasure. In HASs, all nodes are under
the user’s control. Except for regulatory thresholds,
no third parties are involved and have to be consid-
ered.

3. In computer networks, a large traffic overhead de-
grades the performance of the system. In HASs,
this directly affects battery lifetime and can lead
to system unresponsiveness if regulatory thresholds
for communication bandwidth are exceeded.

4. Routing or at least direction information is avail-
able in computer networks [22]. In broadcast HASs
where the destination of a packet is sent unen-
crypted, only this information is available to an ob-
server. If the destination is encrypted as well, no
routing or direction information is available at all.

3 System and Attacker Model
Our model is largely similar to that used in our previous
works [18], but we go into detail on certain decisions and
where they impact our further analysis.

3.1 System Model

We assume that the HAS consists of an arbitrary num-
ber of nodes which communicate directly, i.e. without
routing. Even if the network exhibits a star topology
and messages are possibly routed over a base station,
this can fit into our model. Disconnecting the transfer
to and from the base station yields two transmissions
which can be viewed as separate packets.

Temporal links between messages can appear even
in networks without routing. For example, a user might
have programmed their (mesh-network) HAS to switch
on the light and turn on the heating whenever a door
is opened. Thus, transmissions in close succession can
happen in both mesh and star topology networks. Their
commonness depends on the automation rules and user
habits in addition to the network topology.

We further assume that all communication links are
encrypted individually, which means that message pay-
loads do not leak information to an observer. We stress
that messages must be re-encrypted in case routing does
happen in order to prevent the adversary from being
able to match the incoming and outgoing message. End-
to-end encryption can be added on top with no loss of
generality. There are numerous approaches to provide
confidentiality of message contents in systems with low

computational power and limited power supply. [2, p. 1–
2] Challenges such as key distribution and renewal are
outside the scope of this paper.

Additionally, we assume that all messages are
padded to the same length. In the Section 3.2 we dive
deeper into the assumptions on encryption and padding
and examine the effects on our evaluation should they
not hold.

Last, we assume that message headers such as the
intended receiver are either encrypted together with the
message payload or are otherwise hidden from outside
observers. This can be achieved by a mechanism such as
SlyFy [11]. While this is a strong assumption and cer-
tainly not true for all available HAS products, we keep
it for the sake of simplicity. As detailed in the follow-
ing section, relaxing the assumptions does not invalidate
the model. It merely splits a real-world system into sev-
eral virtual systems that can be modeled and analyzed
largely individually.

To summarize, our system is modeled as an entity
that generates messages which are only distinguishable
by their timestamps. An output O can thus be written
as a series of timestamps O = {t1, t2, t3}. When relax-
ing the assumptions and incorporating multiple discrim-
inating factors into each message, the output O of the
system can be modeled as a series of message finger-
prints (e.g. vectors) O = {f1, f2, f3}.[18]

We do not make assumptions about the distribution
of user interaction over time. Instead, we provide generic
results that can be applied to any system and user.

3.2 Effects of Relaxations

It might be infeasible to pad all messages to the exact
same length. While the heartbeat message of a smoke
detector only requires a single bit of information to be
transmitted, the measurements of a weather sensor can
be several bytes long. Also, parts of the communication
might not be encrypted or it might be that addressing
information is not hidden.

We therefore explicitly note the possibility of ex-
tending the attributes of a message beyond our model.
For our analysis, we model messages as relative times-
tamps. One can however annotate each timestamp with
a message length, a receiver address, a wireless channel
ID or any other information visible to a passive adver-
sary. The principles of our model and analysis still apply
and only the numbers will differ in practice, as it is still
possible to calculate probabilities of encountering cer-
tain message sequences.
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3.3 Attacker Model and Privacy Goals

We assume that the attacker is interested in learn-
ing some information about the user. According to our
model for (e- d)- private communication [18], this corre-
sponds to the user performing one of two possible tasks
Ti, Tj and the adversary observing the output of the sys-
tem O as a series of message timestamps. The attacker
then has to decide, based on the observation O, whether
the user has indeed performed Ti or Tj .

We recall the definitions of the privacy goals [18]:

Definition 1. A HAS provides (ε- d)- private communi-
cation if there are constants ε ≥ 0 and 0 ≤ δ < 1, such
that for any possible adversary-provided tasks Ti, Tj and
for all possible adversarial observations O we have that

Pr(O|Ti) ≤ eε × Pr(O|Tj) + δ

(e- d)- private communication focuses on the probabil-
ity of observing any given output. Aiming for this goal
means that the system is as likely to generate one out-
put as it is to generate any other, regardless of how the
user is interacting with it.

Definition 2. A HAS provides (ε- d)- indistinguishabil-
ity for a set of tasks T if there are constants ε ≥ 0 and
0 ≤ δ < 1, such that for all tasks Ti, Tj ∈ T and for all
possible adversarial observations O we have that

Pr(O|Ti) ≤ eε × Pr(O|Tj) + δ

(e- d)- indistinguishability is a relaxation of (e- d)- private
communication where the tasks that can be performed
by the user are limited. Since (e- d)- private communica-
tion is hard to achieve, (e- d)- indistinguishability aims at
being practically achievable in real-world settings.

Definition 3. A HAS provides (ε- d)- unobservability of
a set of tasks T if

∀T ∈ T : T ∈ T

(where T is the complementary task of T )and the system
provides (ε- d)- indistinguishability for T.

(e- d)- unobservability is a special case of (e- d)- indistin-
guishability where the system aims to generate the same
output pattern whether or not the user performs a given
task from a limited set.

We further refine the definition of tasks and com-
plementary tasks: A task T is a set of possible outputs
T = O1, O2, . . . , On. Given the set of all possible tasks

Tall =
⋃
T the complementary task T is defined as

T := Tall\T . This means that the complementary task
is the set of all outputs that are never generated by per-
forming T but are possibly generated by other tasks.

We have also defined the privacy goals for continu-
ous models by substituting the probability for the prob-
ability density functions. [18] This, however does not
capture the same idea: A PDF can have a value of > 1
which conflicts with intuitive understanding of the pri-
vacy goals given the bound δ < 1.

Therefore, we modify the definitions for continuous
models as follows: The conditions must hold not for all
adversarial observations O but for all adversarial obser-
vations O and all sets of adversarial observations O. In
place of the probability Pr(O|T ) from the discrete case
we use the probability Pr(O ∈ O|T ). The definition of
(e- d)- private communication then reads as follows:

Definition 4. A HAS provides (ε- d)- private communi-
cation if there are constants ε ≥ 0 and 0 ≤ δ < 1, such
that for any possible adversary-provided tasks Ti, Tj , for
all possible adversarial observations O and for all sets
of adversarial observations O we have that

Pr(O ∈ O|Ti) ≤ eε × Pr(O ∈ O|Tj) + δ

The attacker in our scenario is global and passive. They
are able to receive all messages which are transmitted
by any device. We explicitly disregard the possibility of
node compromise, triangulation or wireless fingerprint-
ing attacks, as these are separate areas of research and
would extend beyond the scope of this paper.

4 Evaluation Data
For estimating the effect of CRDT and NED on the
power consumption of HASs, we run the algorithms on
our existing data sets. [16, 17]

System 1 is installed in a private apartment and con-
sists of 23 HomeMatic devices: Temperature and humid-
ity, door and window sensors, switches, smoke detectors,
remote controls and a base station. Data was captured
over 35 days. The system was used for everyday tasks
such as controlling the lighting and monitoring the state
of doors and windows.

System 2 consists of two parts. One is installed in a
private home and consists of similar components as Sys-
tem 1 with the addition of door locks and corresponding
remote controls. The second part is installed in an of-
fice space and further includes thermostats. Due to the
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different nature and use cases, we treat these two parts
as distinct systems: System 2.1 and System 2.2. The
capture period is 8 days for System 2.1 and 13 days for
System 2.2.

System 3 is installed in a private apartment. It con-
sists of 30 custom components and assumingly uses an
existing WiFi (IEEE 802.11) network for communica-
tion. The data capture consists of events rather than
raw packets. Due to the nature of the installed devices,
all events captured are direct results of user interaction.
The capture period is 38 days.

5 Constant-Rate Dummy Traffic
(CRDT)

CRDT offers (e- d)- private communication. [18] To
achieve Constant-Rate Traffic throughout the HAS, two
steps are necessary: First, genuine traffic has to be
shaped to achieve a fixed maximum traffic rate. Then,
times of inactivity must be padded with dummy traffic
to achieve the same traffic rate. Our evaluation is based
on exactly this mechanism. We assume an ideal CRDT
scheme where during each timeslot, a dummy message
is sent if and only if there is no genuine message to be
transmitted.

The only variable in CRDT is the rate at which
traffic is generated or permitted. A lower bound for this
rate can be estimated by taking an exemplary use case:
The user presses a switch and expects the light to turn
on (or some other action to happen). The maximum ac-
ceptable value for this response time sets the minimum
rate at which traffic must be permitted and generated.
This value cannot necessarily be used directly, though.
Due to the fact that multiple transmission requests may
arise within a single timeslot, the actual reaction to the
user’s input may be delayed for more than a single pe-
riod. Therefore, the rate has to be adjusted depending
on the user and system behaviour.

Research in usability engineering suggests that a re-
sponse time of 0.1 s is acceptable in most cases and a re-
sponse time of more than 1 s is not acceptable.[3, 15, 20]
To have a conservative estimate, we assume a maximum
delay of 1 s for any message. While delays of more than
1 s might be acceptable for devices such as thermostats
or temperature sensors, splitting these from the rest of
the system has no effect on data rates. Ignoring these
devices leads to the same minimum data rates.

5.1 Evaluation of CRDT

To measure the effect of CRDT on the power consump-
tion of HASs, we apply the algorithm to the available
dataset. The constraint of having a maximum delay of
1 s for genuine messages results in different data rates:1
4 P s−1 for System 1, 7 P s−1 for System 2.1, 5 P s−1 for
System 2.2 and 18 P s−1 for System 3. Table 1 contains
the detailed results.

5.2 Traffic Overhead and System
Responsiveness

All Systems exhibit bursts of traffic. This becomes very
obvious in System 2.2, which has the lowest traffic rate
before introducing CRDT. However, the nature of the
system explains the traffic pattern: The HAS consists
of heating actuators installed in an office. In the morn-
ing, all heatings are turned on at the same time so the
temperature is comfortable when the employees arrive.
In the afternoon, the heatings are turned off again. This
results in short bursts of traffic during these two phases,
while for the rest of the day the system is rarely inter-
acted with. Due to the fact that messages are to be de-
layed at most 1 s, the data rate has to be high enough to
guarantee this upper bound during the bursts. However,
the high rate has to be kept during the whole day, effec-
tively introducing a traffic overhead which is orders of
magnitude larger than the amount of genuine messages.

Decreasing the rate is no option: If we fix the rate to
1 packet/s, genuine messages are delayed for up to 59 s
(in System 3), while the traffic still increases by a factor
of almost 80 in the same system. The other systems do
not perform significantly better.

Regarding the system responsiveness, the result is
satisfying. The mean delay for genuine messages is 0.2 s
for System 2.2 and lower than 0.1 s for all other sys-
tems. For System 2.2, delays of more than 0.1 s would
likely happen when the heating actuators are automat-
ically configured and only rarely be observed on user
interaction.

As a preliminary conclusion, we see that CRDT
introduces a significant traffic overhead if the system
responsiveness is not to visibly deteriorate. While this
confirms the first intuition, its actual impact on energy
consumption is not as strong.

1 Within this paper, packets are assigned the unit P.
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5.3 Energy Consumption

It is widely perceived that in terms of required energy,
communication is more expensive than e.g. computa-
tions. Wander et al. have stated that “the power re-
quired to transmit 1 bit is equivalent to roughly 2090
clock cycles of execution on the microcontroller” [30]. By
this principle, many protocols for Wireless Sensor Net-
works (WSNs) have been developed, minimising com-
munication as far as possible. However, the cost of com-
munication in HASs has not been analysed thoroughly
yet. It is unclear whether e.g. the idle power consump-
tion of the devices outweighs the sporadic bursts of com-
munication so that there is little need for further opti-
misations of the traffic volume. Naturally, manufactur-
ers try to optimise their systems’ battery lifetimes and
thus put effort in minimising the power consumption.
However, they usually do not publish specifications or
information on the focus of their research.

In order to estimate the increase in power consump-
tion by CRDT, we apply five different models to our
data. Feeney et al. have conducted measurements on
regular 802.11 PC cards, which can be installed in lap-
tops. [10] Van Dam et al. have implemented a power-
saving MAC protocol for WSNs and evaluated its per-
formance on EYES nodes—battery-powered devices us-
ing an energy efficient microcontroller and a wireless
transceiver. [29] Wander et al. have evaluated the power
consumption of public-key cryptographic protocols us-
ing the Mica2dot platform. [30] The Mica2dot platform
uses the same transceiver as HomeMatic devices, which
were used in two of our three analysed systems. Polas-
tre et al. have developed a custom wireless node called
Telos and compared its power consumption to others,
including the Mica2dot. [25] For the fifth model, we have
performed our own measurements on HomeMatic hard-
ware.

Table 1 shows the condensed results of the evalua-
tion. A detailed table with intermediate results is sup-
plied in Appendix A. The following sections summarise
these results and draw conclusions from them.

The five models lead to significantly different num-
bers for the total energy consumption, which can partly
be explained by taking a closer look. Feeney et al.’s mea-
surements were performed on laptop hardware. While
laptops are built with energy efficiency in mind, the bat-
teries are usually much larger than in HAS devices and
the communication behaviour is significantly different.
The other models use different kinds of hardware which
were developed with particular use cases in mind.

System 1 2.1 2.2 3
Traffic

Data Rate (Packets per second, P s−1)
4 7 5 18

Increase 267.53 148.54 5812.63 1453.40
Energy Consumption

802.11 PC Card [10]
Increase 5× 10−4 6× 10−4 1× 10−3 6× 10−3

EYES nodes [29]
Increase 0.31 0.83 1.36 1.14
Mica2dot [30]
Increase 5.33 9.13 17.52 14.12
Telos [25]
Increase 0.44 0.98 1.02 2.28
HomeMatic
Increase 2.31 5.37 8.68 10.12

Table 1. Effects of enforcing Constant-Rate Dummy Traffic in
the sample installations under different energy consumption mod-
els. Numbers larger than 10−2 are rounded to two digits after
the decimal point. The increase (both traffic and energy con-
sumption) is given as a factor. A factor of 0 means no increase in
traffic or energy consumption, whereas a 1 means that the orig-
inal value doubled. Note that for System 3 using the 802.11 PC
Card, a different idle power consumption was used.

5.3.1 802.11 PC Card, Feeney et al.

For the method presented by Feeney et al., we use the
numbers of the 11Mbps WaveLAN PC Card as it has
a lower power consumption than the 2Mbps model. For
the calculations we use a packet size of 20 B—the same
size used by van Dam et al.—for comparability. We also
calculated the energy consumption using a packet size
of 2048 B, but the conclusion is similar. With a packet
size of 2048 B, the maximum increase when using CRDT
is by a factor of 0.07 (or 7 %) and thus acceptable for
most scenarios.

Feeney et al. did not take into account the time it
takes to send a certain amount of data. They merely
calculated the idle power consumption and then the ad-
ditional energy consumption required to send a packet
of a certain size. Thus, we can multiply the total sam-
ple time of each system by the idle power consumption.
HomeMatic components as found in Systems 1 and 2
can communicate directly and without the need for a
base station. We therefore use the “ad hoc” idle power
consumption for these two systems. The exact setup of
System 3 is unknown, but the publications suggest that
an WiFi (IEEE 802.11) network is used. We therefore
use the “BSS” mode idle power consumption for this
setup.
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In contrast to the other models, Feeney et al. have
specifically measured the energy required to discard
packets that are not sent to the receiving node. We have
used this value for calculating the energy consumption
of CRDT. It does however not play a significant role
in the result, as the idle power consumption massively
outweighs any other factor.

The transmission of broadcast messages has a lower
energy consumption than the transmission of point-
to-point messages. We therefore use the broadcast en-
ergy consumption for our calculations. For the calcula-
tions it does not matter which device is sending which
packet. However, when one device is sending data, at
least one other device is receiving it and the remaining
(non-receiving) devices need to discard the packet. This
model is the only one with precise data available on the
energy required to discard a packet.

The results of the application of this model are de-
cisive: The energy consumed during idle phases is or-
ders of magnitude higher than the energy consumption
of message transmissions—both genuine and dummy.
Thus, the negative effect of CRDT is likely unobserv-
able. If a Home Automation System is therefore imple-
mented using similar hardware, CRDT can be imple-
mented with a negligible impairment of battery lifetime
and system responsiveness.

5.3.2 EYES Nodes, Van Dam et al.

Van Dam et al. have developed and implemented a
novel power-saving MAC protocol using so-called EYES
nodes. The published data on power consumption is
brief, but can be used to get a rough estimate of the
energy consumption of a Home Automation System.
Based on the graphs in the paper, we estimate that the
maximum transmission rate of EYES nodes using the
T-MAC protocol is about 58.17 P s−1. Since the rela-
tion between transmission rate and power consumption
does not appear to be linear, we interpolated the miss-
ing data using a second-degree polynomial based on the
power consumption of 1 P s−1, 10 P s−1 and 58.17 P s−1.

We then calculated the original transmission rates
for every device in the evaluated systems during each
1 s-timeslot. Here we assume that all transmissions orig-
inating from a single sender and being sent during the
same timeslot are targeted towards the same receiver.
Furthermore, we assume that no two devices transmit
data to the same receiver during the same timeslot.
While this might not be entirely accurate, we assume
the error introduced by this to be negligible. This as-

sumption is supported by the results of the other mod-
els.

Applying the consumption values from the model to
this data results in an estimate of the energy consumed
by the original system. We then introduce dummy traf-
fic into the system at the given rates. While doing so,
we distribute the dummy traffic evenly among all idle
nodes, so that each node only sends at most one dummy
packet during each 1 s-timeslot. This minimises the over-
all energy consumption and results in a more conserva-
tive estimate on the impact of CRDT.

The resulting total energy consumption of the sys-
tems is smaller than that of Feeney’s model by a factor
of almost 2000. However, due to the smaller idle power
consumption, the impact of transmissions on the total
consumption is much higher. The energy consumption
of the system is increased by at least 31 % (System 1)
and up to 136 % (System 2.2). The large discrepancy
between the different systems in this model can be ex-
plained by examining the typical use cases. While Sys-
tem 1 is installed in an apartment and is frequently
triggered by both user interaction and automation rules,
System 2.2 almost solely handles bursts of automation
rules after long periods of inactivity.

The relative difference between the different systems
is similar to the one in Feeney et al.’s model. System 3
being an outlier can be explained by the different model
variation used in the first calculation.

If hardware similar to EYES nodes is is used to im-
plement a Home Automation System, it becomes nec-
essary to develop alternative approaches to CRDT in
order to protect the users’ privacy.

5.3.3 Mica2dot, Wander et al.

In order to measure the energy-efficiency of different
public-key cryptographic protocols, Wander et al. have
performed measurements using the Mica2dot platform.
The platform uses the same CC1100 transceiver as
HomeMatic devices which make up 3 of our 4 analysed
systems. When applying this data to our scenario, we
make several assumptions: We assume the packet length
is 20 bytes—similar to the other models. Furthermore,
we have to use the different power consumptions for
active and inactive microcontrollers. Therefore, we dif-
ferentiate between two categories of devices:

Senders (e.g. light switches) only initiate commu-
nication themselves. They react to events such as the
pressing of a button and then begin communicating with
other devices. The processors of Senders can therefore
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lie dormant for most of the time and only wake up when
there is an event to be processed. This matches our ob-
servations during our own measurements which are de-
scribed in Section 5.3.5.

Receivers (e.g. door locks or thermostats) react to
messages from other devices. They therefore have to
wake up periodically to check if there is a transmission
to be processed and reacted upon. The exact wake-up
strategy depends on the communication protocol and
design decisions of the manufacturer. In our experiments
we found out that HomeMatic Receivers wake up ap-
proximately once every 350 ms. Their processors are ac-
tive about 0.5 % of the time. We apply this duty cycle
to our calculations.

To calculate the energy consumption in the CRDT
scenario, we assume that all dummy traffic is transmit-
ted by Receiver nodes. This leads to a more conservative
estimate than assuming Senders transmit all dummy
traffic: Receivers exhibit a 0.5 % duty cycle anyway, so
transmitting additional packets during this active time
does not pose a large impact on power consumption.
Sender devices, on the other hand, would have to wake
up in order to be able to send packets, which further
increases the energy consumption.

Calculating intermediate results for the use of
CRDT reveals a peculiar effect: Transmitting 4 pack-
ets of 20 B each at a speed of 12.8 kbit s−1 takes about
0.05 s. This means that even if the dummy traffic gen-
eration is evenly distributed among all 9 Receivers and
the genuine messages transmitted by Senders are sub-
tracted, the Receivers have to spend more than 0.5 %
of the total time transmitting data. As an intermedi-
ate conclusion, this means that a duty cycle of 0.5 %
is not maintainable when applying CRDT. In practice,
other tasks such as reading sensor values require further
processor time, adding to the required duty cycle.

The impact of CRDT on the energy consumption
according to Wander et al.’s model is enormous: For
System 1, the energy consumption is five times that of
an unmodified system. For System 2.2, it the factor is as
high as 17. Increasing the length of the packets further
increases the impact of CRDT. A packet size of 200 B
leads to an increase factor of at least 45. In conclusion,
CRDT is infeasible for systems using similar hardware.

5.3.4 Telos, Polastre et al.

Polastre et al. have developed a new type of wireless
node and compared it to previous hardware such as
the Mica2dot platform. Their goal was to create a more

energy-efficient device. In order to apply the model to
our data, we made similar assumptions as for the other
models. We assumed a packet size of 20 B and—similarly
to the application of Wander et al.’s model—split the
devices into Senders and Receivers.

The results match the goals the Telos project: The
energy consumption less than half of the consumption
of the Mica2dot nodes. Surprisingly, the effect of CRDT
on the overall energy consumption is also lower. How-
ever, the overall energy consumption when using CRDT
is still 44 % to 228 % higher than the original energy con-
sumption of the systems. This supports our thesis that
CRDT is not feasible for use in specialised HASs.

The results also suggest that Telos is a viable tech-
nology for use in HASs in general. Among our evalu-
ation, it exhibits the lowest energy consumption both
before and after applying CRDT across all four tested
systems.

5.3.5 HomeMatic Hardware

To check the models against hardware of an existing
HAS, we performed our own measurements on Home-
Matic hardware. We were able to confirm the most im-
portant aspects of power consumption by measuring
and comparing the data with the other models. We
could confirm our classification of devices as Senders and
Receivers. Senders lie dormant most of the time with
an idle power consumption of around 0.4 mW. Send-
ing a (genuine) packet requires about 17.22 mJ of en-
ergy, including sensing the carrier before transmitting
and listening for replies or collisions after the trans-
mission. The energy consumption of a pressed switch
where the different states are highlighted is supplied in
Appendix A. Receivers, on the other hand, periodically
wake up to listen for incoming transmissions. The duty
cycle is 0.5 % and each spike requires about 80.79 µJ of
energy in addition to the idle power consumption.

According to our measurements, the HAS systems
consumed energy among the order of several kJ. This is
not particularly high: A single alkaline AA battery can
supply around 10 kJ of energy.

The impact of CRDT on the overall energy con-
sumption is significant. In a “busy” setting such as Sys-
tem 1, the energy consumption is more than tripled.
In a system handling bursts and long spans of inactiv-
ity such as System 2.2, the increase is nearly tenfold.
While the impact on System 3 is the highest, this value
has to be interpreted with care: The system is not built
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from HomeMatic components and therefore actual val-
ues might differ from the model.

5.4 Conclusion of CRDT

From the analysis of CRDT power consumption we can
draw two conclusions. The impact of CRDT on the
power consumption strongly depends on the hardware
used. On the one hand, there are systems where CRDT
places a negligible strain on batteries and is therefore
well suited to guarantee privacy. This is a strong con-
trast to the first intuition, which is that CRDT in-
troduces too much traffic overhead to be feasible. On
the other hand, many specialized systems with low idle
power consumption are heavily impacted by CRDT. For
those systems, different approaches need to be devel-
oped and implemented. The following section deals with
one such approach.

6 Naive Exponential Dummies
(NED)

The power consumption of systems using CRDT has
made it clear that low latency and constant-rate traf-
fic are incompatible for most HASs. We therefore re-
lax our requirements on the privacy goals and present
an approach using a probabilistic generation of dummy
traffic. This approach introduces significantly less traf-
fic overhead while introducing no latency to user in-
teraction and offering (e- d)- unobservability for certain
interactions. We call this approach Naive Exponential
Dummies (NED).

The approach works as follows: Genuine traffic is
untouched by the system and is transmitted without de-
lays. After every message (genuine or dummy), the sys-
tem generates a random duration d from an exponential
distribution with rate λ. If no genuine message is trans-
mitted after this time d, a dummy message is generated
and transmitted. If a genuine message does appear be-
fore, a new number is sampled from the same distribu-
tion. In reality, a system cannot choose the transmis-
sion time of a message with arbitrary precision (it is
limited by the maximum transmission rate and other
physical properties) and the precision with which the
adversary can determine the timestamp of a captured
message is also limited by the equipment. Therefore, a
discrete model is more suitable than a continuous one.
To convert the continuous exponential distribution into

a discrete one, the system rounds down the drawn num-
ber to the nearest possible transmission time. Alterna-
tively, it can draw a number directly from a geometric
distribution with success probability p = 1− e−λ. Note
that the algorithm does not necessarily exclude 0 as a
possible outcome. If the system model does not allow
multiple messages to be transmitted at the same time
or in the same timeslot, the value 0 can be interpreted
as the next possible transmission time rather than the
current time.

If the timestamps are to be modelled as continu-
ous or if the timestamp precision is too high to provide
meaningful results, they can be transformed into a dis-
crete model nevertheless. By using Apthorpe et al.’s ap-
proach [1], genuine traffic can be shaped into following a
fixed maximum transmission rate without affecting sys-
tem responsiveness, similar to the functioning of CRDT.

In this section we focus on the discrete model as
it captures the properties of real systems better than
the continuous one. However, since the goals are also
defined for continuous models, similar analyses can be
performed for those cases or for approaches which re-
quire an underlying continuous model. We assume that
for the sending probability p of the geometric distri-
bution, it holds that 0 < p < 1. Furthermore we as-
sume a geometric distribution with the possible out-
comes N = {1, 2, 3, . . .}2.

We can immediately deduce an important property
of NED:

Theorem 1. Running the algorithm on n different
nodes simultaneously with sending probability 1 − n

√
p

leads to the same distribution of inter-arrival times
(time between subsequent messages) for dummy traffic
as running it on one node with sending probability p.

Proof. Let X1, . . . , Xn be stochastically independent
random variables following geometrical distributions
with success probabilities p1, . . . , pn and let X =
min{X1, . . . , Xn} be the combined random variable de-
scribing the overall inter-arrival times.

Then, since the geometric distribution is memory-
less,

Pr(X = k)
= Pr(X ≥ k)× Pr(X = k|X ≥ k)

2 For the theoretical analysis in this paper we define the natural
numbers to exclude 0.
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= Pr(X ≥ k)× (1− Pr(X > k|X ≥ k))
= Pr(X ≥ k)× (1− Pr(X1 > k ∧ . . . ∧Xn > k|X ≥ k))

= Pr(X ≥ k)× (1−
n∏
i=1

Pr(Xi > k|Xi ≥ k))

= Pr(X ≥ k)× (1−
n∏
i=1

(1− pi))

= Pr(X1 ≥ k ∧ . . . ∧Xn ≥ k)× (1−
n∏
i=1

(1− pi))

=
n∏
i=1

(Pr(Xi ≥ k))× (1−
n∏
i=1

(1− pi))

=
n∏
i=1

(1− pi)k−1 × (1−
n∏
i=1

(1− pi))

=

(
n∏
i=1

(1− pi)

)k−1

× (1−
n∏
i=1

(1− pi))

Therefore, X follows a geometric distribution with
success probability 1−

n∏
i=1

(1− pi).

While this property is not groundbreaking, it serves
an important purpose for practical system design: The
sending probability p is the only parameter that needs
to be synchronized between devices. Aside from this,
the nodes can take decisions about the generation of
dummy traffic locally and do not need to coordinate
every transmission.

The sending probability p (or mean time between
dummy messages λ) can be adjusted to reach a balance
between privacy and energy efficiency. For p = 0, no
dummy messages are generated so there is no impact
on power consumption and none on privacy. For p = 1
NED generates CRDT at the maximum possible rate.
We analyse the impact of 0 < p < 1 on privacy guaran-
tees and energy efficiency in the following sections.

6.1 Privacy Guarantees of NED

In this section we analyse NED with respect to its pri-
vacy guarantees. Note that while NED uses a geometric
distribution for the generation of dummy traffic, no as-
sumption is made about the distribution of genuine user
interaction. The proofs in this section hold for any dis-
tribution of genuine events.

6.1.1 e-d-private Communication

As a first step, we prove that NED and, more gener-
ally, any approach which neither uses CRDT nor delays
genuine messages cannot offer e- private communication.

Theorem 2. NED and any approach which neither
uses CRDT nor delays genuine messages does not pro-
vide ε- private communication.

Proof. Let S be the set of all possible genuine message
timestamps. For each element s ∈ S, we define a task
Ts = “interact with the system in any way that invokes
a message with timestamp s”. Such a task must exist
because genuine messages are not delayed randomly. We
also define a complementary task Ts = “interact with
the system in any way so that no genuine message is
generated at timestamp s”.

Let x ∈ S be a time at which a dummy packet is not
necessarily generated (i.e. the probability of generating
a dummy packet at x is less than 1). Such a time must
exist since the dummy traffic generation scheme is not
CRDT. Let Ox = ∅ now be an empty observation cov-
ering only the instant at time x. Then Pr(Ox|Tx) = 0
because executing Tx by definition invokes a message
with timestamp x. However, Pr(Ox|Tx) > 0 because ex-
ecuting Tx does not invoke a genuine message at time
x. The latter probability is not necessarily 1, because
the dummy traffic generation scheme may generate a
dummy packet at time x.

There is no constant ε > 0 which satisfies 0 <

Pr(Ox|Tx) ≤ eε × Pr(Ox|Tx) = 0. Consequently, the
system does not offer e- private communication.

For a continuous model, the same holds. Let Ox =
O|x /∈ O be the set of all possible adversarial observa-
tions where no message appears at time x. Then by the
same reason as above, Pr(O ∈ Ox|Tx) = 0 and Pr(O ∈
Ox|Tx) > 0. Therefore, the system does not offer e- pri-
vate communication in the continuous model.

The proof formally describes an intuitive but important
property of NED and other latency-free approaches: If
an attacker captures no messages within a certain time
frame, they know that no task was executed that would
have invoked a packet within this time frame. It also
shows that in order to provide e- private communica-
tion, any approach has to introduce artificial delays to
genuine traffic, affecting the responsiveness of the HAS.

This is especially important if messages are not
padded to a uniform length. If the goal is to provide
e- privacy for all classes of messages that an adversary
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is able to distinguish, then CRDT has to be applied to
each. For our test data, this would introduce an over-
head larger than if all messages were padded to the max-
imum length.

For the discrete version of NED specifically we can
also prove that it does not offer (e- d)- private commu-
nication. The proof follows the idea that it is possible
to generate arbitrarily improbable adversarial observa-
tions (e.g. long chains of messages) so that any constant
d will eventually be surpassed. Intuitively, this corre-
sponds to a scenario where a user continuously presses
a light switch over and over again.

Theorem 3. NED does not provide (ε- d)- private com-
munication under a discrete time model.

Proof. For all natural numbers n ∈ N we define a task
Tn =“interact with the system in a way so that n con-
secutive messages are generated” and a corresponding
observation On = [1, n] ∩ N comprising n consecutive
messages and covering a duration of exactly n. By con-
struction, it holds that ∀n ∈ N : Pr(On|Tn) = 1 We also
define a task T0 =“interact with the system in a way so
that no genuine messages are generated”. For this task
it holds that ∀n ∈ N : Pr(On|T0) = pn where p is the
sending probability of NED.

Assuming that NED does offer (e- d)- private com-
munications, there must be two constants ε > 0, δ < 1
so that for all tasks Ti, Tj and for all observations O it
holds that Pr(O|Ti) ≤ eε × Pr(O|Tj) + δ.

For m :=
⌈
logp

( 1−δ
eε

)⌉
it then holds that

Pr(Om|Tm) = 1 by the construction above. Due to the
privacy guarantee, it holds that

1 = Pr(Om|Tm)
≤

eε×Pr(Om|T0) + δ = eε × pm + δ

Due to the construction of m and since p < 1, it
further holds that

eε × pm + δ ≤ eε × 1− δ
eε

+ δ = 1

However, since p < 1, we can come up with another
sample Om+1 for which it holds that

eε × Pr(Om+1|T0) + δ

=eε × pm+1 + δ < eε × pm + δ

And since eε×pm+δ = Pr(Om|T0) as shown above,
it holds that

Pr(Om|Tm) > eε × Pr(Om+1|T0) + δ

This violates the condition of (e- d)- private commu-
nication.

However, it is not always necessary for a HAS to of-
fer (e- d)- private communication. If the user wants to
e.g. only guarantee that an attacker is unable to find
out whether they are at home, it might be sufficient to
provide (e- d)- unobservability for a set which comprises
tasks involving the user directly, such as opening doors
and pressing switches (a reasonable number of times).
While the traffic patterns triggered by these tasks might
differ in practice depending on the system hardware and
setup, we analyse some generalised use cases to demon-
strate the feasibility of NED.

6.1.2 e-indistinguishability

If a system does not equalise message sequences with re-
gard to the number of messages and their inter-arrival
times, approaches like NED that are not bounded can-
not offer e- indistinguishability for tasks invoking differ-
ent message sequences. The theorem and its proof can
be visualised using the following example: Suppose that
pressing a light switch makes the system transmit 3
consecutive messages and that opening a door makes
it transmit 4 messages. If the system now uses NED for
the generation of dummy traffic, it is possible that after
pressing a light switch, still only 3 messages are trans-
mitted within the observed time frame. If an attacker
captures this output, they can be certain that the light
switch was pressed rather than the door being opened.
Since e- indistinguishability requires one of the tasks to
be performed, this information is leaked to the attacker.

For the proof, we assume that performing a task T
invokes a message sequence S = {s1, s2, . . . , sn} where si
is a random variable following a (usually, but not neces-
sarily, bounded) probability distribution and describing
the time difference between the i-th message and the
point at which the task was performed. Note that us-
ing slightly different models (e.g. si describing the inter-
arrival time between messages i and i−1) requires minor
adaptions, but does not invalidate the proof.

Theorem 4. Let TA, TB be two tasks and let A =
{a1, a2, . . . , am}, B = {b1, b2, . . . , bn} be the message se-
quences invoked by performing TA or TB, respectively.
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If the tasks do not fully overlap, or formally if

∃i ∈ [1,m]∀x ∈ N :
Pr(ai = x) > 0⇒ ∀j ∈ [1, n] : Pr(bj = x) = 0

then NED (or any other unbounded probabilistic ap-
proach) does not provide ε- indistinguishability for the
set {TA, TB}.

Proof. Let i be such that ∀x ∈ N :
(Pr(ai = x) > 0⇒ ∀j ∈ [1, n] : Pr(bj = x) = 0) (cf. the
precondition). Let Q ⊆ N be the set for which
∀q ∈ Q : Pr(ai = q) > 0, therefore ∀q ∈ Q, j ∈ [1, n] :
Pr(bj = q) = 0.

Then for all observations O where Pr(O|TB) > 0
and O ∩ Q = ∅ it holds that Pr(O|TA) = 0. Such ob-
servations must exist because elements from Q are not
generated by performing TB and if the dummy traf-
fic generation algorithm is NED or another unbounded
probabilistic scheme, then there are observations O with
O ∩Q = ∅ which may occur when performing TB .

Consequently, there is no constant ε ≥ 0 which sat-
isfies 0 < Pr(O|TB) ≤ eε × Pr(O|TA) = 0. The system
therefore does not offer ε- indistinguishability for the set
{TA, TB}.

We can conclude that for strict e- indistinguishability,
the message sequences invoked by the tasks have to be
modified so that no possible sequence of one tasks is im-
possible for another. In practice, this may be achieved
by equalising the length of message sequences, e.g. by
ensuring that after every user interaction, a fixed num-
ber of messages is transmitted in the same fixed or
equally distributed intervals. Apthorpe et al. follow this
idea in their approach named STP. [1]

6.1.3 e-d-unobservability

As a last step we analyse NED with regard to (e- d)- un-
observability. We show that NED achieves this goal and
calculate the values of e and d for a given scenario. For
the proof we assume the following case: As in the previ-
ous section, performing a given task T invokes a number
of messages S = {s1, s2, . . . , sn} where each si is a ran-
dom variable following any probability distribution and
describing the timing of message i relative to the task’s
execution time. Our S matches the set E of interesting
events or messages from our previous work [18].

Theorem 5. Let T be a task invoking a sequence of
messages S = {s1, s2, . . . , sn} and let T be the comple-

mentary task invoking no genuine message. Then NED
offers (ε- d)- unobservability of {T, T}.

Proof. Let O be any adversarial observation of dura-
tion l (measured in possible transmission slots). We dis-
tinguish between the following (possibly overlapping)
cases:
1. Pr(O|T ) > 0 Then O will unconditionally include a

number m, 0 ≤ m ≤ min(n, l) of genuine messages
generated by executing T and a number d = |O∩D|,
0 ≤ d ≤ l of dummy messages. An upper bound
for this probability Pr(O|T ) can be computed by
calculating the probability of observing exactly the
same d dummy messages in an observation of length
l which already includes the m genuine messages:

Pr(O|T ) ≤ pd × (1− p)l−m−d

Then, the probability of observing the same pattern
with no genuine messages is

Pr(O|T ) = pm × pd × (1− p)l−m−d

If we plug these two terms into the equation for
(e- d)- unobservability, we get

Pr(O|T ) ≤ pd × (1− p)l−m−d

≤eε × Pr(O|T ) + δ

=eε × pm × pd × (1− p)l−m−d + δ

We see that for ε = − ln(pm) > 0 (since 0 < p < 1
and therefore pm < e) and δ = 0 the two sides
become the same, satisfying the condition. Since
m ≤ n, the value ε = − ln(pn) is a lower bound.
For the opposite direction, we need a lower bound
for the probability Pr(O|T ). Since the probability
of any timestamp being yielded by NED is larger
than 0, the probability of observing any message
cannot be lower than the probability of this message
being a dummy generated by NED. This value is the
sending probability p. Therefore, a lower bound is
Pr(O|T ) ≥ pm+d× (1− p)l−m−d. Inserting this into
the equation we get

Pr(O|T ) = pm × pd × (1− p)l−m−d

≤eε × Pr(O|T ) + δ ≥ pm+d × (1− p)l−m−d

We immediately see that the condition is satisfied
for ε = δ = 0 and δ = 0.
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2. Pr(O|T ) = 0 Then the equation Pr(O|T ) ≤ eε ×
Pr(O|T ) + δ is satisfied for any value of ε > 0 and
δ < 1.
As for the opposite direction, it is obvious that
Pr(O|T ) > 0 since NED can yield any set of times-
tamps. The maximum possible value of this prob-
ability is therefore an upper bound for the con-
stant δ. This maximum is trivial to compute: Since
Pr(O|T ) = 0, O must not have a packet over a pe-
riod where T would generate one. An upper bound
for observing this “silence” is 1 − p. Hence, we get
that δ ≤ 1− p.

7 Evaluating NED
In order to evaluate NED against real HAS data, we
implemented the algorithm and ran it against our eval-
uation data. During the implementation we made the
following design decisions:
– The algorithm generates samples from an exponen-

tial distribution and rounds the result down to the
nearest possible transmission time.

– Since our sample data contains messages with the
same timestamp due to limitations of the capturing
hardware, we allowed 0 as a possible result for the
next dummy message.

The sample data of each system was used as a single
trace of genuine traffic. The generated dummy traffic
was added on top of the genuine messages similar to how
NED could be implemented in practice. As stated in
Section 6, we placed no assumption on the distribution
of genuine traffic. Instead, we used the realistic sample
data as-is.

For each system, we generated dummy traffic us-
ing six different values for the mean inter-arrival time
l of the exponential distribution. We also performed
an analysis using no dummy traffic. We generated up
to 1000 observations from the resulting system output,
making sure that at least 40 of them included user in-
teraction. The duration of these observations was set
to 10 s. We performed the evaluation with longer sam-
ples as well, but reached the same conclusion. For each
sample, we counted the number of times it occured in
the system output including dummy messages. The oc-
curences were split between those where the same kind
of user interaction happened as in the sample and those

where different or no user interaction was recorded. We
ran the complete simulation multiple times to see if the
calculated values are stable. Since NED can generate
extreme traffic patterns (no or very high dummy traf-
fic), it is possible to see high variations in the results,
although with a low probability. The results below are
the average of multiple runs; the values did not differ
significantly.

Using this data we estimate values for e and d. We
also estimate the effect on the energy consumption ac-
cording to the HomeMatic model from Section 5.3.5.
The results are summarised in Table 2.

System
1 2.1 2.2 3

No dummy traffic
TI 0.00 0.00 0.00 0.00
e 8.77 7.62 7.83 7.63
d 0.87 0.70 0.99 1.00
λ = 0.5 (∼1 P every 2 s)

TI 43.55 13.84 754.83 40.40
e 3.91 <10−10 <10−10 3.97
d 5.93× 10−3 4.78× 10−3 7.11× 10−3 6.71× 10−3

ECI 0.38 0.50 1.13 0.28
λ = 1 (∼1 P every second)

TI 115.39 36.69 1995.63 80.85
e <10−10 <10−10 <10−10 <10−10

d 5.56× 10−5 1.46× 10−3 8.55× 10−4 7.50× 10−9

ECI 1.00 1.33 2.98 0.56
CRDT (for reference, rates from Sec. 5.1)

TI 267.53 148.54 5812.63 1453.40
e 0 0 0 0
d 0 0 0 0
ECI 2.31 5.37 8.68 10.12

Table 2. Results for using NED in Home Automation Systems.
TI stands for traffic increase and ECI means Energy Consumption
Increase according to the HomeMatic model. Both are given as a
factor, where a value 0 means no increase and a value of 1 means
that the original value doubled. TI and ECI for CRDT is supplied
for comparison. Since CRDT offers (0-0)-private communication
[18], the values for e and d are 0.

NED offers significant privacy improvements for
moderate increases of overall traffic. For higher values
of l, the traffic overhead increases quickly and so do the
privacy guarantees. When NED is configured to send ap-
proximately one packet every second, the parameter e

approaches 0 in all four systems. The constant privacy
leakage d also becomes diminishingly small. However,
the energy consumption is merely doubled for the first
two systems. For System 3, the increase is only 50 %.
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Even low values of l alread provide significant im-
provements over non-anonymised systems: When trans-
mitting one dummy every 10 seconds, the constant leak-
age d is below 0.5 in all systems, while the increase in
energy consumption is below 20 % for all four systems
and below 10 % for three of them.

A suitable compromise between privacy and energy
consumption is at λ = 0.5. e drops to at most half the
value it has in the unmodified systems. Due to it being
in the exponent when comparing probabilities, the fac-
tor eε drops by more than 97 %. Furthermore, the con-
stant leakage d drops below 0.01 in all systems, which
means that the chance of an attacker being able to learn
a definitive piece of information is close to zero. The in-
crease in energy consumption is between 6 and 50 % for
all systems except System 2.2.

7.1 Behaviour of e and d over Time

We have investigated how e and d develop over different
stretches of time. First we consider a simple theoretic
case: A user performs an interaction at the same time
every day. The interaction invokes a chain s of n consec-
utive messages. The probability of observing s at this
time each day is 1. The probability of observing n con-
secutive dummies in absence of the interaction is pn.
The probability of observing a sample of length n with
at least one gap in the absence of interaction is 1− pn.
Thus, for one day the privacy parameters are δ = 1−pn

and ε = −n× ln p ((e- d)- unobservability).
When monitoring the system for multiple days (or

task execution periods), however, the adversary ob-
serves the same pattern at the same time. Thus, after
k days of monitoring, the probability of observing the
same pattern of n consecutive dummy messages at the
same time each day is pnk and the probability of ob-
serving a single gap is 1 − pnk. This means that the
privacy parameter ε = −nk × ln p linearly rises with k

while δ = 1 − pnk converges to 1. As an example, for
λ = 0.5⇒ p ≈ 0.39, n = 4, e starts at ε ≈ 3.73 for k = 1
and rises to ε ≈ 26.12 for k = 7. d starts at δ ≈ 0.61 and
decreases to δ ≈ 0.03 for k = 7.

We have also tried to extract the behavior of e and
d over time from the sample data. However, we observe
that tasks are not as regular as in our theoretical ex-
ample: With λ = 0.1, the parameter e for System 3
starts at 2.97 for a timeframe of 6 hours and rises to 9.45
when taking a week’s traffic data. For the full dataset
it then decreases back to 7.50. This can be explained
when examining the parameter calculation: For a given

interaction in a short timeframe, a particular sample is
unique. When observing longer stretches of time how-
ever, the same interaction results in different samples.
Furthermore, short timeframes result in a high variance
of the privacy parameters due to the limited data. In
order to properly analyze real behavior of e and d over
time, larger data sets are needed. The theoretical and
practical values have been plotted in Figure 1, although
the explanatory power of this graph is limited due to
the aforementioned constraints.

Fig. 1. Simulated and measured development of e and d over
time ((e- d)- unobservability). The Scale for e is logarithmic for
increased readability. Values are calulcated for λ = 0.5 and real
values are estimated from the data of System 3. Note that the
real values are subject to limited data and

8 Conclusion and Outlook
In this paper we have performed a qualitative and quan-
titative analysis of countermeasures against traffic anal-
ysis in Home Automation Systems. We have shown that
Constant-Rate Dummy Traffic is a feasible countermea-
sure under certain conditions and using suitable hard-
ware. As an alternative for systems where CRDT does
not perform well, we have introduced NED as a robust
algorithm. It features a single, tunable parameter that
can be configured to provide any amount of privacy or
energy-efficiency.

On one hand, we have proven fundamental limits of
latency-free privacy mechanisms using NED as an exam-
ple. On the other hand, we have proven that NED of-
fers (e- d)- unobservability for single user interactions and
have evaluated the approach using sample data from
four different HASs. We have shown that NED offers
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reasonable privacy guarantees at moderate energy con-
sumption overhead.

In order to further reduce the impact on overall
power consumption, systems could offer to change the
parameters of CRDT and NED according to time. This
would strongly affect settings such as System 2.2, where
bursts of activity are followed by long periods of little
to no traffic. An adversary could then see an overall in-
crease and decrease in activity, but could not identify if
a burst was artificial or when there was user interaction
during a period of higher activity.

Furthermore, insight into behavioral patterns of
HAS users can shed more light onto the performance
of NED and similar approaches in a realistic setting.
While a study of user behavior is beyond the scope of
this paper, it would enable the development of more op-
timized dummy traffic generation schemes. While NED
introduces no latency to user interaction, some minor la-
tencies might be acceptable depending on the use case.

Given the fact that NED builds on a very general
and intuitive system model, the principle can be applied
to other settings as well. The model allows for formal
proofs of privacy guarantees and different algorithms
can be evaluated and compared to NED.
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A Energy Efficiency of CRDT
Table 3 summarizes the evaluation of our CRDT anal-
ysis.

Figure 2 shows the energy consumption of a Home-
Matic switch. The different states which we could iden-
tify are highlighted.

Fig. 2. Measurement of the voltage dropping across a 2 Ω shunt
resistor connected in series to a HomeMatic light switch which
was pressed. One can clearly identify the different states of the
hardware. The switch is powered by two AAA batteries or—in
this case—a laboratory power supply serving 3 V.

B Evaluation Reproducibility
In order to allow other researchers to reproduce the
results obtained in this work, we have published the
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System 1 2.1 2.2 3
Unmodified Data

Timespan (days) 35.49 8.33 13.44 37.72
Messages 45,679 33,708 999 40,336

Inter-Arrival Times
Minimum 0 s 0 s 0 s 0 s
Maximum 3668 s 153 s 61,645 s 25,050 s
Mean 67.14 s 21.36 s 1163.89 s 80.80 s
Median 64 s 14 s 0 s 0 s
Standard Deviation 49.67 s 27.49 s 5875.77 s 469.68 s

After applying CRDT
Data Rate (P s−1) 4 7 5 18
Genuine Messages Delayed 4.95 % 26.09 % 59.46 % 51.90 %
Traffic Increase (Factor) 267.53 148.54 5812.63 1453.40

802.11 PC Card [10] (20 B, 11 Mbit s−1)
Idle 52.26 MJ 8.54 MJ 6.03 MJ 4.69 MJ
Increase by CRDT (Factor) 4.55× 10−4 6.11× 10−4 1.29× 10−3 5.71× 10−3

EYES nodes [29]
Unmodified 29.68 kJ 4.81 kJ 3.37 kJ 4.05 kJ
Increase by CRDT (Factor) 0.31 0.83 1.36 1.14

Mica2dot [30] (20 B, 0.5 % Duty Cycle for Receivers, 0 % for Senders)
Unmodified System 2600.36 J 634.89 J 383.55 J 5179.13 J
Increase by CRDT (Factor) 5.33 9.13 17.52 14.12

Telos [25] (20 B, 0.5 % Duty Cycle for Receivers, 0 % for Senders)
Unmodified System 1473.50 J 272.22 J 191.37 J 2395.58 J
Increase by CRDT (Factor) 0.44 0.98 1.02 2.28

HomeMatic
Unmodified System 37.93 kJ 6.69 kJ 4.29 kJ 52.21 kJ
Increase by CRDT (Factor) 2.31 5.37 8.68 10.12

Table 3. Effects of enforcing Constant-Rate (Dummy) Traffic in the sample installations under different energy consumption models.
Numbers are rounded to two digits after the decimal point. A factor of 0 means no increase in traffic or energy consumption, whereas
a 1 means that the original value doubled. Note that for System 3 using the 802.11 PC Card, a different idle power consumption was
used.

source code of our NED implementation as well as
the HAS sample data. The data can be accessed at
https://github.com/frederikmoellers/ned-eval/.

https://github.com/frederikmoellers/ned-eval/
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